
Quantum backreaction on classical dynamics

Tanmay Vachaspati
Physics Department, Arizona State University, Tempe, Arizona 85287, USA Maryland Center for

Fundamental Physics, University of Maryland, College Park, Maryland 20742, USA
(Received 26 April 2017; published 9 June 2017)

Motivated by various systems in which quantum effects occur in classical backgrounds, we consider the
dynamics of a classical particle as described by a coherent state that is coupled to a quantum bath via
biquadratic interactions. We evaluate the resulting quantum dissipation of the motion of the classical
particle. We also find classical initial conditions for the bath that effectively lead to the same dissipation as
that due to quantum effects, possibly providing a way to approximately account for quantum backreaction
within a classical analysis.

DOI: 10.1103/PhysRevD.95.125002

I. INTRODUCTION

Several systems of interest involve the coupling of
classical backgrounds to quantum fields. The dynamics of
the classical system radiates quantum excitations and thus
dissipates. We are interested in evaluating the backreaction
of the quantum excitations on the classical dynamics.
This study is particularly relevant to gravitational sys-

tems where we do not yet have a full quantum theory and in
which context this problem has already received some
attention [1–5]. For example, in inflationary cosmology,
classical dynamics of the inflaton field excites quantum
fields that then become observable cosmological density
perturbations. The inflaton field denotedΦðtÞ is assumed to
be homogeneous and initially displaced from its minimum.
As the field rolls towards its minimum, it can excite a
second field, ϕ, that is coupled to it. Generally symmetries
underΦ → −Φ and ϕ → −ϕ are assumed so that the lowest
order coupling term is λΦ2ϕ2. The classical evolution of ϕ
will be governed by

□ϕþm2ϕþ 2λΦ2ϕ ¼ 0 ð1Þ

and the initial condition ϕ ¼ 0, _ϕ ¼ 0, gives ϕ ¼ 0 for all
times. In quantum theory, however, if ϕ is assumed in its
ground state initially, it gets excited by the dynamics of the
Φ field. Then the quantum evolution of ϕ is nontrivial and it
backreacts on the dynamics of Φ and dissipates its motion.
We are interested in evaluating this quantum dissipation.
We are also interested in finding a set of classical initial
conditions different from ϕ ¼ 0 ¼ _ϕ for which the classical
dissipation closely agrees with the quantum result.
These questions are of interest beyond inflationary

cosmology. Gravitational collapse leads to Hawking radi-
ation that is purely quantum and this will cause the
collapsing body to evaporate. The collapsing body is a
large object that is most conveniently treated classically, as
is its gravitational field. But the radiation is quantum. Can

the backreaction on the collapse be estimated on the basis
of a classical calculation?
There are nongravitational settings where similar ques-

tions arise. For example, what is the backreaction of
Schwinger pair production on the electric field? A full
treatment of this problem in 1þ 1 dimensions for the
special case of massless fermions leads to an interesting
t−1=2 decay of the electric field and an effective electrical
conductivity of the vacuum [6] but the case of massive
fermions is still open. Another setting where classical and
quantum descriptions confront each other is when discus-
sing the production of topological solitons in particle
collisions [7,8]. Solitons are solutions of the classical field
theory equations and this is the most convenient framework
to discuss them. In studying the creation of solitons by
scattering particles, if the initial condition involves a large
number of particles, they too can be described by classical
equations. Thus one may be inclined to think that classical
evolution is sufficient to study the creation of solitons in
(many) particle collisions. However this is not true in
general because, depending on the initial conditions, the
classical evolution may be restricted to an embedded
subspace of the model [9,10], just as ϕ ¼ 0 is the
dynamical subspace in the example of Eq. (1). Solitons,
by their topological nature, involve a very large part of the
dynamical space of field configurations and, in certain
situations, quantum effects could be crucial for the dynam-
ics to explore the full space of fields necessary to create
solitons.
A concrete example helps to explain this issue better.

Consider light-on-light collisions. These involve the
collisions of a large number of photons and a classical
description via Maxwell’s equations should suffice.
However, then the collision is trivial since Maxwell’s
equations are linear. In quantum theory, photon collisions
will sometimes produce charged particle-antiparticle pairs
(e.g. W�, electrons, and other standard model particles).
These will create a plasma that will backreact on the
dynamics of the light-on-light collisions. Only the quantum
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dynamics will explore the full standard model and possibly
produce electroweak strings [11] or sphalerons [12] that are
solutions of the classical electroweak equations.
The problem outlined above is very difficult to address in

field theory and we will only solve a simpler quantum
mechanical problem. We first expand the fields in modes.
For example for a scalar field,

ϕðt;xÞ ¼
X
k

ckðtÞfkðxÞ ð2Þ

where fkðxÞ are a set of orthonormal mode functions, ckðtÞ
aremode coefficients, and the sum is an integral if themodes
form a continuum. Then, as is standard in quantum field
theory (for example see [13]), the free field part of the theory
is equivalent to an infinite set of simple harmonic oscillators
(SHOs) given by the variables ckðtÞ and these can be
quantized. The interaction terms in the field theory lead to
couplings between the modes and are equivalent to cou-
plings between the SHOs. An interaction term of the type
λΦ2ϕ2, as discussed above, will be equivalent to coupling
four SHOs, two corresponding to mode coefficients of Φ
and two to those of ϕ. In general the couplings will be of the
form Ck1

Ck2
ck3

ck4
with k1þk2þk3þk4¼0, where Ck

denotes a mode coefficient of Φ. The biquadratic terms,
C2
Kc

2
k, are the only ones that are symmetric under Ck1

→
−Ck1

and also, separately, ck3
→ −ck3

and hence are the
only ones that will survive if we evaluate the expectation
value of the coupling term. This suggests that the biquad-
ratic couplingsmay dominate and our simplification in what
follows will be to only consider this coupling. However, this
simplification should be examined further because there are
many more terms that are not biquadratic and fluctuations,
not just the expectation value, may be important. (Systems
with bilinear couplings, CKck, can be diagonalized and
have been analyzed in early work [14,15].) Since CK
represents a classical degree of freedom, we take it to be
in a coherent state initially in our quantum analysis, while
ck’s are quantum variables that are taken to be in their
ground state initially.
To summarize this discussion, we consider a heavy SHO

coupled to bath of light SHOs via biquadratic couplings.
A solution of the classical equations is that the heavy SHO
oscillates and the light SHOs remain at rest. This picture
changes in the quantum analysis in which the heavy SHO is
initially described by a coherent state and the light SHOs
are in their ground state. Oscillations of the heavy SHO
excite the light SHOs and there are two forms of back-
reaction on the heavy SHO. First the heavy SHO motion
gets damped. Second, the state of the heavy SHO is no
longer a coherent state and the heavy SHO state changes
towards becoming less classical, more quantum. In the
present paper we focus on the backreaction that causes
dissipation. The backreaction that takes the heavy SHO out
of its coherent state is interesting but not directly relevant to

the dynamical question and we postpone it for the time
being.
We start out by describing the quantum mechanical

model in Sec. II. Section III contains our classical analysis
which we perform with action-angle variables, first study-
ing the dynamics for a single light SHO, followed by a
calculation of the classical dissipation for a bath of SHOs.
The bath is essential to obtain dissipation because other-
wise there is energy exchange between the heavy and light
SHOs but no dissipation. In Sec. IV we analyze the
quantum model, first for a single light SHO, then for a
bath of light SHOs, and we then evaluate the quantum
dissipation. Our final result for the quantum vs classical
backreaction is discussed in Sec. V and the reader who is
not interested in the details of the calculations can directly
go to Sec. V. We conclude in Sec. VI. The Appendix
contains a discussion of quantization of the SHO using
action-angle variables.

II. MODEL

The heavy SHO position and momentum variables are
ðX;PÞ; the light SHO variables are ðxi; piÞ for i ¼ 1;…; N.
Traditionally, we would write the Hamiltonian

H ¼ P2

2M
þ 1

2
MΩ2X2 þ

XN
i¼1

�
p2
i

2mi
þ 1

2
miω

2
i x

2
i

�

þ 1

2N
X2

XN
i¼1

ϵi
l4i
x2i ð3Þ

where li is a length scale and ϵi has dimensions of energy.
Rescaling

ðMΩÞ1=2X → X; ðmiωiÞ1=2xi → xi; ð4Þ

P → ðMΩÞ1=2P; pi → ðmiωiÞ1=2pi ð5Þ

and assuming a universal coupling, i.e. ϵi=l4i are indepen-
dent of i, and dividing throughout by a factor of Ω, we get
the Hamiltonian in the form

H ¼ P2

2
þ X2

2
þ
XN
i¼1

ωi

�
p2
i

2
þ x2i

2

�
þ ϵ

2N
X2

XN
i¼1

x2i : ð6Þ

Note that we do not use the Einstein summation
convention.

III. CLASSICAL ANALYSIS

A. Single light SHO

A neat method to do the classical calculation is to
perform a canonical transformation so that the phase of
the SHO is the coordinate variable and the amplitude is
related to the momentum variable,
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q →

ffiffiffiffiffiffiffi
2I
mω

r
sin θ; p →

ffiffiffiffiffiffiffiffiffiffiffiffi
2Imω

p
cos θ: ð7Þ

The new Hamiltonian is

Hnew ¼ I1 þ ωI2 þ 2ϵI1I2sin2θ1sin2θ2 ð8Þ

where ðθ1; I1Þ are variables for the heavy SHO and ðθ2; I2Þ
are for the light SHO. The equations of motion are

_θ1 ¼ 1þ 2ϵI2sin2θ1sin2θ2
_I1 ¼ −2ϵI1I2 sinð2θ1Þsin2θ2
_θ2 ¼ ωþ 2ϵI1sin2θ1sin2θ2
_I2 ¼ −2ϵI1I2sin2θ1 sinð2θ2Þ: ð9Þ

The unperturbed solution (with ϵ → 0) is

θ1 ¼ tþ ϕ1 I1 ¼ K1

θ2 ¼ ωtþ ϕ2 I2 ¼ K2 ð10Þ

where ϕ1, ϕ2, K1 and K2 are constants.
To first order in ϵ,

θ1¼ tþϕ1þ2ϵK2

Z
t

0

dt0sin2ðt0 þϕ1Þsin2ðωt0 þϕ2Þ ð11Þ

I1¼K1

−2ϵK1K2

Z
t

0

dt0 sinð2ðt0 þϕ1ÞÞsin2ðωt0 þϕ2Þ ð12Þ

θ2 ¼ ωtþ ϕ2

þ 2ϵK1

Z
t

0

dt0sin2ðt0 þ ϕ1Þsin2ðωt0 þ ϕ2Þ ð13Þ

I2¼K2

−2ϵK1K2

Z
t

0

dt0sin2ðt0 þϕ1Þsinð2ðωt0 þϕ2ÞÞ: ð14Þ

To connect with the usual position of the heavy SHO we
use

X¼
ffiffiffiffiffiffiffi
2I1

p
sinθ1

¼
ffiffiffiffiffiffiffiffi
2K1

p �
1−2ϵK2

Z
t

0

dt0sinð2ðt0þϕ1ÞÞsin2ðωt0þϕ2Þ
�
1=2

×sin

�
tþϕ1þ2ϵK2

Z
t

0

dt0sin2ðt0þϕ1Þsin2ðωt0þϕ2Þ
�
:

ð15Þ

In terms of the oscillation amplitudes, X0 and A, we take
K1 ¼ X2

0=2, K2 ¼ A2=2. If the initial condition is that the

heavy SHO is displaced but at rest, we take ϕ1 ¼ π=2; for
the phase of the light SHO we write ϕ2 ¼ ϕ. Then,

X ¼ X0

�
1þ ϵA2

Z
t

0

dt0 sinð2t0Þsin2ðωt0 þ ϕÞ
�
1=2

× cos
�
tþ ϵA2

Z
t

0

dt0cos2ðt0Þsin2ðωt0 þ ϕÞ
�
: ð16Þ

These integrals can be done in closed form but the
expressions are not illuminating.
The modified frequency of oscillation can be found by

identifying the linearly growing phase of the cosine in
Eq. (16) and is obtained by using

Z
t

0

dt0cos2ðt0Þsin2ðωt0 þϕÞ ¼ t
4
þ oscillating terms: ð17Þ

This gives the oscillation frequency to first order in ϵ,

Ω ¼ 1þ ϵ

4
A2: ð18Þ

In Sec. V we will find A for which this modified frequency
agrees with the modified frequency in the quantum
analysis.

B. Classical dissipation for bath of light SHOs

To obtain dissipation we have to work out _Ii to second
order in ϵ. In the equation,

_I1 ¼ −2ϵI1I2 sinð2θ1Þsin2θ2 ð19Þ

we insert the first order expressions in Eqs. (11)–(14). It is
convenient to define

J ≡ −
t
4
þ
Z

t

0

dt0sin2ðt0 þ ϕ1Þsin2ðωt0 þ ϕ2Þ

¼ −
½sinð2αÞ − sinð2ϕ1Þ�

8
−
½sinð2βÞ − sinð2ϕ2Þ�

8ω

þ ½sinð2ðαþ βÞÞ − sinð2ϕþÞ�
16ð1þ ωÞ

þ ½sinð2ðα − βÞÞ − sinð2ϕ−Þ�
16ð1 − ωÞ ð20Þ

where α ¼ tþ ϕ1, β ¼ ωtþ ϕ2, and ϕ� ¼ ϕ1 � ϕ2.
Then

∂J
∂ϕ1

¼
Z

t

0

dt0 sinð2ðt0 þ ϕ1ÞÞsin2ðωt0 þ ϕ2Þ ð21Þ

∂J
∂ϕ2

¼
Z

t

0

dt0sin2ðt0 þ ϕ1Þ sinð2ðωt0 þ ϕ2ÞÞ ð22Þ

and
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_I1 ¼ −2ϵK1K2

�
1 − 2ϵ

�
K1

∂J
∂ϕ2

þ K2

∂J
∂ϕ1

��

× ½sinð2α0Þ þ 4ϵK2J cosð2α0Þ�
× ½sin2ðβ0Þ þ 2ϵK1J sinð2β0Þ� ð23Þ

where α0 ¼ ð1þ ϵK2=2Þtþ ϕ1, β0 ¼ ðωþ ϵK1=2Þtþ ϕ2.
We have discarded terms of higher order than ϵ2 except to
show linear order corrections to the oscillation frequencies
even if these corrections lead to higher order corrections
in _I1.
We ignore the order ϵ terms since they are oscillating and

do not lead to dissipation. With some algebra

_I1 → ϵ24K1K2

�
1

2

�
K1

∂J
∂ϕ2

þ K2

∂J
∂ϕ1

�

×

�
sinð2αÞ − 1

2
sinð2αþÞ −

1

2
sinð2α−Þ

�

þ J

�
Kþ
2

cosð2αþÞ −
K−

2
cosð2α−Þ − K2 cosð2αÞ

��

ð24Þ

where K� ¼ K1 � K2 and α� ¼ α� β ¼ ð1� ωÞtþ ϕ�
with ϕ� ¼ ϕ1 � ϕ2.
We want to find the dissipation when the classical SHO

is coupled to a bath of independent, incoherent, light SHOs.
Let us assume that the bath of light SHOs has a spectral
distribution of frequencies given by a function nðωÞ. In
other words, the number of light SHOs with frequencies
between ω and ωþ dω is nðωÞdω. Therefore we will
calculate

_E1;classical ≡ h_Ii ¼
Z

∞

0

dωnðωÞ_I: ð25Þ

Further, we are only interested in the dissipatory terms, not
in the oscillatory terms. We will also assume nð0Þ ¼ 0.
Then the terms that dominate have (1 − ω) in the denom-
inator and we can effectively replace

J →
sinð2ðð1 − ωÞtþ ϕ−ÞÞ − sinð2ϕ−Þ

16ð1 − ωÞ

¼ −
sin2ðð1 − ωÞtÞ sinð2ϕ−Þ

8ð1 − ωÞ þ sinð2ð1 − ωÞtÞ cosð2ϕ−Þ
16ð1 − ωÞ

→
sinð2ð1 − ωÞtÞ cosð2ϕ−Þ

16ð1 − ωÞ ð26Þ

since, in the last step, the first term tends to zero as
1 − ω → 0, while the second term goes to a finite value.
Similarly

∂J
∂ϕ1

→−
sinð2ð1−ωÞtÞsinð2ϕ−Þ

8ð1−ωÞ ¼−2J tanð2ϕ−Þ ð27Þ

∂J
∂ϕ2

→þsinð2ð1−ωÞtÞsinð2ϕ−Þ
8ð1−ωÞ ¼þ2J tanð2ϕ−Þ: ð28Þ

Recognizing that the integration over ω in Eq. (25) will be
dominated by ω ≈ 1 and that the oscillating terms do not
contribute to the dissipation, we obtain

_I1 →
ϵ2

8
K1K2K−

sinð2ð1 − ωÞtÞ
ð1 − ωÞ ð29Þ

where we have replaced J using Eq. (26). Next we use

Z
∞

0

dx
sinðx − x0Þ
x − x0

≈
Z

∞

−∞
dx

sinðx − x0Þ
x − x0

¼ π ð30Þ

for x0 ≫ 1, and get

_E1;classical ≈ −ϵ2
π

8
K1K2K−nð1Þ ð31Þ

for t ≫ 1. In terms of the initial amplitudes of the SHOs, we
take K1 ¼ X2

0=2, K2 ¼ A2=2, to get

_E1;classical ≈ −
π

64
ϵ2nð1ÞX4

0A
2

�
1 −

A2

X2
0

�
ð32Þ

where A is the amplitude of the bath of SHOs at the
resonant frequency ω ¼ 1. A surprising feature of this
result is that the phases of the SHOs have dropped out.

IV. QUANTUM ANALYSIS

The action-angle variables ðθ; IÞ used in the classical
analysis were more convenient as they enabled a direct
calculation of the change in the energy of the heavy SHO
due to backreaction. Quantization in these variables is
described in the Appendix and is subtle because of operator
ordering issues. Also, since the perturbation term involves
the SHO positions, action-angle variables do not lead to any
obvious simplifications in the quantum analysis and we
work with the conventional ðx; pÞ coordinates.
We write the wave function in SHO Fock basis states

ψðt; X; xÞ ¼
X∞
n;m¼0

cnmðtÞfnðtÞjniXjmix ð33Þ

where

fnðtÞ ¼ e−it=2e−jzj2=2
znffiffiffiffiffi
n!

p ¼ e−it=2e−jz0j2=2
zn0e

−intffiffiffiffiffi
n!

p : ð34Þ

In the second equality, we have used the coherent state
solution z ¼ z0e−it.
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The initial state is taken to be a direct product of a
coherent state for X and ground state for x, i.e.,

cnmð0Þ ¼ δm0: ð35Þ

For convenience, we shall also use the notation

bnmðtÞ ¼ cnmðtÞfnðtÞ: ð36Þ

In terms of creation and annihilation operators

A ¼ 1ffiffiffi
2

p ðX þ iPÞ; A† ¼ 1ffiffiffi
2

p ðX − iPÞ; ð37Þ

a ¼ 1ffiffiffi
2

p ðxþ ipÞ; a† ¼ 1ffiffiffi
2

p ðx − ipÞ ð38Þ

we have

H ¼
�
A†Aþ 1

2

�
þ ω

�
a†aþ 1

2

�

þ ϵ

2

�
A† þ Affiffiffi

2
p

�
2
�
a† þ affiffiffi

2
p

�
2

: ð39Þ

Then the Schrödinger equation gives

i∂tbnm¼
��

nþ1

2

�
þω

�
mþ1

2

��
bnm

þ ϵ

8

X∞
l;k¼0

hnjðA†þAÞ2jlihmjða†þaÞ2jkiblk: ð40Þ

Now we use

hnjðA† þ AÞ2jli ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p
δn;lþ2 þ ð2nþ 1Þδn;l

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 2Þðnþ 1Þ

p
δn;l−2 ð41Þ

hmjða† þ aÞ2jki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm − 1Þ

p
δm;kþ2 þ ð2mþ 1Þδm;k

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 2Þðmþ 1Þ

p
δm;k−2 ð42Þ

to get

i∂tbnm ¼
��

nþ 1

2

�
þ ω

�
mþ 1

2

�
þ ϵ

8
ð2nþ 1Þð2mþ 1Þ

�
bnm

þ ϵ

8

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm − 1Þ

p
bn−2;m−2 þ ð2mþ 1Þbn−2;m þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 2Þðmþ 1Þ

p
bn−2;mþ2

o

þ ð2nþ 1Þ
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðm − 1Þ
p

bn;m−2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 2Þðmþ 1Þ

p
bn;mþ2

o

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 2Þðnþ 1Þ

p n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm − 1Þ

p
bnþ2;m−2 þ ð2mþ 1Þbnþ2;m þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 2Þðmþ 1Þ

p
bnþ2;mþ2

o�
: ð43Þ

Note that this equation for bnm also has a term proportional to bnm on the right-hand side. This term is responsible for
changing the frequency of oscillations and is better brought over to the left-hand side, leading to

∂tðei ~EnmtbnmÞ ¼ −i
ϵ

8
ei ~Enmt

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm − 1Þ

p
bn−2;m−2 þ ð2mþ 1Þbn−2;m þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 2Þðmþ 1Þ

p
bn−2;mþ2

o

þ ð2nþ 1Þ
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðm − 1Þ
p

bn;m−2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 2Þðmþ 1Þ

p
bn;mþ2

o

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 2Þðnþ 1Þ

p n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm − 1Þ

p
bnþ2;m−2 þ ð2mþ 1Þbnþ2;m þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 2Þðmþ 1Þ

p
bnþ2;mþ2

oi
ð44Þ

where

~Enm ≡
�
nþ 1

2

�
þ ω

�
mþ 1

2

�
þ ϵ

8
ð2nþ 1Þð2mþ 1Þ:

ð45Þ

Equation (44) is our master equation for bnmðtÞ that we
will solve perturbatively.

A. Perturbative treatment of single light SHO case

To first order in ϵ, we can replace blk on the right-hand
side of Eq. (44) by its unperturbed value

bnm ¼ fnðtÞe−iωt=2δm0 þOðϵÞ ð46Þ

to get
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∂tðei ~EnmtbnmÞ

¼ −i
ϵ

8
eið ~Enm−ω=2Þt

��
z2 þ ð2nþ 1Þ þ nðn− 1Þ

z2

� ffiffiffi
2

p
δm;2

þ
�
z2 þ nðn− 1Þ

z2

�
δm;0

�
fn: ð47Þ

Therefore only bn0 and bn2 are nontrivial. For bn0 we get

bn0ðtÞ ¼ e−iωt=2
�
e−iϵð2nþ1Þt=8

− i
ϵ

8

�
z20e

−it þ nðn− 1Þ
z20

eþit

�
sinðtÞ

�
fnðtÞ: ð48Þ

Note that a perturbation expansion in powers of ϵ would
mean that we series expand the expð−iϵð2nþ 1Þt=8Þ term.
However, then there is a term that is linear in t and the
expansion is valid only for very short times, in fact in an n
dependent way. The way we have done the calculation
here separates out changes in the frequency of oscillation
and then the result is valid for all times, as we have also
seen in the classical case. Also, we will see that although
the correction in Eq. (48) has a term that goes like
ϵnðn − 1Þ=z20, this contribution is of the same order (and
cancels) the term that goes like z20.
Another peculiarity is that the correction term to bn0 does

not vanish when z0 ¼ 0 if n ¼ 2. This suggests that even if
the heavy SHO coherent state is not oscillating, it will
excite the second SHO. This can be seen directly from
Eq. (44) in which the term ð2mþ 1Þbn−2;m is nonzero for
n ¼ 2, m ¼ 0 even if z0 ¼ 0 because fn−2 ¼ 1 for n ¼ 2
and z0 ¼ 0. Excitations of the light SHO in the background
of a static coherent state are to be expected since the chosen
initial state is an eigenstate only of the unperturbed
Hamiltonian, not of the full Hamiltonian.
The solution for bn2 is

bn2ðtÞ ¼ −i
ϵ

4
ffiffiffi
2

p e−i3ωt=2

×
�
e−itz20

sinððω − 1ÞtÞ
ω − 1

þ ð2nþ 1Þ sinðωtÞ
ω

þ eþit nðn − 1Þ
z20

sinððωþ 1ÞtÞ
ωþ 1

�
fnðtÞ: ð49Þ

B. Expectation values

1. Energy of heavy SHO

The Hamiltonian of the heavy SHO is

H1 ¼ A†Aþ 1

2
: ð50Þ

We will calculate the time derivative of hH1i,

d
dt

hH1i ¼ ih½H;H1�i: ð51Þ

Now

½H;H1� ¼
ϵ

2
x2½X2; A†A� ¼ ϵ

2
x2ðA2 − ðA†Þ2Þ: ð52Þ

We use

hnjA2 − ðA†Þ2jli
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p
δnþ2;l −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p
δn−2;l ð53Þ

h0jx2j0i ¼ 1

2
; h0jx2j2i ¼ 1ffiffiffi

2
p ¼ h2jx2j0i: ð54Þ

Therefore

d
dt

hH1i ¼ −
ϵ

2

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p

× Im½b�n;0bnþ2;0 þ
ffiffiffi
2

p
ðb�n;0bnþ2;2 þ b�n;2bnþ2;0Þ�:

ð55Þ

We need the coefficients bn;m only to first order in ϵ to get
the time derivative of hH1i to second order in ϵ.
We insert bn;0 and bn;2 from Eqs. (48) and (49) to obtain

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p
Imðb�n0bnþ2;0Þ

¼ −z20 sin ðð2þ ϵ=2ÞtÞ − ϵ

8
ð2z20 þ 1Þ sinð2tÞ ð56Þ

where we have used
X
n

jfnj2 ¼ 1;
X
n

njfnj2 ¼ z20;
X
n

nðn−1Þjfnj2 ¼ z40;

ð57Þ

that can be derived from the identity,

�
x
d
dx

�
k
ex ¼

X∞
n¼0

nk
xn

n!
: ð58Þ

Next we calculate the middle term on the right-hand side
of Eq. (55)

ffiffiffi
2

p X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þðnþ2Þ

p
Imðb�n;0bnþ2;2Þ

¼−
ϵ

8

�fð4z20þ1Þðz20þ2Þω2−2ð2z20þ1Þω− ð2z20þ5Þz20g
ωðω2−1Þ

×sinð2ðωþ1ÞtÞ

þð2z20þ5Þz20
ω

sinð2tÞþ z40
ω−1

sinð4tÞ
�

ð59Þ
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and the final term of Eq. (55) is

ffiffiffi
2

p X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p
Imðb�n;2bnþ2;0Þ

¼ ϵ

8
z20

�fð4z20 þ 1Þω2 − ð2z20 þ 1Þg
ωðω2 − 1Þ sinð2ðω − 1ÞtÞ

−
ð2z20 þ 1Þ

ω
sinð2tÞ − z20

ωþ 1
sinð4tÞ

�
: ð60Þ

Therefore

d
dt

hH1i ¼
ϵz20
2

sinðð2þ ϵ=2ÞtÞ

þ ϵ2

16

��
2z20 þ 1þ 2z20

ω
ð2z20 þ 3Þ

�
sinð2tÞ

þ 2ωz40
ω2 − 1

sinð4tÞ þ P1ðz0;ωÞ
ωðω2 − 1Þ sinð2ðωþ 1ÞtÞ

−
z20P2ðz0;ωÞ
ωðω2 − 1Þ sinð2ðω − 1ÞtÞ

�
ð61Þ

where

P1ðz0;ωÞ ¼ ð4z20 þ 1Þðz20 þ 2Þω2 − 2ð2z20 þ 1Þω
− ð2z20 þ 5Þz20 ð62Þ

P2ðz0;ωÞ ¼ð4z20 þ 1Þω2 − ð2z20 þ 1Þ: ð63Þ

At this level there is no dissipation since energy is simply
exchanged back and forth between the two SHOs. To
obtain dissipation we introduce a bath of incoherent,
light SHOs.

C. Bath of light SHOs

As in the classical case [see Eq. (25)], we now integrate
over a spectrum of incoherent, light SHOs with spectral
function nðωÞ. The rate of energy loss of the heavy SHO
will be

_E1;quantum ≡ d
dt

Z
∞

0

dωnðωÞhH1i

¼ oscillatory terms

−
ϵ2

16

Z
∞

0

dωnðωÞ z
2
0P2ðz0;ωÞ
ωðω2 − 1Þ sinð2ðω − 1ÞtÞ:

ð64Þ

We will ignore the nondissipative oscillating terms. Since
ω ∈ ½0;∞Þ, the terms that are not oscillating are the ones
that are inversely proportional to 1 − ω and whose oscil-
lation frequency is also 1 − ω. This means that we only
need to keep the last term in Eq. (64). We assume that the

integral in the last term is dominated by the region ω ≈ 1
and take t ≫ 1 to get

_E1;quantum ≈ −
ϵ2

8
nð1Þz40

Z
∞

0

dω
sinð2ðω − 1ÞtÞ

2ðω − 1Þ
≈ −

π

16
ϵ2nð1Þz40 ¼ −

π

64
ϵ2nð1ÞX4

0 ð65Þ

where we have used the relation z0 ¼ X0=
ffiffiffi
2

p
.

V. COMPARISON OF CLASSICAL
AND QUANTUM SYSTEMS

Comparison of the quantum result in Eq. (65) with the
classical result in Eq. (32) gives

_E1;classical ¼ _E1;quantumA2

�
1 −

A2

X2
0

�

¼ _E1;quantum
E2

ðω=2Þ
�
1 −

E2

E1

�
ð66Þ

where E1 is the energy of the heavy SHO and E2 is the
energy of the light SHO in the bath that is at the resonant
frequency ω ¼ Ω. (By rescalings in Sec. II we had set
Ω ¼ 1.) Next, to determine suitable values of A2, equiv-
alently E2, we consider the dynamics of the heavy SHO.
The expectation value of the position of the heavy SHO

is given by

hXi ¼ 1ffiffiffi
2

p
X∞
n;m¼0

ðzcnþ1;mc�n;m þ z�c�nþ1;mcn;mÞjfnj2 ð67Þ

where we used
ffiffiffi
n

p
fn ¼ zfn−1. This expression will be

evaluated to first order in ϵ in which case only cn0 (not cn2)
is relevant. From Eq. (48) we write

cn0 ¼ e−iωt=2
�
e−iϵð2nþ1Þt=8

− i
ϵ

8

�
z20e

−it þ nðn − 1Þ
z20

eþit

�
sinðtÞ

�
: ð68Þ

We use Eq. (57) to do the sum over n in Eq. (67) and find

z
X∞
n¼0

cnþ1;0c�n;0jfnj2 ¼ z0e−ið1þϵ=4Þt − i
ϵ

4
z0 sinðtÞ: ð69Þ

Then, to leading order in ϵ

hXi ¼ X0 cos
��

1þ ϵ

4

�
t
�

ð70Þ

which comes from the first term in the square brackets in
Eq. (68). The remaining terms all cancel.
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Comparing Eq. (70) to (18) we see that the classical and
quantum results for the oscillation frequency agree to OðϵÞ
if we take A ¼ 1. This is a natural value because then the
classical energy (E2 ¼ 1=2) is precisely the energy of the
ground state for the light SHO at the resonant frequency
ω ¼ 1. Now, with A ¼ 1, Eq. (66) gives

_E1;classical ¼ _E1;quantum

�
1 −

Ω=2
E1

�
ð71Þ

where we have reinserted Ω, the frequency of the heavy
SHO. The dissipation rates are identical for coherent states
with large occupation number (given by N 1 ¼ E1=Ω) up
to Oðϵ2Þ.

VI. CONCLUSIONS

Our final results in Eqs. (70) and (71) are quite
remarkable. They show that the classical and quantum
oscillation frequencies and dissipation rates both agree
provided the classical analysis is done with the light SHOs
in a classical analog of the quantum ground state and if the
coherent state has large occupation number. This suggests
that quantum vacuum dissipation may be studied classi-
cally by giving each of the bath SHOs their ground state
energy.
Another surprising conclusion that we mentioned in

the Introduction is that backreaction on the classical
SHO will make it more quantum. The reason is that the
initial coherent state is the most classical state, defined
by its minimum uncertainty ΔXΔP ¼ ℏ=2, and back-
reaction can only increase the uncertainty and make the
state more quantum. This is opposite of the usual role of
interactions that cause quantum states to decohere and
become more classical. In a similar way, the initial
state is taken to be a product state but it evolves into
a mixed state and the SHOs becomes more entangled
with time.
Our calculations are valid only in leading (second) order

in perturbation theory. We plan to study the system at
higher order in perturbation theory and at strong coupling
in the future, where the classical and quantum analyses may
deviate from each other. We also plan to study the rate at
which the coherent state “incoheres” due to backreaction,
and the rate at which the heavy and light degrees of freedom
get entangled.
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APPENDIX: QUANTIZATION OF SHO
IN ACTION-ANGLE VARIABLES

Consider a quantum SHO

H ¼ p2

2
þ x2

2
¼ a†aþ 1

2
ðA1Þ

where

a ¼ xþ ipffiffiffi
2

p ; a† ¼ x − ipffiffiffi
2

p ðA2Þ

and

½a; a†� ¼ 1 ðA3Þ

follows from ½x; p� ¼ i.
Now consider the transformation

a ¼ e−iθ
ffiffi
I

p
; a† ¼

ffiffi
I

p
eþiθ ðA4Þ

where we assume that
ffiffi
I

p
is a Hermitian operator and will

shortly discuss the meaning of this operator. Then

H ¼ I þ 1

2
ðA5Þ

and also Eq. (A3) leads to

½θ; I� ¼ i; ðA6Þ

which has the representation

I ¼ −i
∂
∂θ : ðA7Þ

Therefore the normalized eigenstates with energy nþ 1=2
are

ψnðθÞ ¼
einθffiffiffiffiffiffi
2π

p ðA8Þ

with n ¼ 0; 1; 2;… because the wave functions are periodic
under θ → θ þ 2π. Eigenstates with negative integer values
of n are not allowed in the physical spectrum because of the
assumed Hermiticity of

ffiffi
I

p
and the definition of

ffiffi
I

p
below.

To interpret
ffiffi
I

p
we define

ffiffi
I

p
einθ ¼ ffiffiffi

n
p

einθ ðA9Þ

and work in the basis feinθg, assuming that
ffiffi
I

p
acts linearly.

For example, if

ψðθÞ ¼
X∞
n¼0

cneinθ ðA10Þ
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where cn are expansion coefficients, then

ffiffi
I

p
ψðθÞ ¼

X∞
n¼0

cn
ffiffiffi
n

p
einθ: ðA11Þ

To recover the usual SHO wave functions in position
space, we need to find the eigenstates of the position
operator, x̂, in the einθ basis. That is, we need to solve

x̂
X∞
n¼0

cnψnðθÞ ¼ x
X∞
n¼0

cnψnðθÞ: ðA12Þ

Note that the coefficients cn will depend on the c-number
position x. In Dirac notation, cnðxÞ ¼ hxjniθ, and these are
the wave functions in position space. Using

x̂ ¼ aþ a†ffiffiffi
2

p ¼ 1ffiffiffi
2

p ½e−iθ
ffiffi
I

p
þ

ffiffi
I

p
eþiθ� ðA13Þ

leads to the recursion relation

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
cnþ1 − x

ffiffiffi
2

p
cn þ

ffiffiffi
n

p
cn−1 ¼ 0: ðA14Þ

The recursion relation for Hermite polynomials,

Hnþ1ðxÞ − 2xHnðxÞ þ 2nHn−1ðxÞ ¼ 0; ðA15Þ

can be used to check that

cnðxÞ ¼
1

π1=4
1ffiffiffiffiffiffiffiffiffi
2nn!

p HnðxÞe−x2=2 ðA16Þ

satisfies Eq. (A14). These cn’s are the usual normalized
wave functions of the excited states of the SHO in the
x-representation.
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