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We present several new exact solutions in five- and higher-dimensional Einstein-Maxwell theory by
embedding the Nutku instanton. The metric functions for the five-dimensional solutions depend only on a
radial coordinate and on two spatial coordinates for the six- and higher-dimensional solutions. The six- and
higher-dimensional metric functions are convolutedlike integrals of two special functions. We find that the
solutions are regular almost everywhere and some spatial sections of the solution describe wormhole
handles. We also find a class of exact and nonstationary convolutedlike solutions to the Einstein-Maxwell

theory with a cosmological constant.
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I. INTRODUCTION

Gravitational instantons are the regular and complete
Euclidean signature solutions, with self-dual curvature
2-form, to the Einstein field equations in vacuum [1], or
with a cosmological constant term [2]. There are several
well-known solutions such as Taub-Newman, Tamburino,
and Unti [3], Eguchi-Hanson [4], and Atiyah-Hitchin
metrics [5]. The instanton solutions, in general, are the
result of the reduction of the complex elliptic Monge-
Ampere equation [6] on a complex manifold of dimension
2 to only one real variable. These solutions play an
important role in the construction of higher-dimensional
solutions to extended theories of gravity [7] and super-
gravity [8,9] as well as quantum properties of the black
holes [10]. In fact, these self-dual geometries have been
used in Ref. [11] to construct the M-theory realizations
of the fully localized D2 branes in type-IIA string
theory that intersect the D6 branes. The M-theory
solutions involve the convolutedlike integrals of two
special functions and upon compactification over a
compact coordinate of the transverse self-dual geometry
yield the supersymmetric solutions for the fully localized
intersecting branes. One main feature of the solutions is
that they are valid near and far from the core of D6
branes. Moreover, inspired by the convolutedlike struc-
ture of membrane solutions, some new convoluted
solutions to the six- and higher-dimensional Einstein-
Maxwell theory were constructed and studied in
Ref. [12]. The convoluted solutions even can be gener-
alized to include the cosmological constant in six- and
higher-dimensional Einstein-Maxwell theory.

The gravitational instantons are also the dominant
metrics in path-integral formulation of Euclidean quantum
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gravity and are closely related to minimal surfaces in
Eulidean space [13]. In fact, the equations for any two-
dimensional minimal surfaces provide a solution to the
real elliptic Monge-Ampere equation on a real manifold
of two dimensions. These solutions then lead to the
Kihler metrics for some gravitational instantons besides
the aforementioned well-known solutions.

In this article, we draw attention to gravitational
instantons of novel geometries constructed from minimal
surfaces by Nutku [13] and embed them to generate
new classes of exact helicoidal and catenoidal solutions
in five- and higher-dimensional Einstein-Maxwell theory.
Inspired by the existence of such gravitational instantons
in four dimensions and the well-known methods to
construct the higher-dimensional convoluted solutions to
the Einstein-Maxwell theory, in this article, we construct
and study a new class of exact helicoidal and catenoidal
solutions in Einstein-Maxwell theory. We note that, to our
knowledge, these solutions which are generated from
helicoid and catenoid minimal surfaces have not been
studied before in Einstein-Maxwell theory.

The article is organized as follows. We begin with a brief
overview of minimal surfaces and instantons and present
the metric for the Nutku gravitational instantons in Sec. II.
In Sec. III, we embed the Nutku metrics corresponding to
helicoid and catenoid cases to get exact solutions in five
dimensions. In Sec. IV, we construct convolutionlike
general solutions for the Einstein-Maxwell theory in six
dimensions and discuss the solutions. In Sec. V, we
generalize the convolutedlike solutions for the Einstein-
Maxwell theory in any dimensions greater than 6 and
discuss the solutions. Finally, in Sec. VI, by using a very
special separation of variables in the metric function,
we find the most general cosmological solutions to
the Einstein-Maxwell theory in the presence of a cosmo-
logical constant. We wrap up the article with concluding
remarks.

© 2017 American Physical Society
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I1. MINIMAL SURFACES AND THE
FOUR-DIMENSIONAL NUTKU INSTANTONS

The study of minimal surfaces began with Lagrange’s
question about the existence of surfaces that minimize the
area, subject to some boundary constraints. Physically, they
represent soap films on wire frames. There are several
equivalent mathematical definitions of minimal surfaces.
We state two important ones [14]:

(1) A surface M C R3 is minimal if and only if its mean

curvature vanishes identically.

(2) A surface M C R? is minimal if and only if it is a
critical point of the area functional for all compactly
supported versions. The plane, the helicoid, the
catenoid, the gyroid, the Scherk surface, the Enneper
surface, and Costa’s surface are some examples [15].
In R3, the helicoid and the plane are the only ruled
2-surfaces [14], i.e., surfaces generated by the
rotation of a line. The helicoid and the catenoid
are locally isometric [16] and are conjugates of each
other [14].3

Observing that nearly all well-known solutions in
Einstein-Maxwell theory have spherical symmetry, this
article highlights the role of minimal surfaces and instan-
tons in constructing new solutions of novel geometries.
Instantons are pseudoparticles which first appeared in
Yang-Mills theory as minimum-action, classical solutions
in Euclidean® spacetime [17]. Their discovery inspired the
notion of gravitational instantons, which soon found use in
Schwarzschild black hole radiance calculations through
Euclideanization [18]. In 1978, Comtet [19] showed
that the multi-Belavin, Polyakov, Schwarz and Tyupkin-
instanton solution of Witten [20] corresponds to minimal

2 2 2 2 si
2:dr +(@* + r°)de* + (1 +—=3
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surfaces. In a similar vein, Nutku [13] proved that for every
minimal surface in R? there is a gravitational instanton with
anti-self-dual curvature and gave some explicit metrics
which we will embed in higher dimensions.

A class of gravitational instantons may be represented by
the metric

45t = 5o (4R + ) + 1+ ) (e + 4
+ 2f f (dtdx + dydz)}, (2.1)
where P([ )C) = \/m’ ft — ()fgtx) and

fi= df Y if the function f(t, x) satisfies the quasilinear,
elliptic- hyperbohc partial differential equation
(1+f)26)ftt_2ftfxftx+(K+f12)fxx:0 (22)
The “Lagrange equation” (2.2) with x =1 defines
minimal surfaces in R3. For x = —1, it reduces to the
Born-Infeld equation [13], which arises in a nonlinear
generalization of Maxwell electrodynamics. These two
cases are also related through a Wick rotation (¢ — if)
[21]. Interestingly, the Born-Infeld equation is also related
to the maximal surface equation in Lorentz-Minkowski
space * by a Wick rotation [22]. Since the general metric
above provides a large class of solutions, we will restrict
our attention to the helicoid-catenoid solutions. Noting that
the helicoid represented by f(#,x) = atan™' (%) is a solution
to Eq. (2.2), after substitution and subsequent coordinate
transformations x = rcos@ and ¢t = rsin @, we obtain the
Nutku helicoid instanton as

)dy2 a’sin (29)d}d + (1 + 2(cos((-)))z)dzz

ds

(2.3)

V1+%

where we consider 0 < r < 00,0 < 8 < 27z, and y and z could be considered the periodic coordinates on the 2-torus [23]. In
Ref. [24], the authors studied the solutions of the Dirac equation in the background of the metric (2.3) and its singularities.
The metric (2.3) is asymptotically Euclidean and would correspond to a catenoidal solution if a> were replaced with —a?.

From here on, we will use ¢ = +1 to differentiate between the helicoid (¢ = 1) and catenoid (¢ = —1) cases, respectively,
dr? + (ea 47 )d6?2 + (1 (qmz(e)) )dyz _ €a2 sin (229)dydz + (1 + €a2(cosz((9))2)dzz

dslz\/urku = B s s (24)

VJ1+e%

r

The Kretchmann invariant of the helicoid or catenoid instanton is given by
T2a* 2448

K= 4 a (2.5)

r*(r? + ea®)? + r(r? +ea®)?’

3Conjugate surfaces have the interesting property that a straight line in one surface can be mapped to a geodesic in the other and vice
versa.
*Curiously, Wick rotation ( — ir) plays an important role in instanton physics in both quantum theory and general relativity.
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The helicoid has only a curvature singularity at r =0,
while for the catenoid, there is another singularity at r = a.

III. HELICOID AND CATENOID
SOLUTIONS IN FIVE-DIMENSIONAL
EINSTEIN-MAXWELL THEORY

We consider the source-free Einstein-Maxwell equations
with geometrized units in D dimensions that are given by

1
—
RﬂD_FMFU}._mgﬂDFZ’ (31)
Fi/ =0, (3.2)
where the electromagnetic field tensor is given by
Fu=A,,—A,, (3.3)

in terms of the electromagnetic potential A*. We will take
its only nonzero component as

D-2 1

A =\D3HG)

(3.4)

In five dimensions, we consider the following five-
dimensional (5D) ansatz by adding a time coordinate to
the Nutku helicoid or catenoid instanton:

<a’r2 + (a* + r*)do?

N (1 N az(si;(e))2> 0y — a’ sin(ZZH)dydz
2 2

+ (1 L) (00:2(6)) )dzz).

We find that all Einstein and Maxwell equations are
satisfied if the metric function H(r) satisfies the differential
equation

€<;—;H(r)>a2 + <;—;H(r)> r’+ (%H(r))r =0.

(3.5)

(3.6)
The solutions to Eq. (3.6) are given by
Y )
H(r) = ¢, + CyIn <$) (3.7)

where ¢, and C, are two constants.

The logarithmic solutions above correspond to sinh~! (%)
and cosh™'(£) functions. Interestingly, these functions
appear in the study of collapsing catenoidal soap films
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Plot of H(r):

a=3
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FIG. 1. H(r), for the helicoid and catenoid solutions, with

a=3,¢c,=1,¢c,=6.

[25] and in the embedding of wormhole handles [26].
We note that a submanifold of the 5D helicoidal
spacetime is conformally equivalent to a wormhole handle
[dr? + (a® + r*)d6?] [26,27].

Inspired by the soap film solutions [25], we set ¢; = 1
and C, = c,a’ so that in the limit @ — 0 the metric (3.5)
becomes Minkowski spacetime. Thus, we have

H(r) = 1 + c,asinh™! <§) (3.8)
H(r) = 1 + c,acosh™! G) (3.9)

for the helicoid and the catenoid solutions, respectively.
Figure 1 shows the typical behavior of the metric functions
H(r) for helicoid and catenoid solutions. It is important to
note here that in case of the helicoid the function H(r) can
become negative and hence change the metric signature
from Lorentzian to Riemannian at some radial coordinate r.
Although such signature changes are of interest in quantum
cosmology [28], and may be dealt with through a Wick
rotation, we wish to keep the metric well behaved and thus
require @ > 0 and ¢, > 0.

Figure 2 shows how the electric field may or may not
diverge in the helicoid spacetime, depending on the choice
of constants. The region r < 0 is included in the plots only
to illustrate this behavior.

°In fact, we may even get rid of the constant parameter ¢, by
setting it to be ¢, = 2 in order to match the height function for a
catenoidal soap film. It is useful to keep ¢, for now to illustrate
what it may do to the electric field.
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Electric field E(r) for the helicoid spacetime

-10 -5 0 5 10

c:1=1, 62=0.01, a=3

PHYSICAL REVIEW D 95, 124045 (2017)
Electric field E(r) for the helicoid spacetime
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FIG. 2. The r component of the electric field as a function of r, for the helicoid solution with a = 3, ¢; = 1, ¢, = 0.01 (left) and

a=2,cy =1, c, =1 (right).

The electric field for the catenoid
(a < r < o) is shown in Fig. 3.

If we replace H(r) with H(z,r) in the metric ansatz
(3.5), we can get a dynamic solution to the Einstein-
Maxwell equations with a cosmological constant A, which

is given by

spacetime

2 2
r+vea+r ) (3.10)
a

H(t,r)=1 i-\/Kt—l—czaln<

Again, if we are to avoid the metric signature change while
keeping a and ¢, positive, we should only consider the

Eectric field E(r) for the catenoid spacetime
v
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FIG. 3.
Cy = 2.

E.(r) for the catenoid solution with a =3, ¢; =1,

+\/Kt solution. Figure 4 illustrates the electric field as a
function of r and ¢ for the helicoid and catenoid spacetimes
with a cosmological constant.

IV. CONVOLUTED SOLUTIONS IN
SIX-DIMENSIONAL EINSTEIN-MAXWEL
THEORY BASED ON EMBEDDED
NUTKU INSTANTONS

We consider the six-dimensional metric ansatz,

ds> = —H(r,x)72dt> + H(r, x)*3(dx*> + dslz\,utku), (4.1)
where ds%,,, is the four-dimensional Nutku space with
parameter a which is given by Eq. (2.4). We also consider
the Maxwell gauge field as

2v3
A(r,x) =———. 4.2
t(r X ) 3 H (r’ x) ( )
The gravitational FEinstein’s field equations and the
Maxwell equations provide that the metric function
H(r,x) must satisfy the partial differential equation

2. 2 2
, ja®+7r" 0 ) N
r \/7’2 g H(r,x)+ (r*+a )(_8}"2 H(r, x))

I -

43
g (43)
We can solve the partial differential equation (4.3) by
separating the variables as H(r,x) =1+ R(r)X(x). We
find two ordinary differential equations for R(x) and X(x)
that are given by
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Electric field E(r) for the helicoid spacetime with A
c1=1, cz=1, a=3, A=1
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Electric field E(r) for the catenoid spacetime with A
c1=1, c2=1, a=3, A=1

FIG. 4. E.(r,t) witha=3, ¢, =1, ¢, =1, A =1, for the helicoid solution (left) and at the catenoid solution (right).

2 [ a2\ (@R()r
%R(r) +ec2R(r)< l—l-ﬁ) —l—% =0,
(4.4)

and

ﬁX(x) —ec?X(x) =0,

- (4.5)

respectively. We first consider € = +1, where the solutions
to (4.4) are given by
a’+r?
2

a’ + r?
2

X/W%f 1 .

2= 1)(Hp(0.0,a%c*,0. f))?

R(r) = A/Hp <0, 0,a*c?,0,

—|— AQHD <0, 0, ClzCQ, 0,

(4.6)

in terms of Heun-D functions Hp, and A; and A, are
two constants. We note that the Heun-D functions
Hp(a,p,y,8,z) are the solutions to the Heun double
confluent equation

d? (az* =27 + 47 —a—27) d
d_zzy(z>_ (z=1)3z+1)° dz
(=B + (= = 2@)z2 = 9)

= oy W

¥(z)

(4.7)

with the boundary conditions y(0) =1, £y(0) = 0. In
Fig. 5, we show the typical behavior of the Heun-D

function for a few different values of the separation
constant c.

The solutions to Eq. (4.5) with e = +1 for X(x) are
given by

X(x) = Bje™ + Boe™, (4.8)

where B; and B, are two constants. We can superimpose all
the solutions (4.6) (where we choose A, = 0) and (4.8)
with different values for the separation constant ¢, to
construct the most general convoluted solutions to the
partial differential equation (4.3), in the form

- )
H(r’x)=1+/ HD<0,0,0262,0, — J;r>
0

r

x (f(c)e™ + g(c)e~*)dc, (4.9)

where f(c¢) and g(c) are two arbitrary functions in terms of
separation constant ¢. To fix the arbitrary functions f(c)
and g(c), we note that in the limit of @ — 0 the Nutku space
describes a four-dimensional space D> ® T2 with the line
element

ds’_, = dr* + r’d®* + dy* + dz°. (4.10)

Quite interestingly, in this limit, we find an exact analytical
solution to six-dimensional Einstein-Maxwell theory with
the line element
dS? = —H,(r, x)72dt* + Hy(r,x)*3(dx* + ds>_,)

(4.11)

and the Maxwell gauge field

2V/3

A, (r, x) :m,

(4.12)
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FIG. 5. The function Hp (0, 0,a%c2,0, 4 /‘%’2) vs r, where we set a = 1, ¢> = 1 (left) and a = 1, ¢* = 0.1 (right).

where the exact analytic metric function Hy(r, x) is

ho
Vi + 22

and hg is a constant. We can now fix the functions f(c)
and g(c) by requiring that the metric (4.1) and the gauge
field (4.2) must approach the exact analytical metric
(4.11) and the gauge field (4.12), respectively, in the limit
of a — 0. These requirements imply that the convoluted
metric function H(r, x) in Eq. (4.9) must be equal to the
exact analytic metric function Hy(r,x) in Eq. (4.13), in
the limit of @ — 0. The integrand of the convoluted
metric function H(r, x) in Eq. (4.9) contains the Heun-D
function, which is the solution to the differential equa-
tion (4.4) with € = +1. This equation in the limit of a —
0 reduces to

Hy(r,x) =1+ (4.13)

d? %R(r)
mR(r) + czR(r) + = 0,

(4.14)

for which the solutions are given by the Bessel functions
Jo(cr) and Yy(cr). The Bessel function Y((cr) does not
provide an oscillatory decaying behavior similar to that of
Heun-D functions. However, the Bessel function Jy(cr)
provides such a desired behavior.

So, we find an integral equation for the functions f(c)
and g(c), which is

ho

T (4.15)

A ® Jo(en(f(e)e™ + gle)e*)de =

We find that the unique solutions to this integral equation
for the functions f(c) and g(c) are given by

_ho

e glo) =2

f(e) =5

519 (416)

where £, and &, are constants and &; + &, = 1. Furnished
by all the necessary results, we have the most general
solution for the convoluted metric function H(r, x), which

is given by
a*+r?
2

(4.17)

h
H(r,x) =1+?0

“H, (0, 0.a2c2.0.
0

X (e + (1 = &)e™)dc,
where Ay and £ are two constants.

V. CONVOLUTED SOLUTIONS IN HIGHER-
DIMENSIONAL EINSTEIN-MAXWELL THEORY
BASED ON EMBEDDED NUTKU INSTANTONS

In this section, we find the general convoluted solutions
for the embedding of Nutku geometry in higher-than-six-
dimensional Einstein-Maxwell theory. We consider the
metric in D dimensions as

ds* = —H(r,x)72d?

+ H(r, x)p5(dx? 4 x2dQ3 ¢ + dsk,),  (5.1)
where dQ%_6 shows the metric on a (D — 6)-dimensional
unit sphere. We consider the gauge field with the nonzero
component

D-2 1

D-3H(r,x)’

A = (5.2)

We find that all the D-dimensional FEinstein and
Maxwell equations are satisfied if the metric function

124045-6
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H(r,x) provides a solution to the partial differential
equation

2 _
rva*+r? <%H(r,x) +D 6%H(r, x))

X

+(r* +a%) <§—:2H(r, x)) + <%H(r, x)>r —0.
(5.3)

As in the six-dimensional case, we separate the coordinates
in H(r,x) by H(r,x) =1+ R(r)X(x). The partial differ-
ential equation (5.3) then separates into two ordinary
differential equations for R(r) and X(x). The differential
equation for the radial function R(r) is given by (4.4) where
the solutions are given in terms of Heun-D functions and
the differential equation for X(x) is

P ) D - 6dX(x)
WX(X)—é‘C X(x)—I— X dx

=0. (54

The solutions to (5.4) with ¢ =1 for D > 6 are given by

1-D 1-D

X(x) = x2 Ipa(cx) + x72 Koa(ex), (5.5)

in terms of modified Bessel functions. As a result, we can
write the most convoluted solution for the metric function
in D dimensions Hp(r, x) as
a’ + r?
2

X (Fpl)les(ex) + gn(e)Koa(ex) ¥ 2de,
(5.6)

Hp(r.x) =1+ Am Hp (0, 0, .0,

where fp(c) and gp(c) are two arbitrary functions in terms
of separation constant c. We need to fix these two arbitrary
functions to find a closed form for the metric function
H(r,x) in D dimensions. As in the case of six-dimensional
theory, we consider the limit of a — 0, where the Nutku
space reduces to D?> ® T2, with the line element (4.10).
In this limit, we find an exact analytical solutions to
D-dimensional Einstein-Maxwell theory with the line
element

d82 = —HD()(I", .X)_zdtz + HDo(r, X)ﬁ

X (dx® + x*dQ3_( +ds>_) (5.7)
and the Maxwell gauge field
D-2 1
=\ 5.8
Adr.x) D =3 Hpy(r,x)’ (5:8)

where the exact analytic metric function H p(r, x) is

PHYSICAL REVIEW D 95, 124045 (2017)

h
HDO(F,X) =1 +(7'2_|_7on2)0%5’ (59)

where hpq is a constant. To fix the functions fp(c) and
gp(c), we demand that the metric (5.1) and the gauge field
(5.2) must reduce to the exact analytical metric (5.7) and
the gauge field (5.8), respectively, in the limit of @ — 0. In
other words, these requirements imply that the convoluted
metric function Hp(r, x) in Eq. (5.6) must be equal to the
exact analytic metric function H po(r, x) in Eq. (5.9), in the
limit of @ — 0. As in the case of six-dimensional solutions,
the integrand of the convoluted metric function Hp(r, x) in
Eq. (5.6) contains the Heun-D function, which is the
solution to the differential equation (4.4) with ¢ = +1.
This equation in the limit of a — 0 reduces to Eq. (4.14),
for which the solutions are given by the Bessel functions
Jo(cr) and Yo(cr).

As aresult, we find an integral equation for the functions
fp(c) and gp(c), which is

A " Jo(er) (Fp(e)Iea(cx) + gp(e)loa(ex))x'Fde

hpo
_ . 5.10
(P +x2)7 (5.10)

After lengthy calculations, we find that the unique solutions
to this integral equation for the functions f(c¢) and gp(c)
are given by

D-5
gp(c) = Ofl)hpocu2 )

where ap’s are given by a;=1,03 = \/:,(Zg =

ayg = % \/%, -+ -. So, we can write the most general solution

for the convoluted metric function Hp(r,x), which is
given by
2+ 2
2

(5.12)

HD(V,X) =1 +aDl/lD0 /oo HD (0,076126’2’0,
0

We also note that asymptotically a two-dimensional sub-
manifold of our solutions (4.1) and (5.1) represents the
handle of an Ellis wormhole [27].

VI. COSMOLOGICAL CONVOLUTED SOLUTIONS
TO THE EINSTEIN-MAXWELL THEORY WITH A
COSMOLOGICAL CONSTANT

We consider the Einstein-Maxwell theory with a cos-
mological constant in six dimensions, where the metric
function H also depends explicitly on time coordinate

124045-7
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ds? = —H(t,r,x)72dt* + H(t, r,x)*3(dx* + dsZu)-

(6.1)
We also consider the Maxwell gauge field as
2V3
At rx) = 6.2
((87.%) 3H(t,r,x) (62)

The Einstein equations and Maxwell equations in the
presence of a cosmological constant lead to a second-order
partial differential equation for H(¢, r, x), which is given by

5 (OH\? 3A\ ., (O°H H
DT _ 2R\ 53 Oy g 07
r<<3<ar) 2>H +<3IZ>H ax2>

0’H OH
X\/a2+r2—(a2—|-l’2)——"—:0-

or? or (6.3)

The form of partial differential equation (6.3) leads us to
separate the coordinates as

H(t,r,x) =1+T(t) + R(r)X(x). (6.4)
We find three ordinary uncoupled differential equations
for R(r), X(x), and T(¢) functions. The partial differential
equations for R(r) and X(x) are given by Egs. (4.4) and
(4.5), and the solutions to the differential equation for
T(t) are

T(f) = at + p, (6.5)

where a = 3\/% and f is an arbitrary constant. Requiring

in the limit of A — 0 that the solution (6.4) for the metric
function H(t, r, x) approaches the metric function H(r, x)
in asymptotically flat spacetime yields = 0. Moreover,
we find the exact analytical nonstationary solutions to
Einstein-Maxwell theory with a cosmological constant,

dS? = —Hy(t, r,x)72dP* + Hy(t, r, x)*3(dx® + ds?_,),

(6.6)
and the time-dependent Maxwell gauge field
2v3
LT X) =77, 6.7
At( V)C) 3H0([,V,X) ( )

where the exact analytic metric function Hy(z,r,x) is
given by

Hy(t,r,x)=1+3 (6.8)

A, o

Ve
and hy is a constant. We note that ds2_, in Eq. (6.6) is
given by Eq. (4.10). We then can find the most general
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convoluted cosmological nonstationary solutions in six-
dimensional Einstein-Maxwell theory with a cosmological
constant where the metric function H(z, r, x) approaches
Hy(t,r,x) in the limit of a — 0. The metric function
H(t,r,x) is equal to

A
H(t,r,x) =1+34y/—t
(t,r2) =143/ 15

ho

2

) 2 2
Hp <o, 0, 22,0, W)
0 I

X (Ee™ 4+ (1 = &)e N)dc, (6.9)

where h, and £ are two constants. The result (6.9) for the
metric function H(z, r,x) in six dimensions can simply be
generalized to solutions in D dimensions, where we get

Hp(t,r,x) =1+ <D_3)”(D—12)%t

o 2. 2
+aDhDOA Hp [ 0.0.a2c2,0,1/2 “;r>

r

(6.10)

As we notice, the general solutions for the metric
functions (6.9) and (6.10) describe the asymptotically
de Sitter (dS) spacetime. We can find the cosmological
¢ function for the solutions in the context of dS/CFT
correspondence. As is well known, for any D-dimensional
asymptotically dS spacetime, one may define the
¢ function [29]

¢~ (Gyn'n*)'=P/2, (6.11)
where n# is the unit vector along the time coordinate. If
we have an expanding patch of dS, the flow of the
renormalization group is toward the high-energy region,
and the ¢ function is a monotonically increasing function
in terms of the time coordinate. On the other hand, a
contracting patch of dS, the flow of the renormalization
group is toward the low-energy region, and the ¢ function
is then a monotonically decreasing function in terms of
the time coordinate. For example, the ¢ function for the
D-dimensional solutions, given by the metric function
(6.10), describes expanding patches of dS in different
dimensions.

VII. CONCLUDING REMARKS

Inspired by the existence of helicoid-catenoid instantons
in four dimensions, we constructed exact solutions to the
five- and higher-dimensional Einstein-Maxwell theory with
and without a cosmological constant. The solutions in five
dimensions are given by the line element (3.5), the gauge
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field (3.4), and the metric functions (3.7). We discussed the
physical properties of the solution. We also found exact
convolutedlike solutions to six- and higher-dimensional
Einstein-Maxwell theory in which the metric functions are
convoluted integrals of two special functions with some
measure functions. We fixed the measure functions for all
the solutions by considering the solutions in some appro-
priate limits and comparing them with some other exact
solutions in D dimensions that are given by Eqgs. (4.1) and
(5.7) with the metric functions (4.17) and (5.9), respec-
tively. We used a special separation of variables to construct
the solutions to Einstein-Maxwell theory with a positive
cosmological constant. In this case, the metric function
depends on time and two spatial directions. The solutions

PHYSICAL REVIEW D 95, 124045 (2017)

are given by the metric (6.1) and gauge field (6.2) where the
cosmological metric functions in six and higher-than-six
dimensions are given by Egs. (6.9) and (6.10), respectively.
We constructed the ¢ functions and noticed that for all the
cosmological convoluted solutions the c¢ function is a
monotonically increasing function in agreement with the
¢ theorem for asymptotically dS spacetimes. As noted in
Ref. [23], the issue of singularities remains unresolved and
needs further analysis.
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