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Dynamical analysis of an integrable cubic Galileon cosmological model
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Recently a cubic Galileon cosmological model was derived by the assumption that the field equations are
invariant under the action of point transformations. The cubic Galileon model admits a second conservation
law which means that the field equations form an integrable system. The analysis of the critical points for
this integrable model is the main subject of this work. To perform the analysis, we work on dimensionless
variables that are different from those of the Hubble normalization. New critical points are derived, while
the gravitational effects which follow from the cubic term are studied.
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I. INTRODUCTION

A theory which has drawn the attention of the scientific
society in the last few years is Galileon gravity [1,2]. It
belongs to the modified theories of gravity in which a
noncanonical scalar field is introduced and the field
equations are invariant under the Galilean transformation.
The action integral of Galileon gravity belongs to the
Horndeski theories [3], which means that the gravitational
theory is of second order [4]. The vast applications of study
for Galileons in the literature cover all the areas of
gravitation physics, including neutron stars, black holes,
and acceleration of the Universe (for instance, see [4-21]
and references therein).

In this work we are interested in the cosmological
scenario and specifically in the so-called Galileon cos-
mology [22-24]. In cosmology, the Galileon field has
been applied in order to explain various phases of the
evolution of the Universe [25-29]. Specifically, the new
terms in the gravitational action integral can force the
dynamics in such a way that the model fits the obser-
vations. The mechanics can also explain the inflation era
[30-36] as the late-time acceleration of the Universe
[37-42]. Last but not least, the growth index of matter
perturbations have been constrained in [43].

As we mentioned in the previous paragraph, Galileon
gravity belongs to the Horndeski theories, and specifi-
cally, there is an infinite number of different models
which can be constructed from a general Lagrangian. A
simple model is the cubic Galileon model [11-17] where
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the action integral is that of a canonical scalar field plus a
new term which has a cubic derivative on the Galileon
field. The theory can be seen as a first extension of the
scalar-field cosmology. Due to this cubic term, the
nonlinearity and the complexity of the field equations
is increased dramatically. Recently in [44], a cubic
Galileon model was derived which admits an additional
conservation law and where the field equations formed an
integrable dynamical system.

Integrability is an important issue in all areas of physics
and mathematical sciences. The reason for this is that while
a dynamical system can be studied numerically, it is
unknown if an actual solution which describes the “orbits”
exists. The integrable cubic Galileon model admits special
solutions which describe an ideal gas universe, that is,
power-law scale factors. While this is similar to the solution
of the canonical scalar field, we found that the power of the
power-law solution is not strongly constrained by the
Galileon field; this is because of the cubic term. On
the other hand, a special property of that model is that
when the potential in the action integral dominates, then
the cubic term disappears, which mean that the theory
approach is that of a canonical scalar field. However, as we
shall see from our analysis, the existence of the conserva-
tion law provides new dynamics which have not been
investigated previously.

The aim of this work is to study the evolution of the
integrable cubic Galileon cosmological model. For that,
we perform an analysis of the critical points. In particu-
lar, in Sec. II we briefly discuss the cubic Galileon
cosmology and review the integrable case that was
derived before in [44]. Section III includes the main
material of our analysis, where we rewrite the field
equations in dimensionless variables. We define variables
different from that of the H-normalization, where we find

© 2017 American Physical Society
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that the dynamical system is not bounded. Because of the
latter property, the critical points at the finite and the
infinite regions are studied. At the finite region we find
various critical points which can describe the expansion
history of our Universe as the matter-dominated era.
Appendixes A, B, C, D, E and F include important
mathematical material which justify our analysis. One
important property of the integrable model that we study
is that there is a limit in which the terms in the field
equations (which follow from the cubic term of the
Galileon Lagrangian) vanish, and the model is then
reduced to that of a canonical scalar-field cosmological
model. Hence, in order to study the effects of the cubic
term in Sec. IV, we perform an asymptotic expansion of
the solution when the cubic term dominates the Universe.
In Sec. V we extend our analysis to the case where an
extra matter term is included in the gravitational action
integral. Finally, we discuss our results and draw our
conclusions in Sec. VL

II. CUBIC GALILEON COSMOLOGY

The cubic Galileon model is defined by the following
action integral:

1 1
s— / d4x\/—_g(§R — B0, = V()
1
- 9090, 0

which has
applications.
In the cosmological scenario of a homogeneous and
isotropic universe with zero spatial curvature, the line
element of the spacetime is that of the Friedmann-
Lemaitre-Robertson-Walker metric

various cosmological and gravitational

ds* = —dr* + a*(t)(dx* + dy* + d7?), (2)

where a(7) is the scale factor of the universe.

Indeed, for this line element, variation with respect to
the metric tensor in (1) provides the gravitational field
equations

72
31712:gi

5 (1=6g()Hp + g (#)d") +V(4) ()

and

2H + ¢*(1+ ¢ (p)d* = 39(p)H + g(¢)d) =0, (4)

while variation with respect to the field ¢ provides the
(modified) “Klein-Gordon” equation
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$(24° (¢) — 6Hg(p)¢ + 1)
3 (304 @) -39 - 9129(0) )
+3Hp + V' () =0, (5)

which describes the evolution of the field, and H = %
Recall that we have assumed that the Galileon field inherits
the symmetries of the spacetime; that is, if K* is an
isometry of (2), ie. [K,g,]=0, then ¢ inherits the
symmetries of the spacetime if and only if [K,¢] = 0.
Therefore, ¢ is only a function of the “#’ parameter,
ie. p(x*) = p(1).

An equivalent way to write the field equations is by
defining fluid components such as energy density and
pressure which correspond to the Galileon field. Indeed, if
we consider the energy density

(1-69(p)Hp + ¢ ($)d>) + V($)  (6)

&
PG—2

and the pressure term

72
PG = % (1 + 29 + g 48%) = V(). (7)

the field equations take the form G#, = T,EG)” , Where T,(ﬁ

is the energy-momentum tensor corresponding to the
Galileon field and

G
T/(u/) = P, + pG(g;w + uuuu) (8)

in which u# = §/ is the normalized comoving observer
(u'u, = —1). Equation (5) is now equivalent to the Bianchi
identity 79, = 0, that is,

poE + 3H (ppg + ppe) = 0. )

Last but not least, the dark-energy equation-of-state
parameter is defined as follows:

_ PpE 1 452
WDE = ——

oo =3 |7 (1T 200 +940°) = V(@) | (10)
It can be shown that with a proper election of g(¢), the
equation-of-state parameter wpg can realize the quintes-
sence scenario (the phantom one) and cross the phantom
divide during the evolution, which is one of the advantages
of Galileon cosmology. In general, the specific functions of
9(¢) and V(¢) are unknown, and for different functions,
there will be a different evolution.
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A. Extra conservation law

Recently, in [44] two unknown functions were specified
by the requirement that the gravitational field equations
form an integrable dynamical system. Specifically, the
following functions were found:

V(¢) =Voe™ and g(¢) = goe'. (11)
There exists a symmetry vector which provides, with the
use of Noether’s second theorem, the following conserva-
tion law for the field equations:

. ) )
I, =— <2a2é - Ea3¢> + goeal P’ — ggoaze’“ﬁizqﬁz.
(12)

Because of the nonlinearity of the field equations, the
general solution cannot be written in a closed form.
However, from the symmetry, vector-invariant curves
have been defined, and by using the zeroth-order invar-
iants, some power-law (singular) solutions have been
derived. In particular, the following solutions were
obtained:

a() = a,  Bli) = (g)
A2 =12 2
90_4((317—_1;)(2)’ Vo_¢(2)</1—2+l?(3p—2))
(13)
and
| 6
a3(t) = ats, $r3(t) = i\/T-ln(d’of)’
VO = O, 12.3 - :I:\/g (14)

These solutions are special solutions since they exist for
specific initial conditions. In order to study the general
evolution of the system, we perform an analysis in the
phase space.

A phase-space analysis for this cosmological model
has been performed previously in [16]; however, the
integrable case with ¢(¢) and V(¢) given by the
expressions (11) was excluded from [16]. Moreover,
there is a special observation in the integrable case in
the sense that V(¢)g(¢) = const. The latter means that
when V(¢) dominates, g(¢) becomes very small and the
cubic Galileon model reduces to that of a canonical scalar
field which can also mimic the cosmological constant
when V() > ¢

In the following we write the field equations in new
dimensionless variables, and we perform our analysis.
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III. EVOLUTION OF THE DYNAMICAL SYSTEM

From Eq. (3) one immediately sees that the Hubble
function H(t) can cross the value H(¢) = 0, from negative
to positive values, or vice versa. This means that the
standard H-normalization is not useful, and new variables
have to be defined. We introduce the new variables

¢ Voe ™ H
x :71 - 9, Z == 9
6(H>+1) Y 3(H?> +1) H?> +1
(15)

and the parameter a = gyV,, so we obtain the three-
dimensional dynamical system

v 1®) y/:fz(x) R EIC))
fa(x)’ fa(x)’ fa(x)

where x = (x,y,z) and functions f; — f4 are defined by
the following expressions:

(16)

Fi(x.y.2) =y*(3x3 2+ 3xz(—y+ 22 =2) +V61y)
+6a2x% (222x%7 — V64x — 2V/6x72 +62°)
+ax?y(184x° 7= V6x2 (242 + 1222+ 3)
—6axz(y—22%) +3V6(2yz2 +y—27* +22)),
(17a)

F2(x,y,2) = 2y(122222x%7 — 6V/6020x5 (222 + 1)
+ 18ax*z(Ay + 2az?) — 4V6ax3y(4? + 322)
+3x%yz(y — 2a2A(y — 2(z> + 1)))
+ V6xy(6a(y — 22) — 4y) + 3y*2(22 - y)),
(17b)

f3(x,,2) = 3(22 = 1) (0 + 2ax(V6z — Ax) + 22)
+ da?x* (12x% — V6Ixz + 322)
+ 2axy(3Ax* — 2v/6x%z + 2Axz2

—V62%) - %), (17¢)
fa(x.v.2) = 2(2ax(3ax® 4+ 2Axy — V6yz) +y?),  (17d)
and a prime denotes the new derivative % =f= \/ﬁ

Interestingly, the system (16) admits the first integral
2ax3 (Ax = V6z) + y(x* = 22) +y2 =0 (18)

which is Friedmann’s first equation, and it constrains the
evolution of the solution. Thus, the dynamics are restricted
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to a surface given by (18). For a fixed value of y, the first
and last equations in (16) are invariant under the discrete
symmetry (x,z,7) = —(x,z,7). Thus, the fixed points
related by this discrete symmetry have the opposite
dynamical behavior. By definition, y > 0.

Let us compare with the variables introduced in [16]

. VD .
defined by x; = %, Y1 = \/gg), 21 = g(¢p)He.

Since here we have chosen V(¢) and g(¢) such that
9(¢)V(¢) = a, we have the relations x; =1, :?v,

zZ) = \/%;m, and the extra relation ax; — \/%y%zl =0.
This implies that the fixed points A*, B*, C, and D,
investigated in detail in [16], do not exist in our scenario
since the values of their coordinates (x;,y;,z;) do not
satisfy the extra relation above.

Furthermore, some cosmological parameters with great
physical significance are the effective equation-of-state

parameter wy, = 5 = wpp (because we set p,, = 0) and

tot

the “deceleration parameter”

H 1

C]E—l—ﬁzi‘*‘%wtot- (19)
Some conditions for the cosmological viability of the most
general scalar-tensor theories have to be satisfied by
extended Galileon dark energy models; in other words,
the model must be free of ghosts and Laplacian instabilities
[45—47]. In the special case of the action (1) (in units where
k = 872G = 1), we require, for the avoidance of Laplacian
instabilities associated with the scalar-field propagation
speed, that [46]

6W1H - 3W% - 6W1
4wy + 9w?

> 0; (20)

2
Cs

) T ) )
wi=gf’ +2H, wy =307 |5+ 944" - OHgp| — 9H.

(21)
Meanwhile, for the absence of ghosts, it is required that

(4w, + 9w%)
3w?

QS = > 0. (22)

Finally, we have from Egs. (10), (20), and (22) that the
phantom phase can be free of instabilities and thus

cosmologically viable, as it was already shown for
Galileon cosmology [46].

A. Analysis at the finite region

The fixed points or fixed lines at the finite region of the
system (16) and a summary of their stability conditions are
presented in Table 1. In Table II we display several
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cosmological parameters for the fixed points at the finite
region of the system (16). The discussion about the
physical interpretation of these points and the points at
infinity is left for Sec. III D.

We proceed with the determination of critical points at
infinity.

B. Analysis at “infinity”

Because the phase space of the system is unbounded, we
introduce the Poincare compactification and a new time
derivative f”,

N S S
VI+ 242 VIH a2 +y2

fl=(1=X>=Y>)f. (23)

The dynamics on the “cylinder at infinity” can be obtained
by setting X =cos#, Y =sin#; the dynamics in the
coordinates (6, z) is governed by the equations

0 = hy(0,7) == 1*zsin()cos® (), (24a)

7 = hy(0,z2) = 2%(z* — 1)cos?(0). (24b)
We linearize around a given fixed point on the cylinder at
infinity by introducing X =cosf —¢;, Y = sinf — &,, with
g, <1, g« 1. Notice that 1 —X?>—Y?=2¢ cosf+
2¢,8in 0, so to examine the stability of the fixed points
at the cylinder, and from the interior of it, we have to
estimate how r = g cos @ + &, sin@ evolves, not just the
stability in the plane (0, z). For ¢; < 1, &, < 1, we obtain
the expansion rate

¥ = r[A?zcos?(6)(cos(20) — 3)]. (25)

The stability condition of a fixed point along r is then
¥ /r < 0. The full stability of the above fixed points is
summarized in Table III.

C. Numerical analysis

Let us complete our analysis by performing some
numerical simulations. Specifically, we choose the con-
stants of the model to satisfy the conditions

/l(ﬂzp -2) 2
=" Vo =3 = 3p-2);
gO 4(3p_1)¢0 0 45() )]2+p( p )
AE+p(3p=-2))(#p-2)
hence, o = — % 1Gp=T)

Moreover, we impose the condition p >1 which
guarantees the stability of the perturbation of the
scaling solution [44]. Because we have chosen a > 0, this
leads to the “allowed” region on the parameter space
defined by

124060-4
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TABLE 1.

PHYSICAL REVIEW D 95, 124060 (2017)

Summary of the stability conditions of the fixed points at the finite region of the system (16), where

P(x) = 6(1 + ad)x® + 3v6(2a + A)x? +2(3 + 12)x + v/61. We use the acronyms “A.S.” for asymptotically stable and “A.U.” for
asymptotically unstable.
Label: Coordinates (x, Yy, z) Existence Eigenvalues Stability
Py: (0,0,0) Always Undetermined Numerical analysis
Py (—£.0.-1) Always 0,-3,-6 Stable for A < —v/6
or 0 < 4 <6,
saddle for —v6 <1 <0
or 1> \/6
(see Appendix C)
Py (80,1 Always 0,3,6 Unstable for 1 < —/6
+ ‘ ) or0 <A< \/5,
saddle for —v/6 <1< 0
or 2> /6.
(see Appendix C)
:(0,1,1) A=0 -3,-3,0 A.S. (see Appendix D)
P (0 1,-1) A=0 3,3.0 A.U. (see Appendix D)

Where x. # 0 is a real root
of P(x) such that

\/%/IxL.er%JrIZO

X.): <l,\//1x +x2 +1—1>

Py(x.): (—xc, \/gﬂxc + a2+ 1, 1)

Where x,. # 0 is a real root
of P(x) such that

\/%/Ix€+x§+120

Numerical analysis Numerical analysis

Numerical analysis Numerical analysis

Pg: (0,0,-1) Always -3,-3, —(6at —3) Sink for al > 1
Saddle otherwise
Py: (0,0,1) Always 3,3, (6ad —3) Source for ad > 1
Saddle otherwise
V3 a=0,1#0 (-2%.22-2),-%-3) Sink for 0 < 12 <3
Py (—7,0, -1) e g # Saddle otherwise
PV a=0,1%0 9 -3(2-2),2+3 Source for 0 < A2 < 3
Py (Tzo 1) (2’12 il 12) 2 ) Saddle otherwise
3 P +3ak-3=0 0,3,-3 Saddle
Pt (- - +aa z
3 P +3a4-3=0 0,3,-32 Saddle
Py (%’%’1) o 2
Pu(z.): (0,22.2,) A=0 (0,-3z.,—3z.) AS. for0<z. <1
A.U. for -1 <z.<0
(see Appendix E).
Pis(z): (BzeV6aPz2. 2. 2=0,=L(3a—-V3a-2), (0, =3z, —3z) AS. for 0 <z. <1
15(zc): (P P ) p ﬂ(fa a ) AU. for —1'<z, <0
a> /3 (see Appendix F).
Pis(z0): (Pze. VBapz2.z.) 2=0,p= %(\/g()”r 3a® —2). (0,-3z.,—3z.) AS.for0 <z, <1

2
(l>\£

A.U. for -1 <z.<0
(see Appendix F).

(i) 2<—V6, p2§\ /50 +4 or
(i) 1=-v6, p>1 or

(i) —vV6<1<0,p>3, or

(iv) 0<i<V6,i<p<3or

v) 1>v6,1<p<i

as displayed in Fig. 1.
In Fig. 2, we present a Poincare projection of the system
(16) on the invariant set z = —1. The green dots correspond

SR

to the points Pg(x.) (that we solved numerically). In the
special case P2 =6,p= % we have 1 + a4 = 0; thus, the
polynomial P(x) is quadratic, and there are only two
roots of P(x) =0. The blue contour is defined by
fa(x,y,—1) =0. As shown in the figures, this line is
singular, and it attracts some orbits. The brown solid line
corresponds to the intersection of the invariant surface
20x3(Ax — V/62) + y(x* = 22) + y* = 0 and the invariant
set z = —1. In the top figures, Pg attracts some orbits, but
others are attracted by one of the green points associated

124060-5
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TABLE II. Cosmological parameters for the fixed points at the finite region of the system (16).
Label (c2, Q5. QpE. ©pE. q) Physical interpretation
P, (-1,3,0, M+@(T—l) a(t) = (by — b11)*"2(ay + O(t™))).
815%(3b;—2a, ’ . .. ..
The Galileon mimics radiation for b; = &
(4a|/1 +by(9— 642 )) +_+ O( ))
54b7(3b1-2a;)A The Galileon mimics matter for b; = ¢
_ _ 2-2a(F=3)):V61/A(a(62i-24+3) “ Power-law solution for b; = %a; #0
aq 6,1((1(2/12 3) ) 3
b ora =1b = The Galileon mimics dust for
1= 1 =%.b1 =75 2 2y ) o2
4a,2* +b(9-64*)=0.c¢; <0
orb,: al,al(a] (a (212—15)-/1)“):0 o i ) =04
Py3 (-4.3.5.0.}) The Galileon mimics dust. ¢z < 0
Pys (=1,-9,1,-1,-1) de Sitter solution ¢Z < 0, Qs <0
Ps7(x.)  See Sec. IIID. Accelerated solution for x, < 0,1 < _3\72.__12’
3x2+2 ¢
or x. > 0,4 > v
Py (-5.-9.0,0.4) The Galileon mimics dust. ¢2 < 0, Qs < 0
Pio11 G- 18(/{—29_2 18 _9, 222 0.5 (/% +2)) The Galileon mimics dust. ¢2 >0, Qg > 0
for0 < 1> <2
P13 (2(1—13(”1;(/12—6) ) _3(11/14;1312—36)’ The Galileon mimics dust. ¢2 >0, Qg > 0
i Iiﬁ #-6) for 1 <72 < 2(3 + /53) ~ 2.80367
s T 202 1Z¢
P4(z.) (-5.-9.1,—1,-1) de Sitter solution qﬁ ~0,a(t) = ageV'=,
==+ %+v e
Pisi6(z.) See Sec. IIID. de Sitter solution A¢ ~ fﬂ ! =, a(t) ~ ageV ==t
' PSRN, 71 Vi-es
T/ 3eap v,

with Pg(x.). Note that Pg is not the attractor of the whole
phase space since ad < 1. In the bottom figures Pg is the
attractor, not just in this invariant set but in the whole phase
space since al > 1.

D. Discussion

In this section we discuss the stability conditions,

cosmological properties, and physical meaning of the (lines
of) fixed points in both finite and infinite regions.

(1) P;:

(0,0,0) always exists. To analyze the stability
we resort to numerical examination.

TABLE IIIl. Summary of the stability conditions of the fixed
points at infinity of the system (16).

Label:

Coordinates  Coordinates

0,2) (X,Y,2) r/r (A1, 4) Stability
01: (5.2.) (0,1,z.) 0 0,0 Nonhyperbolic
0,: (0,-1) (1,0,-1) 222 (=222,-A%) Saddle
05: (m,—1) (=1,0,-1) 222 (=222,-A%) Saddle
Q4: (0.1) (1,0,1) =222 (222,2%) Saddle
Os: (z.1)  (=1.0.1) =222 (222,2?) Saddle

124060-6

In Appendix B we prove, using normal form
calculations, that the fixed point P; corresponds to
the cosmological solution (B15). Moreover, in order
to improve the range and accuracy, we calculate the
diagonal first-order Padé approximants

/1,0, /e, [1/1],(0),
around ¢ = oo. This yields the following approxi-
mate expressions:

10

FIG. 1. “Allowed” region of the parameter space.
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/1:—\/6_, pzi—, =

1

N

X

FIG. 2. Poincare projection of the system (16) on the invariant set z = —1. The green dot corresponds to the points Pg(x,.). In the
special case 2> = 6, p = 2, we have 1 + al = 0; thus, the polynomial P(x) is quadratic, and there are only two roots of P(x) = 0. The
blue contour is defined by f4(x,y, —1) = 0. As shown in the figure, this line is singular and attracts some orbits. The brown solid line
corresponds to the intersection of the invariant surface 2ax> (Ax — v/6z) + y(x* — z2) + y? = 0 and the invariant set z = —1. In the top
figures, Py attracts some orbits, but others are attracted by one of the green points associated with Pg(x,.). Note that Py is not the attractor
of the whole phase space since al < }T. In the bottom figures Py is the attractor, not just in this invariant set but in the whole phase space

since ald > i. The red thick dashed line denotes the local center manifold of P,.

$(1) z%ﬂ(Zal —3b))

(1)~
8a; — 12b, 3b;Int
X + 2 9,
—2a1t + 2(12 + 3b1t - 3b2 t .
(26a) while
3 3Int 4
HOr=b?| -————— ], 26b
(1) 8 1( I bQ—blz) (260)

In 4V,
433 (2a,-3b,)*+27%(2a,—3b,)?+3b,(90,—4) )  2Int
+
A A
(26¢)

the scale factor is calculated to be

9p2
9w /]

a(t) = age™ <;> _W(bz — byt)3h/?

= (by = 011)*"*(ag + O(™")).  (27)

Due to the new conservation law (12), the allowed values of the constants ay, a,, b, b, are

(a)
20(4 = 2a(2% = 3)) £ V6 /Aa(6al — 24% +3) + A) b 2
a, = — — —
! 6A(a(242 =3) = 1) ’ o
2 1
ay(6 - 162b,) +36a,— 1 =0,  4a,—~+—5=0, or
3 ao
(b)
1 ; 5 I,
a1:§, b]—*, 200° — 1504 — 2 :0, af()?’+4az—3b220, or

124060-7
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(c)
aj(aAa(22> = 15) =) + 1) =0,
4 4
blzgal, b2:§612, 11:0

It is interesting to note that the power-law solution
(13) satisfies the condition

2
_ \/% Vo p
B (/lx/p2 + 2 35(p* +12) /P + tQ)'
(28)

Additionally, after the substitution of the functional
forms of (x(7), y(z), z(z)) in (28), and the substitu-

. A(A2p=2 .
tion of gy = —W, Vo = qﬁ%(% +p@Bp—2)),it
follows that the restriction (28) is satisfied for all the

values of .
There exists a relation between 7z and ¢ given by

1—\/p2+t2—p1n<p(” pzjt2+p)>, (29)

such that t - co implies 7 — oco. Thus, as 7 — oo,
this power-law solution approaches P; as t — oo.
For large 7 we can invert this to get

1
r= Z(\/8p2 +4(pIn(p) +7)* + 2pIn(p) + 27)
2 3
1

=7+ pln(p) _’_]29_1_%12(19)_’_0(7_3). (30)

Thus, we can take, as an approximation for large r,

2 2
3 3P In(p)
- — O -3 s
* At A2 +0(™)
Vo
_ O -3 ,
y=3 ¢312+ ()
2
p p’In(p) _
—? ‘[2 O(T 3).
Furthermore,

= (21n(gy) + 21n7) + 22 10P)

p*(In*(p) — 1)

_T—2+O(T_3)’

These features are represented in Fig. 3. There,
the Poincar¢ projection of the system (16) is shown
on the invariant surface (18) in the variables

PHYSICAL REVIEW D 95, 124060 (2017)

1 qs-ie =- =2 L
W A ‘/g'o" v 9T
1.

FIG. 3. Poincare projection of the system (16) on the invariant
surface (18) in the coordinates (X,Y,z) = (ﬁ

y

\/1——2«22> The red continuous line corresponds to the exact
+x7+y

solution (28). The origin (represented by a blue dot) attracts this
line. The vector field (16) is projected onto the surface.

X¥,2) = (i
( Z) \/1+)c2-§—y2 \/1+x2+y

tinuous line corresponds to the exact solution (28). The

origin (represented by a blue dot) attracts this line.

The vector field (16) is projected onto the surface.
The values of (¢2,Qg,Qpg,@pg.q) for Py are (— 1

3 9
(4a,2>+b,(9-64%))*t —1\ (4a;2>+b,(9-61%))*c
3,0, 81230, 2414 T o), 5452 (3b,—2a, )2

1+ O(z7™")). The scale factor satisfies a(t) ~ (by—
b 1)301/2(ay + O(t™")). The Galileon mimics radia-
tion for by = % and matter for by = 3. It is a power-law
solution for b; = %a; # 0. Finally, the Galileon mi-
mics dust for 4a; 4% + b, (9 — 64*) = 0. Furthermore,
¢2 < 0. This point has not been obtained previously in
[16] or [17] since in these works the authors used
H-normalization, which obviously fails when H = 0.
(2) Py: (—‘/76 ,0,—1) always exists. The eigenvalues
are 0, —3, —6, so the points are nonhyperbolic. Using
the center manifold theory, we have proven that P, is
stable for 1 < —\/6 or0< 1< \/6, and saddle for
—V6<1<0ori>+V6 (see Appendix C). This
point represents kinetic-dominated solutions with

= ,Z). The red con-
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(©))

“)

H — —co. The values of (c2, Qg, Qpg, @pg, q) for analysis. The values of (c2, Qg, Qpg, @pg, q) for Py
Py are (—1 3,/162,0 1) The Galileon mimics dust. are (—§,-9,1,—1,—-1). As can be seen, ¢ <0,
Furthermore c2 < 0. So, the Laplacian instabilities Qg < 0. Thus, this solution suffers from Laplacian
associated with the scalar-field propagation speed instabilities and the presence of ghosts.

cannot be avoided for this solution [46]. (5) The fixed point Ps: (0,1,—1) exists if A = 0. The
Ps: (76,0, 1) always exists. The eigenvalues are eigenvalues are 3,3,0, so it is nonhyperbolic. To
0,3,6, so the points are nonhyperbolic. This has the analyze their stability we resort to numerical exami-
opposite dynamical behavior of P,. Using the center nation or use the center manifold theory. This fixed
manifold theory (in a similar way as in Appendix C, we point corresponds to a de Sitter solution driven
can prove that P is unstable for A < —v/6 or 0 < by a eosmologrcal constant, since V = V), and the
2 < /6, and saddle for —v/6 < 2 < 0 or A > V/6). coupling function becomes constant too, g = gy

(although H — —o0, so itis not cosmological viable).
This point has the opposite dynamical behavior of Py;
thus, it is asymptotically unstable. The values of
(C%, Qs, QDE? WDE, q) fOfPS are (—%, —9, 1, —1, —1)
The associated cosmological solution corresponds to
a de Sitter solution. However, ¢ < 0, Qg < 0. Thus,
this solution suffers from Laplacian instabilities and
the presence of ghosts.

(6) For each choice ¢ = %1, there are 1, 2, or 3 isolated

This point represents kinetic-dominated solutions with
H— +oo The values of (c2, Qg, Qpg. @pg, q) for P;
are (—1,3, fz ,0.1). The Galileon mimics dust. Fur-
thermore c2 < 0, so the Laplacian instabilities asso-
ciated with the scalar-field propagation speed cannot
be avoided for this solution [46].

The fixed point P4: (0,1,1) exists if 1 =0. As
before, it corresponds to the special case V =V,
and the coupling function becomes constant too,

@)

g = go; it is a de Sitter solution, but now H — —+oo. fixed points of the form Pg7(x.): (ex,. \/ Axe +
ghle' el‘s{r;:rrvalmlzqs are —3, -3, (% lsdo 1}2 18 nonhyfgerci x2 + 1, —¢), where x,. are the nonzero real roots of the
olic. Using the center manifold theory we fin
that it is asymptotically stable (for details see polynomial P(x) =6(1 +ad)x’ +3\/_(2a+/1)x +
Appendix D). Furthermore, perturbations from the 2(3+4%)x++/64, satisfying \/%lxc +x2+12>0.
equilibrium grow or decay algebraically in time, To analyze their stability we resort to numerical
not exponentially as in the usual linear stability examination.
|
The values of (c5, Qs Qpp,wpp,q) for Pes(x.) are " = =Pi(x.)/(Q1(x.)02(xc)),  Pixe) =
1440 x 10+24a3nyC(/lxc—|—2\/6)+6a2x‘c‘y§(2(/12—7)x%—|—6\/6/1xC+18yc+11)—|—2axcyc(3/1x +Ax.(21y,. —8)+
120632 +V/6(3y. —4)) + yé(=3x2 +3y, —4), Q1(x) = 3(6ax¢ + 2ax.y . (2Ax. + v/6) + ¥3), and
0>(x,) = 24a%x% — daxly, (V6 — 4lx,) + (4x2 — 3)y2, where  y, = \/%lxc +x2+12>0. Qi =
9(12(60%+4ai+1)x8+4v/6(a(422=3)+22)x3+(8A(3a+2) +15)x3 +2v/6(21—=6a) 2 =6 (2 +1)x2—6/64x,—9) OF  —
] DE =

(=6v/6ax3+v/6Ax, 4332 +3)?

sl DENORe D R OVVONES e — — Ly (3x, + V/62) = 1, and ¢* =} (—x.(3x, + V/62) - 2).
3x242 3x242

The fixed points Pg 7 (x..) represent accelerated solutions for x. < 0, 1 < — \/6 orx,>0,1>— N Since the

above analytical expressions for ¢2 and Qg are quite complicated, we have resorted to numerical investigation. To
represent the regions of physical interest, we proceed in the following way. Recall that the polynomial P(x) =
6(1 + ad)x® + 3v/6(2a 4 1)x*> 4+ 2(3 + 22)x + /61 has a discrete number of roots x. (1, 2, or 3 depending on the

parameters a and 4). Since this polynomial is linear in a, we have, for each value of x,. (x. # 0, x,. # — %), the relation
603 +x)+VBAGB2+1)+22%x,
- 6x2(Ax.+V/6)

space (x., 4), rather than in the plane (a, 4) (to avoid solving a generically third-order polynomial in x,. using Cardano’s
formulas, with the subsequent numerical error issue). The above procedure leads to the conditions ¢ > 0, Qg > 0 and
c2 <0, Qg <0, for Py (x.) as displayed in Fig. 4. In order to cover all the possible values of the parameters, we have

made the representation in the (compact) variables ( 7 — yeRoY ’12 12).
+xc+ +xe+

The fixed point Pg: (0,0, —1) always exists. The eigenvalues are —3, =3, —(6aA — 3). Thus, it is a sink for ad > § or
a saddle otherwise. This solution is dominated by the Hubble scalar with H — —oco. The values of
(c2, Qg, Qpg, wpg, q) for Pg are (—— -9,0,0, ) The Galileon mimics dust. However, the fluid satisfies the

conditions ¢ < 0, Qg < 0. Thus, this solution suffers from Laplacian instabilities and the presence of ghosts.

a = a(x,, A) ,a > 0. So, we can represent the regions of physical interest on the parameter

124060-9
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170220,Qs>0 M c’<0,Qs<0

1.0 7 7 77 T T T T Y
05 B
0.0- B
-05} .
-1.0 o v \ PSS T S S S
-1.0 -0.5 0.0 0.5 1.0

X

V 14x.24A2

2

FIG. 4. Parameter space that leads to the conditions c¢5 > 0,
Qs> 0and ¢ <0, Qg <0, for Pg7(x,).

®)

€))

(10)

The fixed point Py: (0,0,1) always exists. The
eigenvalues are 3,3, (6ald — %) Thus, it is a source
for aid > % or a saddle otherwise. This solution is
dominated by the Hubble scalar with H — +c0. The
values of (cZ, Q. Qpg, wpg. q) for Py are (—3, -9,
0,0,%). The Galileon mimics dust. However, the
fluid satisfies the conditions ¢2 < 0, Q5 < 0. Thus,
this solution suffers from Laplacian instabilities and
the presence of ghosts.

3
The fixed point Pyg: (—%;,0,—1) exists for
a =0, 1 # 0. The eigenvalues are (—297,%(2 - %),
—%—3). Thus, it is a sink for 0 < A? <3 and
a saddle otherwise. The values of (c2, Qg, Qpg,
19 18 3.0,

2
@WpE, q) for PIO are (6 - 18(2-2) 2T 9,2—12,

%(% + 2)). The Galileon mimics dust. Furthermore,
c2 >0, Qg > 0for 0 < A% < 2. In this region of the
parameter space, the cosmological solution is free
of Laplacian instabilities and ghosts.

3
The fixed point Py;: (%;0 1) exists for a =0,
4 # 0. The eigenvalues are (3. —3 (2 — %).52 + 3).
It is a source for 0 < A2 < % or a saddle otherwise.

The values of (c2, Qg,Qpg, wpg. q) for Py, are

(2 —W{z)i—s —9,5.0,4(%+2)). The Galileon

mimics dust. Furthermore, ¢2 >0, Qg >0 for
0 < 4> < 2. In this region of the parameter space,
the cosmological solution is free of Laplacian
instabilities and ghosts.

(1D

(12)

(13)

FIG. 5.
instabilities and ghosts.
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3
The fixed point Pi,: (—%,237,—1) exists for
2>+ 3al—3 = 0. The eigenvalues are 0,3,—3. It

is a saddle. The values of (c2, Qg, Qpg, wpg, q) for

=D(AH)(#=6) _ 3(1H-182-36) | _ 3 1y

Prare (5 Sgnag o~ =6)? 222°2)

The Galileon mimics dust. Furthermore, ¢2 > 0,
Qs >0 for 1 <A?<3(34+/53)~2.80367. In
this region of the parameter space, the cosmological
solution is free of Laplacian instabilities and ghosts.

3
The fixed point P;5: (%;,%, 1) exists for
2* 4+ 3aA—3 = 0. The eigenvalues are 0,3, —3. It

is a saddle. The values of (¢2, Qg, Qpg, @wpg. ¢) for

=D(AH)(#=6) _ 3(1A-182-36) | _ 3 1)

Ppare (S g 36— —6)? 2:2°2)"

The Galileon mimics dust. Furthermore, c% >0,
Qs >0 for 1 <A?<3(34+/53)~2.80367. In
this region of the parameter space, the cosmological
solution is free of Laplacian instabilities and ghosts.
The line of fixed points P4 (z.): (0, z2, z..) exists for
A = 0. The eigenvalues are (0, —3z., —3z,). Thus, it
is nonhyperbolic. Using the center manifold theory
we find that it is asymptotically stable for0 < z. < 1
and asymptotically unstable for —1 < z. < 0 (for
details see Appendix E). The associated cosmologi-
cal solution corresponds to a de Sitter solution that
satisfies ¢, H, which are approximately constant,
such that

. Zn
d~0,  H)~w——t
(1) T
Z¢ v
1) ~ ageV'=, =ty [
Cl() ape Ze 3+VO

where the potential is constant V(¢) =V, since
A=0. The values of (c?, Qg,Qpg, wpg,q) for
Py4(z.) are (—=§,-9,1,—1,-1). However, ¢? <0,
Qg < 0. Thus, this solution suffers from Laplacian
instabilities and the presence of ghosts.

1.0-"

05+

N 00}

-05¢

-1.0

05 06 07 08 09 1.0
al(1+a)

Parameter space where Pi5(z.) is free from Laplacian
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(14) The line of fixed points P;s(z.): (,BZC,\/— apz.?,z.) exists for 1=0, f=

PHYSICAL REVIEW D 95, 124060 (2017)

(\[a—v?)a —2). The

eigenvalues are (0,—3z.,—3z.). Thus, it is nonhyperbolic. The stability has to be *examined numerically or

using center manifold calculations. The values of (c2,Qg,Qpg,wpg,q) for Pis(z.) are ¢ =

(a(19V9a*>—6-3a(51-8a(3a(2a(V9a*—6-3a)+7)—=5V9a*—6)))+6)z,. Os = 8(V9a?—6-3a)\/ 1-z.2+3(240* (30> —V9a*—6a—1)-T7)z.

(a(V922=6-3a)+2) (3(24(a(V922-6-3a)+1)a2+7)z.~8(V9a2— %a W 1-z, § (2a(V9a?-6-3a)+1)’z, ’
\/9 —3a)(6az,—+/1— L . s

Qpg = 1, wpg = —— aﬁzaz‘ e ), and ¢ = —1. This solution is free of Laplacian instabilities and ghosts

in the region displayed in Fig. 5 [we used the compact variable a/(1 + @) to cover all real values of a].

(15) The line of fixed points Ps(z.): (ﬂzc,\/_ apz.?,z.) exists for 1 =0, p=

(fa+v3a —2). The

eigenvalues are (0, —3z.,—3z.). Thus, it is nonhyperbolic. The stability has to be examined numerically or

using center manifold calculations. The

(6—a(3a(8a(3a(2a(V9a>—6+3a)—

values of
5\/9(12 6)-+51)+19v902—6))z,

(¢35, Q5. Qpg. wpg. q) for  Pig(z.) are ¢f =
3(240% (a(V9a?—64+3a)—1)=7)z.~8(V9a?—643a)\/ 1-2,>

(a(V9a?—6+3a)—2)(3(240? (a(V9a*~ +3a
(V9a?—6+3a)(1/1-2.> 6azc)

6z,

Qpg =1, wpg =

7)z2,~8(V92—6-+3a)/1-2,2)’
, and g =

Os =

(1-2a(v9a?—6+3a))’z, ’

—1. The line of fixed points Ps(z.) always satisfies

c2Q < 0. Thus, these solutions suffers either from Laplacian instabilities or from the presence of ghosts.

For the lines of fixed points P5(z.) and P4(z,),
the cosmological solutions satisfy

V6pz, Z,

V 1 _Z(rz’
~ \/gﬂzct a N

H(t) ~

P(1) — o ¥ ——=. (1) & ageV'=,
V1-z.
V'V
Zo= 4l
\/3V6ap + V,
where § = V3aF \/—‘3 o , respectively, and the poten-

tial is constant, V(¢) = V,, since 1 = 0.

Finally, the fixed points or fixed lines at infinity are as

follows:

(i) (5.z.) with eigenvalues (0,0). It is nonhyperbolic
and, according to the analysis in Appendix A, it is
generically a saddle.

(ii) (0,—1) with eigenvalues (—24%,—2). This point
attracts nearby orbits lying on the cylinder for all
A # 0. However, if we take into account the stability
along r, the point is generically a saddle.

(iii) (m,—1) with eigenvalues (—24%,—42). This point
attracts nearby orbits lying on the cylinder for all
A # 0. However, if we take into account the stability
along r, the point is generically a saddle.

@iv) (0,1) with eigenvalues (24%,4%). This point repels
nearby orbits lying on the cylinder for all 4 # 0.
However, if we take into account the stability along
r, the point is generically a saddle.

(v) (=, 1) with eigenvalues (242, 4%). This point repels
nearby orbits lying on the cylinder for all 4 # 0.
However, if we take into account the stability along
r, the point is generically a saddle.

IV. ASYMPTOTIC EXPANSIONS IN THE REGIME
WHERE THE CUBIC DERIVATIVE
TERM DOMINATES

An important question about the present model is, in
what phase of the cosmological evolution are the extra
cubic interaction terms expected to play an important role?
Another interesting question is, how do the cosmological
predictions of our model differ from those of standard
FRW cosmology driven by a scalar field with exponential
potential? To answer these questions we proceed as
follows.

To show in what phase of cosmological history the cubic
derivatives are expected to play a role, let us consider
go > 1, and take the limit g, to infinity in the equations for

H, ¢. We obtain the approximations
. 1 . . . 1 ..
¢+§z¢2:o, H—AH¢+3H2+6/12¢2:0 (31)

which admit the solution

H, (1) = 6H, —Mbo'
3((t = 19)(6Ho — Apo) +2)
P :
3¢o(t — 1) + 6
0 =dron(1+00-0). @

where we have chosen the initial conditions H(t) =

HO’ ¢(t0) = ¢0’ (i)(tO) =

¢o. Furthermore, we have

1
3

(1) = ao 1+ 32ols =)

1

x (1 +%(r— to) (6H, —z¢o)>3. (33)

124060-11
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such that 4.50 =0 or
6H, — Ay = 0, we obtain a(r) « £; that is, it corresponds
to a radiation-dominated universe. On the other hand, if we
choose initial conditions such that 3H, — /1(,550 =0, we

Taking initial conditions

obtain a(f) « £7; that is, it corresponds to a universe
dominated by dark matter. For other values of the initial
conditions, we can model the transition from a radiation-
dominated universe to a matter-dominated one. However,
from the leading terms in the Friedmann equations, as
go — 00, we obtain

1 .. .
=3 @eboe’ (Ao — 6Hy) = 0. (34)

Since we are looking for universes with aq > 0, it immedi-
ately follows that Galileon modifications are particularly
relevant for the radiation-dominated (early-time) universe
as shown in [16]. On the other hand, for g, — 0, the model
is well suited for describing the late-time universe, and we
recover the standard quintessence results found elsewhere,
e.g., in the seminal work [48]. Now let us use the above
solution as a seed solution to construct an asymptotic
expansion for large g, when the potential is turned on.
We define

H=H,+eh+ O(&?)
b = s + €@+ O(),
e=gy! (35)

and assume qbo # 0 (without loss of generality, we can set
¢o = 0). Then we have at zeroth-order the equation

_ 4y (Abo — 6Ho)
(Ao (1 = t9) + 2)(=6H(t — ty) + Aepo(t — 1y) = 2)
— 0. (36)

Since we have assumed gbo #0, the solution is
Hy = £¢,. This implies that a(r) « £. That is, it corre-
sponds to a universe dominated by a dust fluid or dark
matter. Substituting back the value for H, in the
Klein-Gordon, Raychaudhuri, and Friedmann equations,
respectively, we have the following first-order equations:

P5(=2% + 324y (1 = 10)@" (1) (Adbo (1 = 1) +4)
+20/(1) (A (1 = 19) +2))

+120"(1) + 6) — 12V, = 0, (37a)

O (1) (Ao (t — 10) +2)?
+ A(=22 4 3@’ (1) (Ao (1 — 1g) +2) + 6) = 0,
(37b)

PHYSICAL REVIEW D 95, 124060 (2017)

2(5(=3o (Aot — 1g) + 2) (AP (1) — 6h(1)) + 4 — 6)
—12V,) = 0. (37¢)

The solution of (37) that satisfies ®(7y) = Dy, h(tg) = hy
is given by

4(2Vy = 3hodp) 4(2Vy = 3hody)
Q=)+ 5oy - —
Ao Ado(t = 1g) + 1) Ao

(22 = 6)dhy + 12V) In(L Ao (1 — 1) + 1)

+ ; , (38a
324 (38a)
B 3hodi — 2V, 2V,
3330t = 10) + 1) 3o(52¢bo(t = 10) +1)°
(38b)
where we observe that lim,_,,®(7) = co unless ://Tg = 6;;2,

and lim,_, /() = 0. Furthermore, the relative errors are
defined to be

_|H_Hs| _|¢_¢s|
E(HS) _T7 E<¢s) _T,
r _|H_Hs| y _|¢_d)s|
and satisfy the conditions
tlimE(q)s(t)) = }LmE(q)s<t>)
_e((2 = 6)¢hy + 12V)
- 6idhs ’
. . 2V0€
limE(H,(1)) = imE(H(1)) = —. (40a)

t—oo =00

0

Thus, the relative errors can be small enough for
Vo < éﬁé, A=+V6 or Vy < (bé, (ﬁ% > 1 (the last con-
dition is fulfilled for all finite values of V|, and large
values of g}ﬁo). We see that for Vj > (}53 and finite ('bo, the
relative errors are large, and the approximation fails. In
the former case the potential makes the ideal gas
solution unstable, as expected for a universe dominated
by a dust fluid or dark matter. This is an important
result since the cubic term in the Galileon field provides
a matter epoch.

V. GALILEON MODEL WITH MATTER

Until now we have considered the case with vacuum (i.e.
pm = 0), and we have found, at some fixed points, c2 < 0,
and Qg < 0 also. On the other hand, for the avoidance of
Laplacian instabilities, we require ¢ >0, and for the
absence of ghosts, it is required that Q¢ > 0. In this section

124060-12
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we study if matter stabilizes the Galileon field, in the sense

that it helps to restore the above conditions. To begin with,
6w]H—3W%—6W1—6pm

the definition of ¢Z changes to ¢3 = Ty 7O , when
Pm > 0 and Wrot :Ié WDE-
By using the variables
¢ Voe ™ H
X=—m—=, Y=g, 1= e,
6(H> +1) 3(H*+1) H? + 1
(41)

v 2q72(6ax>z 4+ V/6y) — 6v/6aix* + 12ax°73 — 3v/6x%y + V6y(3y — 22)

PHYSICAL REVIEW D 95, 124060 (2017)

and the parameter a = gV, we obtain a dynamical system
that is the same as (16):

x/:fl<x) y/:f2<x) Z/:fS(X)
fa(x)’ fa(x)’ fa(x)’

where x = (x,y,z) and the functions f| — f4 are defined
by (17). We have an auxiliary evolution equation for

(42)

I~ _ Pm o -3
Q, = m Pm = Pmod - (43)

The system can be written in the compact form

y = y(2(qg + 1)2* = V6ix), (44b)
7 =(qg+1)2-1), (44c)
QL =Q,22(q +1)22 = 3) (44d)

where ¢, the deceleration parameter, can be expressed in
terms of the phase-space variables (x,y,z). Observe that
the evolution equation for matter decouples from the other
evolution equations. The subtle difference, including dust
matter, is that the restriction (18) now becomes

y2 4 2%a(—V6z + x2) +y(x2 =2 +Q,) =0. (45)

Since y > 0, f)m > 0, the motion of the particle in the
phase space is not just restricted to the given surface
y2 +2x%a(—V6z + x1) + y(x* — z%) = 0, as is the case in
(16) and (17). Instead, the phase space is now the set

{(x.y.2) 1y +283a(—V6z+x2) + y(x2 —z2) <0,y > 0}.
(46)

The fixed points for the vacuum case are recovered,
that is, with f)m = 0; but some existence conditions
change, which is the main difference between the two
cases. The existence conditions for Py, P;; change to
a/A > 0; the existence conditions of P,, P3 are changed
by A2 +3alA—3>0. The stability conditions change accord-
ingly. The eigenvalues and stability conditions for Py, Py,
remain unaffected when matter is included. The eigenval-

4y/6a> 412

ues for Pj,;3 change to j:(—3,%—3

2(6a(ai—4)—72)+24
4y/6a>+ 12
The results shown in Table II remain unaltered. We

%—1-3 ), but the point will still be a saddle.

12ax?

, (44a)

|

conclude, then, that the matter background has no imprint
in the Galileon field concerning the avoidance of Laplacian
instabilities and the absence of ghosts. The conditions
c2>0, Qg>0 are not restored for the points that vio-
late them.

VI. CONCLUSIONS

In this paper we have studied cubic Galileon cosmology
with an extra conservation law from the dynamical systems
perspective. The novelty of this model is that it was derived
from the application of Noether’s theorem in the gravita-
tional Lagrangian. First, we have noticed that the fixed
points A*, B, C, and D investigated in detail in [16] do not
exist in our scenario. So, our analysis has its own right, and
it is complementary to all the analyses done before. This
new scenario admits power-law solutions. We have found a
new asymptotic solution given by the fixed point solution
Py, which satisfies

3 3Int 4
HrZb | - ———
8 1< s bz—b1t>’

4v,
e ln(4a,13(2a1—3b1)2+2/12(2aol ~3b,)+3b, (9b1—4)) n 2Int
- A VN

while the scale factor is calculated to be a(r) =
9% 9p?

age® 15 (by — by1)301/2 = (by — by1)*"/2(ag + O(17")).

This point has not been obtained previously in [16] or
[17] since in these works the authors used H-normalization,
which obviously fails when H = 0. This solution attracts
the exact power-law solution previously described in [44]
for the proper choice of free parameters. Moreover, we have
obtained several solutions [P-Ps, Ps, P, Piu(x.),
Pi(z.)], which violate the conditions ¢2 >0, Qg > 0
(one or both) suffering from Laplacian instabilities and
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from the presence of ghosts, making them physically less
interesting. Excluding the de Sitter solutions, all of them
mimic dust solutions. However, we found other solutions
that are free of Laplacian instabilities and ghosts. For
instance,

(i) The solutions Pg;(x.) can satisfy the conditions

> 0, Qg > 0, denoted by the yellow region with a
dot-dashed boundary in Fig. 4. However, they can
violate these conditions; for example, it is possible to
have ¢ <0, Qs <0 as represented by the green
region surrounded by a solid line in Fig. 4.

(i) The fine-tuned solutions Py and Py, that exist in the
unmodified (quintessence) scenario can be a sink
(respectively, source for 0 < 4> < 3), and they satisfy
2>0,04>0for0<1?<2.

(iii) The solutions Py, and P,5 that exist for A> 4 3al —
3 =0 mimic dust, and they are saddles. We
have proved that ¢2>0, Q¢>0 for 1 <1*> <
2 (3 + V/53) ~ 2.80367. In this region of the param-
eter space, the cosmological solution is free of
Laplacian instabilities and ghosts.

(iv) The line of fixed points Py5(z.): (Bz.. V6apz.2. z.)

ex1stsfor/1—0,/}:7§(\/_a—\/3a —2), and the

cosmological solution is given by

V6pz,.

Hx S HON
6 —=
(1) - o z% a(t) ~ age V',
NG
7, ==

\/3\/6aﬁ+V0‘

This solution is free of Laplacian instabilities and
ghosts in the region displayed in Fig. 5.

Furthermore, we have investigated the fixed points at
infinity, and all of them are saddle points; thus, they have
no relevance for the early- or late-time universe.

The Galileon modifications are particularly relevant for
the radiation-dominated (early-time universe) as shown in
[16] by investigating the regime where the coupling
parameter satisfies gy > 1. On the other hand, for g, —
0 the model is well suited for describing the late-time
universe, and we have recovered the standard quintessence
results found elsewhere, e.g., in the seminal work [48]. We
have constructed asymptotic expansions of the power-law
solution for large g, when the potential is turned on.

All the previous results were found for vacuum Galileon

(P = 0). We have seen that for some points, ¢ < 0, and at
some fixed points, Qg < 0 also. Since we need to avoid
Laplacian instabilities, we must have ¢? > 0, and if we
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demand the absence of ghosts, it is required that Q¢ > 0.
Moreover, we have investigated if the matter stabilizes
the Galileon field, in the sense that it helps to restore the
above conditions. When we include background matter in

the form of dust, we recovered the fixed points for Qm =0,
but some existence conditions change, especially for P,
Py, and Py, P5. The stability conditions change accord-
ingly. The eigenvalues and stability conditions for Py, Py,
remain unaffected when matter is included. The eigenval-
ues for Py, 13 change, but the point will still be a saddle.
The results shown in Table II remain unaltered. We
conclude, then, that the matter background has no imprint
in the Galileon field concerning the avoidance of Laplacian
instabilities and the absence of ghosts. The conditions
c2 >0, Qg > 0 are not restored for the points that vio-
late them.

Finally, in order to get a cosmologically suitable sce-
nario, we require z > 0 (i.e., H > 0) for accommodating a
late-time accelerated expansion phase. For simplicity, we
will restrict the analysis to the invariant set of the flow of
the system (16) given by z = 1. In this invariant set the total
equation-of-state parameter is w, = —y. Now, for the
special parameter choice o = ﬁ, the fixed points
P;(x.) merge to one fixed point, denoted by dS, in the

plane (x, w) with coordinates (x, wy,) = \/- A, —1) that

mimic a de Sitter solution. It is an attractor for 0 < 4 < \/%

For 0.72262 < A < 1.22474 the corresponding cosmologi-
cal solution satisfies the physical conditions c¢? > 0,
Qs > 0. We also obtain a transient phase given by the

3
fixed point D; := (x,wy) = (%O) which mimics a
dustlike solution. Furthermore, we have a scaling solution

Si= (xwe) = (4

1

A< —% or \é <A< \/§, or a saddle otherwise. The

scaling solution is accelerating for —% <A< —V/3 or
0 < A < v/3. The physical conditions ¢ > 0, Qg > 0 are
satisfied for 0.662827 < 1 < 1.60021. The scaling solution
and the de Sitter are not attractors simultaneously. Besides,

—2/12) which can be an attractor for

the model admits an additional dustlike solution D, :=

(X, Wior) = (\/TE ,0) which is unstable. In Fig. 6 we portray,
in the plane Wi VS X, the typical behavior of our model for

a=g (3 W07 and different choices of 4. On the left panel, the

attractor of the de Sitter point, dS, is such that the value
Wit = —1 is approached asymptotically. However, we
immediately see that there are trajectories connecting the
dust point D, and the scaling solution S that crosses the
phantom divide line (represented by a red dashed line),
which eventually enter the w = —1 region. However, some
solutions are trapped on the phantom regime. On the right
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FIG. 6. Streamlines in the plane (w,x), representing the
typical behavior of our model for a = 4&(33——/12) and different
choices of A.

panel, the scaling point S is a stable spiral, and the de
Sitter point is a transient one. There are trajectories
connecting the dust point D, and the de Sitter solution
dS crossing the phantom divide. As in the previous case,
some orbits remain on the phantom region. As we have
briefly shown, this model has quite interesting cosmo-
logical features, resembling the usual late-time dynamics
found in conventional quintessence models for a nonzero
value of a.

Different subjects of study are still open for the inte-
grable model in which new critical points exist. Hence, the
requirement of the existence of a conservation law has a
physical interpretation in the evolution of the model.
However, the exact nature of the physical interpretation
for this model is still unknown; such an analysis is still in
progress.
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APPENDIX A: NONHYPERBOLIC FIXED
POINT AT INFINITY

For analyzing the stability of Q; we proceed as follows.
Dividing by the positive quantity A% cos?(#), we have that
the flow of the system (25) is equivalent to the flow of

PHYSICAL REVIEW D 95, 124060 (2017)

;li h 1(6, z) := zsin(0) cos (@), (Ala)
& (0.0 = (- 1) (Alb)
dar ’ )

3—; = hy(r,0.2) = rlz(cos(20) —3)].  (Alc)

To improve the range and accuracy, we calculate the
diagonal first-order Padé approximants

[1/1];,0),  [1/1];,(0),  [1/1];,(0),

around 6 = z/2, which yields the following approximate
expressions:

do 1 dz
—(m—-2 — =1+ 7
ara "m0 gpm ol
dr
—~ —4rz. A2
o7~ Az (A2)
Imposing the initial conditions
b3
z(0) = -1+ 6z, 0(0) = 5 + 00,
r(0) = ér, oz < 1, 50 < 1, or< 1,
we obtain the solution
z=206ze7 T =1, 0=50e" +g, r=dre (A3)

Observe that the small perturbations 60 and or grow
exponentially, and z — —1 as T — 4o0. At the cylinder
at infinity (6r = 0), the orbits near Q; are attracted by the
invariant set z = —1, but the angle departs from the
equilibrium value 6 = 7 as time goes forward. This means
that Q, is the local past attractor at the circle z =1,
X?+Y?2=1,Y >0, as is shown in Fig. 2. If we move to
the interior of the phase space 6r > 0, the orbits are repelled
by the cylinder at infinity at an exponential rate, although
z = —1 as T — +o0. Hence, Q; is generically a saddle.

APPENDIX B: FIXED POINTS LYING
ON SINGULAR SURFACES

The system (16) blows up when f,(x,y,z) =0, espe-
cially at the fixed points P, Pg, Py. For this reason we had
examined their stability numerically or by taking limits,
since they lead to indeterminacy of the form 0/0.

For examining the stability of P, we introduce the new
variables u = z — \ﬁ LU= 232, w =y, such that the system
can be written in the canomcal form

124060-15



ALEX GIACOMINI et al. PHYSICAL REVIEW D 95, 124060 (2017)

u' 0 00 u
vV =10 0 1 v
w 0 00 w
P (a(22% = 3) = ) + 3uv(2A(A — 2a(2* = 3)) = 3) + 2 v?(2a(24* — 9)A — 22* + 3)
+ & (=42 (2u = 3v)* = 22*(2u — 3v)? — 270?) + O(|(u, v, w)T]?).

22w(2u — 3v)
(B1)

Given H?, the vector space of the homogeneous polynomials of second order in u = (u;, u,, u3), let us consider the linear

operator ng) associated with

—
I
o o o
o o o

0
L],
0
which assigns to h(u) € H? the Lie bracket of the vector fields Ju and h(u):

LY: H > H*  h - Ljh(u) = Dh(u)Ju — Jh(u), (B2)

where H? are the real vector space of vector fields whose components are homogeneous polynomials of degree 2. The

canonical basis for the real vector space of three-dimensional vector fields whose components are homogeneous
polynomials of degree 2 is given by

ui Uy Uy Uz us Uy U3 u3 0 0 0 0
H? = span 0 |, 0 |, 0o [|.] 0. 0o |.] 0], u%) iy |, | wus || w3 |,
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
wpuy |, | w3 0 |. 0 |1, 0 |.] 0|, 0 .10 (B3)
0 0 u% Uiy Uy u% Uyliy u%
By computing the action of ng) on each basis element on H?, we have
Uy s Uy U3 u3 0 0 0
L§2>(H2) = span 0 .1 o [.1o ||« |, | wu|,|uus|,
0 0 0 0 0 0
0 0 0 0 0 0
w3 || wus |3 |, O | O |[.]O . (B4)
0 0 0 Uiy UylUy u%

Thus, the second-order terms that are linear combinations of the six vectors in (B4) can be eliminated [49]. To determine the
nature of the second-order terms that cannot be eliminated, we must compute the complementary space of (B4), which is

ui Uiy us 0 0 0
G? = span 0|, o |.] o .| o], 0 )
0 0 0 ui Uiy us

Following the above reasoning, we propose a transformation
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1
u o h§)<01’62’d3)
v)=lo2 |+ hgz)(ﬁl,ffzﬁs) (B5)
v i h§3)(01,02703)
where the hg”, i =1,2,3, are homogeneous polynomials of degree 2 in (o}, 05, 03). Up to this point hgi), i=1,2,3,

are completely arbitrary. Now we choose a specific form of them so as to simplify the O(2) terms as much as possible.
We choose

hgl)(ﬁl,dz,@) 0

WP (6y.05.05) | = 0 . (B6)
212, 2 2 3 2 3 2

1 (61,62, 03) 22263204 + 1) = 24%0105 (204 + 1) + 3 63 (4ad® + 24% + 3)

Hence, the normal form of the system (B1) is

o) = Ao} (@(2% = 3) = ) + 0,0, <3/1(/1 —2a()2 -3)) - %) + %0% (2a(222 =94 - 22 +3)+O(3).  (BTa)
oy =03+ 0(3), (B7b)
3
% =o03(ad+ 1) — 5620'3(4/12(051 +1)+3)+00@3). (B7c¢)
We propose the following ansatz:
=L o6, =i on), 6 =D 2L o (BS)
A ’ A T 7

as 7 — oo. Substituting back and comparing the coefficient of equal powers of z, we find the solutions

V/3b, (8A(=2a2% + 6a + 4) + 95, 24(a(2A(Ba + 1) = 9) — A) + 3) — 12) + 4 — 3b, (4ad> — 1204 — 242 + 3) + 2

‘= 422 =3)—2)
¢, =0, c¢,=-by, (B9a)
or

 —\/3b,(8A(—2a22 + 6a+ 1) + 9, (24(a2ABa + 4) —9) — 1) + 3) — 12) + 4 — 3b; (4al® — 1204 — 202 +3) +2
“a=T 4n(a(222=3) = 2) ’
¢, =0, ¢, =-b. (B9Db)

This approximated solution has the correct number of arbitrary constants: a,, by, b,. Then, we obtain

(3b1 - 2@1)/1 (3b2 —Zaz)ﬁ _
X = + + O(z73), B10a
N N (=) (B10a)
4(2ay — 3b,)2al® + 2(2a, — 3b,)2 22 —4
y= ( ay 3b1) al -+ ( aj 23b1) A +3b1(9b1 )+O<T_3), (BIOb)
127
3b,  3b, .
2=T1 435+ 06). (B10c)
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From here it is clear that the origin attracts the orbits
as 7 — oo.
On the other hand, we get

y 3by —2a,)A 3b, —2a5)1
)= = T . + b 2 2 +O(z7?),
(Blla)
3b, 3b,
AU =5 452 B Bllb
(t()) 2 + Y + O(r7), ( )
4V,
H1(0)) = ln(4(2a1—3b1)za,13+2(2a1331;)2,12+3b1(%1_4)) +2Int
+0(). (Bllc)
Furthermore,
dt 1 3b b
e e T (972) +O(?)
dr H2 1 47 321
(B12)
which implies
3 8D, — b7
At = t(T) -4 :T_Zbl lnr+%
+O(172). (B13)
Inverting the above expression we have
3(9b7 —8b,)  9biInAr 3
324t 16a;  Tabiinar
+ At + O(Ar7?). (B14)
Finally,
|
2/1(1 2a(A?

ai (1. a) =

PHYSICAL REVIEW D 95, 124060 (2017)

. 3bll(3b1 —2a1)1nt i(3b] —Zal)
t) = —
P(1) 472 + t
A(3by —2ay,) :
+#+(’)(r 3, (B15a)
9% Int 3b1 3b,
H(t) = -—1— O(t B15b
()= —— =+ 4+ 35+ 0(7).  (BISH)
4v,
gb(t) B ln(4aﬂ3(2a1—3b1)2+2/12(25;)1 —3b])2+3b,(9b1—4))
N A
2Int
+T“+O( ), (B15¢)
3 3(3b%Int +3b,2 —4b
a(r) = aot%<1 1360 +8t v 4b) O(z—2)>.
(B15d)
For simplicity we set t; =0, At =1.
On the other hand, the new conservation law
W2 (6H — Ad)  2a’(AH — ¢
W PO 1) 20 )y

has to be satisfied. Substituting the expression (B15), we
obtain

1 1 9b

p e =22(9(4a, — 3b,) (363 — 4b,)
+ 3b1 <9b1 - 2) (4@1 - 3b1) Int + 32(12 - 24[72)
+ (4a, = 3b)r" + O(3) = 0,

where a; = a;(b,4,a). Thus, for eliminating the term

9b
I tTl", we have the following choices:
(i) We set the exponent to zero; i.e., we set b = %. Then
a, is reduced to the two values

3)) £ V6 /A(a(6ak — 22 + 3) + 1)

Substituting by = 2, and specifying a; = ai (1, a),
the constraint becomes

11+ (3= 18b;) +4a; — g
agp t

2
+4a 1—§+O( e

Now, in order to satisfy the above expressions up to
the order O(t*), we impose the conditions

ay(6 —162by) +36a, — 1 = 0,

2 1
4—+1

=0,
3 a’

0.

6/1( (22 =3) = 1)

which have four arbitrary constants a,, b,, ag, I,
from which we cannot eliminate simultaneously a,
and b,, or I, and a. This leads to a two-parameter
family of solutions. We solve for a, and I, to keep
the parameters b, and a,. Finally,

(%—201)1
t
)«(—18612 + 27b2 - (1 - 3(11) In t)
* 91

P(1) =

+O(), (B16a)
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1 27b, —Int
H(t) =3 +=—5—+0(7),  (BI6b)
I ——— —) +2Int
¢(t) _ 2(1 3a|)222(2rj+1) 3 i O(t_l),
(Bl6c)
1
(1([) = ao\/gt — E(00(27b2 —Int— 1))1‘_3
+0O(r3). (Bl6d)

(i1) We can equate the coefficient of o zero, that is,
solve (4a; — 3b,) = 0 for b,. The next term in the
expansion will be (4a, — 3b2)t¥‘2. Setting (4a,—
3b2) =0, we obtain the constraints I, = 0 and b, =

3a1, b, = az, ay(a;A(a (2/12—15)—1)4—1)—0

(ii1) Fmally, we have the fine-tuned solutions a; = = and
b, = Wthh lead to the constraints 2a4’ — 150:/1 -
2 —O and a3+4a2—3b2

This point has not been obtained previously in [16] or
[17] since in these works the authors used H-normalization,
which obviously fails when H = 0.

For examining the stability of the fixed point Pg, we
introduce the new variable 7 = z + 1. Then, the evolution
equations (16) can be written as

X = x@ - w) + \/;y +0Q), y=-3y+0(),

¥ =324 0(2). (B17)

For examining the stability of the the fixed point Py, we
introduce the new variable 7 = z — 1. Then, the evolution
equations (16) can be written as

3 3
X =—x (2 - 6001) + \/;/ly +02),

Y =3y+0(2), 7 =32+ 0(2). (B18)
From these linearized equations we extract the eigenvalues
for Pg and P.

APPENDIX C: CENTER MANIFOLD FOR P,

The point P5 has the opposite stability behavior.
For investigating the stability of the center manifold of
P,, we introduce the new variables w =y, u=z+1,

NG

v = x —¥>z. Hence, we have the evolution equations

(Cla)

A E N
w —12uw+l<fvw—2—> +?+0( )

PHYSICAL REVIEW D 95, 124060 (2017)

' = —6u + 15u> +2v/6uv + O(3),  (Clb)

2Pw(u+w) B \/%“W
4/6a 2a
(72fa 12 = 24avw + V/6w? )
3 +
48
Sw(v/6w — 6av)

7202

v = =30 +9uv +

Aw?
_'_
96v/60a2

The center manifold of P, is then given locally
by {(w,u,v):u=hi(w),v="hy(w),h;(0)=0,h,(0)=0,

+0(3). (Clc)

1, (0)=0,h5(0) =0, |w| <6}, where & is small enough,
and the functions h;, h, satisfy the equations
A% = 6)w?
1 (w) (—12wh1 (W) — V6iwhy (w) — %)
a
hy(w)(2V62hy(w) — 6) + 15k (w)> =0,  (C2a)
A(A* = 6)w?
1y (w) <—1zwh1 (W) = V6awhy (w) — %)
a
(22 - 6)w>
+h 9h +—
) (9ms0) + 72
(2% = 6)w \F 5
2 4_qp2
Aw*(24ad + A* = 84* + 12) _0. (C2b)
96v/6a>

We have to solve these equations using Taylor series up
to third order since Eqgs. (C1) were truncated at third
order. Assuming h;(w) = aw? + O(w)?> and h,(w) =
bw* + O(w)?® [we start at second order in w since the
conditions /;(0) =0, hy(0) =0, K} (0) =0, h(0) =0
have to be satisfied], substituting back into (C2),

and equating the coefficients with the same powers of
M24ad+1*=8)2+12)

2881/602

the center manifold is governed by w' =

2,3 4_gy2 C . .
P (Aali U 88412) 4 (w4, a “gradient” equation with

2880’
. o Pwr(4ad =82 +12)  A(22=6)w? .
potential W(w) = — 5o — 55— Since

the first nonzero derivative at w = 0 is the third one, then
the point w = 0 is an inflection point of W(u). Hence, for
A(’E 8 > 0, the solutions with w(0) > 0 leave the origin
(and go off to oo in finite time), whereas the solutions with

w(0) < 0 approach the equilibrium as time passes. For
/1(/12;’) < 0, the solutions with w(0) > 0 approach the
equilibrium as time passes, whereas the solutions with

w(0) < 0 leave the origin (and go off to oo in finite time).

. The evolution on

A2 —6)w?
12a

w, we find a =0, b =
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Such an equilibrium with one-sided stability is some-
times said to be semistable. However, since we have to

restrict our attention to the region w > 0 (since y > 0),

A =6) > ( and stable for

we have that P, is a saddle for =45
2(1122;6) < 0. But a is always non-negative; thus, P, is
stable for A < —\/6 or 0<i< \/6, and a saddle for

-6 <1<0 ori>+6.

APPENDIX D: CENTER MANIFOLD FOR P,

We discuss in more detail the stability of the fixed point
P,. The point Ps has the opposite stability behavior.

For investigating the stability of the center manifold of
P,, we introduce the new variablesw = z, u =y — 2z + 1,
v = x. Hence, we have the evolution equations

w = =3uw + O(3), (Dla)
u = =3+ uw+u—1*—w?) + 003), (D1b)
1/:—%U(u—i—Z(\/gav—i-w—i-l))—f—O(S). (Dlc)

The center manifold of P, is then given locally
by {(w,u,v):u=h(w),v="hy(w),h;(0)=0,h,(0)=0,
1, (0)=0,h5(0)=0,|w| <6}, where & is small enough,
and the functions %, h, satisfy the equations

3why(w)h| (w) =3k (w)? = 3(w + 1)k (w)

+3hy(w)? +3w? =0, (D2a)
Sy () () =3 iy (o) )
— 3v6ah, (w)? = 3(w + 1)hy(w) = 0. (D2b)

We have to solve these equations using Taylor series up
to third order since Eqgs. (D1) were truncated at third
order. Assuming &;(w) = aw® + O(w)® and hy(w) =
bw* + O(w)? [we start at second order in w since the
conditions %;(0) =0, hy(0) =0, K} (0) =0, h,(0) =0
have to be satisfied], substituting back into (D1), and
equating the coefficients with the same powers of w, we
find a = 1, b = 0. The evolution on the center manifold is
governed by w' = —3w?>. The equilibrium w = 0 is then
asymptotically stable. Furthermore, perturbations from the
equilibrium grow or decay algebraically in time, not
exponentially as in the usual linear stability analysis.
This is the same result obtained previously in [16] and
[17], for the de Sitter (constant potential) solution.

APPENDIX E: CENTER MANIFOLD FOR THE
LINE OF FIXED POINTS P4(z.)

The line of fixed points Pi4(z.):(0,22,7.) exists for
A =0. The eigenvalues are (0,—3z.,—3z.). Thus, it is

PHYSICAL REVIEW D 95, 124060 (2017)

nonhyperbolic. For investigating the stability of the center
manifold of P4(z.), we introduce the new variables
O+ Dzl +y+2z2.°~2.* _ 2= 0+z(2,~22))

w == 3 x 2. v = X.
Hence, we have the evolution equations
3 2-3)z.2
W =3ulz 2 + M +0(3). (Ela)
Zc5 =
3ut(z.* +4z.2 - 1)
= - - < —3w-3
u 2= 1) + u(=3w - 3z,)
3 20,2 3 20,2
+ov (z¢ _1)+EW (z.2=1)4+0O(3), (Elb)
3 - 67,2
o =B =6 3
z.-—1
+ v(=3w —3z.) + O(3). (Elc)

The center manifold of P, is then given locally by
{w, u, v):u = hy(w), v = hy(w), h;(0) = 0, h,(0) = 0,
h;(0) = 0, h5(0) = 0, |w| < 6}, where & is small enough,
and the functions &, h, satisfy the equations

w(z.2 = 3)z.2h (w
(<2 - HE O

3(z.* + 4z = Dhy(w)?
- 2(Zc2 _ 1) ! _3hl(w)(w+zc)

+ (2.2 = Dhy(w)? + %wz(zcz -1)=0, (E2a)

N W

3W(Zv2 - 3)Zczhl (W)
(—3262h1(w)2 - ZCZ -1

n (3- 6zC2)2h1(w)h2(w) n
z.-—1

— 3v6ah,(w)? = 3hy (W) (w + z.) = 0.

)10

(E2b)

We have to solve these equations using Taylor series
up to third order since Eqs. (El) were truncated at third
order. Assuming h;(w) = aw? + O(w)® and hy(w) =
bw? + O(w)? [we start at second order in w since the
conditions h;(0) =0, hy(0) =0, K} (0) =0, h5(0) =0
have to be satisfied], substituting back into (El), and

equating the coefficients with the same powers of w, we
z.2-1
2z,

manifold is governed by w' = —3w3z.(3 —z.*)w’. The
equilibrium w = 0 is then asymptotically stable for 0 <
Z. <1 and asymptotically unstable for —1 <z, <0. As
before, perturbations from the equilibrium grow or decay
algebraically in time.

find a= b =0. The evolution on the center
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APPENDIX F: CENTER MANIFOLD FOR THE
LINES OF FIXED POINTS P 14(z.)
The lines of fixed points Pis 16(z.): (Bze. V6aPz2. 2.)
exist for A=0, f=pi where f;=J5(vV3aF

V3a? —2), respectively. The eigenvalues are (0, -3z,
—3z,). Thus, they are nonhyperbolic. The two cases can

be treated as one case under the choice a = /3\2/__;/31 [this is
equivalent to setting = % (V3a F V3a® -2)].

For investigating the stability of the center manifold of

P15.16(z.), we introduce the new variables w = Zﬂyz;yizzz -
C=D(=(FP+1)z.(2z—z,
120(—2zz.+ 22+ 1), u= (z >(’2((ﬂﬂ2+l)z Gz oy =

(22—
/3(”/}§T”+zr2(—212{.»+zr2—1))
X+ 2z,

. Hence, we have the evolution
equations

3uw(z.? —3)z.2
72 -1
, 32+ + (4-647)z, 1)
B 207 =1)(z.> 1)
2_
+u(—3ﬂll};§c_11)—3w—3zc>
302(z,2=1) 3
Y1) +O0)
;_ 3ﬂu2(zcz + 1)(Zc4 + 2(ﬂ2 - z)zcz + 1)
oo 27 - 1)z - 1)
3””}(Z62(4 _ﬂ2<zcz + 4)) + 1)
(#*=1)(z> = 1)
v*(34%(z.> + 3) = 6)
26(p* - 1)

F2PRE 1)+ 00)

w =3u’z.? + +0(3), (Fla)

(F1b)

+

+ v(-3w—3z,)

(Flc)

The center manifold of Py, is then given locally
by {(w,u,v):u=h;(w),v="hy(w),h(0)=0,hy(0)=0,
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h;(0) =0,15(0) =0, |w| <&}, where § is small enough,
and the functions A, h, satisfy the equations

w(z.2 — 2h (w
<_3Zc‘2hl(w)2_3 & ZV23EZ]C ul ))h/l(w)
2_ w
+ hy(w) (—3ﬂ(z0ﬂ2_1)1h2( )—3(W+Zc)>

3h(w)*(28° + 2.t + (4 - 68%)z.° — 1)
2082 - 1)z - 1)

2 w2
3(202(/))212}112)( ) +%W2(Zc2 - 1) =0, (an)
(—3z02h1 (w)* = Il Z:fzzi hl(w))h’z (w)
3h (w)hy (W) (22 (4 = Pz +4)) +1)
(P =-1)(z>-1)
3ﬂ(zc‘2 + l)hl(w)z(zc4 + 2(ﬂ2 - Z)Zcz + 1)
2082 = 1)(z2 - 1)?
w 2(132 2 _
3o )2(25( /§§C_1+) =2 shywyw +2.)
Fap2 -1 =0 (F2b)

We have to solve these equations using Taylor series up to
third order since Eqgs. (F1) were truncated at third order.
Assuming h;(w) = aw? + O(w)® and h,(w) = bw?+
O(w)? [we start at second order in w since the conditions
hi(0) =0, hy(0) =0, K (0) =0, h5(0) =0 have to be
satisfied], substituting back into (FI1), and equating the

. . . 2
coefficients with the same powers of w, we find a = ZEZ ,
)

— ﬂ( 02_1)
b= Z2zf

. The evolution on the center manifold is gov-
erned by w' = —3w3z,.(3 — z.2)w?. The equilibrium w = 0
is then asymptotically stable for 0 < z. < 1 and asymptoti-

cally unstable for —1 <z, < 0. As before, perturbations
from the equilibrium grow or decay algebraically in time.
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