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In this paper we introduce a method to directly calculate the Newtonian gravitational forces using
multipole moments. Gravitational torques for precision tests of Newtonian gravitation are regularly
calculated with multipole expansions due to the elegance and efficiency of the calculations. Tests of
Newtonian gravity which probe forces rather than torques often resort to less efficient numerical calculation
of sextuple integrals. Unlike multipole expansions these cannot easily be adapted for numerous
permutations of the system, and instead the calculation has to be repeated, often in full. The method
derived in this paper calculates the forces from any 1=r potential given the outer multipoles of the system
and the inner multipoles calculated at any arbitrary point. The result derived can be written as a simple
recursion relation for efficient calculation.

DOI: 10.1103/PhysRevD.95.124059

I. INTRODUCTION

Multipole moments are often used to express 1=r
potentials. The formalism is particularly important for
laboratory gravitational measurements [1] or tests of the
weak equivalence principle [2]. Many of these instruments
use torsion balances where torques can easily be calculated
from the azimuthal symmetry of multipole moments.
Multipole moment expansions are used due to a number
of transformations [3,4] which allow very efficient calcu-
lation, and more importantly minimal recalculation for a
perturbed system, allowing researchers to quickly inves-
tigate the effect of misalignments. Many other precision
measurements of Newtonian gravity measure linear forces
[5–7]. These measurements often rely on computationally
expensive sextuple integrals, or specific solutions between
an extended body and a point mass which still require triple
integration. Efficient calculations of forces from Newtonian
gravitation are also important for calculation of Newtonian
noise in gravitational wave detectors [8]. Here we introduce
a method to unlock the power of multipole expansions for
the calculation of gravitational forces.
Considering an experiment where the interaction

between two sets of masses is measured, we name these
masses the inner masses and outer masses. Multipoles can
be used only if a geometry is chosen such that the absolute
length of all vector positions inside the inner masses are
less than the absolute length of any vector position inside
an outer mass. If this simple convergence condition is met,
multipole moments provide a powerful framework for
calculating gravitational interactions.
The gravitational potential energy of the system can be

calculated as

V ¼ −4πG
X∞
l¼0

Xl

m¼−l

1

2lþ 1
Qlmqlm; ð1Þ

where G is the Newtonian constant of gravitation, and qlm
andQlm are the inner and the outer multipoles, respectively.
These are defined as

qlm ¼
Z Z Z

Vi

ρðrÞY�
lmðrÞdVi; ð2Þ

where Vi is the volume of the inner mass. Ylm is a regular
solid harmonic defined as YlmðrÞ ¼ rlYlmðθ;ϕÞ, where Ylm
is a spherical harmonic. Similarly, using an irregular solid
harmonic

Qlm ¼
Z Z Z

Vo

ρðrÞ 1

rlþ1
Ylmðθ;ϕÞdVo; ð3Þ

where Vo is the volume of the outer mass. The convergence
condition for Eq. (1) is that all values of r inside Vi must be
less than all values of r inside Vo.
For torsion balance experiments one must calculate

azimuthal torques, and as such differentiate Eq. (1) with
respect to ϕ. Azimuthal rotations of multipole moments are
simply calculated as RAzðϕÞqlm ¼ qlme−imϕ, where RAzðϕÞ
is an azimuthal rotation operator. Hence the torque can
simply be written as [1]

τðϕÞ ¼ −4πG
X∞
l¼0

Xl

m¼−l

1

2lþ 1
ime−imϕQlmqlm: ð4Þ

The beauty of this method is that each multipole multipli-
cation can be solved just once and the torque is then given
for all angles. The torque can easily be written as a Fourier
sum for easy comparison to experimental data,*julian.stirling@nist.gov
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τðϕÞ ¼
X∞

m¼−∞
e−imϕ

�
−4πGim

X∞
l¼jmj

1

2lþ 1
Qlmqlm

�
: ð5Þ

Calculation of forces rather than torques is significantly
more involved as the multipole symmetry cannot be
exploited. The final result, however, is still highly efficient
and can take advantage of numerous multipole and solid
harmonic transformations. One can calculate a force by
solving Eq. (1) for two positions and either perform an
analytical limit of displacement tending to zero [9] or
perform numerical differentiation. In this work we derive a
concise analytic solution for the force on the inner multi-
pole at any position (where the multipole convergence
condition is valid), and this function can be efficiently
solved by recursion.

II. THEORY

Starting with the inner multipole moment of an object,
qlm in a position which can be arbitrarily chosen to simplify
calculation, we then define the notation qlmðx; y; zÞ as the
inner multipole moments of the same object translated by a
vector ðx; y; zÞ. To calculate the force of the inner moment
at position ðxi; yi; ziÞ we take the gradient of Eq. (1),

Fðxi; yi; ziÞ ¼ 4πG
X∞
l¼0

Xl

m¼−l

1

2lþ 1
Qlm∇iqlmðxi; yi; ziÞ:

ð6Þ

Using the method described in D’Urso and Adelberger [3]
we can expand the translated inner moment in terms of the
original inner moments

∇iqlmðxi; yi; ziÞ ¼
X

lt;mt;lo;mo

δl;ðltþloÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ!

ð2lt þ 1Þ!ð2lo þ 1Þ!

s
Clm
ltmtlomo

qlomo
∇iY�

ltmt
ðriÞ; ð7Þ

where the spherical polar vector ðri; θi;ϕiÞ is equal to ðxi; yi; ziÞ. Also δl;ðltþloÞ is the Kronecker delta function and C
lm
ltmtlomo

is a Clebsch-Gordan coefficient using the concise notation from Ref. [10].
Noting that Eq. (4.28) of Ref. [11] gives the regular solid harmonic in Cartesian coordinates, we take the gradient of its

complex conjugate

∇iY�
ltmt

ðriÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lt þ 1Þðlt þmtÞ!ðlt −mtÞ!

4π

r
Bltmt

ðxi; yi; ziÞ; ð8Þ

where

Blmðx; y; zÞ ≔ ð−1Þm
X
k

�
ı̂ððmþ 2kÞxþ imyÞ þ ȷ̂ððmþ 2kÞy − imxÞ

x2 þ y2
þ k̂ðl − 2k −mÞ

z

�

×
ð−1Þkðx − iyÞkþmðxþ iyÞkzl−2k−m
22kþmðmþ kÞ!k!ðl −m − 2kÞ! : ð9Þ

Here k is summed over integers where all factorials are non-negative. We also note that Bltmt
ðxi; yi; ziÞ can be written as

Blmðx; y; zÞ ¼ ∇ ~Y�
lmðrÞ; ð10Þ

where we define

~YlmðrÞ ≔
1

ðlþmÞ! r
lPm

l ðcos θÞeimϕ; ð11Þ

an improperly normalized solid harmonic. Here, Pm
l is an associated Legendre polynomial which includes the Condon-

Shortley phase factor.
Before combining Eqs. (7) and (8) we first consider the form of the Clebsch-Gordan coefficient. Because of the

Kronecker delta in Eq. (7) and the selection rules for Clebsch-Gordan coefficients lt ¼ ðl − loÞ and mt ¼ ðm −moÞ,
inserting these conditions into the algebraic sum representation of the Clebsch-Gordan coefficients [10] leaves only one
valid term, and this can then easily be simplified to just

Clm
ltmtlomo

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2ltÞ!ð2loÞ!ðlþmÞ!ðl −mÞ!
ð2lÞ!ðlt þmtÞ!ðlt −mtÞ!ðlo þmoÞ!ðlo −moÞ!

s
for lt ¼ ðl − loÞ and mt ¼ ðm −moÞ: ð12Þ
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When combining Eqs. (6), (7), (8), and (12), most terms in the square roots cancel leaving

Fðxi; yi; ziÞ ¼ 4πG
X∞
lo¼0

Xlo
mo¼−lo

X∞
l¼loþ1

Xmoþðl−loÞ

m¼mo−ðl−loÞ

1

2lþ 1
Qlmqlomo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!ðl −mÞ!

ð2lo þ 1Þðlo þmoÞ!ðlo −moÞ!

s

× Bðl−loÞ;ðm−moÞðxi; yi; ziÞ: ð13Þ

For brevity this can be written as

Fðxi; yi; ziÞ ¼ 4πG
X

l;m;lo;mo

1

2lþ 1
Qlmqlomo

Slmlomo
ðxi; yi; ziÞ; ð14Þ

where the sums run over the same limits and we have defined

Slmlomo
ðxi; yi; ziÞ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!ðl −mÞ!

ð2lo þ 1Þðlo þmoÞ!ðlo −moÞ!

s
Bðl−loÞ;ðm−moÞðxi; yi; ziÞ: ð15Þ

III. PRACTICAL CALCULATION

The benefits of this result presented in Eq. (14) are
significant. Once the inner multipoles have been calculated
at an original position, only a simple expansion is needed to
calculate force at any location. Also due to the algebraic
cancellation of prefactors with the Clebsch-Gordan coef-
ficients, the number of calculations to be performed is
greatly reduced. Furthermore, it is possible to use closed
form solutions for the inner multipoles which have been
calculated at the origin for most elementary solids [12].
Thus, computationally all that is needed is an efficient
calculation of Slmlomo

.
Slmlomo

can be calculated with precalculated factorsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1ÞðlþmÞ!ðl −mÞ!p
and precalculated Blm for the

translation vector. We note that the definition of Blm given
in Eq. (9), while useful for low degree calculations, is
inefficient and numerically unstable for higher degree
multipoles. Instead Blm can be efficiently computed by
recursion. Recursion relations for non-normalized solid
harmonics (without Condon-Shortley phase) are give in

Ref. [13], and we modify these to give recursions for our
improperly normalized solid harmonics,

~Y00ðrÞ ¼ 1; ð16Þ

~YllðrÞ ¼ −
xþ iy
2l

~Yl−1;l−1ðrÞ; ð17Þ

~YlmðrÞ ¼
ð2l − 1Þz ~Yl−1;mðrÞ − ðx2 þ y2 þ z2Þ ~Yl−2;mðrÞ

l2 −m2
;

ð18Þ

where for the sake of recursion ~Y−1;m ¼ 0. These recursion
conditions can be used together for all l and all positive m.
For negativemwe note that our improperly normalized solid
harmonics still obey the relation

~Yl;−mðrÞ ¼ ð−1Þm ~Y�
lmðrÞ: ð19Þ

Using the chain rule we arrive at recursion conditions
for Blm,

B00ðrÞ ¼ 0; ð20Þ

BllðrÞ ¼ −
1

2l
ððı̂ − iȷ̂Þ ~Y�

l−1;l−1ðrÞ þ ðx − iyÞBl−1;l−1ðrÞÞ; ð21Þ

BlmðrÞ ¼
ð2l − 1Þðk̂ ~Y�

l−1;mðrÞ þ zBl−1;mðrÞÞ − ðð2xı̂þ 2yȷ̂þ 2zk̂Þ ~Y�
l−2;mðrÞ þ ðx2 þ y2 þ z2ÞBl−2;mðrÞÞ

l2 −m2
; ð22Þ

again for the sake of recursion B−1;m ¼ 0 and
Bl;−mðrÞ ¼ ð−1ÞmB�

lmðrÞ. The recursion relation for Blm

still depends on ~Ylm, which can be calculated with the
above recursion relation, or most mathematical software

packages have functions to efficiently calculate associated
Legendre polynomials by recursion.
In the case where one is calculating the force for a

multipole in its original position, Blmð0Þ, the recursion
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relations in Eqs. (21) and (22) are significantly simplified as
~Ylmð0Þ ¼ δl;0δm;0. And hence the entire recursion series
drops out, leaving only two terms with m ≥ 0,

B10ð0Þ ¼ k̂; ð23Þ

B11ð0Þ ¼ −
ı̂ − iȷ̂
2

: ð24Þ

IV. CONCLUSION

In this work a method to calculate the force between
inner and outer multipole moments for any valid position of

the inner moment is derived. For a practical gravity
calculation one can calculate the outer moments of an
experimental setup, and then calculate the inner moments at
an initial position. One can then calculate the force at any
position of the inner moment with a simple expansion.
The terms in the expansion can be efficiently calculated
with recursion relations. In the case where the force is only
needed at the original location of the multipole, the
recursion series simplifies to only two terms. As the new
terms in the expansion are independent of the outer
multipoles, the force can simply be recalculated for
translated outer moments.
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