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In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action
principle and on the general principle of relativity. We apply the canonical transformation framework to
formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general
De Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant
under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding
locally form-invariant system is worked out by means of canonical transformations. The canonical
transformation approach ensures by construction that the form of the action functional is maintained. We
thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime
transformations. This amended system complies with the general principle of relativity and describes
both, the dynamics of the given physical system’s fields and their coupling to those quantities which
describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0
and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the “free”
gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow
for a dynamic spacetime geometry. The choice of this “dynamics” Hamiltonian is outside of the scope of
gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of
gravity andmust be chosen “by hand” on the basis of physical reasoning. The final Hamiltonian of the gauge
theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields—this is
beyond the Einstein-Hilbert theory of general relativity.
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I. INTRODUCTION

The theory of general relativity, as proposed by
A. Einstein in 1915 [1]—in conjunction with the vacuum
solution of K. Schwarzschild [2]—has provided a stun-
ningly accurate description of the dynamics of celestial
bodies. This fact becomes even more surprising as
Einstein’s approach was in fact an “educated guess,”
or—in H. Weyl’s words—“a purely speculative theory”
[3]. The modern comprehension of general relativity as a
gauge theory arises from requiring a given Lorentz-invari-
ant theory to be invariant as well under local Lorentz
transformations. This approach was pioneered by Utiyama
[4] in 1956. On the other hand, a rigorous derivation of the
theory that describes the interaction of matter/energy with
the spacetime fabric on the basis of the action principle and
the requirement that the description of any system should
be form-invariant under general spacetime transformations
has not yet been delivered.
Moreover, Einstein’s theory has severe limitations:
(i) The theory is not scale-invariant as the pertaining

coupling constant is not dimensionless.

(ii) The underlying coarse-grained energy-momentum
balance equation of the theory appears to be inac-
cessible to quantization. A more detailed and
quantizable theory would describe the direct inter-
action of individual elementary particle fields
with the gravitational field, the latter described by
the (uncontracted) Riemann tensor—similarly to the
form of the Maxwell equation.

(iii) The observed dynamics of clusters of galaxies and
stars in galaxies led to postulates of the existence of
“dark matter,” in order to fit into the solutions of the
Einstein equations.

In our previous attempts [5,6], we have advocated a strategy
by which a formalism of extended canonical transformations
is constructed in the realm of covariant Hamiltonian field
theory [7,8], which enables a description of canonical
transformations of fields under general mappings of the
spacetime geometry. Any theory derived from an action
principle must maintain the general form of the action
principle under transformations of its dynamic quantities.
Consequently, those mappings are most naturally formulated
as canonical transformations, hence as transformations
whose rules are derived from generating functions.
Any theory which conforms to the general principle

of relativity—hence, which respects the requirement of*struckmeier@fias.uni‑frankfurt.de
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form-invariance under general mappings of spacetime
geometry—must then be formulated as a canonical trans-
formation along the well-established procedures of
gauge transformations, dating back to H. Weyl [9] and
W. Fock [10]. The particular transformation rule for the
Hamiltonian then “automatically” provides the structure of
the “gauge Hamiltonian” which renders the original system
locally form-invariant. The form-invariance of the action
functional is achieved by simultaneously defining both,
the appropriate transformation rules for the fields,
the conjugate momentum fields, and the transformation
rule for the Hamiltonian. In the present context, the
particular gauge Hamiltonian is to be isolated which
renders a given (globally) Lorentz-invariant Hamiltonian
system form-invariant under local Lorentz transformations.
The gauge Hamiltonian thus describes uniquely the cou-
pling between the dynamic quantities of the given physical
system with those describing the spacetime dynamics. This
conforms to the procedure generally pursued in gauge
theories of gravity [11] and is in stark contrast with a
postulation of a particular Lagrangian—the latter procedure
was first presented by D. Hilbert [12] with the appropriate
Lagrangian that led to the postulated Einstein equation.
For the reader’s convenience, an outline of the gauge
procedure in given in Sec. VII.
The canonical transformation approach is presented

starting in Sec. II with a brief review of the extended
canonical formalism in the realm of covariant Hamiltonian
field theory. The theory of canonical transformations then
prepares exactly those transformations of the dynamic
variables which maintain the general form of the action
principle—and hence the general form of the canonical
field equations.
The formalism is then applied to a system of scalar and

vector fields, in general curvilinear spacetime in Sec. III.
The Hamiltonian is required to be form-invariant under
general spacetime transformations. This enforces the intro-
duction of the affine connections as the appropriate “gauge
fields” which must obey their particular transformation
rules. The affine gauge coefficients are not necessarily
symmetric in their lower index pair. Hence, the torsion of
spacetime is included in this theory explicitly. Introducing
the affine connections as the gauge quantities promotes,
in the language of gauge theories, the global Lorentz-
symmetry of the given system into a local, general
relativistic symmetry. This renders the action integral
invariant under arbitrary mappings of the reference frame.
Now, the connection coefficients emerge as external

“gauge fields” [4], and their dynamics is left open, at first.
The connection coefficients are then converted into internal
dynamic quantities: their transformation rules emerge from
a particularly crafted generating function. The subsequent
transformation rule for the Hamiltonian then yields the
particular gauge Hamiltonian that amends the given
Lorentz-invariant Hamiltonian, which thus becomes a

generally covariant Hamiltonian. The gauge Hamiltonian
is then inserted back into the action integral in Sec. V. It is
shown that the integrand now constitutes a world scalar
density—the amended action is thus form-invariant under
general spacetime transformations. This constitutes the
main result of our paper: the obtained generally covariant
Hamiltonian represents the generic Hamiltonian that is
common to any particular theory of gravity. Moreover, in
order to encounter a closed set of field equations, we show
that the final Hamiltonian with dynamic space-time must be
at least quadratic in the conjugate momenta of the gauge
fields. This contrasts with the Einstein-Hilbert theory of
general relativity.
The Hamiltonian describing the dynamics of the “free”

gauge fields is to be inserted “by hand,” as is common to all
gauge theories. This Hamiltonian is not determined by the
gauge formalism—hence, it must be chosen on the basis of
physical reasoning. The in depth discussion of this topic
will be presented in a subsequent paper. Concluding
remarks are given in Sec. IX.

II. CANONICAL TRANSFORMATION RULES
UNDER A DYNAMIC SPACETIME GEOMETRY

The formalism of canonical transformations, in the realm
of classical field theory under dynamic spacetime, was
presented earlier [5,6]. Here it is reformulated and thereby
simplified considerably. The extended canonical formalism
of field theory involves the description how dynamic
quantities transform under the transition from one reference
frame to another, x ↦ X. To achieve form-invariance of the
action integral, the transformation of the volume form d4x
must be taken into account. j∂x=∂Xj denotes the determi-
nant of the Jacobi matrix of the transformation x ↦ X

���� ∂x∂X
���� ≡ ∂ðx0;…; x3Þ

∂ðX0;…; X3Þ : ð1Þ

The volume form d4X transforms as a relative scalar of
weight w ¼ −1

d4X ¼ ∂ðX0;…; X3Þ
∂ðx0;…; x3Þ d4x ¼

���� ∂x∂X
����−1d4x: ð2Þ

A general covariant second rank tensor transforms as

GμνðXÞ ¼ gαβðxÞ
∂xα
∂Xμ

∂xβ
∂Xν ;

and hence its determinant transforms according to

ðdetGμνÞðXÞ ¼ ðdet gμνÞðxÞ
���� ∂x∂X

����2:
In the following, gμν is supposed to denote the covariant
representation of the metric tensor. Then gμν has maximum
rank and g ≡ det gμν < 0. The transformation rule for the
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determinant of the covariant representation of the metric
tensor, gðxÞ ↦ GðXÞ, follows as:

ffiffiffiffiffiffiffi
−G

p
¼ ffiffiffiffiffiffi

−g
p ���� ∂x∂X

����: ð3Þ

ffiffiffiffiffiffi−gp
thus represents a relative scalar of weight w ¼ 1, i.e. a

scalar density. The product
ffiffiffiffiffiffi−gp

d4x transforms as a scalar
of weight w ¼ 0, hence, in conjunction with Eq. (3), as an
absolute scalar:

ffiffiffiffiffiffiffi
−G

p
d4X ¼ ffiffiffiffiffiffi

−g
p

d4x: ð4Þ
ffiffiffiffiffiffi−gp

d4x is thus referred to as the invariant volume form.
The variation of the action functional for a dynamical

system of a scalar field ϕ and a vector field aμ transforms in
conjunction with their respective conjugate momentum
field densities ~πν ¼ πν

ffiffiffiffiffiffi−gp
and ~pμν ¼ pμν ffiffiffiffiffiffi−gp

as

δS0 ≡ δ

Z
R

�
~πβ

∂ϕ
∂xβ þ ~pαβ ∂aα

∂xβ − ~H0

�
d4x

¼! δ
Z
R0

�
~Πβ ∂Φ

∂Xβ þ ~Pαβ ∂Aα

∂Xβ − ~H0
0

�
d4X; ð5Þ

where ~H0 ¼ H0

ffiffiffiffiffiffi−gp
denotes the Hamiltonian scalar den-

sity pertaining to the scalar H0ðϕ; ~πν; aμ; ~pμν; gμηÞ, while
~Πν ¼ Πν

ffiffiffiffiffiffiffi
−G

p
, ~Pμν ¼ Pμν

ffiffiffiffiffiffiffi
−G

p
, and ~H0

0 ¼ H0
0

ffiffiffiffiffiffiffi
−G

p
denote the respective transformed quantities. The terms
~πβ∂ϕ=∂xβ and ~pαβ∂aα=∂xβ thus are Lorentz scalar den-
sities. Additional gauge quantities must be introduced for
general spacetime transformations, in order to ensure that
the integrands in Eq. (5) are world scalar densities, thus
maintaining their form under general local spacetime
transformations. This corresponds to replacing the partial
derivatives of the fields in (5) by covariant derivatives.
In other words, the differences of partial and covariant

derivatives define the gauge quantities. This important
result is worked out in Sec. III.
The action integral is to be varied, therefore Eq. (5)

implies that the integrands may differ by the divergence of a
set of functions ~F μ

1, whose variation vanishes on the
boundary ∂R of the integration region R in spacetime:

δ

Z
R

∂ ~F α
1

∂xα d4x ¼ δ

I
∂R

~F α
1dSα ¼! 0: ð6Þ

The variation of the action integral (5) is not modified by
adding a term ∂ ~F α

1=∂xα to the integrand which can be
converted into a surface integral according to Eq. (6)—
commonly denoted briefly as a surface term: the integrand
is only determined up to the divergence of the functions
~F μ
1ðΦ;ϕ; A; a; xÞ. The integrand condition for a canonical

transformation writes

~πβ
∂ϕ
∂xβ þ ~pαβ ∂aα

∂xβ − ~H0−
�
~Πβ ∂Φ

∂Xβ þ ~Pαβ ∂Aα

∂Xβ − ~H0
0

����� ∂x∂X
����−1

¼ ∂ ~F β
1

∂ϕ
∂ϕ
∂xβ þ

∂ ~F α
1

∂Φ
∂Xβ

∂xα
∂Φ
∂Xβ þ

∂ ~F β
1

∂aα
∂aα
∂xβ þ

∂ ~F ξ
1

∂Aα

∂Xβ

∂xξ
∂Aα

∂Xβ

þ ∂ ~F α
1

∂xα
����
expl

; ð7Þ

with the transformation rule of the volume form from
Eq. (2) and ~F μ

1 to be taken at x. The transformation rules are
obtained by comparing the coefficients

~πμðxÞ ¼ ∂ ~F μ
1

∂ϕ
~ΠμðXÞ ¼ −

∂ ~F β
1

∂Φ
∂Xμ

∂xβ
���� ∂x∂X

����
~pνμðxÞ ¼ ∂ ~F μ

1

∂aν
~PνμðXÞ ¼ −

∂ ~F β
1

∂Aν

∂Xμ

∂xβ
���� ∂x∂X

����
~H0
0 ¼

�
~H0 þ

∂ ~F α
1

∂xα
����
expl

����� ∂x∂X
����: ð8Þ

Obviously, ~F μ
1 can be devised to generate specific

transformation rules of the involved fields and their
conjugates—this is the reason that ~F μ

1 is called a generat-
ing function. The generating function ~F μ

1ðΦ;ϕ; A; a; xÞ can
be Legendre-transformed into the equivalent generating
function ~F μ

2ð ~Π;ϕ; ~P; a; xÞ according to

~F μ
2 ¼ ~F μ

1 þ ðΦ ~Πβ þ Aα
~PαβÞ ∂x

μ

∂Xβ

���� ∂x∂X
����−1:

The transformation rules for ~F μ
2 to be taken at the

spacetime event x are

~πμðxÞ ¼ ∂ ~F μ
2

∂ϕ
δμνΦðXÞ ¼ ∂ ~F α

2

∂ ~Πν

∂Xμ

∂xα
���� ∂x∂X

����
~pνμðxÞ ¼ ∂ ~F μ

2

∂aν
δμνAαðXÞ ¼

∂ ~F β
2

∂ ~Pαν

∂Xμ

∂xβ
���� ∂x∂X

����
~H0
0 ¼

�
~H0 þ

∂ ~F α
2

∂xα
����
expl

����� ∂x∂X
����: ð9Þ

The total integrands in the action integrals (5) must be
world scalars in order to keep their form under general
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spacetime transformations, while the Hamiltonians ~H0

and ~H0
0 do not necessarily represent scalar densities.

This ensures that the canonical field equations emerge as
tensor equations.

III. GENERAL SPACETIME TRANSFORMATION
OF SYSTEMS OF SCALAR-, VECTOR-,

AND TENSOR FIELDS

A Hamiltonian H0ðϕ; πν; aμ; pμν; gμηÞ is now consid-
ered which describes the dynamics of distinct classical
fields, namely a scalar field ϕ, and a vector field aμ. The
quantity gμη in the argument list of the Hamiltonian is
interpreted as the covariant representation of the (sym-
metric) metric tensor. The contravariant vector field πν

denotes the canonical conjugate of ϕ in the context of
covariant Hamiltonian field theory [13]. Hence, πν is
dual quantity of the covariant vector of spacetime
derivatives ∂ϕ=∂xν of the scalar field ϕ. Likewise,
the (2,0) tensor pμν stands for the canonical conjugate
of the covariant field vector aμ, hence, for the dual
quantity of the derivatives ∂aμ=∂xν. A (3,0) tensor kμην,
accordingly, represents the canonical conjugate of the
metric tensor gμη and hence is the dual quantity of the
partial derivatives ∂gμη=∂xν. The tensor kμην will be
introduced later, in the action functional, in order to
describe the metric gμη as an internal dynamic quantity
of an amended Hamiltonian system, rather than as the
external field variable in H0. The Hamiltonian H0 is
assumed to be form-invariant under global spacetime
transformations, hence, H0 constitutes a Lorentz scalar.
The scalar field, the vector field, and the metric tensor
transform under local coordinate transitions, i.e., if the
transformation of the spacetime event xμ ↦ Xμ is
applied, according to

ΦðXÞ ¼ ϕðxÞ

AμðXÞ ¼ aξðxÞ
∂xξ
∂Xμ

GμηðXÞ ¼ gξζðxÞ
∂xξ
∂Xμ

∂xζ
∂Xη : ð10Þ

These transformations are generated, in the context of
the extended canonical transformation formalism of
covariant Hamiltonian field theory [14], by

~F μ
2ðxÞ ¼

�
~ΠβðXÞϕðxÞ þ ~PαβðXÞaξðxÞ

∂xξ
∂Xα

þ ~KαλβðXÞgξζðxÞ
∂xξ
∂Xα

∂xζ
∂Xλ

� ∂xμ
∂Xβ

���� ∂x∂X
����−1: ð11Þ

Here xμ and Xν denote the independent variables in the
two distinct reference frames. With Eqs. (1) and (3), the

tensor density ~ΠβðXÞ ¼ ΠβðXÞ ffiffiffiffiffiffiffi
−G

p
denotes the canoni-

cal conjugate of the transformed scalar fields ΦðXÞ.
In analogy, the ~PαβðXÞ ¼ PαβðXÞ ffiffiffiffiffiffiffi

−G
p

stand for the
corresponding conjugates of the transformed vector fields,
AαðXÞ, and ~KαβξðXÞ ¼ KαβξðXÞ ffiffiffiffiffiffiffi

−G
p

denote the momenta
of the transformed tensor field GαβðXÞ.
The particular generating function (11) embodies a

contravariant vector of weight w ¼ 1 and, hence, a
vector density. But this need not in general be the
case: if transformations of nontensorial quantities are
defined—such as the connection coefficients—then the
corresponding ~F μ

2 cannot represent a vector density.
The crucial requirement is that the total integrand of the

action functional represents a world scalar density.
Equation (10) constitutes a global symmetry trans-

formation if its coefficients ∂xξ=∂Xμ do not depend on
the spacetime event x and if H0 is form-invariant under
this transformation. In contrast, the transformation is
referred to as being local if the coefficients do depend
on spacetime. The Hamiltonian H0 is then no longer
form-invariant under the corresponding canonical trans-
formation rule. Appropriate dynamic gauge quantities
must then be introduced to restore the form-invariance
of a then amended Hamiltonian system—as is usual for
all gauge theories.
Explicitly, the new canonical transformation rules, which

emerge from ~F μ
2ðϕ; ~Πν; aμ; ~P

μν; gμη; ~K
μηνÞ of Eq. (11), are

~πμ ¼ ∂ ~F μ
2

∂ϕ ¼ ~Πβ ∂xμ
∂Xβ

���� ∂x∂X
����−1

δμνΦ ¼ ∂ ~F κ
2

∂ ~Πν

∂Xμ

∂xκ
���� ∂x∂X

���� ¼ δβν
∂xκ
∂Xβ

∂Xμ

∂xκ ϕ ¼ δμνϕ

~pνμ ¼ ∂ ~F μ
2

∂aν ¼ ~Pαβδνξ
∂xξ
∂Xα

∂xμ
∂Xβ

���� ∂x∂X
����−1

¼ ~Pαβ ∂xν
∂Xα

∂xμ
∂Xβ

���� ∂x∂X
����−1

δμβAα ¼
∂ ~F κ

2

∂ ~Pαβ

∂Xμ

∂xκ
���� ∂x∂X

���� ¼ aξ
∂xξ
∂Xα

∂xκ
∂Xβ

∂Xμ

∂xκ

¼ δμβaξ
∂xξ
∂Xα

~kξζμ ¼ ∂ ~F μ
2

∂gξζ ¼
~Kαλβ ∂xξ

∂Xα

∂xζ
∂Xλ

∂xμ
∂Xβ

���� ∂x∂X
����−1

δμβGαλ ¼
∂ ~F κ

2

∂ ~Kαλβ

∂Xμ

∂xκ
���� ∂x∂X

���� ¼ gξζ
∂xξ
∂Xα

∂xζ
∂Xλ δ

μ
β:

Obviously, the required transformation rules (10) of the
fields are reproduced. By virtue of Eq. (1), the momentum
fields obey the rules required for relative vectors of weight
w ¼ 1. Hence, for vector densities
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~ΠμðXÞ ¼ ~πβðxÞ ∂X
μ

∂xβ
���� ∂x∂X

����
~PνμðXÞ ¼ ~pαβðxÞ ∂X

ν

∂xα
∂Xμ

∂xβ
���� ∂x∂X

����
~KξζμðXÞ ¼ ~kαλβðxÞ ∂X

ξ

∂xα
∂Xζ

∂xλ
∂Xμ

∂xβ
���� ∂x∂X

����: ð12Þ

The general transformation rule for the Hamiltonian den-
sities is given by Eq. (9). For the actual generating function,
Eq. (11), the divergence of the explicit x-dependent
terms of ~F μ

2 follows as (see Appendix A for the vanishing
first term)

∂ ~F α
2

∂xα
����
expl

¼
�
~Πβϕþ ~Pαβaξ

∂xξ
∂Xα þ ~Kαλβgξζ

∂xξ
∂Xα

∂xζ
∂Xλ

�

×
∂
∂xμ

�∂xμ
∂Xβ

���� ∂x∂X
����−1

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡0 ðEq:ðA3ÞÞ

þ
�
~Pαβaξ

∂2xξ

∂Xα∂Xβ þ ~Kαλβgξζ

×

� ∂2xξ

∂Xα∂Xβ

∂xζ
∂Xλ þ

∂2xζ

∂Xλ∂Xβ

∂xξ
∂Xα

������ ∂x∂X
����−1:
ð13Þ

The divergence (13) can be expressed completely in terms
of the original dynamic quantities by inserting the trans-
formation rules for the momentum fields from Eq. (12):

∂ ~F α
2

∂xα
����
expl

¼ ð ~pαβaξ þ ~kαλβgξλ þ ~kλαβgλξÞ
∂2xξ

∂Xκ∂Xη

∂Xκ

∂xα
∂Xη

∂xβ :
ð14Þ

The divergence of ~F α
2 vanishes exactly only if the second

derivatives of the xξðXÞ do all vanish:

∂2xξ

∂Xκ∂Xη ¼ 0 ⇔ ~H0
0 ¼ ~H0

���� ∂x∂X
����: ð15Þ

In this case, the Hamiltonian is kept unchanged. The
transformation then does not depend on the spacetime
location and is, therefore, referred to as global. Otherwise,
for the case of a local transformation, the Hamiltonians are
not form-invariant. A “gauge Hamiltonian” ~HG must be
defined which matches in its dependencies on the fields
those of Eq. (14). This finally yields the particular amended
Hamiltonian which is form-invariant under the local trans-
formation:

~H1 ¼ ~H0 þ ~HG

~HG ¼ ð ~pαβaξ þ ~kαλβgξλ þ ~kλαβgλξÞγξαβ: ð16Þ

Herein, the γξαβ formally denote the gauge quantities,
whose physical meaning will be clarified below setting
up their transformation rule. Of course, the “gauge
Hamiltonian” ~H0

G of the transformed system must have
the same form in order to work out the locally form-
invariant amended Hamiltonian ~H1

~H0
1 ¼ ~H0

0 þ ~H0
G

~H0
G ¼ ð ~PαβAξ þ ~KαλβGξλ þ ~KλαβGλξÞΓξ

αβ: ð17Þ

The transformation rule of the gauge quantities γξαβ and
Γξ

αβ is determined by expressing the transformed gauge
Hamiltonian (17) in terms of the original fields according to
the canonical transformation rules (10) and (12):

~H0
G ¼ ð ~pαβaξ þ ~kαλβgξλ þ ~kλαβgλξÞ

∂xξ
∂Xη

∂Xκ

∂xα
∂Xτ

∂xβ Γ
η
κτ

���� ∂x∂X
����:

ð18Þ

The demanded correlation of the formally introduced
gauge quantities γξαβ and Γξ

αβ is obtained by inserting
the transformed gauge Hamiltonian in the representation of
Eq. (18) and the original gauge Hamiltonian (16) with (14)
into Eq. (9)

ð ~pαβaξ þ ~kαλβgξλ þ ~kλαβgλξÞ
∂xξ
∂Xη

∂Xκ

∂xα
∂Xτ

∂xβ Γ
η
κτ

¼ ð ~pαβaξ þ ~kαλβgξλ þ ~kλαβgλξÞ
�
γξαβ þ

∂2xξ

∂Xκ∂Xη

∂Xκ

∂xα
∂Xη

∂xβ
�
:

The coefficients are compared to yield the condition

∂xξ
∂Xη

∂Xκ

∂xα
∂Xτ

∂xβ Γ
η
κτ ¼ γξαβ þ

∂2xξ

∂Xκ∂Xη

∂Xκ

∂xα
∂Xη

∂xβ :

The transformation rule for the “gauge fields” follows, after
solving for the Γκ

αβ, as

Γκ
αβðXÞ ¼ γξητðxÞ

∂xη
∂Xα

∂xτ
∂Xβ

∂Xκ

∂xξ þ
∂2xξ

∂Xα∂Xβ

∂Xκ

∂xξ : ð19Þ

This transformation rule corresponds to the transformation
rule of the affine connection coefficients. In the following,
we identify the gauge fields γξαβ—formally introduced in
Eq. (16)—with the affine connection coefficients. In this
aspect, we follow the approach of Palatini [15], who first
treated the metric and the connection coefficients as
separate dynamic quantities, which entails an additional
equation of motion providing their mutual correlation.
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A Hamiltonian system, ~H0¼H0ðϕ;πν;aμ;pμν;gμηÞ ffiffiffiffiffiffi−gp
,

which is supposed to be invariant under Lorentz trans-
formations as the global symmetry group, is then form-
invariant under the local diffeomorphism group if and
only if it is amended according to Eq. (16), provided
that the gauge quantities γξαβ transform according to
Eq. (19)

∂ ~F α
2

∂xα
����
expl

���� ∂x∂X
���� ¼ ~H0

G − ~HG

���� ∂x∂X
����

¼ ð ~PαβAξ þ ~KαλβGξλ þ ~KλαβGλξÞΓξ
αβ

− ð ~pαβaξ þ ~kαλβgξλ þ ~kλαβgλξÞγξαβ
���� ∂x∂X

����:
ð20Þ

The requirement of form-invariance of the given
Hamiltonian under local spacetime transformations thus
induces a coupling term of the vector- and the tensor
fields and their conjugates via the gauge coefficients
γξαβ. The γξαβ—interpreted as connection coefficients—
act in a way to convert the partial derivatives in the
action functional (5) into covariant derivatives.
Furthermore, the metric gμν is promoted by the gauge

procedure from an external quantity in ~H0 to an internal
spacetime-dependent quantity, whose coupling to the
vector and tensor fields is described by ~H1.
Generally speaking, the form of the coupling term

in gauge theories is uniquely determined by the parti-
cular global symmetry property of the system, which is
rendered local. The γξαβ in Eq. (19) need not be
symmetric in the lower indices α and β [16]. Yet,
restricting the theory to only the symmetric part of
γξαβ—which is equivalent to postulating a vanishing
torsion of spacetime—greatly simplifies the field equa-
tions for the spacetime dynamics.
Now, the connection coefficients γξαβ appear as

external gauge fields whose dynamics are not deter-
mined by the amended Hamiltonian ~H1. The generating
function (11) must be amended to define the trans-
formation rule (19) in order to also include the dynam-
ics of the gauge fields into the description of the
dynamical system as provided by the final amended
Hamiltonian. The set of canonical transformation rules
then also yields the rules for the conjugates of the gauge
fields and the rule for a second amended Hamiltonian
~H2. In other words, the gauge fields are now treated as
internal fields, whose dynamics is described by a second
amended Hamiltonian ~H2. As it comes out, the set of
canonical equations then establishes a closed set of
coupled field equations, hence, no further gauge quan-
tities need to be introduced. This “miracle,” as an
important and welcome surprise, will be the topic of
the next section.

IV. INCLUDE THE DYNAMICS
OF THE GAUGE FIELDS

The extended generating function ~F μ
2 from Eq. (11) will

now be amended to define the transformation law (19), i.e.,
the canonical transformation which maps reference frame x
to frame X

~̄F
μ
2ðxÞ ¼ ~F μ

2ðxÞ þ ~Qη
αξβðXÞ ∂x

μ

∂Xβ

���� ∂x∂X
����−1

×

�
γkijðxÞ

∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ þ

∂Xη

∂xk
∂2xk

∂Xα∂Xξ

�
: ð21Þ

The quantities ~Qη
αξνðXÞ ¼ Qη

αξνðXÞ ffiffiffiffiffiffiffi
−G

p
denote in this

definition of an extended generating function of type
~F μ
2ðxÞ, formally the canonical conjugates of the Γη

αξðXÞ
of the transformed system and, hence, the dual quantities to
the Xν-derivatives of the Γη

αξðXÞ. As the γηαξðxÞ stand for
the gauge coefficients of the original system, the quantities
~qηαξνðxÞ ≡ qηαξνðxÞ ffiffiffiffiffiffi−gp

denote, accordingly, the dual
quantities of the xν-derivatives of the gauge coefficients
γηαξðxÞ of the original system. No prediction with respect to
the physical meaning of qηαξν and Qη

αξν is made, at this
point. Rather, their physical meaning will be determined in
a later paper by setting up the canonical field equations of
the final, locally form-invariant Hamiltonian.
The amended generating function (21) entails the fol-

lowing additional transformation rules

δμνΓη
αξ ¼

∂ ~̄F
κ
2ðxÞ

∂ ~Qη
αξν

∂Xμ

∂xκ
���� ∂x∂X

����
¼ δλν

∂xκ
∂Xλ

∂Xμ

∂xκ
�
γkij

∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ þ

∂Xη

∂xk
∂2xk

∂Xα∂Xξ

�

¼ δμν

�
γkij

∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ þ

∂Xη

∂xk
∂2xk

∂Xα∂Xξ

�

and

~qkijμ ¼
∂ ~̄F

μ
2

∂γkij ¼
~Qη

αξλ ∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ

∂xμ
∂Xλ

���� ∂x∂X
����−1;

hence, solved for ~Qη
αξλ,

~Qη
αξλðXÞ ¼ ~qnmrsðxÞ ∂x

n

∂Xη

∂Xα

∂xm
∂Xξ

∂xr
∂Xλ

∂xs
���� ∂x∂X

����: ð22Þ

We observe that the inhomogeneous transformation rule
for the gauge coefficients from Eq. (19) is recovered.
Furthermore, the canonical conjugates of the gauge coef-
ficients, introduced formally in the generating function
(21), now transform as tensor densities.
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The transformation rule for the Hamiltonians is again

obtained by taking the divergence of ~̄F
μ
2 from Eq. (21)

∂ ~̄F
μ
2

∂xμ
����
expl

¼ ∂ ~F μ
2

∂xμ
����
expl

þ ~Qη
αξβΓη

αξ
∂
∂xμ

�∂xμ
∂Xβ

��� ∂x∂X
���−1

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡ 0 ðEq: ðA3ÞÞ

þ
~Qη

αξβ

j ∂x∂X j
�
γkij

∂
∂Xβ

�∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ

�

þ ∂
∂Xβ

�∂Xη

∂xk
∂2xk

∂Xα∂Xξ

��
: ð23Þ

The first term on the right-hand side of Eq. (23) is given by
Eq. (20). The transformation rule for the Hamiltonians shall
be expressed completely in terms of the dynamic variables:
All derivatives of the functions xμðXÞ and XμðxÞ in (23) are
to be expressed in terms of the original and transformed
gauge coefficients γηαξðxÞ and Γη

αξðXÞ, and their conju-
gates, ~qηαξμ and ~Qη

αξμ, by making use of the respective
canonical transformation rules (19) and (22).
This calculation was worked out earlier [6] and is

rewritten in Appendix A in a notation adapted to the actual
context. Remarkably, the transformation rule (23) can
indeed completely and symmetrically be expressed in
terms of the canonical variables of the original and of
the transformed system as

∂ ~̄F
μ
2

∂xμ
����
expl

���� ∂x∂X
����

¼ ð ~PαβAξ þ ~KαλβGξλ þ ~KλαβGλξÞΓξ
αβ

− ð ~pαβaξ þ ~kαλβgξλ þ ~kλαβgλξÞγξαβ
���� ∂x∂X

����
þ 1

2
~Qη

αξβ

�∂Γη
αξ

∂Xβ þ ∂Γη
αβ

∂Xξ þ Γk
αβΓη

kξ − Γk
αξΓη

kβ

�

−
1

2
~qηαξβ

�∂γηαξ
∂xβ þ ∂γηαβ

∂xξ þ γkαβγ
η
kξ − γkαξγ

η
kβ

����� ∂x∂X
����

¼ ~H0
2 − ~H2

���� ∂x∂X
����: ð24Þ

The terms on the right-hand side can be regarded as
amendments to the given system Hamiltonians, ~H0 ¼
H0

ffiffiffiffiffiffi−gp
and its transformed counterpart ~H0

0 ¼ H0
0

ffiffiffiffiffiffiffi
−G

p
,

which promote the given globally form-invariant
Hamiltonians ~H0 and ~H0

0 to locally form-invariant
Hamiltonians ~H2 and ~H0

2. The Hamiltonians amended
accordingly are form-invariant under the extended canoni-
cal transformation generated by Eq. (21).
Amending the Hamiltonian ~H1 from Eq. (16) further on

according to (24) yields a second amended Hamiltonian ~H2

~H2 ¼ ~H0 þ ð ~pαβaξ þ ~kαλβgξλ þ ~kλαβgλξÞγξαβ
þ 1

2
~qηαξβ

�∂γηαξ
∂xβ þ ∂γηαβ

∂xξ þ γταβγ
η
τξ − γταξγ

η
τβ

�
:

ð25Þ

In the first stage of Sec. III, the metric was rendered an
internal system variable. The gauge coefficients γηαξ had to
be introduced to restore form-invariance of the system.
In contrast, no further gauge fields had to be introduced in
the actual second stage, where the gauge coefficients γηαξ
are promoted to internal dynamic quantities. Rather, the
gauge fields γξαβ now interact with themselves, which
induces the terms quadratic in γ to finally yield the locally
form-invariant Hamiltonian ~H2.
Observe that the gauge terms occurring in Eq. (25)—

hence the terms that must be added to the given Lorentz-
invariant system Hamiltonian ~H0—have exactly the same
structure as those of the SUðNÞ (Yang-Mills) gauge theory,
in the canonical formalism [17]

H2 ¼ H0ðπ;ϕÞ þ igYMðπ̄αKϕJ − ϕ̄Kπ
α
JÞaKJα

þ 1

2
pαβ
JK

�∂aKJα

∂xβ þ ∂aKJβ
∂xα

þ igYMðaKIβaIJα − aKIαaIJβÞ
�
:

The set of fermionic fields ϕJ for the Yang-Mills case
corresponds to the vector field aξ of Eq. (25), whereas the
N × N matrix of bosonic Yang-Mills 4-vector gauge fields
aKJμ now reappear anew as the connection coefficients γηαξ.

V. INSERT THE AMENDED HAMILTONIAN ~H2
INTO THE ACTION INTEGRAL

The derivative of the nontensorial dynamic quantity γηαξ
now additionally appears in the amended action integral
(for the notation see Sec. VII)

S4 ¼
Z
R

�
~πβ

∂ϕ
∂xβ þ ~pαβ ∂aα

∂xβ þ ~kαλβ
∂gαλ
∂xβ

þ ~qηαξβ
∂γηαξ
∂xβ − ~H2

�
d4x; ð26Þ

as the affine connection γηαξ, in conjunction with their
conjugates, ~qηαξβ, are now internal dynamic variables of the
system. In contrast to the partial derivatives of the tensors
aα and gαλ, the partial derivatives of nontensorial quantities
γηαξ cannot simply be converted into covariant derivatives,
in order to render the integrand into a world scalar.
Now it is obvious why the second amended ~H2 cannot

depict a world scalar density just on its own: the terms in
~H2 must complement the nontensorial terms in (26), such
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that the total integrand is rendered as a world scalar density.
Note that the terms proportional to ~qηαξβ sum up to the

Riemann curvature tensor Rη
αξβ after ~H2 from Eq. (25) is

inserted into (26):

Rη
αξβ ¼

∂γηαβ
∂xξ −

∂γηαξ
∂xβ þ γταβγ

η
τξ − γταξγ

η
τβ: ð27Þ

It is the total contraction of Rη
αξβ with the tensor density

~qηαξβ which actually yields a world scalar density. With the
abbreviation (27), the action integral (26) is equivalently
expressed as

S4 ¼
Z
R

�
~πβ

∂ϕ
∂xβ þ ~pαβ ∂aα

∂xβ þ ~kαλβ
∂gαλ
∂xβ

−
1

2
~qηαξβRη

αξβ − ~H1

�
d4x: ð28Þ

As the Riemann tensor (27) is skew-symmetric in its last
index pair, ξ and β, only the skew-symmetric part in ξ and β
of the—as yet undetermined—conjugate field ~qηαξβ con-
tributes to the action integral. Therefore, ~qηαξβ can be
assumed to be skew-symmetric in its last index pair ξ and β
as well

~qηαξβ ¼ − ~qηαβξ: ð29Þ

On this basis, the terms depending on γ as collected in the
Riemann tensor Rη

αξβ and the Hamiltonian ~H1 from
Eq. (16) can be combined to recover the canonical form
of the action integral from Eq. (26)

S4 ¼
Z
R

�
~πβ

∂ϕ
∂xβ þ ~pαβ ∂aα

∂xβ þ ~kαλβ
∂gαλ
∂xβ þ ~qηαξβ

∂γηαξ
∂xβ

− ~HG − ~H0

�
d4x; ð30Þ

with ~H the redefined gauge Hamiltonian

~HG ¼ ð ~pαβaξ þ ~kαλβgξλ þ ~kλαβgλξÞγξαβ
þ 1

2
~qηαξβðγταβγητξ − γταξγ

η
τβÞ: ð31Þ

The symmetry of the metric gαλ induces the symmetry of its
conjugate, ~kαλβ, in its first index pair. Therefore, the
Hamiltonian (31) can be written equivalently as

~HG ¼ ð ~pαβaξ þ 2 ~kαλβgξλ þ ~qηαλβγηξλÞγξαβ: ð32Þ

The gauge Hamiltonians (31) and (32) now directly reveal
how the gauge procedure works. To set up a generally form-
invariant action integral on the basis of a Lorentz-invariant
one, the partial derivatives of the fields aμ and gμν in the

action integral (30) are amended by the linear terms in the
connection coefficients γ to yield covariant derivatives. In
contrast, the partial derivative of the connection coefficient
γ—which cannot be converted into a covariant derivative
due to its nontensorial character—is amended by the
quadratic terms in γ to yield the Riemann tensor. In both
cases, the gauge procedure provides tensor quantities in
place of partial derivatives. This result of the canonical
derivation of the gauge theory of gravity is new and is not
encountered in a Lagrangian formalism.
The first amended Hamiltonian ~H1 from Eq. (16) is

inserted into Eq. (28) in to order verify that the integrand of
the action integral indeed depicts a world scalar. Then all
partial derivatives of the tensors in Eq. (28) are promoted to
covariant derivatives

S4 ¼
Z
R

�
~πβϕ;β þ ~pαβaα;β þ ~kαλβgαλ;β

−
1

2
~qηαξβRη

αξβ − ~H0

�
d4x: ð33Þ

Equation (33) shows that it is the Riemann tensor Rη
αξβ that

does actually represent the dual of ~qηαξβ. The given system

Hamiltonian ~H0 is a scalar density by presupposition,
hence, the entire integrand consists of contracted tensor
quantities. It makes up a world scalar density, as required
for a generally relativistic form-invariant action integral.
The action (33) is not postulated, but emerges from the
gauge principle, which here means to amend a given
(globally) Lorentz-invariant system Hamiltonian ~H0 in a
way to render it invariant under local, i.e., spacetime
dependent, Lorentz transformations.

VI. ADDING THE “FREE-FIELD” HAMILTONIAN

As usual, the gauge formalism fixes the coupling of the
gauge fields with the fields described by the given system
Hamiltonian H0 but does not provide the dynamics of the
“free” gauge fields, i.e., their dynamics in the absence
of any coupling. If the respective gauge fields are con-
sidered dynamic (propagating) quantities, the obtained
generally form-invariant Hamiltonian ~H0 þ ~HG must be
further amended in order for the canonical equations to
yield nonstatic solutions for the gauge fields. Hence, the
above form-invariant Hamiltonians (24) must be further
amended by “free field” Hamiltonians ~H0

DynðG; ~K; ~QÞ and
~HDynðg; ~k; ~qÞ that obey the transformation rule

~H0
DynðG; ~K; ~QÞ ¼ ~HDynðg; ~k; ~qÞ

���� ∂x∂X
���� ð34Þ

in order for the final extended Hamiltonians to describe the
dynamics of the gauge fields and to maintain the general
invariance of the action integral (33).
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In conjunction with the precondition (15) of a globally,
i.e., Lorentz-invariant Hamiltonian ~H0, the final extended
Hamiltonian ~H3, which is form-invariant under the corre-
sponding local transformation generated by (21), now reads

~H3ðϕ; ~π; a; ~p; g; ~k; γ; ~qÞ ¼ ~H0ðϕ; ~π; a; ~p; gÞ
þ ~HGða; ~p; g; ~k; γ; ~qÞ
þ ~HDynðg; ~k; ~qÞ ð35Þ

with ~HG given by Eq. (32). The correlation of the
derivatives of the fields with their momenta will be
identified in Sec. VIII by setting up the respective canonical
field equations.

VII. SUMMARY OF THE GAUGE PROCEDURE

The starting point is a classical Hamiltonian system
of a real or complex scalar field ϕ and a vector field aν,
with the metric gμν assumed to be of Minkowski type,
gμν ≡ ημν ¼ const. The particular Hamiltonian H0 of this
system needs not to be specified except for its property to
be form-invariant under global coordinate transformations
x ↦ X with ∂Xα=∂xβ ¼ const

S0 ¼
Z
R

�
πβ

∂ϕ
∂xβ þ pαβ ∂aα

∂xβ −H0ðπ;ϕ; p; a; g ≡ ηÞ
�
d4x:

ð36Þ

The globally form-invariant action S0 is to be amended to
yield a locally form-invariant action that describes in
addition to the scalar and vector fields the dynamics of
the gauge quantities. In the first step, the metric in Eq. (36)
is redefined as an arbitrary spacetime-dependent function,
gμν ¼ gμνðxÞ. Consequently, the invariant volume form is
now given by

ffiffiffiffiffiffi−gp
d4x. In the following, the factor

ffiffiffiffiffiffi−gp
is

absorbed into defining the canonical momenta as tensor
densities rather than absolute tensors, hence ~πβ ¼ πβ

ffiffiffiffiffiffi−gp
and ~pαβ ¼ pαβ ffiffiffiffiffiffi−gp

. Correspondingly, the scalar H0 in

Eq. (36) is converted into a scalar density ~H0 ¼ H0

ffiffiffiffiffiffi−gp
.

Moreover, the conjugate momentum ~kμνλ as the dual of the
derivative of the metric must be introduced into the action
functional

S1 ¼
Z
R

�
~πβ

∂ϕ
∂xβ þ ~pαβ ∂aα

∂xβ þ ~kμνβ
∂gμν
∂xβ

− ~H0ð ~π;ϕ; ~p; a; gÞ
�
d4x: ð37Þ

The metric gμν is now formally treated as an internal
quantity in the action functional (37) of the system. As the
partial derivatives of tensors do not transform as tensors,
the integrand of (37) is now no longer a scalar. The scalar

property of the integrand is restored by adding the gauge
Hamiltonian ~HG to the integrand

S2 ¼
Z
R

�
~πβ

∂ϕ
∂xβ þ ~pαβ ∂aα

∂xβ þ ~kμνβ
∂gμν
∂xβ − ~H0ð ~π;ϕ; ~p; a; gÞ

− ~HGð ~p; a; ~k; g; γÞ
�
d4x ð38Þ

with

~HG ¼ ð ~pαβaξ þ ~kαλβgξλ þ ~kλαβgλξÞγξαβ:

This amounts to introducing the connection coefficients
γξλα as external gauge quantities and then promoting the
partial derivatives in (38) to covariant derivatives. The
action (38) is thus equivalently expressed as

S2 ¼
Z
R
ð ~πβϕ;β þ ~pαβaα;β þ ~kμνβgμν;β

− ~H0ð ~π;ϕ; ~p; a; gÞÞd4x: ð39Þ

In the next step, the so far external gauge fields γξαβ are
treated as internal fields, which means that the description
of their dynamics is to be included in a further amended
action functional. This requires to define the canonical
momentum ~qξλαβ as the dual of the partial xβ-derivative of
the gauge field γξλα and to add the contraction of both terms
to the action

S3 ¼
Z
R

�
~πβϕ;β þ ~pαβaα;β þ ~kμνβgμν;β þ ~qξλαβ

∂γξλα
∂xβ

− ~H0ð ~π;ϕ; ~p; a; gÞ
�
d4x: ð40Þ

As the connection γξλα is no tensor, neither is its partial
derivative. Again, the invariance property of the integrand
(40) is restored by supplementing the appropriate term of
the gauge formalism—hence the term quadratic in γ—to
the integrand of Eq. (40)

S4 ¼
Z
R

�
~πβϕ;β þ ~pαβaα;β þ ~kμνβgμν;β þ ~qξλαβ

∂γξλα
∂xβ

− ~qξλαβγτλβγξτα − ~H0ð ~π;ϕ; ~p; a; gÞ
�
d4x: ð41Þ

By virtue of the skew-symmetry of ~qξλαβ in its last index
pair—which follows from the gauge formalism, as stated in
Eq. (29)—the terms proportional to ~q can be merged to
yield the Riemann curvature tensor (27)
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S4 ¼
Z
R

�
~πβϕ;β þ ~pαβaα;β þ ~kμνβgμν;β −

1

2
~qξλαβRξ

λαβ

− ~H0ð ~π;ϕ; ~p; a; gÞ
�
d4x: ð42Þ

As a result of the gauge procedure, the action is obtained
completely in terms of tensor quantities and thus represents
a world scalar density. We observe that the gauge term for
the partial derivative of the connection coefficients in
Eq. (41) is given by the term quadratic in γ. This is a
consequence of the fact that the coefficients in the trans-
formation rule for the Hamiltonian from Eq. (A4) can
completely be expressed in term of the connection coef-
ficients. Therefore, no new gauge fields were needed—
which is the reason why the procedure to promote the
global Lorentz symmetry into a local one truncates here and
does not produce an infinite hierarchy of gauge fields with
their pertaining transformation conditions.
In the last step, a Hamiltonian ~HDyn of the “free”

momenta ~k and ~q must be introduced “by hand” in order
for the corresponding fields g and γ to be dynamic

S5 ¼
Z
R

�
~πβϕ;β þ ~pαβaα;β þ ~kαλβgαλ;β −

1

2
~qξλαβRξ

λαβ

− ~H0ð ~π;ϕ; ~p; a; gÞ − ~HDynð ~k; g; ~qÞ
�
d4x: ð43Þ

The options for defining ~HDyn will be discussed in a
subsequent paper [18]. The canonical field equations,
summarized in Sec. VIII E, follow from the action principle

δS5 ¼! 0.

VIII. CANONICAL FIELD EQUATIONS:
ARBITRARY ~HDyn

A. Field equations for ϕ and ~πν

As the locally form-invariant extended Hamiltonian (35)
does not contain additional terms involving ϕ and ~πν, the
dynamics of these fields is determined by the globally
form-invariant Hamiltonian H only. The respective field
equations are

∂ϕ
∂xμ ¼

∂ ~H3

∂ ~πμ ¼ ∂ ~H0

∂ ~πμ
∂ ~πα
∂xα ¼ −

∂ ~H3

∂ϕ ¼ −
∂ ~H0

∂ϕ :

For a vector density ~πμ ¼ πμ
ffiffiffiffiffiffi−gp

, the ordinary divergence
∂ ~πα=∂xα of can be expressed in terms of the covariant
divergence as

~πα;α ¼
∂ ~πα
∂xα þ ~πβγαβα − ~παγββα ¼

∂ ~πα
∂xα þ 2 ~πβsαβα;

wherein sαβα denotes the contraction of the torsion
tensor

sξβα ¼
1

2
ðγξβα − γξαβÞ: ð44Þ

Thus, for connection coefficients that are symmetric in
their lower index pair, the torsion tensor vanishes
identically. The second field equation follows as the tensor
equation

~πα;α ¼ −
∂ ~H0

∂ϕ þ 2 ~πβsαβα:

Both field equations thus emerge as tensor equations.

B. Field equations for aμ and ~pμν

Due to the coupling term ~pαβaηγηαβ in the extended
Hamiltonian (35) the field equations for aμ and ~pμν

acquire an additional term. The respective field equations
are

∂aν
∂xμ ¼

∂ ~H3

∂ ~pνμ ¼
∂ ~H0

∂ ~pνμ þ aξγξνμ

∂ ~pνβ

∂xβ ¼ −
∂ ~H3

∂aν ¼ −
∂ ~H0

∂aν − ~pαβγναβ: ð45Þ

The partial derivatives of the fields and the terms propor-
tional to the affine connections γναβ can be combined to
yield covariant derivatives

aν;μ ¼
∂aν
∂xμ − aηγηνμ

~pνβ
;β ¼

∂ ~pνβ

∂xβ þ ~pαβγναβ þ ~pναγβαβ − ~pνβγααβ;

which yields the tensor equations

aν;μ ¼
∂ ~H0

∂ ~pνμ ; ~pνβ
;β ¼ −

∂ ~H0

∂aν þ 2 ~pνβsαβα: ð46Þ

The coupling term ~pαβaξγξαβ in the extended Hamiltonian
~H3 thus converts the nontensor equations for aμ and ~pμν

which emerge from the system’s Hamiltonian ~H0 into
tensor equations which hold in any reference frame.

C. Field equations for gαβ and ~kαβμ

The canonical equation for the metric gαβ is

∂gαλ
∂xβ ¼ ∂ ~H3

∂ ~kαλβ ¼ gκλγκαβ þ gακγκλβ þ
∂ ~HDyn

∂ ~kαλβ ; ð47Þ
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hence

gαλ;β ¼
∂gαλ
∂xβ − gλκγκαβ − gακγκλβ ¼

∂ ~HDyn

∂ ~kαλβ : ð48Þ

The field equation thus means that the covariant derivative
of the metric is the dual of the nonmetricity tensor—which
describes the length change of a vector under parallel
transport.
The canonical equation for the conjugate of the metric

follows as

∂ ~kξλβ
∂xβ ¼ −

∂ ~H3

∂gξλ ¼ − ~kαλβγξαβ − ~kξαβγλαβ −
∂ ~H0

∂gξλ −
∂ ~HDyn

∂gξλ ;

ð49Þ

hence

~kξλβ ;β ¼ −
∂ ~H0

∂gξλ −
∂ ~HDyn

∂gξλ þ 2 ~kξλβsαβα; ~kξλβ ¼ ~kλξβ:

ð50Þ

The coupling terms ~kαλβgξλγξαβ and ~kλαβgλξγξαβ in the
gauge-invariant extended Hamiltonian ~H3 from Eq. (35)
thus convert the nontensor equations for gαλ and ~kξλβ into
tensor equations. As gξλ is symmetric, ~kξλβ is induced to be
symmetric in its first index pair, ξ, λ.
The given Lorentz-invariant system Hamiltonian ~H0

describes the dynamics in a static spacetime background.
For this reason, ~H0 is supposed not to depend on the
conjugate of the metric, ~kξαβ. The derivative of the
Hamiltonian density ~H0 with respect to the metric gξλ then
represents the symmetric energy-momentum tensor density
~Tλξ of ~H0

~Tλξ ¼ 2
∂ ~H0

∂gξλ : ð51Þ

Thus, ~Tλξ does not describe the energy-momentum con-
tributed by a gravitational field and a dynamic spacetime.

D. Field equations for γηαβ and ~qηαβν

The canonical equation that provides the correlation
of the xβ-derivative of the γηαξ with their duals, ~qηαξβ,
follows as

∂γηαξ
∂xβ ¼ ∂ ~H3

∂ ~qηαξβ ¼
∂ ~HDyn

∂ ~qηαξβ þ
∂ ~HG

∂ ~qηαξβ

¼ ∂ ~HDyn

∂ ~qηαξβ þ γταβγ
η
τξ: ð52Þ

Solved for ∂ ~HDyn=∂ ~qηαξβ, one finds

∂ ~HDyn

∂ ~qηαξβ ¼ ∂γηαξ
∂xβ − γταβγ

η
τξ:

Thus, by virtue of the skew-symmetry of ~qηαξβ in ξ and β

2
∂ ~HDyn

∂ ~qηαξβ ¼ ∂ ~HDyn

∂ ~qηαξβ −
∂ ~HDyn

∂ ~qηαβξ

¼ ∂γηαξ
∂xβ −

∂γηαβ
∂xξ þ γταξγ

η
τβ − γταβγ

η
τξ

¼ −Rη
αξβ: ð53Þ

On the right-hand side, the connection coefficients γηαβ and
their derivatives sum up to the combination which repre-
sents the Riemann curvature tensor (27). The field Eq. (53)
thus states that the Riemann tensor vanishes identically
everywhere—and thus any curvature of spacetime—if there
is no “free-field”Hamiltonian ~HDyn. Therefore, it must then

be added “by hand” to the derived gauge Hamiltonian ~HG
in order to allow for a consistent spacetime dynamics [19].
The divergence of ~qξαβλ is given by the derivative of

the gauge Hamiltonian ~HG from Eq. (31) with respect to the
γξαβ

∂ ~qξαβλ
∂xλ ¼ −

∂ ~H3

∂γξαβ ¼ −
∂ ~HG

∂γξαβ :

This equation does not depend on the particular choice of
~HDyn as the latter is supposed to not depend on the gauge
fields γξαβ. With the gauge Hamiltonian from Eq. (32),
we find

∂ ~qξαβλ
∂xλ ¼ − ~pαβaξ − 2 ~kλαβgλξ þ ~qηαβλγηξλ þ ~qξηλβγαηλ:

ð54Þ
In order to express Eq. (54) manifestly as a tensor
equation, we write the covariant divergence of the tensor
density ~qξαβλ

~qαβλξ ;λ
¼ ∂ ~qξαβλ

∂xλ − ~qηαβλγηξλ þ ~qξηβλγαηλ

þ ~qξαηλγβηλ þ ~qξαβηγληλ − ~qξαβλγηηλ:

As ~qξαηλ is skew-symmetric in η and λ, the first term in
the second line can be expressed as well in terms of the
torsion tensor

~qαβλξ ;λ
¼ ∂ ~qξαβλ

∂xλ − ~qηαβλγηξλ − ~qξηλβγαηλ þ ~qξαηλsβηλ

þ 2 ~qξαβηsληλ:
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The field Eq. (54) thus actually represents the tensor
density equation

~qαβλξ ;λ
þ ~pαβaξ þ 2 ~kλαβgλξ − ~qξαηλsβηλ þ 2 ~qξαηβsληλ ¼ 0:

ð55Þ

We thus found that all field equations emerging from H3

are tensor equations, hence, their forms are the same in any
reference frame.

E. Summary of the coupled set of field equations

With the abbreviations (27) and (44) for particular
combinations of the gauge fields γηξλ and their partial
derivatives, the complete set of coupled field equations is
summarized as

ϕ;μ ¼
∂ ~H0

∂ ~πμ ; ~πβ ;β ¼ −
∂ ~H0

∂ϕ þ 2 ~πβsαβα

aν;μ ¼
∂ ~H0

∂ ~pνμ ; ~pνβ
;β ¼ −

∂ ~H0

∂aν þ 2 ~pνβsαβα

gξλ;μ ¼
∂ ~HDyn

∂ ~kξλμ ; ~kξλβ ;β ¼ −
∂ð ~H0 þ ~HDynÞ

∂gξλ þ 2 ~kξλβsαβα

−
Rη

ξλμ

2
¼ ∂ ~HDyn

∂ ~qηξλμ ; ~qξλβη ;β ¼ − ~pξλaη − 2 ~kβξλgβη þ ~qηξβαsλβα

þ 2 ~qηξλβsαβα ð56Þ

The surprising fact in the last line of Eqs. (56) is that the
naïvely expected covariant derivatives of the gauge fields,
i.e., the covariant derivatives of the connection coefficients
γηξλ—which do not exist—are replaced by the Riemann
tensor as a result of the canonical gauge procedure—and
thus again establish a tensor equation, as is required for a
generally covariant theory.
Only with ~HDyn given, the entire set of eight canonical

field equations for the fields ϕ; aν; gξλ, and γηξλ and their

respective conjugates ~πμ, ~pνμ, ~kξλμ, and ~qηξλμ is closed and
can then be integrated to yield the combined dynamics of
fields and spacetime geometry. As ~HDyn does not emerge
from the gauge formalism, it must be chosen on the basis of
physical reasoning. The field Eq. (56) thus depend on this
choice. A particular choice of ~HDyn will be discussed in
Sec. VIII G.

F. Consistency relation

Similar to U(1) and SUðNÞ gauge theories, the set of
field equations brings about a consistency condition.
Differentiating Eq. (54) with respect to xβ, the left-hand
side vanishes due to the skew-symmetry of ~qξαβλ in its last
index pair, as stated in Eq. (29). Accordingly, the right-hand
side of (54) yields the condition

∂
∂xβ ð ~p

αβaξ þ 2 ~kλαβgλξ þ ~qηαλβγηξλ − ~qξηλβγαηλÞ ¼ 0: ð57Þ

The partial derivative representations of the field Eqs. (45),
(47), (49), (52), and (54) from Secs. VIII B, VIII C, and
VIII D can now be inserted to yield the consistency
condition (see Appendix B)

2 ~kλαβ
∂ ~HDyn

∂ ~kλξβ − 2gξβ
∂ ~HDyn

∂gαβ þ ~qταβλ
∂ ~HDyn

∂ ~qτξβλ − ~qξτβλ
∂ ~HDyn

∂ ~qατβλ

¼ aξ
∂ ~H0

∂aα − ~pαβ ∂ ~H0

∂ ~pξβ þ 2gξβ
∂ ~H0

∂gαβ : ð58Þ

This is a second rank tensor equation. In conjunction with
Eq. (53), it relates the source terms of the right-hand side to
the Riemann tensor terms on the left-hand side. Note that
Eq. (58) holds as well for the cases nonvanishing torsion
(sβηλ ≠ 0) and nonmetricity (gξβ;μ ≠ 0). Equation (58) rep-
resents a generic Einstein equation that holds for any given
system of scalar and vector fields described by ~H0 and the
particular model for the dynamics of the free gravitational
fields, as described by ~HDyn.
At this point, it would be interesting for the reader to find

out whether our theory makes observational predictions
similar to general relativity. As general relativity predicts
successfully observations made in the solar system (weak
field), is the gauge theory given by Eqs. (56) and (58)
capable of giving something like general relativity plus
small corrections? We will address these issues briefly in
the following section.

G. Sample ~HDyn

As an example, we postulate ~HDyn as a linear combi-
nation of quadratic and linear terms in ~q

~HDyn ¼
1

4g1
~qηαξβ ~qαητλgξτgβλ

1ffiffiffiffiffiffi−gp − g2 ~qηαηβgαβ: ð59Þ

In contrast to the dimensionless coupling constant g1, the
coupling constant g2 has the natural dimension Length−2.
Note that the sample Hamiltonian (59) does not depend on
~kξλμ and thus directly induces the metric compatibility
condition gξλ;μ ¼ 0 according to Eqs. (56). In a subsequent

paper, we will discuss the more general case of a ~HDyn

which also depends quadratically on ~kξλμ.
The correlation of the canonical momentum q to the

Riemann tensor then follows from Eq. (53) as

qηαξβ ¼ g1ðRηαξβ − RηαξβjmaxÞ; ð60Þ

with

Rηαξβjmax ¼ g2ðgηξgαβ − gηβgαξÞ
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the Riemann tensor for a maximally symmetric
4-dimensional manifold with constant Ricci curvature
R ¼ 12g2. The derivatives of ~HDyn with respect to ~q in
Eq. (58) then cancel.
The derivative of ~HDyn with respect to gαβ follows as

2gξβ
∂ ~HDyn

∂gαβ ¼ 1

g1

�
qβηλξqηβλα −

1

4
δαξqβηλτq

ηβλτ

� ffiffiffiffiffiffi
−g

p

− g2ðqαηη ξ þ qηξηαÞ
ffiffiffiffiffiffi
−g

p
:

Substituting the q-terms according to Eq. (60) and writing
the derivative of ~H0 with respect to the metric gαβ as the
given system’s symmetric energy-momentum tensor
according to Eq. (51)

2gξβ
∂ ~H0

∂gαβ ¼ Tξ
α ffiffiffiffiffiffi

−g
p

;

the consistency relation (58) for the Hamiltonian (59)
emerges as

g1

�
RηβλξRηβλα −

1

4
δαξRηβλτRηβλτ

�

þ 1

8πG

�
Rξ

α −
1

2
δαξRþ Λδαξ

�

¼ aξ
∂H0

∂aα − pαβ ∂H0

∂pξβ þ Tξ
α ð61Þ

and thus represents a generalized Einstein equation. The
scalar (spin-0) field contributes to the source merely via
its energy-momentum tensor terms, whereas the vector
(spin-1) field contributes in addition with the first two terms
on the right-hand side of Eq. (61). So, for systems with only
scalar fields, the right-hand side of Eq. (61) reduces to that
of the Einstein equation. Without the term proportional to
the coupling constant g1, the left-hand side of Eq. (61)
reduces to the Einstein tensor. The coupling constants g1
and g2 contained in (59) can be expressed in terms of
the cosmological constant Λ and the gravitational constant
G as [20]

g1 ¼ −
3

16πGΛ
; g2 ¼

1

3
Λ:

Solutions of the field equation for particular systems
H0, namely for Klein-Gordon, Maxwell, and Proca
systems, will be discussed in detail in our subsequent
paper [18].
Whether or not our theory can provide new insights with

respect to the dark matter issue remains to be clarified.
Remarkably, the metrics obtained from Eq. (61) for the

exterior regions of nonrotating black holes or rotating black

holes coincide with those solving the Einstein equation
with cosmological constant. In other words, the vacuum
field equation

RηβλξRηβλα −
1

4
δαξRηβλτRηβλτ ¼ 0 ð62Þ

is likewise satisfied not only by the Schwarzschild metric
[21], but also by the more general Schwarzschild-De
Sitter and the Kerr-De Sitter metrics. Thus, for a
vanishing right-hand side of Eq. (61), both parts of
the left-hand side, the quadratic part (62) and the
“Einstein part,” are satisfied by the same metrics. As a
consequence, the classical tests of general relativity,
namely, the bending of light, the perihelion shift, and
the Newtonian limit are equally passed by the solutions
of the field Eq. (62). However, the metrics obtained
from Eq. (61) for cases where matter/fields are present
will be shown to be different from those emerging
from the Einstein equation. This changes, for instance,
the prediction of measurable observables of neutron
stars.

IX. CONCLUSIONS

By means of the framework of canonical transforma-
tions, we have demonstrated that any (globally) Lorentz-
invariant Lagrangian/Hamiltonian system can be converted
into an amended Lagrangian/Hamiltonian which is form-
invariant under a general local transformation of the
reference frame, following the well-established lines of
reasoning of gauge theories. No assumptions or postulates
were incorporated into the theory. In particular, our
approach includes a nonvanishing torsion of spacetime
and is not restricted to the usual assumption of metric
compatibility.
Thus, the description of the spacetime dynamics emerges

from basic principles only, namely the action principle and
the requirement of the form-invariance of the action integral
under general spacetime transformations—which ensures
the general principle of relativity to be satisfied. The
ensuing coupling of spacetime dynamics with matter fields
involve the affine connection coefficients, which thus act as
gauge quantities. The derivation was worked out in the
Hamiltonian framework making use of the canonical
transformation formalism—which by construction ensures
the action principle to be maintained in its form. The
integrand (33) of the final action integral was shown to
represent a world scalar density and thereby meets the
requirement to be form-invariant under general spacetime
transformations.
The reader might wonder about the constraints that arise

in conventional Hamiltonian formulations of gauge theo-
ries. To address this issue, we must recall a general feature
of the covariant (DeDonder-Weyl) Hamiltonian formalism.
Generally, if a Hamiltonian in point dynamics does not
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depend on a dynamical quantity, then the canonical
conjugate quantity is a constant of motion. The analogue
applies in covariant Hamiltonian field theories. So, in our
case of a diffeomorphism invariance, the divergence of
the μth column (or row) of the total system’s energy-
momentum tensor vanishes if ~H3 from Eq. (35) does not
explicitly depend on xμ—which is the case for a back-
ground-independent system. In this regard, our formalism
differs from the standard 3 − 1-split Hamiltonian descrip-
tion (see, e.g., [22,23]).
For the closed description of the spacetime dynamics, a

Hamiltonian ~HDyn which describes the dynamics of the
“free” gauge fields must be postulated. This is a common
feature of all gauge theories and reflects here the residual
indeterminacy of any gauge theory of gravity. In this sense,
we have derived the generic part of the description of
geometrodynamics which is common to all specific theo-
ries described by a Hamiltonian ~H0 that are based on a
particular ~HDyn.
Most importantly, we found that in any case spin-1 fields

contribute with additional source terms to the equation of
motion for the metric—which do not occur for spin-0
fields. Work on extending the theory to half-integer fields is
in progress [24]. Furthermore, the canonical formulation of
the gauge theory of gravity requires a term quadratic in the
canonical momenta ~q of the gauge fields γ in order for
the set of field equations to be closed. This contrasts
with the Einstein approach, which is restricted—in its
Hamiltonian formulation—to a linear momentum term.
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APPENDIX A: EXPLICIT CALCULATION OF
THE TRANSFORMATION RULE (24)

First, we show that the second term on the right-hand
side of Eq. (23) vanishes identically. According to the chain
rule, we have

∂
∂xα

�∂xα
∂Xβ

���� ∂x∂X
����−1

�

¼
���� ∂x∂X

����−1
� ∂2xα

∂Xβ∂Xξ

∂Xξ

∂xα −
���� ∂x∂X

����−1 ∂j
∂x
∂X j

∂Xβ

�
: ðA1Þ

By virtue of the general identity for the derivative of
the determinant of a matrix with respect to a matrix
element

∂j ∂x∂X j
∂ð∂xα∂XξÞ

¼ ∂Xξ

∂xα
���� ∂x∂X

����;

the Xβ-derivative of ln j∂x=∂Xj in Eq. (A1) is converted
into

���� ∂x∂X
����−1 ∂j

∂x
∂X j

∂Xβ ¼
���� ∂x∂X

����−1 ∂j
∂x
∂X j

∂ð∂xα∂XξÞ
∂ð∂xα∂XξÞ
∂Xβ ¼ ∂Xξ

∂xα
∂2xα

∂Xξ∂Xβ :

ðA2Þ

Inserting Eq. (A2) into (A1) then yields

∂
∂xα

�∂xα
∂Xβ

���� ∂x∂X
����−1

�
≡ 0: ðA3Þ

In order to express the third term on the right-hand side of
Eq. (23), the partial derivatives are first of all written in
expanded form

∂ ~̄F
μ
2

∂xμ
����
expl

¼ ∂ ~F μ
2

∂xμ
����
expl

þ ~Qη
αξβ

�
γkij

� ∂2Xη

∂xk∂xn
∂xn
∂Xβ

∂xi
∂Xα

∂xj
∂Xξ þ

∂2xi

∂Xα∂Xβ

∂Xη

∂xk
∂xj
∂Xξ þ

∂2xj

∂Xξ∂Xβ

∂Xη

∂xk
∂xi
∂Xα

�

þ ∂2Xη

∂xk∂xn
∂2xk

∂Xα∂Xξ

∂xn
∂Xβ þ

∂3xk

∂Xα∂Xξ∂Xβ

∂Xη

∂xk
����� ∂x∂X

����−1: ðA4Þ

This expression is now split into a skew-symmetric and a symmetric part of ~Qη
αξβ in the indices ξ and β

according to

~Qη
αξβ ¼ 1

2
ð ~Qη

αξβ − ~Qη
αβξÞ þ 1

2
ð ~Qη

αξβ þ ~Qη
αβξÞ ¼ ~Qη

α½ξβ� þ ~Qη
αðξβÞ:

For the skew-symmetric part, ~Qη
α½ξβ�, the two terms in (A4) which are symmetric in ξ and β vanish,

leaving

J. STRUCKMEIER et al. PHYSICAL REVIEW D 95, 124048 (2017)

124048-14



~Qη
α½ξβ�

�
γkij

� ∂2Xη

∂xk∂xn
∂xn
∂Xβ

∂xi
∂Xα

∂xj
∂Xξ þ

∂2xi

∂Xα∂Xβ

∂Xη

∂xk
∂xj
∂Xξ

�
þ ∂2Xη

∂xk∂xn
∂xn
∂Xβ

∂2xk

∂Xα∂Xξ

�

¼ ~Qη
α½ξβ�

� ∂2Xη

∂xk∂xn
∂xn
∂Xβ

�
γkij

∂xi
∂Xα

∂xj
∂Xξ þ

∂2xk

∂Xα∂Xξ

�
þ γkij

∂2xi

∂Xα∂Xβ

∂Xη

∂xk
∂xj
∂Xξ

�

¼ ~Qη
α½ξβ�

�
Γj

αξ
∂2Xη

∂xk∂xn
∂xk
∂Xj

∂xn
∂Xβ þ γkij

∂2xi

∂Xα∂Xβ

∂Xη

∂xk
∂xj
∂Xξ

�

¼ ~Qη
α½ξβ�

�
Γj

αξ

�
γikn

∂Xη

∂xi
∂xk
∂Xj

∂xn
∂Xβ − Γη

jβ

�
þ γkij

�
Γa

αβ
∂xi
∂Xa − γiab

∂xa
∂Xα

∂xb
∂Xβ

� ∂Xη

∂xk
∂xj
∂Xξ

�

¼ ~Qη
α½ξβ�

�
−Γi

αξΓη
iβ − γiabγ

k
ij
∂xa
∂Xα

∂xb
∂Xβ

∂Xη

∂xk
∂xj
∂Xξ þ Γj

αξγ
i
kn
∂Xη

∂xi
∂xk
∂Xj

∂xn
∂Xβ þ Γj

αβγ
i
kn
∂Xη

∂xi
∂xk
∂Xj

∂xn
∂Xξ

�

¼ − ~Qη
α½ξβ�Γi

αξΓη
iβ þ γiabγ

k
ij
~Qη

α½ξβ� ∂xa
∂Xα

∂xb
∂Xξ

∂Xη

∂xk
∂xj
∂Xβ

¼ − ~Qη
α½ξβ�Γi

αξΓη
iβ þ ~qka½bj�γiabγkij

���� ∂x∂X
����

¼ − ~Qη
α½ξβ�Γk

αξΓη
kβ þ ~qηα½ξβ�γkαξγηkβ

���� ∂x∂X
����

¼ −
1

2
~Qη

αξβðΓk
αξΓη

kβ − Γk
αβΓη

kξÞ þ
1

2
~qηαξβðγkαξγηkβ − γkαβγ

η
kξÞ

���� ∂x∂X
����:

The two mixed terms in Γ and γ cancel each other due to the skew-symmetry of ~Qη
α½ξβ� in ξ and β.

The contribution of (23) emerging from the symmetric part ~Qη
αðξβÞ can be expressed in terms of the derivatives of the

connection coefficients, whose transformation rule is

∂Γη
αξ

∂Xκ

∂Xκ

∂xn ¼ ∂γkij
∂xn

∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ þ γkij

∂
∂xn

�∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ

�
þ ∂
∂xn

�∂Xη

∂xk
∂2xk

∂Xα∂Xξ

�
:

Thus

~Qη
αðξβÞ ∂xn

∂Xβ

�
γkij

∂
∂xn

�∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ

�
þ ∂
∂xn

�∂Xη

∂xk
∂2xk

∂Xα∂Xξ

��

¼ ~Qη
αðξβÞ ∂xn

∂Xβ

�∂Γη
αξ

∂Xκ

∂Xκ

∂xn −
∂γkij
∂xn

∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ

�

¼ ~Qη
αðξβÞ ∂Γη

αξ

∂Xβ − ~qkiðjnÞ
∂γkij
∂xn

���� ∂x∂X
����

¼ ~Qη
αðξβÞ ∂Γη

αξ

∂Xβ − ~qηαðξβÞ
∂γηαξ
∂xβ

���� ∂x∂X
����

¼ 1

2
~Qη

αξβ

�∂Γη
αξ

∂Xβ þ ∂Γη
αβ

∂Xξ

�
−
1

2
~qηαξβ

�∂γηαξ
∂xβ þ ∂γηαβ

∂xξ
����� ∂x∂X

����:
The total transformation rule (A4) expressed in terms of connection coefficients is then

∂ ~̄F
μ
2

∂xμ
����
expl

���� ∂x∂X
���� ¼ ∂ ~F μ

2

∂xμ
����
expl

���� ∂x∂X
����þ 1

2
~Qη

αξβ

�∂Γη
αξ

∂Xβ þ ∂Γη
αβ

∂Xξ − Γk
αξΓη

kβ þ Γk
αβΓη

kξ

�

−
1

2
~qηαξβ

�∂γηαξ
∂xβ þ ∂γηαβ

∂xξ − γkαξγ
η
kβ þ γkαβγ

η
kξ

����� ∂x∂X
����:
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APPENDIX B: EXPLICIT CALCULATION OF THE CONSISTENCY EQUATION (58)

Equation (57) reads, in explicit form:

0 ¼ ∂ ~pαβ

∂xβ aξ þ ~pαβ ∂aξ
∂xβ þ 2

∂ ~kλαβ
∂xβ gλξ þ 2 ~kλαβ

∂gλξ
∂xβ þ ∂ ~qηαλβ

∂xβ γηξλ þ ~qηαλβ
∂γηξλ
∂xβ −

∂ ~qξηλβ
∂xβ γαηλ − ~qξηλβ

∂γαηλ
∂xβ :

The partial derivative representations (45), (47), (49), (52), and (54) of the canonical field equations can now be inserted to
replace all derivatives with respect to xβ, which yields

0 ¼
�
−
∂ ~H0

∂aα − ~pηβγαηβ

�
aξ þ ~pαβ

�∂ ~H0

∂ ~pξβ þ aηγηξβ

�

− 2

�
~kηαβγληβ þ ~kληβγαηβ þ

∂ ~H0

∂gλα þ
∂ ~HDyn

∂gλα
�
gλξ þ 2 ~kλαβ

�
gηξγηλβ þ gληγηξβ þ

∂ ~HDyn

∂ ~kλξβ
�

− ð ~pαλaη þ 2 ~kβαλgβη þ ~qβατλγβητ − ~qητβλγατβÞγηξλ þ ~qηαλβ
�∂ ~HDyn

∂ ~qηξλβ þ γτξβγ
η
τλ

�

þ ð ~pηλaξ þ 2 ~kτηλgτξ − ~qβηλτγβξτ þ ~qξτλβγητβÞγαηλ − ~qξηλβ
�∂ ~HDyn

∂ ~qαηλβ þ γτηβγ
α
τλ

�
:

All terms which do not depend on the Hamiltonians cancel, as can be seen after rearranging and relabeling some running
indices

0 ¼ −
∂ ~H0

∂aα aξ þ ~pαβ ∂ ~H0

∂ ~pξβ − 2
∂ ~H0

∂gλα gλξ − 2
∂ ~HDyn

∂gλα gλξ þ 2 ~kλαβ
∂ ~HDyn

∂ ~kλξβ þ ~qηαλβ
∂ ~HDyn

∂ ~qηξλβ − ~qξηλβ
∂ ~HDyn

∂ ~qαηλβ
− ~pηβaξγαηβ þ ~pηλaξγαηλ þ ~pαβaηγηξβ − ~pαλaηγηξλ

− 2 ~kηαβgλξγληβ þ 2 ~kλαβgηξγηλβ − 2 ~kληβgλξγαηβ þ 2 ~kτηλgτξγαηλ þ 2 ~kλαβgληγηξβ − 2 ~kβαλgβηγηξλ

− ~qβατλγηξλγβητ þ ~qηαλβγτξβγητλ þ ~qητβλγηξλγατβ − ~qβηλτγβξτγαηλ þ ~qξτλβγητβγαηλ − ~qξηλβγτηβγατλ:

The remaining terms constitute the second rank tensor equation

∂ ~H0

∂aα aξ − ~pαβ ∂ ~H0

∂ ~pξβ þ 2
∂ ~H0

∂gλα gλξ ¼ −2
∂ ~HDyn

∂gλα gλξ þ 2 ~kλαβ
∂ ~HDyn

∂ ~kλξβ þ ~qηαλβ
∂ ~HDyn

∂ ~qηξλβ − ~qξηλβ
∂ ~HDyn

∂ ~qαηλβ :
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