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We consider the parametrized post-Newtonian (PPN) limit of ghost-free massive bimetric gravity with
two mutually noninteracting matter sectors coupled to the two metrics. Making use of a gauge-invariant
differential decomposition of the metric perturbations, we solve the field equations up to the linear PPN
order for a static, pointlike mass source. From the result, we derive the PPN parameter γ for spherically
symmetric systems, which describes the gravitational deflection of light by visible matter. By a comparison
to its value measured in the Solar System, we obtain bounds on the parameters of the theory. We further
discuss the deflection of light by dark matter and find an agreement with the observed light deflection by
galaxies. We finally speculate about a possible explanation for the observed distribution of dark matter in
galactic mergers such as Abell 520 and Abell 3827.
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I. MOTIVATION

Current observations, together with their interpretation
according to the standard ΛCDM model of cosmology,
indicate that visible matter constitutes only 5% of the total
matter content of the Universe, while the remaining
constituents are given by 26% dark matter and 69% dark
energy [1]. These dark components of the Universe arise
purely from phenomenology: dark energy offers a potential
explanation for the observed accelerating expansion of the
Universe [2–7], while dark matter potentially explains the
rotation curves of galaxies [8–10], the formation of large-
scale structures in the early Universe [11–13], or the lensing
and peculiar motion in galaxy clusters [14–16]. Note that all
of these observations are based on the gravitational influence
of the dark universe on visible matter. Despite significant
effort, no direct, nongravitational interaction of visible
matter and dark components has been observed. This raises
the question whether any such nongravitational interaction
exists, or whether the coupling between the dark and visible
sectors is purely gravitational, or even whether gravity itself
constitutes at least part of the dark sector.
In this article, we discuss a model which naturally

features a purely gravitational coupling prescription for
dark matter, while at the same time being able to accom-
modate dark energy. This model is based on the idea that the
geometry of spacetime, which mediates the gravitational
interaction, is described not by a single metric as in general
relativity, but by two separate metrics. Further, each matter
field couples to only one of these metrics, and there is no
direct, nongravitational coupling between matter fields
associated to different metrics. These assumptions imply
the existence of two different matter sectors whose mutual

interaction is mediated only by an interaction between the
two metrics so that they appear mutually dark. However
attractive in its phenomenology, this idea also leads to
potential theoretical issues, since a coupling between them
requires at least one of the corresponding gravitons to be
massive [17], and such massive gravity theories generally
suffer from the existence of a ghost instability [18].
While it has been believed for several decades that the

aforementioned ghost instability completely excludes any
theories with gravitationally interacting massive spin-2
particles, it has been discovered recently that this is not
the case, and that a particular, narrow class of theories
avoids the ghost [19–25]; see [26–28] for a number of
reviews. The most simple class of such theories indeed
features two metric tensors and allows for two separate,
mutually nongravitationally noninteracting classes of matter
fields, each of which couples exclusively to one metric and
which interact with each other only through an interaction
between the two metrics [29–32]. The interpretation of one
of them as corresponding to dark matter, as we discussed
above, has also been studied [33,34], possibly involving an
additional “graviphoton” vector field and reproducing
modified Newtonian dynamics (MOND) on galactic scales
[35–38].Note, however, that in contrast to the latterwedonot
introduce a graviphoton or aim to model dark matter as a
gravitational effect as in MOND. We further remark that in
massive gravity theories also the massive graviton is a
potential dark matter candidate, an idea which has only
recently been considered [39–42].
Besides providing possible explanations for the observed

dark sector of the Universe, any viable theory of gravity
must of course also pass tests in the Solar System. An
important tool for testing metric gravity theories with high-
precision data from Solar System experiments is the
parametrized post-Newtonian (PPN) formalism [43–48].*manuel.hohmann@ut.ee
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The main idea of the PPN formalism is to express the metric
tensor as a perturbation around a flat background and then
expand the perturbation in terms of certain integrals over
the gravitating matter distribution. The coefficients of these
potentials in the metric perturbation are characteristic for a
given gravity theory and can directly be linked to observ-
able quantities. In this article, we focus on a particular PPN
parameter, conventionally denoted γ, which has been
measured to high precision in numerous Solar System
experiments [48], in particular, through very long baseline
interferometry [49–52] via the Shapiro delay of radio
signals [53] and using combined observations of the motion
of bodies in the Solar System [54–57]. To present, all
observations are in full agreement with the general rela-
tivity value γ ¼ 1 [48].
While all of the aforementioned experiments observed the

gravitational interactionwithin thevisible sector, it should be
noted that the PPN parameter γ has also been determined
through the deflection of visible light by galaxies, whose
total gravitating matter content contains a significant con-
tribution from darkmatter [58–60]. Also, these observations,
although less precise, are in agreement with the general
relativity value γ ¼ 1. Needless to say, understanding the
light deflection by dark matter is essential for a correct
interpretation of observations where the dark matter distri-
bution is reconstructed from lensing under the assumption
that dark matter deflects light in the same way as visible
matter. This is particularly important in the case of galactic
mergers, such as the so-called “Bullet Cluster” 1E0657-558
[61–65], the “Train Wreck Cluster” Abell 520 [66,67],
MACS J0025.4-1222 [68], or Abell 3827 [69], where visible
and dark matter appear clearly separated from each other.
However, it is not apriori clear that this assumption is valid in
a theory inwhichdark andvisiblematter couple differently to
gravity.
As mentioned above, the PPN formalism in its standard

form requires a single dynamical metric for the description
of gravity. In order to discuss theories with multiple metric
tensors, we need an extension of this standard PPN
formalism. A possible extension, which features massless
and massive gravity modes but includes only one type of
gravitating source matter, has been introduced and applied
in [70]. A complementary extension to multiple metrics and
a corresponding number of matter sectors, but including
only massless gravity modes, has been developed and
applied in [71,72]. In this article, we choose to make use of
the latter and to extend it to also allow us to calculate the
PPN parameter γ for both dark and visible matter in
massive gravity. This is the simplest possible extension,
and the first step towards a fully general extension of the
formalism to massive gravity theories; the latter would
allow for a calculation of all PPN parameters.
We remark that the perturbative expansion of the metric

in a weak field limit, which is an important ingredient to the
PPN formalism, is not always valid in the context of

bimetric gravity due to the Vainshtein mechanism [73–75],
and that a full, nonlinear treatment is required in order to
determine the gravitational dynamics close to the source
mass. This nonlinear mechanism typically suppresses all
deviations from general relativity within a given radius
around the source mass called the Vainshtein radius. A
perturbative treatment is valid only outside this radius. We
will not discuss the Vainshtein mechanism in this article
and restrict ourselves to the case of theories in which the
Vainshtein radius is sufficiently small so that the perturba-
tive treatment is valid on Solar System scales and above.
The outline of this article is as follows. In Sec. II, we

briefly review the action and field equations of ghost-free
massive bimetric gravity. We then perform a perturbative
expansion of these field equations in Sec. III, using an
adapted version of the PPN formalism. We further simplify
the obtained equations using gauge-invariant perturbation
theory in Sec. IV. This will yield us a set of equations,
which we will solve for a static, pointlike mass source in
Sec. V and, thus, determine the effective Newtonian
gravitational constant and PPN parameter γ. We will
connect our result to observations, in particular, of the
deflection of light, in Sec. VI. We end with a conclusion in
Sec. VII. A few lengthy calculations are displayed in the
appendixes. In Appendix A, we derive the linearized
interaction potential connecting the two metrics. In
Appendix B, we list derivatives of the Yukawa potential.
We show how to check our solution of the field equations in
Appendix C.

II. ACTION AND FIELD EQUATIONS

In this section, we start our discussion of the post-
Newtonian limit of bimetric gravity with a brief review of
its action and gravitational field equations, which are
derived by variation with respect to the two metrics. We
then trace reverse the field equations, as this will be more
convenient when we construct their solution. These trace-
reversed field equations will be the main ingredient for our
calculation.
The starting point for our derivation is the action

functional

S ¼
Z
M
d4x

�
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g

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g
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− det f
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Rf

−m4
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− det g
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� ffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f
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mðf;ΦfÞ
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for two metric tensors gμν, fμν, and two sets of matter fields
Φg;f, each of which couples to only one metric tensor, and
between which there is no direct, nongravitational inter-
action. One may, thus, interpret, e.g., Φg as visible matter
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constituted by the standard model fields and governed by
the standard matter Lagrangian Lg, and Φf as dark matter
constituted by a distinct set of fields with possibly different
structure of the Lagrangian Lf. However, we will not make
any assumptions on the constituting fields of the two matter
types here, or on their Lagrangians, as these will not be
relevant for our calculation.
Note that since there are twometrics, there is no canonical

prescription for raising or lowering tensor indices.
Therefore, we will not raise or lower indices automatically
but provide definitions for all tensor fields with fixed index
positions. In the action (1), this applies to the Ricci scalars,
each of which is defined solely through its corresponding
metric, such that they are related to the Ricci tensors by

Rg ¼ gμνRg
μν; Rf ¼ fμνRf

μν: ð2Þ

Note further the appearance of the (1,1) tensor field g−1f,
which we assume to have a square root A such that

Aμ
σAσ

ν ¼ gμσfσν: ð3Þ

This is certainly the case in a sufficiently small neighbor-
hood of the flat proportional background metrics gμν ¼ ημν,
fμν ¼ c2ημν, which we will henceforth consider. The func-
tions e0; …; e4 in the action are the matrix invariants

ekðAÞ ¼ Aμ1 ½μ1 � � �Aμk
μk�

¼ 1

k!ð4 − kÞ! ϵ
μ1���μkλ1���λ4−kϵν1���νkλ1���λ4−kA

ν1
μ1 � � �Aνk

μk

ð4Þ

of this square root, while their coefficients β0;…; β4 are
constant, dimensionless parameters to the action. The
remaining parameters are the Planck masses mg, mf, and
the interaction massm, all of which are of mass dimension.
Any choice of the constant parameters determines a par-
ticular action and, hence, a particular theory.
By variation with respect to the metric tensors, we obtain

the gravitational field equations

m2
g

�
Rg
μν −

1

2
gμνRg

�
þm4Vg

μν ¼ Tg
μν;

m2
f

�
Rf
μν −

1

2
fμνRf

�
þm4Vf

μν ¼ Tf
μν: ð5Þ

Here we have defined the energy-momentum tensors as
usual through

Tg
μν ¼ −

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p δð ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Lg
mðg;ΦgÞÞ

δgμν
;

Tf
μν ¼ −

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p δð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p
Lf
mðf;ΦfÞÞ

δfμν
: ð6Þ

The potential terms Vg;f
μν are given by

Vg
μν ¼ gμρ

X3
n¼0

ð−1ÞnβnYn
ρ
νðAÞ;

Vf
μν ¼ fμρ

X3
n¼0

ð−1Þnβ4−nYn
ρ
νðA−1Þ; ð7Þ

where the functions Y0;…; Y3 are defined as

YnðAÞ ¼
Xn
k¼0

ð−1ÞkekðAÞAn−k ð8Þ

and analogously for YnðA−1Þ. We remark that the action (1)
and, hence, also the field equations (5), are fully symmetric
under a simultaneous exchange gμν ↔ fμν and βn ↔ β4−n.
Whilewe could work directly with the field equations (5),

it turns out to be more convenient to use the trace-reversed
equations instead, which read

m2
gR

g
μν þm4V̄g

μν ¼ T̄g
μν; m2

fR
f
μν þm4V̄f

μν ¼ T̄f
μν: ð9Þ

Here we have trace reversed each term with its correspond-
ing metric; i.e., we have applied the definitions

V̄g
μν ¼ Vg

μν −
1

2
gμνgρσV

g
ρσ;

T̄g
μν ¼ Tg

μν −
1

2
gμνgρσT

g
ρσ; ð10aÞ

V̄f
μν ¼ Vf

μν −
1

2
fμνfρσV

f
ρσ;

T̄f
μν ¼ Tf

μν −
1

2
fμνfρσT

f
ρσ: ð10bÞ

The field equations (9) are the equations we will be
working with during the remainder of this article. In order
to calculate the post-Newtonian limit, we will need a
perturbative expansion of these equations. This will be
done in the next section.

III. POST-NEWTONIAN APPROXIMATION

We now come to a perturbative expansion of the field
equations (9) displayed in the previous section. For this
purpose, we first briefly review the notion of velocity
orders in Sec. III A and label the relevant components of
the metric and energy-momentum tensors. We then discuss
the metric ansatz, essentially following the construction
developed in [71,72], in Sec. III B. Finally, we apply these
constructions to the field equations under consideration.
We derive and solve the field equations at the zeroth
velocity order in Sec. III C and derive the second-order
equations in Sec. III D.
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A. Expansion in velocity orders

A central ingredient of the PPN formalism is the
assumption that the gravitating source matter is constituted
by a perfect fluid. Since there are two different types of
matter Φg;f in the theory we consider, which interact only
gravitationally, we apply this assumption to each of them.
Their energy-momentum tensors, therefore, take the form

Tg μν ¼ ðρg þ ρgΠg þ pgÞug μug ν þ pggμν; ð11aÞ

Tf μν ¼ ðρf þ ρfΠf þ pfÞuf μuf ν þ pffμν; ð11bÞ

with rest energy densities ρg;f, specific internal energies
Πg;f, pressures pg;f, and four-velocities ug;f μ. Note that the
four-velocities are normalized with their corresponding
metrics,

ug μug νgμν ¼ uf μuf νfμν ¼ −1: ð12Þ

We further assume that the source matter is slow moving
within our chosen frame of reference so that the velocity
components satisfy

vg;f i ¼ ug;f i

ug;f 0
≪ 1: ð13Þ

We then assign orders of magnitude OðnÞ ∝ jv⃗jn to all
dynamical quantities. For the matter variables, we assign
ρg;f ∼ Πg;f ∼Oð2Þ and pg;f ∼Oð4Þ based on their values
for the matter constituting the Solar System. For the metrics,
we assume a small perturbation around a flat, proportional
background solution, where we expand the perturbation in
velocity orders in the form

gμν ¼ ημνþhμν ¼ ημνþhð1Þμν þhð2Þμν þhð3Þμν þhð4Þμν þOð5Þ;
ð14aÞ

c−2fμν ¼ ημν þ eμν

¼ ημν þ eð1Þμν þ eð2Þμν þ eð3Þμν þ eð4Þμν þOð5Þ ð14bÞ

with constant c > 0. Not all of these components are
relevant for the post-Newtonian limit, while others vanish
due to symmetries and conservation laws. The only non-
vanishing components that are relevant for our calculation of
the PPN parameter γ in this article are

hð2Þ00 ; hð2Þij ; eð2Þ00 ; eð2Þij : ð15Þ

Further, we only consider quasistatic solutions so that
changes of the metric are induced only by the motion of
the source matter. We, therefore, assign another velocity
order ∂0 to any time derivative. We finally assume that the
source matter is located in a bounded region and that the

metrics are asymptotically flat so that the metric perturba-
tions and their derivatives vanish at infinity.
Since we are interested only in the second-order metric

perturbations (15) and, hence, need to solve the field
equations only up to the second velocity order, it is also
sufficient to expand the energy-momentum tensors (11)
to the second velocity order. The only relevant components
are

Tgð2Þ00¼ρg; Tfð2Þ00¼ρf

c2
; Tgð2Þij¼Tfð2Þij¼0: ð16Þ

In order to use them in the field equations (5), we need
to lower their indices with their corresponding metrics,
which yields

Tgð2Þ
00 ¼ ρg; Tfð2Þ

00 ¼ c2ρf; Tgð2Þ
ij ¼Tfð2Þ

ij ¼ 0: ð17Þ

Finally, we also need to trace reverse these terms with their
corresponding metrics, from which we obtain

T̄gð2Þ
00 ¼ 1

2
ρg; T̄fð2Þ

00 ¼ c2

2
ρf;

T̄gð2Þ
ij ¼ 1

2
ρgδij; T̄fð2Þ

ij ¼ c2

2
ρfδij: ð18Þ

These terms will enter the trace-reversed field
equations (9).

B. Metric ansatz and PPN parameters

Another important ingredient of the PPN formalism is an
ansatz for the metric in terms of potentials, which are
integrals over the source matter distribution. Their coef-
ficients in the metric are observable quantities which allow
a characterization of the gravity theory under examination.
For single metric theories, there is a standard form for this
PPN metric ansatz [47,48]. Here we use a generalization to
multimetric theories developed in [71,72]. Our ansatz for
the second-order metric perturbation reads

hð2Þ00 ¼ −αgg△χg − αgf△χf; ð19aÞ

hð2Þij ¼ 2θggχg;ij þ 2θgfχf;ij

− ½ðγgg þ θggÞ△χg þ ðγgf þ θgfÞ△χf�δij; ð19bÞ

eð2Þ00 ¼ −αfg△χg − αff△χf; ð19cÞ

eð2Þij ¼ 2θfgχg;ij þ 2θffχf;ij

− ½ðγfg þ θfgÞ△χg þ ðγff þ θffÞ△χf�δij; ð19dÞ

where △ ¼ ∂i∂i, and indices are raised and lowered with
the flat metric ημν. The PPN potentials we have introduced
here are second-order derivatives of the superpotentials
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χgðt; x⃗Þ ¼ −
Z

ρgðt; x⃗0Þjx⃗ − x⃗0jd3x0;

χfðt; x⃗Þ ¼ −c3
Z

ρfðt; x⃗0Þjx⃗ − x⃗0jd3x0: ð20Þ

The definition of χf contains a factor c3, which originates
from the volume element of the spatial part of the unper-
turbed contribution c2ημν of the metric fμν. In the PPN
metric, we further have 12 PPN parameters αg;fg;f, γg;fg;f,
θg;fg;f. Note that these are not independent, as we have not
yet fixed a gauge for the metric. The gauge freedom allows
us to apply a diffeomorphism generated by a vector field ξμ,
provided that it preserves the perturbation ansatz (14). This
means that thevector field ξμmust be of the sameorder as the
metric perturbations. Recall that under a diffeomorphism,
the metrics change according to

δξgμν ¼ ðLξgÞμν ¼ 2gσðμ∇g
νÞξ

σ;

δξfμν ¼ ðLξfÞμν ¼ 2fσðμ∇f
νÞξ

σ; ð21Þ

where L denotes the Lie derivative. At the linear perturba-
tion level, which is sufficient for our calculation here, this
yields the transformation of the metric perturbations

δξhμν ¼ δξeμν ¼ 2ησðμ∂νÞξσ: ð22Þ

Further demanding consistency with the PPN metric ansatz
(19),we find that the only allowed and relevant vector field is
of second velocity order and can be written as [47,72]

ξ0 ¼ 0; ξi ¼ λgχg;i þ λfχf;i; ð23Þ

with two constants λg;f, and where we have defined
ξμ ¼ ημνξ

ν. Under a diffeomorphism generated by this
vector field, the metric perturbations change by

δξh
ð2Þ
00 ¼ δξe

ð2Þ
00 ¼ 0;

δξh
ð2Þ
ij ¼ δξe

ð2Þ
ij ¼ 2λgχg;ij þ 2λfχf;ij: ð24Þ

By choosing λg ¼ −θgg and λf ¼ −θff, we can always
eliminate these two PPN parameters from the metric ansatz.
In the remainder of our calculation, wewill adopt this gauge,
in which θgg ¼ θff ¼ 0, as this turns out to be compatible
with the standard PPN gauge for single metric theories [72].

C. Background solution

Recall from Sec. III A that we have expanded the metrics
around a flat Minkowski background, as usual in the PPN
formalism. For the PPN formalism to be applicable in this
form, it is necessary that this background is a solution of the
field equations at the zeroth velocity order. Since both the
Ricci tensors Rg;fð0Þ

μν and the energy-momentum tensors

T̄g;fð0Þ
μν at the zeroth velocity order vanish, these simply

reduce to

m4V̄gð0Þ
μν ¼ 0; m4V̄fð0Þ

μν ¼ 0; ð25Þ

where we assume m > 0. In order to determine the

potential terms V̄g;fð0Þ
μν and also the second velocity order

in the next section, it is useful to first linearize the potential
in the metric perturbations. Since this is a rather lengthy
procedure, we have deferred it to Appendix A. Here we
make use of the result (A11), from which we read off the
zeroth-order contribution

V̄gð0Þ
μν ¼ −ð ~β0 þ 3~β1 þ 3~β2 þ ~β3Þημν

¼ −ðβ0 þ 3cβ1 þ 3c2β2 þ c3β3Þημν; ð26aÞ

V̄fð0Þ
μν ¼ −ð~β1 þ 3~β2 þ 3~β3 þ ~β4Þc−2ημν

¼ −ðβ1 þ 3cβ2 þ 3c2β3 þ c3β4Þc−1ημν; ð26bÞ

where we used the abbreviations ~βk ¼ ckβk. We require that
these equations, which are polynomial in c, possess at least
one common positive solution c > 0. Note that a particular
fixed c solves both equations if and only if the parameters
in the action (1) satisfy

β0 ¼ −3cβ1 − 3c2β2 − c3β3;

β4 ¼ −c−3β1 − 3c−2β2 − 3c−1β3: ð27Þ

The condition that the background equations are solved by
proportional flat metrics, therefore, completely determines
the two parameters β0 and β4 in the action in terms of a new
free parameter c > 0. In the following, we will, therefore,
replace β0 and β4 and, hence, ~β0 and ~β4, using

~β0 ¼ −3~β1 − 3~β2 − ~β3; ~β4 ¼ − ~β1 − 3~β2 − 3~β3; ð28Þ

and keep β1, β2, β3, and c as free parameters of the class of
theories we discuss.

D. Second-order field equations

For the remainder of our calculation and in order to
determine the second-order metric perturbations, we will
need to expand the field equations (9) to the second velocity
order. The only relevant components are given by

m2
gR

gð2Þ
00 þm4V̄gð2Þ

00 ¼ T̄gð2Þ
00 ;

m2
gR

gð2Þ
ij þm4V̄gð2Þ

ij ¼ T̄gð2Þ
ij ; ð29aÞ

m2
fR

fð2Þ
00 þm4V̄fð2Þ

00 ¼ T̄fð2Þ
00 ;

m2
fR

fð2Þ
ij þm4V̄fð2Þ

ij ¼ T̄fð2Þ
ij : ð29bÞ
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We have already calculated the necessary components (18)
of the energy-momentum tensor at the second velocity
order. The components of the Ricci tensor are easily
obtained and yield the standard textbook result [47]

Rgð2Þ
00 ¼−

1

2
△hð2Þ00 ;

Rgð2Þ
ij ¼−

1

2
ð△hð2Þij −hð2Þ00;ijþhð2Þkk;ij−hð2Þik;jk−hð2Þjk;ikÞ; ð30aÞ

Rfð2Þ
00 ¼−

1

2
△eð2Þ00 ;

Rfð2Þ
ij ¼−

1

2
ð△eð2Þij − eð2Þ00;ijþ eð2Þkk;ij− eð2Þik;jk− eð2Þjk;ikÞ: ð30bÞ

Finally, we also need the second velocity order contribution
from the potential terms. Using the result (A11) derived in
Appendix A, one finds the components

V̄gð2Þ
00 ¼ 1

4
~βð3hð2Þ00 − 3eð2Þ00 − hð2Þii þ eð2Þii Þ; ð31aÞ

V̄gð2Þ
ij ¼ 1

4
~β½2hð2Þij − 2eð2Þij þ ðhð2Þkk − eð2Þkk − hð2Þ00 þ eð2Þ00 Þδij�;

ð31bÞ

V̄fð2Þ
00 ¼ 1

4c2
~βð3eð2Þ00 − 3hð2Þ00 − eð2Þii þ hð2Þii Þ; ð31cÞ

V̄fð2Þ
ij ¼ 1

4c2
~β½2eð2Þij − 2hð2Þij þ ðeð2Þkk − hð2Þkk − eð2Þ00 þ hð2Þ00 Þδij�;

ð31dÞ

where we introduced the abbreviation

~β ¼ ~β1 þ 2~β2 þ ~β3: ð32Þ

These are the field equations we will be using during the
remainder of this article. However, directly working
with these equations poses two difficulties. First, the
field equations possess a gauge freedom, as discussed in
Sec. III B, and so the solution will be unique only after
gauge fixing. Second, the equations turn out to be
involved and cumbersome to solve due to the mixing
of tensor components. Both of these difficulties can be
solved straightforwardly by performing a gauge-invariant
differential decomposition of the metric perturbations. We
will detail this formalism in the next section.

IV. GAUGE-INVARIANT DIFFERENTIAL
DECOMPOSITION

In the previous section, we have performed an expansion
of the gravitational field equations (9) into velocity orders

and obtained the second-order equations (29). Instead of
solving them directly for the metric perturbations (14), we
will first bring them into a significantly simpler form in this
section. For this purpose, we employ the formalism of
gauge-invariant perturbations, which is well known from
cosmology [76–78]. We apply this procedure in several
steps. First, we decompose the metric perturbations into
gauge-invariant potentials in Sec. IVA. In Sec. IV B, we
further decompose these potentials into velocity orders as
required by the PPN formalism. Using the expressions
obtained, we then decompose the Ricci tensors (30) in
Sec. IV C, the potentials (31) in Sec. IV D, and the energy-
momentum tensors (18) in Sec. IV E. This will finally yield
us a full decomposition of the field equations (29) in
Sec. IV F.

A. Decomposition of the metrics

We start with a differential decomposition of the metric
perturbations. Using the split into time and space compo-
nents, we introduce the decomposition

h00 ¼ −2ϕg; h0i ¼ ∂iBg þ Bg
i ;

hij ¼ −2ψgδij þ 2△ijEg þ 4∂ðiE
g
jÞ þ 2Eg

ij; ð33aÞ

e00 ¼ −2ϕf; e0i ¼ ∂iBf þ Bf
i ;

eij ¼ −2ψfδij þ 2△ijEf þ 4∂ðiE
f
jÞ þ 2Ef

ij ð33bÞ

into four scalars ϕg;f, ψg;f, Bg;f, Eg;f, two divergence-free
vectors Bg;f

i , Eg;f
i , and one trace-free, divergence-free

tensor Eg;f
ij . Here, △ij denotes the trace-free second

derivative △ij ¼ ∂i∂j − 1
3
δij△. From these quantities, we

further derive the potentials

Ig;f1 ¼ ϕg;f þ ∂0Bg;f − ∂2
0E

g;f; Ig;f3 ¼ Bg;f; Ig;f4 ¼ Eg;f;

Ig;f2 ¼ ψg;f þ 1

3
△Eg;f; Ig;fi ¼ Bg;f

i − 2∂0E
g;f
i ;

I0g;fi ¼ Eg;f
i ; Ig;fij ¼ Eg;f

ij : ð34Þ

The advantage of using these potentials becomes apparent
when we consider gauge transformations of the metric, i.e.,
diffeomorphisms generated by a vector field ξμ, which
preserve the perturbation ansatz (14) as discussed in
Sec. III B. Here we introduce a differential decomposition
for ξμ ¼ ημνξ

ν of the form

ξ0 ¼ X; ξi ¼ ∂iX0 þ Xi ð35Þ

into two scalars X, X0, and one divergence-free vector Xi.
One now easily computes from the decomposition (33) the
transformations
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δξϕ
g;f ¼ −∂0X; δξψ

g;f ¼ −
1

3
△X0;

δξBg;f ¼ ∂0X0 þ X; δξEg;f ¼ X0;

δξB
g;f
i ¼ ∂0Xi; δξE

g;f
i ¼ 1

2
Xi; δξE

g;f
ij ¼ 0: ð36Þ

The potentials (34), hence, transform as

δξI
g;f
1 ¼ δξI

g;f
2 ¼ 0; δξI

g;f
3 ¼ ∂0X0 þX; δξI

g;f
4 ¼X0;

δξI
g;f
i ¼ 0; δξI0

g;f
i ¼ 1

2
Xi; δξI

g;f
ij ¼ 0: ð37Þ

Finally, defining the linearly related potentials

I�1 ¼ Ig1 � If1 ; I�2 ¼ Ig2 � If2 ; I�3 ¼ Ig3 � If3 ;

I�4 ¼ Ig4 � If4 ; I�i ¼ Igi � Ifi ; I0�i ¼ I0gi � Ifi ;

I�ij ¼ Igij � Ifij; ð38Þ

we see that the six scalar potentials I�1 , I
�
2 , I

−
3 , I

−
4 , the three

vectors I�i , I
0−
i , and the two tensors I�ij are invariant under

gauge transformations, while the remaining two scalars Iþ3 ,
Iþ4 , and the vector I0þi are pure gauge degrees of freedom
corresponding to the two scalars and the vector constituting
the diffeomorphisms. The only physical degrees of freedom
are the gauge-invariant potentials. Since the gravitational
field equations are derived from a diffeomorphism invariant
action, we can fully express them in terms of these gauge
invariants. In the following, we will do so by introducing a
suitable differential decomposition of the Ricci tensors,
potentials, and energy-momentum tensors.

B. Gauge-invariant potentials and velocity orders

Recall from Sec. III that we have decomposed the metric
perturbations into velocity orders and that only the com-
ponents (15) are relevant for the calculation we present in
this article. We now apply the decomposition into velocity
orders to the gauge-invariant potentials above in order to
determine which of them will be relevant for our calcu-
lation. A comparison of the relevant components (15) with
the differential decomposition (33) shows that only the
quantities

ϕg;fð2Þ; ψg;fð2Þ; Eg;fð2Þ; Eg;fð2Þ
i ; Eg;fð2Þ

ij ð39Þ

at the second velocity order will be relevant. Using the
relations (34), while taking into account that time deriv-
atives are weighted with an additional velocity order Oð1Þ,
then yields the relevant potentials

Ig;fð2Þ1 ¼ϕg;fð2Þ; Ig;fð2Þ2 ¼ψg;fð2Þþ1

3
△Eg;fð2Þ;

Ig;fð2Þ4 ¼Eg;fð2Þ; I0g;fð2Þi ¼Eg;fð2Þ
i ; Ig;fð2Þij ¼Eg;fð2Þ

ij : ð40Þ

Finally, transitioning to the linearly related potentials (38)
shows that the only relevant gauge-invariant potentials are

the five scalars I�ð2Þ
1 , I�ð2Þ

2 , I−ð2Þ4 , the vector I0−ð2Þi , and the

two tensors I�ð2Þ
ij , while the scalar Iþð2Þ

4 and the vector I0þð2Þ
i

are pure gauge quantities. From the former, we can now
calculate the relevant components of the Ricci tensor and
the potential.

C. Decomposition of the Ricci tensors

We now perform a differential decomposition of the
Ricci tensors, similar to the differential decomposition (33)
of the metric introduced above. Here we use the defining
relations

Rg;f
00 ¼ Kg;f

1 ; Rg;f
0i ¼ ∂iK

g;f
3 þ Kg;f

i ;

Rg;f
ij ¼ 1

3
Kg;f

2 δij þ△ijK
g;f
4 þ 2∂ðiK0g;f

jÞ þ Kg;f
ij : ð41Þ

From this definition and the second-order field equa-
tions (29) follows that the only relevant components for
our calculation are given by

Kg;fð2Þ
1 ¼ △Ig;fð2Þ1 ; Kg;fð2Þ

2 ¼ 4△Ig;fð2Þ2 −△Ig;fð2Þ1 ;

Kg;fð2Þ
4 ¼ Ig;fð2Þ2 − Ig;fð2Þ1 ; K0g;fð2Þ

i ¼ 0;

Kg;fð2Þ
ij ¼ −△Ig;fð2Þij : ð42Þ

Comparing these expressions with the gauge transforma-
tions (37), we see that they contain only gauge-invariant
potentials, as expected from the fact that they originate
from a diffeomorphism invariant action.

D. Decomposition of the potentials

For the trace-reversed potentials, we proceed in full
analogy to the decomposition (41) of the Ricci tensors.
Here we use the decomposition

V̄g;f
00 ¼ Ug;f

1 ; V̄g;f
0i ¼ ∂iU

g;f
3 þ Ug;f

i ;

V̄g;f
ij ¼ 1

3
Ug;f

2 δij þ△ijU
g;f
4 þ 2∂ðiU0g;f

jÞ þ Ug;f
ij : ð43Þ

From the second-order field equations (29), we read off that
the relevant components are given by

Ugð2Þ
1 ¼ −c2Ufð2Þ

1 ¼ −
1

2
~βð3I−ð2Þ1 − 3I−ð2Þ2 þ△I−ð2Þ4 Þ;

ð44aÞ

Ugð2Þ
2 ¼ −c2Ufð2Þ

2 ¼ 1

2
~βð3I−ð2Þ1 − 15I−ð2Þ2 þ 5△I−ð2Þ4 Þ;

ð44bÞ
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Ugð2Þ
4 ¼ −c2Ufð2Þ

4 ¼ ~βI−ð2Þ4 ; ð44cÞ

U0gð2Þ
i ¼ −c2U0fð2Þ

i ¼ ~βI0−ð2Þi ; ð44dÞ

Ugð2Þ
ij ¼ −c2Ufð2Þ

ij ¼ ~βI−ð2Þij : ð44eÞ

Again we see that these depend only on gauge-invariant
potentials, as expected.

E. Decomposition of the energy-momentum tensors

We finally also need to perform a differential decom-
position of the energy-momentum tensors. Following the
same prescription as for the Ricci tensors and the potentials,
we define

T̄g;f
00 ¼ Qg;f

1 ; T̄g;f
0i ¼ ∂iQ

g;f
3 þQg;f

i ;

T̄g;f
ij ¼ 1

3
Qg;f

2 δij þ△ijQ
g;f
4 þ 2∂ðiQ0g;f

jÞ þQg;f
ij : ð45Þ

For the expressions (18) for the second-order trace-reversed
energy-momentum tensors of the perfect fluid, then follow
the relevant components

Qgð2Þ
1 ¼ 1

2
ρg; Qfð2Þ

1 ¼ 1

2
c2ρf; Qgð2Þ

2 ¼ 3

2
ρg;

Qfð2Þ
2 ¼ 3

2
c2ρf; Qg;fð2Þ

4 ¼ 0;

Q0g;fð2Þ
i ¼ 0; Qg;fð2Þ

ij ¼ 0: ð46Þ
These are all expressions we need for the field equa-
tions (29) at the second velocity order.

F. Decomposition of the field equations

We now have all expressions at hand which are necessary
to perform a differential decomposition of the second-order
field equations (29) and to fully express them in terms of
gauge-invariant quantities. It is an important feature of the
differential decomposition that it is unique and bijective
under the boundary conditions mentioned in Sec. III A,
which imply that all metric perturbations and their deriv-
atives vanish at infinity. It, thus, follows that the field
equations (29) are equivalent to the decomposed field
equations

m2
gK

gð2Þ
1 þm2Ugð2Þ

1 ¼ Qgð2Þ
1 ;

m2
fK

fð2Þ
1 þm2Ufð2Þ

1 ¼ Qfð2Þ
1 ; ð47aÞ

m2
gK

gð2Þ
2 þm2Ugð2Þ

2 ¼ Qgð2Þ
2 ;

m2
fK

fð2Þ
2 þm2Ufð2Þ

2 ¼ Qfð2Þ
2 ; ð47bÞ

m2
gK

gð2Þ
4 þm2Ugð2Þ

4 ¼ Qgð2Þ
4 ;

m2
fK

fð2Þ
4 þm2Ufð2Þ

4 ¼ Qfð2Þ
4 ; ð47cÞ

m2
gK0gð2Þ

i þm2U0gð2Þ
i ¼ Q0gð2Þ

i ;

m2
fK

0fð2Þ
i þm2U0fð2Þ

i ¼ Q0fð2Þ
i ; ð47dÞ

m2
gK

gð2Þ
ij þm2Ugð2Þ

ij ¼ Qgð2Þ
ij ;

m2
fK

fð2Þ
ij þm2Ufð2Þ

ij ¼ Qfð2Þ
ij : ð47eÞ

We can now insert the expressions for the differential
components of the Ricci tensors, the potentials, and the
energy-momentum tensors which we derived above. We
start with the trace-free, divergence-free tensor equa-

tions (47e). Inserting the components Kg;fð2Þ
ij , Ug;fð2Þ

ij ,

Qg;fð2Þ
ij yields the equations

−
m2

g

2
ð△Iþð2Þ

ij þ△I−ð2Þij Þ þm4 ~βI−ð2Þij ¼ 0; ð48aÞ

−
m2

f

2
ð△Iþð2Þ

ij −△I−ð2Þij Þ −m4 ~β

c2
I−ð2Þij ¼ 0: ð48bÞ

Note that together with the boundary conditions, they yield

the trivial solution I�ð2Þ
ij ¼ 0. We then continue with the

divergence-free vector equations (47d). Using the expres-

sions for K0g;fð2Þ
i , U0g;fð2Þ

i , Q0g;fð2Þ
i , we obtain

m4 ~βI0−ð2Þi ¼ 0; −
m4 ~β

c2
I0−ð2Þi ¼ 0: ð49Þ

These equations are equivalent as a consequence of the
Bianchi identities, which follow from the diffeomorphism
invariance of the action (1). Also, these equations yield a

trivial solution I0−ð2Þi ¼ 0. We are, thus, left with the scalar
equations (47a)–(47c), which take the form

1

2
ρg ¼ m2

g

2
ð△Iþð2Þ

1 þ△I−ð2Þ1 Þ

−
m4β

2
ð3I−ð2Þ1 − 3I−ð2Þ2 þ△I−ð2Þ4 Þ; ð50aÞ

c2

2
ρf ¼ m2

f

2
ð△Iþð2Þ

1 −△I−ð2Þ1 Þ

þm4β

2c2
ð3I−ð2Þ1 − 3I−ð2Þ2 þ△I−ð2Þ4 Þ; ð50bÞ

3

2
ρg ¼ m2

g

2
ð4△Iþð2Þ

2 þ 4△I−ð2Þ2 −△Iþð2Þ
1 −△I−ð2Þ1 Þ

þm4β

2
ð3I−ð2Þ1 − 15I−ð2Þ2 þ 5△I−ð2Þ4 Þ; ð50cÞ

3c2

2
ρf ¼ m2

f

2
ð4△Iþð2Þ

2 − 4△I−ð2Þ2 −△Iþð2Þ
1 þ△I−ð2Þ1 Þ

−
m4β

2c2
ð3I−ð2Þ1 − 15I−ð2Þ2 þ 5△I−ð2Þ4 Þ; ð50dÞ
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0 ¼ m2
g

2
ðIþð2Þ

2 þ I−ð2Þ2 − Iþð2Þ
1 − I−ð2Þ1 Þ þm4βI−ð2Þ4 ; ð50eÞ

0 ¼ m2
f

2
ðIþð2Þ

2 − I−ð2Þ2 − Iþð2Þ
1 þ I−ð2Þ1 Þ −m4β

c2
I−ð2Þ4 : ð50fÞ

Note that also these equations are not independent but are
related to each other as a consequence of the Bianchi
identities. Indeed, one easily checks that

Kg;fð2Þ
2 − 3Kg;fð2Þ

1 − 4△Kg;fð2Þ
4 ¼ 0;

Qg;fð2Þ
2 − 3Qg;fð2Þ

1 − 4△Qg;fð2Þ
4 ¼ 0;

Ugð2Þ
2 − 3Ugð2Þ

1 − 4△Ugð2Þ
4 ¼ 6m4 ~βð△I−ð2Þ1 − 2△I−ð2Þ2 Þ

¼ −c2ðUfð2Þ
2 − 3Ufð2Þ

1 − 4△Ufð2Þ
4 Þ; ð51Þ

which shows that the corresponding linear combinations of
the scalar equations become identical. Symbolically, this
can be written as

ð50cÞ − 3ð50aÞ − 4△ð50eÞ
¼ −c2½ð50dÞ − 3ð50bÞ − 4△ð50fÞ�: ð52Þ

Hence, one of the Eqs. (50) is redundant and can be
omitted. The remaining five equations then determine the

five gauge-invariant scalar potentials I�ð2Þ
1 , I�ð2Þ

2 , I−ð2Þ4 .
We will solve these equations in the following section for
the special case of a static point-mass source.

V. STATIC SPHERICALLY
SYMMETRIC SOLUTION

Using the gauge-invariant field equations (50) derived in
the preceding section, we are now in the position to
construct an explicit solution. The starting point will be
a point mass, which we discuss in Sec. VA. We will then
determine a solution for the gauge-invariant potentials in
Sec. V B. From these we will derive the metric components
in Sec. V C, reversing the procedure detailed in Sec. IVA.
By comparison with the metric ansatz (19), we read off the
PPN parameters in Sec. V D. We finally discuss a few
limiting cases in Sec. V E.

A. Point-mass source

The matter source we consider for our solution is a static
point mass located at the origin of our coordinate system,
which is constituted by masses Mg and Mf with respect to
the two matter sectors. Invoking the interpretation of the
matter sectors as visible and dark matter, this would
correspond to a source containing both visible and dark
matter, unless one of the masses vanishes. This choice is the
most general one and includes the physically relevant case
of a galaxy with a dark matter component, as we discuss

later in Sec. VI B. A source of this type is characterized by
the matter variables

ρg ¼ Mgδðx⃗Þ; ρf ¼ Mf δðx⃗Þ
c3

;

Πg;f ¼ 0; pg;f ¼ 0; vg;fi ¼ 0; ð53Þ

where we have normalized the delta function in ρf with the
spatial volume element c3 of the unperturbed metric

fð0Þμν ¼ c2ημν. Note that this factor cancels the volume
element in the corresponding superpotential (20). Using
isotropic spherical coordinates, the superpotentials, thus,
read

χg;f ¼ −Mg;fr: ð54Þ

For later convenience, we also list the second-order
derivatives of the superpotentials, which take the form

χg;f;ij ¼ Mg;f

�
xixj
r3

−
δij
r

�
; △χg;f ¼ −2

Mg;f

r
: ð55Þ

These will be used when we read off the PPN parameters in
Sec. V D.

B. Gauge-invariant potentials

We will now determine the gauge-invariant potentials

I�ð2Þ
1 , I�ð2Þ

2 , I−ð2Þ4 by solving the scalar part (50) of the field
equations at the second velocity order, where we assume
the matter source given by the point mass introduced above.
It will turn out to be convenient to use rescaled mass units

~mg ¼ mg; ~mf ¼ cmf
~Mg ¼ Mg; ~Mf ¼ cMf:

ð56Þ

We then start with the purely algebraic equations (50e) and
(50f). Using the definitions above, these take the form

0 ¼ ~m2
g

2
ðIþð2Þ

2 þ I−ð2Þ2 − Iþð2Þ
1 − I−ð2Þ1 Þ þm4 ~βI−ð2Þ4 ; ð57aÞ

0 ¼ ~m2
f

2
ðIþð2Þ

2 − I−ð2Þ2 − Iþð2Þ
1 þ I−ð2Þ1 Þ −m4 ~βI−ð2Þ4 : ð57bÞ

Here we choose to solve these equations for the potentials

I�ð2Þ
2 . The solutions are given by

I�ð2Þ
2 ¼ I�ð1Þ

1 −
�

1

~m2
g
∓ 1

~m2
f

�
m4 ~βI−ð2Þ4 : ð58Þ

We can use this relation to eliminate I�ð2Þ
2 from the

remaining equations. Using the linear combination (52),
which together with the boundary conditions yields
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I−ð2Þ1 ¼ 2I−ð2Þ2 ; ð59Þ

we can then solve for I−ð2Þ4 and obtain the solution

I−ð2Þ4 ¼ 1

2μ2
I−ð2Þ1 ; ð60Þ

where we have defined the mass parameter

μ ¼ m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β

�
1

~m2
f

þ 1

~m2
g

�s
: ð61Þ

We now take a suitable linear combination of the scalar

equations (50a) and (50b) so that the terms involving Iþð2Þ
1

cancel. Eliminating I−ð2Þ2 and I−ð2Þ4 with the relations (58)
and (60), we obtain

△I−ð2Þ1 − μ2I−ð2Þ1 ¼ 2

3

�
~Mg

~m2
g
−

~Mf

~m2
f

�
δðx⃗Þ; ð62Þ

which is a screened Poisson equation for I−ð2Þ1 . The solution
is given by

I−ð2Þ1 ¼ −
�

~Mg

~m2
g
−

~Mf

~m2
f

�
e−μr

6πr
: ð63Þ

From the relations (59) and (60) then immediately
follows

I−ð2Þ2 ¼ −
�

~Mg

~m2
g
−

~Mf

~m2
f

�
e−μr

12πr
;

I−ð2Þ4 ¼ −
�

~Mg

~m2
g
−

~Mf

~m2
f

�
e−μr

12πμ2r
: ð64Þ

Inserting these results into the scalar equation (50a), we

obtain an equation for Iþð2Þ
1 , which is most conveniently

expressed as

△

�
Iþð2Þ
1 þ ~m2

g − ~m2
f

~m2
g þ ~m2

f

I−ð2Þ1

�
¼

~Mg þ ~Mf

~m2
g þ ~m2

f

δðx⃗Þ: ð65Þ

This is an ordinary Poisson equation, and one immediately
reads off the solution

Iþð2Þ
1 ¼ −

~Mg þ ~Mf

~m2
g þ ~m2

f

1

4πr
−

~m2
g − ~m2

f

~m2
g þ ~m2

f

I−ð2Þ1

¼ −
~Mg þ ~Mf

~m2
g þ ~m2

f

1

4πr
þ ~m2

g − ~m2
f

~m2
g þ ~m2

f

�
~Mg

~m2
g
−

~Mf

~m2
f

�
e−μr

6πr
:

ð66Þ

Finally, making use of the relation (58) yields

Iþð2Þ
2 ¼ −

~Mg þ ~Mf

~m2
g þ ~m2

f

1

4πr
þ ~m2

g − ~m2
f

~m2
g þ ~m2

f

�
~Mg

~m2
g
−

~Mf

~m2
f

�
e−μr

12πr
:

ð67Þ

This completes the solution of the field equations in terms
of gauge-invariant potentials.

C. Metric components

Before we calculate the metric components from the
solution for the gauge-invariant potentials, it is convenient
to introduce the abbreviations

IM ¼
~Mg þ ~Mf

8πð ~m2
g þ ~m2

fÞ
; I� ¼ −

1

24πμ2

�
~Mg

~m2
g
�

~Mf

~m2
f

�
;

D ¼ −
~m2
g − ~m2

f

~m2
g þ ~m2

f

ð68Þ

for a few frequently occurring constants. Further, we use
the shorthand notation

YμðrÞ ¼
e−μr

r
; Y0ðrÞ ¼

1

r
ð69Þ

for the Yukawa and Coulomb potentials. Using these
abbreviations, the solution derived above takes the simple
form

I−ð2Þ1 ¼ 4μ2I−Yμ; I−ð2Þ2 ¼ 2μ2I−Yμ; I−ð2Þ4 ¼ 2I−Yμ;

Iþð2Þ
1 ¼ −2IMY0þ 4μ2DI−Yμ;

Iþð2Þ
2 ¼ −2IMY0þ 2μ2DI−Yμ: ð70Þ

In order to separate these potentials into the potentials
for the individual metrics, we further need to fix the pure
gauge potential Iþð2Þ

4 . A convenient choice, which turns
out to be compatible with the standard PPN gauge, is
given by

Iþð2Þ
4 ¼ 2IþYμ: ð71Þ

Together with the relations (38), we then obtain the
potentials

Ig;fð2Þ1 ¼ −IMY0 þ 2μ2ðD� 1ÞI−Yμ; ð72aÞ

Ig;fð2Þ2 ¼ −IMY0 þ μ2ðD� 1ÞI−Yμ; ð72bÞ

Ig;fð2Þ4 ¼ ðIþ � I−ÞYμ: ð72cÞ
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Now using the relations (34), we obtain the quantities

ϕg;fð2Þ ¼ −IMY0 þ 2μ2ðD� 1ÞI−Yμ; ð73aÞ

ψg;fð2Þ ¼ −IMY0 þ μ2ðD� 1ÞI−Yμ

−
1

3
ðIþ � I−Þ△Yμ; ð73bÞ

~Eg;fð2Þ ¼ ðIþ � I−ÞYμ; ð73cÞ

and finally using their definition (33) yields the compo-
nents of the metric perturbations

hð2Þ00 ¼ 2IMY0 − 4μ2ðDþ 1ÞI−Yμ; ð74aÞ

eð2Þ00 ¼ 2IMY0 − 4μ2ðD − 1ÞI−Yμ; ð74bÞ

hð2Þij ¼ 2½IMY0 − μ2ðDþ 1ÞI−Yμ�δij
þ 2ðIþ þ I−Þ∂i∂jYμ; ð74cÞ

eð2Þij ¼ 2½IMY0 − μ2ðD − 1ÞI−Yμ�δij
þ 2ðIþ − I−Þ∂i∂jYμ: ð74dÞ

For later use, we now insert the constants (68) and the
Yukawa and Coulomb potentials (69). Note that second-
order derivatives of these potentials contain also delta
functions, which must be taken into account for deriving
further quantities from the metric perturbations. We have
listed the relevant formulas in Appendix B. Using these
formulas, we obtain

hð2Þ00 ¼
~Mg þ ~Mf

4πð ~m2
g þ ~m2

fÞr
þ ~m2

f
~Mg − ~m2

g
~Mf

3π ~m2
gð ~m2

g þ ~m2
fÞr

e−μr; ð75aÞ

eð2Þ00 ¼
~Mg þ ~Mf

4πð ~m2
g þ ~m2

fÞr
−

~m2
f
~Mg − ~m2

g
~Mf

3π ~m2
fð ~m2

g þ ~m2
fÞr

e−μr; ð75bÞ

hð2Þij ¼
�

~Mgþ ~Mf

4πð ~m2
gþ ~m2

fÞr
−
2 ~m2

g ~m2
f
~Mf− ~m4

g
~Mf−3 ~m4

f
~Mg

18π ~m2
g ~m2

fð ~m2
gþ ~m2

fÞr
e−μr

−
2 ~Mf

9 ~m2
fμ

2
δðx⃗Þ

�
δij

þ½μrðμrþ3Þþ3� ~Mf

6π ~m2
fμ

2r5
e−μr

�
xixj−

1

3
r2δij

�
; ð75cÞ

eð2Þij ¼
�

~Mgþ ~Mf

4πð ~m2
g þ ~m2

fÞr
−
2 ~m2

g ~m2
f
~Mg − ~m4

f
~Mg − 3 ~m4

g
~Mf

18π ~m2
g ~m2

fð ~m2
g þ ~m2

fÞr
e−μr

−
2 ~Mg

9 ~m2
gμ

2
δðx⃗Þ

�
δij

þ ½μrðμrþ 3Þþ 3� ~Mg

6π ~m2
gμ

2r5
e−μr

�
xixj −

1

3
r2δij

�
: ð75dÞ

Note that the off-diagonal contribution of hð2Þij depends only

on the mass ~Mf, while the off-diagonal contribution of eð2Þij

contains only the mass ~Mg. This is a consequence of our
gauge choice (71) and the reason for making this choice.

D. PPN parameters

We can now read off the PPN parameters by comparing
the solution (75) to the PPN metric ansatz (19). Since we
have used rescaled mass units (56), it is convenient to
replace the superpotentials (20), which for a point-mass
source take the form (54), by the correspondingly rescaled
superpotentials

~χg ¼ χg ¼ −Mgr ¼ − ~Mgr;

~χf ¼ cχf ¼ −cMfr ¼ − ~Mfr: ð76Þ

We, thus, use the modified PPN metric ansatz

hð2Þ00 ¼ 2
~αgg ~Mg þ ~αgf ~Mf

r
;

hð2Þij ¼ 2
~γgg ~Mg þ ~γgf ~Mf

r
δij þ 2

~θgg ~Mg þ ~θgf ~Mf

r3
xixj;

ð77aÞ

eð2Þ00 ¼ 2
~αfg ~Mg þ ~αff ~Mf

r
;

eð2Þij ¼ 2
~γfg ~Mg þ ~γff ~Mf

r
δij þ 2

~θfg ~Mg þ ~θff ~Mf

r3
xixj:

ð77bÞ

Note that the observable parameters αgg ¼ ~αgg, γgg ¼ ~γgg,
and θgg ¼ ~θgg, which govern the gravitational interaction
within the visible matter sector, are unaffected by this
rescaling and that only the PPN parameters involving the
dark sector receive constant factors. We then read off the
PPN parameters

~αgg ¼ 3 ~m2
gþ4 ~m2

fe
−μr

24π ~m2
gð ~m2

fþ ~m2
gÞ
; ~αgf ¼ 3−4e−μr

24πð ~m2
fþ ~m2

gÞ
; ð78aÞ

~αff ¼ 3 ~m2
fþ4 ~m2

ge−μr

24π ~m2
fð ~m2

fþ ~m2
gÞ
; ~αfg¼ 3−4e−μr

24πð ~m2
fþ ~m2

gÞ
; ð78bÞ
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~γgg ¼ 3 ~m2
g þ 2 ~m2

fe
−μr

24π ~m2
gð ~m2

f þ ~m2
gÞ
;

~γgf ¼ 9 ~m2
f þ 2ð ~m2

g − 2 ~m2
fÞe−μr

72π ~m2
fð ~m2

f þ ~m2
gÞ

−
μrðμrþ 3Þ þ 3

36π ~m2
fμ

2r2
e−μr;

ð78cÞ

~γff ¼ 3 ~m2
f þ 4 ~m2

ge−μr

24π ~m2
fð ~m2

f þ ~m2
gÞ
;

~γfg ¼ 9 ~m2
g þ 2ð ~m2

f − 2 ~m2
gÞe−μr

72π ~m2
gð ~m2

f þ ~m2
gÞ

−
μrðμrþ 3Þ þ 3

36π ~m2
gμ

2r2
e−μr;

ð78dÞ

~θgg ¼ 0; ~θgf ¼ μrðμrþ 3Þ þ 3

12π ~m2
fμ

2r2
e−μr; ð78eÞ

~θff ¼ 0; ~θfg ¼ μrðμrþ 3Þ þ 3

12π ~m2
gμ

2r2
e−μr: ð78fÞ

We find that the gauge condition ~θgg ¼ ~θff ¼ 0, which we
have introduced in Sec. III A, is satisfied due to our choice
(71). From these parameters, we can, in particular, derive
the observable quantities

Geff ¼ ~αgg ¼ 3 ~m2
g þ 4 ~m2

fe
−μr

24π ~m2
gð ~m2

f þ ~m2
gÞ
;

γ ¼ ~γgg

~αgg
¼ 3 ~m2

g þ 2 ~m2
fe

−μr

3 ~m2
g þ 4 ~m2

fe
−μr ; ð79Þ

which are the effective Newtonian constant and the usual
PPN parameter γ. Both quantities depend on the distance r
between the mass source and the location where the
gravitational field is probed, in contrast to general relativity,
where both quantities are constant. It is further remarkable
that γ depends only on the ratio ~mf= ~mg of the two Planck
masses and the graviton mass μ, and that this result
essentially resembles the observable parameters of sca-
lar-tensor theory with a general potential [79,80], or the
more general Horndeski class of theories [81], which
depend on the Brans-Dicke parameter ω and the scalar
field mass.

E. Limiting cases

We finally discuss a few interesting limiting cases for the
mass parameters ~mg;f and μ and their consequences for the
PPN parameters. These are, in particular:

(i) It is well known that in the limit ~mf → 0, while
keeping the parameters m and βk in the interaction
potential fixed, one obtains the general relativity
limit for the visible sector [28]. Note that in this

limit, we also have μ → ∞. The PPN parameters
(78) then take the form

~αgg ¼ ~αgf ¼ ~αfg ¼ ~αff ¼ 1

8π ~m2
g
; ð80aÞ

~γgg ¼ ~γgf ¼ ~γfg ¼ ~γff ¼ 1

8π ~m2
g
; ð80bÞ

~θgg ¼ ~θgf ¼ ~θfg ¼ ~θff ¼ 0; ð80cÞ

while the observable parameters (79) are given by

Geff ¼
1

8π ~m2
g
; γ ¼ 1; ð81Þ

as usual in general relativity.
(ii) For equal Planck mass parameters ~mg ¼ ~mf, one

obtains the PPN parameters

~αgg ¼ ~αff ¼ 3þ4e−μr

48π ~m2
g

; ~αgf ¼ ~αfg¼ 3−4e−μr

48π ~m2
g
;

ð82aÞ

~γgg ¼ ~γff ¼ 3þ 2e−μr

48π ~m2
g

;

~γgf ¼ ~γfg ¼ 3 − 2e−μr

48π ~m2
g

−
ðμrþ 1Þe−μr
12π ~m2

gμ
2r2

; ð82bÞ

~θgg ¼ ~θff ¼ 0;

~θgf ¼ ~θfg ¼ ½μrðμrþ 3Þ þ 3�e−μr
12π ~m2

gμ
2r2

; ð82cÞ

and the observable parameters

Geff ¼
3þ 4e−μr

48π ~m2
g

; γ ¼ 3þ 2e−μr

3þ 4e−μr
: ð83Þ

We remark that this result is similar to the PPN
parameter γ in higher-order gravity, except for an
additional scalar contribution and a different sign
due to the massive graviton being a ghost in the latter
class of theories [82]. Note that the effective Planck
mass for the visible sector

m2
Pl ¼ lim

r→∞

1

8πGeff
ð84Þ

is given by m2
Pl ¼ 2 ~m2

g.
(iii) In the limit μ → ∞ of a highly massive graviton, we

find the PPN parameters
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~αgg ¼ ~αgf ¼ ~αfg ¼ ~αff ¼ 1

8πð ~m2
g þ ~m2

fÞ
; ð85aÞ

~γgg ¼ ~γgf ¼ ~γfg ¼ ~γff ¼ 1

8πð ~m2
g þ ~m2

fÞ
; ð85bÞ

~θgg ¼ ~θgf ¼ ~θfg ¼ ~θff ¼ 0; ð85cÞ

from which follow the observable parameters

Geff ¼
1

8πð ~m2
g þ ~m2

fÞ
; γ ¼ 1: ð86Þ

In this case, the effective Planck mass (84) turns out
to be m2

Pl ¼ ~m2
g þ ~m2

f.
This concludes our discussion of the post-Newtonian

limit of ghost-free bimetric gravity for a static point mass.
The PPN parameters we have obtained now allow us to
discuss observable effects and, in particular, the deflection
of light by both dark and visible matter. This will be done in
the following section.

VI. CONFRONTATION WITH OBSERVATIONS

In the previous section, we obtained both a general result
and a number of limiting cases for the effective gravita-
tional constant and the PPN parameter γ, as well as
additional PPN parameters which govern effects involving
a second, dark type of matter. We can now compare our
results with observations, in particular, of the deflection
of light. We will restrict ourselves to visible matter in
Sec. VI A and derive bounds on the parameters of ghost-
free massive bimetric gravity from Solar System experi-
ments. In Sec. VI B, we will discuss the deflection of
visible light by dark matter and its consistency with
observations of lensing effects by galaxies. We will further
speculate on a possible explanation for the lensing effects
observed in the vicinity of galactic mergers, in particular,
Abell 520 and Abell 3827.

A. Solar System consistency

We have remarked in Sec. V D that our result (79) for the
effective Newtonian constant Geff and the PPN parameter γ
has essentially the same form as the corresponding result
for scalar-tensor gravity with a general potential [79,80] or
the more general Horndeski class of theories [81]. Hence,
the experimental constraints on the parameters of these
theories derived from measurements of γ can directly be
translated to constraints on the parameters of ghost-free
massive bimetric gravity and, in particular, to the ratio
~mf= ~mg of the Planck masses and the graviton mass μ. An
important obstacle that must be taken into account is the
fact that γ is not constant but depends exponentially on
the distance r between the gravitating mass source and the
observer. This restricts the possible experimental tests of γ

to those for which such an interaction distance can be
defined. The most precise observation of γ which satisfies
this condition is the measurement of the Shapiro time delay
of radio signals between Earth and the Cassini spacecraft
on its way to Saturn, from which a value γ − 1 ¼ ð2.1�
2.3Þ × 10−5 was obtained [53]. These were passing by the
Sun at a distance of 1.6 solar radii so that we define the
interaction distance r0 ≈ 7.44 × 10−3 AU. Following
the same procedure as detailed in [79], we find that the
area of the parameter space shown in Fig. 1 is excluded at
2σ confidence level. Note, however, that the assumption of
a constant interaction distance for this experiment is only an
approximation and that more accurate results are obtained
from a thorough treatment of light propagation in the solar
gravitational field [83].

B. Light deflection by dark matter

The full set (78) of PPN parameters, which we derived in
Sec. V D, allows us to discuss also the gravitational
interaction of dark matter. We first consider the parameter
~αgf, which can be interpreted as an effective Newtonian
constant for the gravitational influence of dark matter Φf

on visible matter Φg. For short distances, μr < lnð4=3Þ, we
see that ~αgf becomes negative so that the gravitational
interaction between dark and visible matter becomes
repulsive; however, taking into account the bounds shown

FIG. 1. Two-dimensional section of the parameter space of
ghost-free massive bimetric gravity showing only the Planck
mass ratio ~mf= ~mg [rescaled to map the interval ð0;∞Þ into
(0,1)] and graviton mass μ in inverse astronomical units
mAU ¼ 1 AU−1 ≈ 1.32 × 10−18 eV=c2. The region excluded by
the Cassini tracking experiment at 2σ confidence level is shown
in gray.
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in Fig. 1, we see that this is possible only on scales
significantly smaller than the Solar System and, hence,
does not play any role for the observed dark matter
concentrations. On the scales of galaxies or even galactic
clusters, we can safely assume μr ≫ 1 and, thus, use the
PPN parameters obtained in the limit μ → ∞ in Sec. V E.
In this limit, the gravitational effects on both test masses
and light become indistinguishable between visible and
dark matter sources. In particular, it follows that the
deflection of visible light by dark matter is likewise
governed by a PPN parameter

γ̄ ¼ ~γgf

~αgf
→ 1 ð87Þ

in the limit of large scales. This agrees with observations
of the deflection of light by galaxies, which contain
significant amounts of dark matter in addition to the visible
mass [58–60].
Our result plays an important role in particular for the

observed light deflection by galactic mergers, such as
most prominently the so-called Bullet Cluster 1E0657-
558 [62–65] or more recently MACS J0025.4-1222 [68].
Measurements of the mass distribution in these and other
mergers using weak lensing together with x-ray imaging
show that the gas component of the merger, which is heated
by the collision and which constitutes the major amount of
visible matter, is not at the same location as the dominant
gravitating matter contribution and that the motion of the
latter is largely unaffected by the collision. This leads to the
conclusion that their dark matter content is noninteracting
so that the dark matter components of the colliding objects
pass through each other [84]. However, observations of the
so-called Train Wreck Cluster Abell 520 [66,67] or Abell
3827 [69] show a more differentiated picture. While also
Abell 520 shows evidence for dark matter components
which have passed through each other unaffectedly, one has
further identified another dark mass concentration in the
central region, which is difficult to explain if dark matter is
noninteracting. Similar stress on the noninteracting dark
matter model is put by an observed separation between
stellar and dark matter in Abell 3827. A possible explan-
ation for these observations is to assume that dark matter
also possesses a component which interacts nongravita-
tionally [85–87].
The bimetric class of theories we studied in this article

allows for an interesting tentative model for the aforemen-
tioned observations, which hint towards the existence of
both interacting and noninteracting dark matter compo-
nents. Invoking the interpretation of the matter sectorΦf as
dark matter, as suggested in [34–37], and further assuming
that Φf contains an interacting component, would suggest
that the central dark matter concentration in Abell 520 and
the separated dark matter concentration in Abell 3827 result
from a collision of these interacting components, while any
dark matter constituted by massive gravitons, as suggested

in [39–42], would pass the merger unaffectedly and could,
thus, account for the dark matter concentrations away from
the center of Abell 520 or the unaffected dark matter halos
in Abell 3827. Future extensions of our work presented
here will be necessary in order to quantitatively assert the
viability of such models.

VII. CONCLUSION

We have considered the post-Newtonian limit of ghost-
free massive bimetric gravity with two mutually noninter-
acting matter sectors. From the assumption that the vacuum
field equations are solved by two flat metrics proportional
to the Minkowski metric, we have derived restrictions on
the parameters in the action. For this restricted class of
theories, we have derived the field equations up to the
second velocity order by making use of a suitable extension
of the PPN formalism to multiple metrics. We have solved
these equations for a pointlike mass source using a gauge-
invariant differential decomposition of the metric pertur-
bations. From this solution, we have read off the effective
gravitational constant Geff and the PPN parameter γ for
the visible matter sector. By comparing our result to the
observed value determined by the Cassini tracking experi-
ment, we have derived combined bounds on two param-
eters of the theory, namely, on the mass of the massive
graviton and on the ratio of the Planck masses occurring in
the bimetric action.
We have further discussed the interpretation of the

additional matter sector as a possible constituent of dark
matter. From our experimental bounds, we have then
concluded that on scales significantly larger than the
Solar System and, hence, in particular on the observatio-
nally relevant scales of galaxies and clusters, the gravita-
tional effects caused by visible and dark matter become
indistinguishable from each other. It, thus, follows that dark
matter should deflect light in the same way as visible matter
does, in agreement with measurements of the PPN param-
eter γ through the lensing effect of galaxies, which contain
a significant dark matter component. Another possible
experimental test of this result could be performed by
searching for possible (non)correlations between the ratio
of dark to visible matter of a galaxy and its light deflection.
Such an analysis would be most effective with data of
higher precision than available to date [88,89].
On a more speculative note, we have considered that

besides the second matter sector, also massive gravitons
could contribute to the observed dark matter content of the
Universe. The assumption that the former contains non-
gravitational self-interactions, while the latter interacts only
gravitationally, then provides a tentative explanation for the
observed separation of apparently different dark matter
components in galactic mergers such as Abell 520 and
Abell 3827. The question arises whether such different dark
matter constituents could be distinguished also in other
processes besides galactic mergers, for example, by their
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light deflection properties. An extension of our work
presented here to the light deflection caused by massive
graviton concentrations might answer this question.
There are also other possibilities to further extend the

theoretical analysis we presented in this article. While we
have studied only linear perturbations of flat vacuum
solutions, considering also the quadratic perturbation order
would allow us to calculate the PPN parameter β and, thus,
open the possibility for additional tests using Solar System
observations. This would ultimately lead to a full gener-
alization of the formalism developed in [71,72] to massive
gravity theories. Further, onemay also include cosmological
corrections to the PPN formalism along the lines of [90] and,
thus, relax the condition of a flat background. Finally, one
may consider more general theories with N > 2 metric
tensors and a corresponding number of matter sectors
[91–97] or involving an effective metric [98–101], both of
which allow for ghost-freematter coupling prescriptions [28].
We intend to study these generalizations in future research.
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APPENDIX A: LINEARIZATION OF
THE POTENTIAL

In this appendix, we show how to obtain the linearized
potentials, which enter the gravitational field equations at
the zeroth and second velocity order as shown in Secs. III C
and III D. The starting point for our derivation is a linear
perturbation ansatz for the metrics, which we write in the
form

gμν ¼ ημν þ hμν; fμν ¼ c2ðημν þ eμνÞ: ðA1Þ

Up to the linear perturbation order, we can then write their
inverses as

gμν ¼ ημν − ημρηνσhρσ þOðh2Þ;

fμν ¼ 1

c2
ðημν − ημρηνσeρσÞ þOðe2Þ: ðA2Þ

For their product, we find

gμρfρν ¼ c2ðδμν −Dμ
νÞ þOðfh; eg2Þ; ðA3Þ

where we introduced the perturbation tensor

Dμ
ν ¼ ημρðhρν − eρνÞ: ðA4Þ

Since the matrix gμρfρν is given as a perturbation of the
Kronecker symbol δμν , we can find its square root Aμ

ν as
defined in (3) using a series expansion analogously to the
well-known Taylor series

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ¼ 1þ x
2
þOðx2Þ: ðA5Þ

This series expansion yields

Aμ
ν ¼ c

�
δμν −

1

2
Dμ

ν

�
þOðfh; eg2Þ: ðA6Þ

For later use, we also need to expand powers of A into
linear perturbations. These are given by

ðAkÞμν ¼ ck
�
δμν −

k
2
Dμ

ν

�
þOðfh; eg2Þ: ðA7Þ

The matrix invariants ekðAÞ defined by (4) then take the
form

e0ðAÞ ¼ 1; ðA8aÞ

e1ðAÞ ¼ Aμ
μ ¼ c

�
4 −

1

2
Dμ

μ

�
þOðfh; eg2Þ; ðA8bÞ

e2ðAÞ ¼
1

2
ðAμ

μAν
ν − Aμ

νAν
μÞ

¼ c2
�
6 −

3

2
Dμ

μ

�
þOðfh; eg2Þ; ðA8cÞ

e3ðAÞ ¼
1

6
ðAμ

μAν
νAρ

ρ − 3Aμ
νAν

μAρ
ρ þ 2Aμ

νAν
ρAρ

μÞ

¼ c3
�
4 −

3

2
Dμ

μ

�
þOðfh; eg2Þ; ðA8dÞ

e4ðAÞ ¼
1

24
ðAμ

μAν
νAρ

ρAσ
σ − 6Aμ

μAν
νAρ

σAσ
ρ

þ 3Aμ
νAν

μAρ
σAσ

ρ þ 8Aμ
νAν

ρAρ
μAσ

σ ðA8eÞ

−6Aμ
νAν

ρAρ
σAσ

μÞ ¼ c4
�
1 −

1

2
Dμ

μ

�
þOðfh; eg2Þ:

ðA8fÞ

For the matrices Yn defined via (8), we then find the
expressions

Yμ
0νðAÞ ¼ δμν þOðfh; eg2Þ; ðA9aÞ

Yμ
1νðAÞ¼c

�
−3δμν−

1

2
Dμ

νþ
1

2
Dρ

ρδ
μ
ν

�
þOðfh;eg2Þ; ðA9bÞ
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Yμ
2νðAÞ ¼ c2ð3δμν þDμ

ν −Dρ
ρδ

μ
νÞ þOðfh; eg2Þ; ðA9cÞ

Yμ
3νðAÞ¼c3

�
−δμν−

1

2
Dμ

νþ
1

2
Dρ

ρδ
μ
ν

�
þOðfh;eg2Þ: ðA9dÞ

In order to obtain the corresponding expressions for
A−1 ¼

ffiffiffiffiffiffiffiffiffiffi
f−1g

p
instead of A, one simply replaces D by −D

and c by c−1. We can now calculate the potentials (7). Using
renormalized parameters ~βk ¼ ckβk, we obtain

Vg
μν ¼

�
ð~β0 þ 3~β1 þ 3~β2 þ ~β3Þημν −

�
1

2
~β1 þ ~β2 þ

1

2
~β3

�
ημνη

ρσðhρσ − eρσÞ

þ
�
~β0 þ

7

2
~β1 þ 4~β2 þ

3

2
~β3

�
hμν −

�
1

2
~β1 þ ~β2 þ

1

2
~β3

�
eμν

�
þOðfh; eg2Þ; ðA10aÞ

Vf
μν ¼ 1

c2

�
ð~β1 þ 3~β2 þ 3~β3 þ ~β4Þημν þ

�
1

2
~β1 þ ~β2 þ

1

2
~β3

�
ημνη

ρσðhρσ − eρσÞ

þ
�
3

2
~β1 þ 4~β2 þ

7

2
~β3 þ ~β4

�
eμν −

�
1

2
~β1 þ ~β2 þ

1

2
~β3

�
hμν

�
þOðfh; eg2Þ: ðA10bÞ

Finally, we calculate the trace-reversed potentials (10), which are given by

V̄g
μν ¼

�
−ð~β0 þ 3~β1 þ 3~β2 þ ~β3Þημν þ

�
1

4
~β1 þ

1

2
~β2 þ

1

4
~β3

�
ημνη

ρσðhρσ − eρσÞ

−
�
~β0 þ

5

2
~β1 þ 2~β2 þ

1

2
~β3

�
hμν −

�
1

2
~β1 þ ~β2 þ

1

2
~β3

�
eμν

�
þOðfh; eg2Þ; ðA11aÞ

V̄f
μν ¼ 1

c2

�
−ð~β1 þ 3~β2 þ 3~β3 þ ~β4Þημν −

�
1

4
~β1 þ

1

2
~β2 þ

1

4
~β3

�
ημνη

ρσðhρσ − eρσÞ

−
�
1

2
~β1 þ 2~β2 þ

5

2
~β3 þ ~β4

�
eμν −

�
1

2
~β1 þ ~β2 þ

1

2
~β3

�
hμν

�
þOðfh; eg2Þ: ðA11bÞ

These expressions can now be used in the post-
Newtonian field equations at the zeroth velocity order in
Sec. III C and at the second velocity order in Sec. III D.

APPENDIX B: DERIVATIVES
OF THE YUKAWA POTENTIAL

During our calculation, we have frequently encountered
(mostly second-order) derivatives of the Yukawa potential,
for which we introduced the shorthand notation

YkðrÞ ¼
e−kr

r
: ðB1Þ

Taking into account the singularity at the origin, its second
derivatives are given by

∂i∂jYk ¼
	
½krðkrþ 3Þ þ 3� xixj

r5
− ðkrþ 1Þ δij

r3



e−kr

−
4π

3
δijδðx⃗Þ; ðB2Þ

which is a straightforward generalization of the well-known
formula for the Coulomb potential [102]. Taking the trace
yields the standard formula

△Yk ¼ k2
e−kr

r
− 4πδðx⃗Þ: ðB3Þ

These formulas cover all expressions which appear in the
final result for the Ricci tensor and the interaction potential.
Note that during intermediate steps also fourth-order
derivatives of the Yukawa potential occur in derivatives
of the metric perturbations. For completeness, we also list
the corresponding expressions. From the formula given
above, immediately follows

∂i∂j△Yk ¼ k2
	
½krðkrþ 3Þ þ 3� xixj

r5
− ðkrþ 1Þ δij

r3



e−kr

−
4πk2

3
δijδðx⃗Þ − 4π∂i∂jδðx⃗Þ ðB4Þ
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and, thus,

△△Yk ¼ k4
e−kr

r
− 4πk2δðx⃗Þ − 4π△δðx⃗Þ: ðB5Þ

These are all terms which occur during our calculation.

APPENDIX C: CHECKING THE FIELD
EQUATIONS IN COMPONENTS

Since we have used a rather technical transformation of
the field equations to gauge-invariant potentials in Sec. IV
F and the corresponding inverse transformation of their
solution to metric components in Sec. V C, it is appropriate
to check the obtained result also using the field equations in
their original component form as shown in Sec. III D.
While this is rather cumbersome using the explicit expres-
sions (75) and requires careful tracking of singular con-
tributions from higher derivatives of Coulomb and Yukawa
potentials, it becomes considerably simpler by using the
abbreviations (69) starting from the expressions (74) and
finally evaluating higher derivatives using the formulas
shown in Appendix B.
From the expressions (74), one easily reads off the traces

hð2Þii ¼ 2½3IMY0 − 3μ2ðDþ 1ÞI−Yμ þ ðIþ þ I−Þ△Yμ�;
ðC1aÞ

eð2Þii ¼ 2½3IMY0 − 3μ2ðD − 1ÞI−Yμ þ ðIþ − I−Þ△Yμ�
ðC1bÞ

of the spatial components of the metric perturbations.
Using the formulas (31) for the potential at the second
velocity order, we then obtain

Vgð2Þ
00 ¼ −c2Vfð2Þ

00 ¼ −~βI−ð3μ2Yμ þ△YμÞ; ðC2aÞ

Vgð2Þ
ij ¼−c2Vfð2Þ

ij ¼−~βI−ð3μ2Yμδij−△Yμδij−2∂i∂jYμÞ:
ðC2bÞ

Further, we need to evaluate second-order derivatives of
the metric, which read

hð2Þ00;ij ¼ 2IM∂i∂jY0 − 4μ2ðDþ 1ÞI−∂i∂jYμ; ðC3aÞ

eð2Þ00;ij ¼ 2IM∂i∂jY0 − 4μ2ðD − 1ÞI−∂i∂jYμ; ðC3bÞ

△hð2Þ00 ¼ 2IM△Y0 − 4μ2ðDþ 1ÞI−△Yμ; ðC3cÞ

△eð2Þ00 ¼ 2IM△Y0 − 4μ2ðD − 1ÞI−△Yμ; ðC3dÞ

hð2Þkk;ij ¼ 2½3IM∂i∂jY0 − 3μ2ðDþ 1ÞI−∂i∂jYμ

þ ðIþ þ I−Þ∂i∂j△Yμ�; ðC3eÞ

eð2Þkk;ij ¼ 2½3IM∂i∂jY0 − 3μ2ðD − 1ÞI−∂i∂jYμ

þ ðIþ − I−Þ∂i∂j△Yμ�; ðC3fÞ

△hð2Þij ¼ 2½IM△Y0 − μ2ðDþ 1ÞI−△Yμ�δij
þ 2ðIþ þ I−Þ∂i∂j△Yμ; ðC3gÞ

△eð2Þij ¼ 2½IM△Y0 − μ2ðD − 1ÞI−△Yμ�δij
þ 2ðIþ − I−Þ∂i∂j△Yμ; ðC3hÞ

△hð2Þii ¼ 2½3IM△Y0 − 3μ2ðDþ 1ÞI−△Yμ

þ ðIþ þ I−Þ△△Yμ�; ðC3iÞ

△eð2Þii ¼ 2½3IM△Y0 − 3μ2ðD − 1ÞI−△Yμ

þ ðIþ − I−Þ△△Yμ�; ðC3jÞ

hð2Þik;jk ¼ 2½IM∂i∂jY0 − μ2ðDþ 1ÞI−∂i∂jYμ

þ ðIþ þ I−Þ∂i∂j△Yμ�; ðC3kÞ

eð2Þik;jk ¼ 2½IM∂i∂jY0 − μ2ðD − 1ÞI−∂i∂jYμ

þ ðIþ − I−Þ∂i∂j△Yμ�: ðC3lÞ

Inserting these expressions into the formulas (30) for the
Ricci tensor then yields the components

Rg;fð2Þ
00 ¼ −IM△Y0 þ 2μ2ðD� 1ÞI−△Yμ; ðC4aÞ

Rg;fð2Þ
ij ¼ −IM△Y0δij þ μ2ðD� 1ÞI−ð△Yμδij − ∂i∂jYμÞ:

ðC4bÞ

Inserting the expressions (C4) and (C2) into the second-
order field equations (29), applying the definitions (68),
and using the relations for the Coulomb and Yukawa
potentials listed in Appendix B finally yields

~m2
gR

gð2Þ
00 þm4V̄gð2Þ

00 ¼ −
~m2
gð ~Mg þ ~MfÞ△Y0 − ð ~m2

g
~Mf − ~m2

f
~MgÞð△Yμ − μ2YμÞ

8πð ~m2
g þ ~m2

fÞ
¼

~Mg

2
δðx⃗Þ ¼ T̄gð2Þ

00 ; ðC5aÞ
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~m2
f

c2
Rfð2Þ
00 þm4V̄fð2Þ

00 ¼ −
~m2
fð ~Mg þ ~MfÞ△Y0 þ ð ~m2

g
~Mf − ~m2

f
~MgÞð△Yμ − μ2YμÞ

8πc2ð ~m2
g þ ~m2

fÞ
¼

~Mf

2
δðx⃗Þ ¼ T̄fð2Þ

00 ; ðC5bÞ

~m2
gR

gð2Þ
ij þm4V̄gð2Þ

ij ¼ −
~m2
gð ~Mg þ ~MfÞ△Y0 − ð ~m2

g
~Mf − ~m2

f
~MgÞð△Yμ − μ2YμÞ

8πð ~m2
g þ ~m2

fÞ
δij ¼

~Mg

2
δðx⃗Þδij ¼ T̄gð2Þ

ij ; ðC5cÞ

~m2
f

c2
Rfð2Þ
ij þm4V̄fð2Þ

ij ¼ −
~m2
fð ~Mg þ ~MfÞ△Y0 þ ð ~m2

g
~Mf − ~m2

f
~MgÞð△Yμ − μ2YμÞ

8πc2ð ~m2
g þ ~m2

fÞ
δij ¼

~Mf

2
δðx⃗Þδij ¼ T̄fð2Þ

ij : ðC5dÞ

This shows that the field equations are indeed satisfied.
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