
NUT-like and near-horizon limits of Kerr-NUT-(A)dS spacetimes
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We study a class of limits of the higher-dimensional Kerr-NUT-(A)dS spacetimes where particular roots
of metric functions degenerate. Namely, we obtain the Taub-NUT-(A)dS and the extreme near-horizon
geometries as two examples of our limiting procedure. The symmetries of the resulting spacetimes are
enhanced which is manifested by the presence of supplementary Killing vectors and decomposition of
Killing tensors into Killing vectors.
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I. INTRODUCTION

Two very important vacuum solutions of the four-
dimensional Einstein equations were found in the same
year 1963, the Kerr spacetime [1] and the Taub-NUT
(Newman-Unti-Tamburino) spacetime [2]. The nonsta-
tionary part (the Taub region) was known even earlier
[3]. They both are one-parametric generalizations of the
Schwarzschild solution, but only the Kerr solution has a
clear physical interpretation.
The Kerr spacetime describes the gravitational field of

a rotating black hole with a spherical horizon topology.
It is well understood and agrees with many physical
observations. On the contrary, the Taub-NUT spacetime
has many undesirable features and pathologies such as the
existence of closed timelike curves, the semi-infinite
topological singularity on the axis, no (global) asymptotic
flatness, and others. For this reason it is often presented as
“a counterexample to almost anything” [4].
Despite many attempts (see e.g. [5]) the Taub-NUT

spacetime has not been satisfactory interpreted yet. The
NUT parameter is often referred to as the magnetic mass or
the gravitomagnetic monopole moment, due to the simi-
larities with the theory of the magnetic monopoles [6]. For
instance, all geodesics of the stationary part (the NUT
region) lie on spatial cones as the classical orbits of charged
particles under the action of a charged magnetic monopole.
In this analogy, the semi-infinite singularity on the axis of
the Taub-NUT solution resembles the Dirac’s string [7], i.e.
the object which connects monopoles with opposite polar-
ity. However, contrary to the semiaxis in the Taub-NUT
solution, which affects the spacetime, the Dirac’s string has
no effect at all. The semi-infinite singularity can thus be
considered as a thin massless (semi-infinite) spining rod
injecting angular momentum into the spacetime [8].
These solutions were generalized by inclusion of a

cosmological constant as well as a charge, and presented

as a single solution admitting separability of charged
Hamilton-Jacobi and Klein-Gordon equations [9] in
1968. This exceptional property was found later to be
associated with the existence of a rank-two Killing tensor.
The most general family of four-dimensional type D
spacetimes with an aligned non-null electromagnetic field
and a cosmological constant is now known as the
Plebiański-Demiański class [10], which contains seven
arbitrary parameters. Although the parameters are often
interpreted as mass, rotation, NUT, electric/magnetic
charge parameters, and a cosmological constant, they
acquire their traditional physical meaning in special
subcases only. In particular, there is still an ambiguity
in what the parameters responsible for rotations and NUT-
like pathologies are. Nevertheless, Griffiths and Podolský
were able to introduce a new coordinate system and a set
of parameters that are natural for identifying many special
subcases [11,12] such as the Kerr-(A)dS, the Taub-NUT-
(A)dS, the C-metric, etc.
Apart from the spacetimes available as a particular

subcases, some spacetimes can be obtained by taking
limits such as the near-horizon limit. The near-horizon
geometry of the extreme Kerr black hole [13] is in many
aspects similar to the AdS2 × S2 geometry arising in the
near-horizon limit of the extreme Reissner-Nordström
black hole. For example, by taking the limit of Kerr
solution the symmetry of spacetime is enhanced to
SLð2;RÞ × Uð1Þ, which is accompanied by the emergence
of two new Killing vectors. These results were generalized
to the presence of an arbitrary cosmological constant, and it
was shown that the Killing tensor in the near-horizon
geometry is reducible and can be expressed in terms of the
Casimir operators formed by four Killing vectors [14–17].
Recently it was noted that such a Killing tensor can be
constructed even in near-horizon limits of spacetimes that
do not admit separability of the charged Klein-Gordon
equation [18].
Higher-dimensional solutions of the Einstein equations

became popular in connection with the string theory and
AdS=CFT correspondence, however, they are important also
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just from the mathematical point of view. The search for the
higher-dimensional black hole solutions began also in 1963,
when Tangherlini introduced the generalization of the spheri-
cally symmetric solution. The spacetime describing a gen-
erally rotating black holewas discovered byMyers and Perry
[19] in 1986. The solution was further generalized by
inclusion of a cosmological constant [20–22]. In 2006,
Chen, Lü, and Pope introduced coordinates which made
the inclusion of NUT parameters very natural [23,24]. Such
geometries are known now as the Kerr-NUT-(A)dS space-
times. Even though they were found by a rather complicated
way (through the Kerr-Schild form), they are direct general-
izations of the Carter’s separable metric [25]. Unlike in four
dimensions, neither charged nor accelerated solution have
been found yet, so the Kerr-NUT-(A)dS still remain the most
general higher-dimensional black hole solutions with a
spherical horizon topology. In 2004, Mann and Stelea found
the higher-dimensional Taub-NUT-(A)dS solution [26,27]
from the ansatz constructed as radial extensions of U(1)
fibrations over 2-spheres.
The Kerr-NUT-(A)dS spacetimes have many exceptional

properties that are related to a high degree of symmetry
encoded in the existence of a tower of Killing vectors and
Killing tensors, which can be constructed from a closed
conformal Killing-Yano tensor [28–30]. In particular, the
geodesic motion is completely integrable [31,32], the
Hamilton-Jacobi, Dirac, and Klein-Gordon equations are
separable [33–36]. Several limits of the Kerr-NUT-(A)dS
spacetimes were studied including the near-horizon limits
[37–39] and the limits leading to warped spaces [40],
however, all possible subcases have not been identified yet.
The purposeof this paper is to investigate a particular class

of limits, which lead, for example, to the Taub-NUT-(A)dS
spacetime and the extreme near-horizon geometry. The
paper is organized as follows: In Sec. II we briefly summa-
rize some properties of the general higher-dimensional Kerr-
NUT-(A)dS spacetimes. Also, we investigate a choice of
parameters and ranges of coordinateswhich could describe a
black hole and introduce a useful tangent-point parametri-
zation of a polynomial which appears in the Kerr-NUT-(A)
dS metric. Section III is devoted to the limiting procedure
itself. We present an appropriate scaling of coordinates
which leads to a finite metric. Moreover, we discuss the
symmetry enhancement associated with the presence of
additional Killing vectors. In Sec. IV, we provide particular
examples of our limiting procedure when applied to the
Euclidean sector. This results in NUT-like limits such as the
Taub-NUT-(A)dS spacetime. Applications to the Lorentzian
sector are examined in Sec. V. It gives rise to the extreme
near-horizon limit. Finally, we study a limit when all
directions degenerate in Sec. VI. We conclude with a brief
summary in Sec.VII. An overview of the notation and useful
identities are listed in Appendix A. The connection forms of
the Kerr-NUT-(A)dS spacetime and the limiting metric are
given in Appendix B.

II. KERR-NUT-(A)DS SPACETIMES

A. Metric

The Kerr-NUT-(A)dS spacetimes in 2N dimensions1 are
given by the metric

g ¼
X
μ

�
Uμ

Xμ
dx2μ þ

Xμ

Uμ

�X
k

AðkÞ
μ dψk

�
2
�
: ð2:1Þ

Here, greek and latin indices take values

μ; ν;… ¼ 1;…; N;

k; l;… ¼ 0;…; N − 1: ð2:2Þ

We do not use Einstein summation convention for these
indices, but we write just

Q
μ or

P
k if products and sums

run over these default ranges of indices.
In order for the metric to satisfy the Einstein equations,

the functions Xμ must have the form

Xμ ¼ λJ ðx2μÞ − 2bμxμ; ð2:3Þ

where J ðx2Þ is an even polynomial of degree 2N in x,
which can be parametrized using its roots

J ðx2Þ ¼
Y
μ

ða2μ − x2Þ: ð2:4Þ

The functions Uμ and AðkÞ
μ are explicit polynomial expres-

sions in coordinates xμ,

AðkÞ
μ ¼

X
ν1 ;…;νkν1<…<νk
νj≠μ

x2ν1…x2νk ; Uμ ¼
Y

ν
ν≠μ

ðx2ν − x2μÞ: ð2:5Þ

All these and related quantities, together with several
identities they satisfy, are collected in Appendix A.
Metric (2.1) contains N parameters aμ and N parameters

bμ. Thanks to a scaling symmetry of the metric, one of the
parameters aμ can be fixed to a chosen value. For example,
a common Lorentzian gauge is (2.27). The parameter λ is
related through the Einstein equations to the cosmological
constant as

Λ ¼ ð2N − 1ÞðN − 1Þλ: ð2:6Þ

Geometry (2.1) can represent various spaces with regard
to different ranges of coordinates. Moreover, some coor-
dinates and parameters can be considered complex pro-
vided that the metric remains real. As will be discussed in

1We restrict ourselves to even dimensions for simplicity. The
odd-dimensional case could by analyzed in a similar manner,
only additional terms related to the odd dimension would be
present.
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the next subsection, in the Lorentzian regime (with Wick
rotated quantities), and for a particular choice of ranges of
coordinates, this metric represents a black hole rotating in
N − 1 independent planes of rotations, with NUT param-
eters, and the cosmological constant. An interpretation of a
general case is, however, more complicated and not
sufficiently clarified.
The coordinates ψk are Killing coordinates in angular

directions of the corresponding rotational symmetries,
which are described by N Killing vectors

lðkÞ ¼
∂

∂ψk
: ð2:7Þ

Spatial coordinates xμ are restricted between adjacent zeros
of Xμ, which correspond to fixed points of these rotational
symmetries (in the Lorentzian case they are related to
horizons of the temporal Killing vector). In particular, zeros
of X1 defining the range of x1 represent (at least part of) the
north and south semiaxes of the corresponding rotational
symmetry. Moreover, the intervals of coordinates xμ should
be mutually distinct to avoid singularities due to zeros of
functions Uμ.
It is useful to define the orthonormal frame of one-forms,

eμ ¼
�
Xμ

Uμ

�
−1
2

dxμ; êμ ¼
�
Xμ

Uμ

�1
2
X
k

AðkÞ
μ dψk; ð2:8Þ

and the corresponding dual vector frame [cf. (A10)],

eμ ¼
�
Xμ

Uμ

�1
2 ∂
∂xμ

;

êμ ¼
�
Xμ

Uμ

�
−1
2
X
k

ð−x2μÞN−k−1

Uμ

∂
∂ψk

: ð2:9Þ

The metric is then simply given by

g ¼
X
μ

ðeμeμ þ êμêμÞ: ð2:10Þ

Apart from the explicit symmetries lðkÞ, the metric (2.1)
also possesses hidden symmetries encoded by N rank-two
Killing tensors

kðkÞ ¼
X
μ

AðkÞ
μ ðeμeμ þ êμêμÞ: ð2:11Þ

Moreover, all the symmetries lðkÞ and kðkÞ can be generated
from the principal closed conformal Killing-Yano tensor
[30]

h ¼
X
μ

xμeμ ∧ êμ: ð2:12Þ

Since a linear combination of Killing vectors forms
again a Killing vector, it is not clear which Killing
coordinates should be regarded as periodic. Typically,
these are not ψk, but it is possible to identify different
coordinates associated with vectors that vanish at zeros
of Xμ resembling the rotational symmetry in four dimen-
sions. We will not discuss this in more detail, but the first
step is to introduce Killing coordinates ϕμ related to
coordinates ψk through a linear transformation labeled by
some fixed values x

̥
μ,

ψk ¼
X
ν

ð−x̥ 2νÞN−k−1

U
̥
ν

ϕν; ϕμ ¼
X
l

A
̥ ðlÞ
μ ψ l: ð2:13Þ

The associated Killing vectors are thus2

r
̥
ðμÞ ¼

X
k

ð−x̥ 2μÞN−k−1

U
̥
μ

lðkÞ ¼
∂

∂ϕμ
: ð2:14Þ

The circle ̥ above Uμ and AðkÞ
μ indicates that U

̥
μ and A

̥ ðkÞ
μ

are constructed using x
̥
μ instead of xμ. Equivalence of both

relations in (2.13) follows from the identities analogous to
(A10) and (A11). In these coordinates the metric (2.1)
takes the form

g ¼
X
μ

�
Uμ

Xμ
dx2μ þ

Xμ

Uμ

�X
ν

Jμðx
̥
2
νÞ

U
̥
ν

dϕν

�
2
�
; ð2:15Þ

and the orthonormal frame of one-forms (2.8) and vectors
(2.9) read

eμ ¼
�
Xμ

Uμ

�
−1
2

dxμ; êμ ¼
�
Xμ

Uμ

�1
2
X
ν

Jμðx
̥
2
νÞ

U
̥
ν

dϕν; ð2:16Þ

and

eμ¼
�
Xμ

Uμ

�1
2 ∂
∂xμ

; êμ¼
�
Xμ

Uμ

�
−1
2
X
ν

J
̥
νðx2μÞ
Uμ

∂
∂ϕν

; ð2:17Þ

respectively. The polynomial Jμ (and J
̥
ν) is defined by

(A3). The duality can be verified by employing relations
analogous to (A12) (with x

̥
μ instead of aμ).

2In our discussion, x
̥
μ are arbitrary parameters. However, the

metric is regular with the periodic coordinates ϕμ only if x
̥
μ are

zeros of Xμ, because then the Killing vectors ∂ϕμ
can vanish at the

endpoints xμ ¼ x
̥
μ.
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By analogy with Eq. (2.14), we also introduce new
rank-two Killing tensors

q
̥
ðμÞ ¼

X
k

ð−x̥ 2μÞN−k−1

U
̥
μ

kðkÞ ¼
X
ν

Jνðx
̥
2
μÞ

U
̥
μ

ðeνeν þ êνêνÞ:

ð2:18Þ

B. Black hole

The metric (2.1) describes various spaces for different
choices of parameters and ranges of coordinates, but a lot of
them are interesting just from the mathematical point of
view. In this subsection we try to highlight such choices
which seem to describe physically interesting spacetimes.
We begin with the requirements on the signature of the
metric.
The Lorentzian signature can be obtained by the Wick

rotation of one x coordinate, say xN, and by choosing the
corresponding parameter bN to be imaginary,

xN ¼ ir; bN ¼ im: ð2:19Þ

Thus, we assume r,m, as well as the remaining coordinates
xμ̄ and parameters bμ̄ to be real. The parameters aμ can still
be complex, however, the polynomial J must remain real.
We also rename the Killing variables

T ¼ ψ0; χk̄ ¼ ψ k̄þ1: ð2:20Þ

Here, the “barred” indices take values

μ̄; ν̄;… ¼ 1;…; N̄;

k̄; l̄;… ¼ 0;…; N̄ − 1; ð2:21Þ

with N̄ ¼ N − 1.
With these conventions, the metric (2.1) can be

rewritten as

g ¼ −
Δ

J̄ð−r2Þ
�
dT þ

X
k̄

Āðk̄þ1Þdχ k̄

�
2
þ J̄ð−r2Þ

Δ
dr2

þ
X
μ̄

�ðr2 þ x2μ̄ÞŪμ̄

X μ̄
dx2μ̄ þ

X μ̄

ðr2 þ x2μ̄ÞŪμ̄

×

�
dT þ

X
k̄

ðĀðk̄þ1Þ
μ̄ − r2Āðk̄Þ

μ̄ Þdχk̄
�

2
�
; ð2:22Þ

The barred quantities are defined by the same relations as
the ordinary ones, just involving only coordinates xμ̄. We
also introduced new symbols for the metric functions,

Δ ¼ −XN ¼ −λJ ð−r2Þ − 2mr;

X μ̄ ¼ −Xμ̄ ¼ −λJ ðx2μ̄Þ þ 2bμ̄xμ̄:
ð2:23Þ

The metric (2.22) has the Lorentzian signature, provided
that the parameters aμ̄, λ, and bμ̄ are set so that the condition

X μ̄

Ūμ̄
> 0 ð2:24Þ

is satisfied for all values of xμ̄. It can be achieved by
restricting xμ̄ to intervals between adjacent roots ∓xμ̄ of the
polynomials X μ̄,

−xμ̄ < xμ̄ < þxμ̄; ð2:25Þ

in such a way that the intervals for different xμ̄ do not
overlap and we thus avoid the zeros of the functions Ūμ̄.
Without loss of generality, we assume that

x21 < x22 < … < x2N̄ : ð2:26Þ

Moreover, we choose the gauge condition

a2N ¼ −
1

λ
; ð2:27Þ

which guarantees that the metric has well-defined limit
λ → 0, because λJ jλ¼0 ¼ −J̄ .
We are particularly interested in a few important exam-

ples of such a choice. First, let us consider that all
parameters aμ̄ are real (and positive),

0 < a1 < a2 < … < aN̄; ð2:28Þ

and bμ̄ vanish. Then the polynomials X μ̄ ¼ −λJ ðx2μ̄Þ have
a common set of roots �aμ̄, see Fig. 1. In order to satisfy
(2.25) and (2.26), we choose the endpoints �xμ̄ of the
coordinates xμ̄ as follows:

−x1 ¼ −a1; þx1 ¼ a1;
−x2 ¼ a1; þx2 ¼ a2;
−x3 ¼ a2; þx3 ¼ a3;

..

. ..
.

ð2:29Þ

As a result, the coordinates xμ̄ are restricted by the intervals

−a1 < x1 < a1 < x2 < a2 < � � � < xN̄ < aN̄: ð2:30Þ

Furthermore, we assume that the cosmological constant is
sufficiently small. In particular we require that
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jλj < 1

a2N̄
: ð2:31Þ

This condition implies that the roots �1=
ffiffiffiffiffiffi
−λ

p
, of the

polynomial λJ ðx2Þ for λ < 0 are far from the other roots
and cannot influence the signature, because they are outside
of the ranges of coordinates xμ̄. On the other hand, for
λ > 0, the condition (2.31) guarantees that the shape of the
function λJ ðx2Þ is not modified near the origin due to the
imaginary roots �i=

ffiffiffi
λ

p
. In particular, it has a minimum at

x ¼ 0, since

ðλJ ðx2ÞÞ00jx¼0 ¼ 2ĀN̄

�X
μ̄

1

a2μ̄
− λ

�
> 0: ð2:32Þ

For λ ¼ 0, real or imaginary roots corresponding to a2N
disappear.
Under the described assumptions, the metric reduces

to the well-understood Myers-Perry solution with an
arbitrary cosmological constant, also known as the
higher-dimensional Kerr-(A)dS spacetime. This solution
describes a black hole which arbitrarily rotates in N̄
different planes, aμ̄ are rotational parameters and m is its
mass. Coordinate r stands for a radial-type coordinate and
xμ̄ are the latitudinal directions. Coordinates T and χk̄
correspond to timelike and spatial Killing coordinates.
Now we turn to the case of nonzero parameters bμ̄. These

parameters are often called NUTs (or NUT charges),
because they bring the NUT-like behavior in our spacetime.
However, as we will discuss later, their meaning varies in
several subcases.
There are many options how to choose intervals of the

coordinates to preserve the Lorentzian signature when
bμ̄ ≠ 0. Our intention is not to describe all such possible
choices, but rather select the ones which seem reasonable
and give interesting spacetimes for the particular limiting
values of parameters aμ̄ and bμ̄. Here, the roots of the

polynomials X μ̄ are not just �aμ̄ anymore. They do not
even coincide for different indices μ̄, since the polynomials
differ by the linear term which is proportional to the
parameter bμ̄, see (2.23). Although it is impossible to find
analytic expressions for the roots of polynomials X μ̄ in this
case, we can learn at least something about them from the
pictures of the intersections of the polynomial λJ ðx2Þ and
the lines passing through the origin, 2bμ̄x, see Fig. 2.
So far we have assumed that all aμ̄ are real, cf. (2.28), but

we can extend our discussion to the case where one of the
parameters aμ̄, say a1, becomes imaginary (and small),
while the others remain real (and positive)

a1 ¼ i ~a1;

0 < ~a1 < a2 < a3 < � � � < aN̄:
ð2:33Þ

As with the previous case, this situation can also be
analyzed graphically, see Fig. 3.

FIG. 1. Graph of the polynomial λJ ðx2Þ for real (positive)
parameters aμ̄, vanishing parameters bμ̄, and λ < 0. Roots of this
polynomial determine the ranges of coordinates, see (2.30).

FIG. 2. Graph of the polynomial λJ ðx2Þ for the Kerr-like
choice of parameters and ranges of coordinates. Intersections of
the polynomial and the lines 2bμ̄x passing through the origin
determine the ranges of coordinates, see (2.25), (2.38).

FIG. 3. Graph of the polynomial λJ ðx2Þ for the NUT-like
choice of parameters and ranges of coordinates. Intersections of
the polynomial and the lines 2bμ̄x passing through the origin
determine the ranges of coordinates, see (2.25), (2.40).
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We see from the Fig. 2 and Fig. 3 that the polynomial
λJ ðx2Þ with (2.28) and with (2.33) differs qualitatively
only near the origin. Far from the origin, there are just
alternating “hills” and “valleys” (positive parts with
maxima and negative parts with minima). Thus, we see
that in order to avoid overlaps and get Lorentzian signature
[see (2.25) and (2.26)] we can assume that parameters bμ̄,
except the first one, have alternating signs,

0 < b2 < b̂2; b̂3 < b3 < 0;

0 < b4 < b̂4; b̂5 < b5 < 0;

..

. ..
.

ð2:34Þ

The lines 2bμ̄x then cut the polynomial λJ ðx2Þ through
the corresponding hills and valleys. These intersections
correspond to roots of X μ̄. We can select such intersections
from among all the roots and choose them to be our
endpoints �xμ̄,

−x2 < x̂2 < þx2 < a2 < � � � < −xN̄ < x̂N̄ < þxN̄ < aN̄:

ð2:35Þ

We defined constants b̂μ̄ to be critical values of parameters
bμ̄ for which the roots �xμ̄ merge into a single double root
x̂μ̄, i.e., they satisfy

X μ̄ðx̂μ̄Þjbμ̄¼b̂μ̄
¼ 0; X 0̄

μðx̂μ̄Þjbμ̄¼b̂μ̄
¼ 0: ð2:36Þ

Graphically, it means that x̂μ̄ label tangent points at which

the lines 2b̂μ̄x touch the polynomial λJ ðx2Þ, see Fig. 2
and Fig. 3.
In order to specify the range of the coordinate x1, we

have to distinguish the two situations. For aμ̄ real (Fig. 2),
we choose the parameter b1 so that it satisfies

0 < b1 < b2 ð2:37Þ

and we suppose that the endpoints of the coordinate x1 are
given by the relation

−a1 < −x1 < 0 < a1 < þx1 < −x2: ð2:38Þ

For a1 imaginary (Fig. 3), we assume

0 < b̂1 < b1 < b2 ð2:39Þ

and

0 < −x1 < x̂1 < þx1 < −x2: ð2:40Þ

We call these two alternative choices of parameters and
ranges of coordinates the Kerr-like and NUT-like choices,

respectively, for reasons which will be explained bellow.
The main difference between them is that the former admits
the limit of vanishing parameters bμ̂ → 0 while the latter
does not, because the parameter b1 is bounded from below
by the critical value b̂1.
Four dimensions are quite special, since there is just

one coordinate x and one parameter b. We drop the index
1 here, x ¼ x1, b ¼ b1, etc. Unlike the higher-dimensional
case, the parameter b is unbounded from above if λ ≥ 0, but
for λ < 0 it must not exceed a value of a slope of a tangent
line to the hill related to the root 1=

ffiffiffiffiffiffi
−λ

p
. Consequently,

the endpoint þx is also less than the corresponding
tangent point.
Returning to the arbitrary number of dimensions, it

should be stressed that the choice (2.40) is not always
possible. The reason is that the polynomial λJ ðx2Þ
admits tangent lines with tangent points between 0 an
a2 (i.e. the lines 2b̂1x, 2b̂2x with tangent points x̂1, x̂2)
only for some particular values of parameters aμ̄ and λ.
This means that if we, for example, increase the
parameter ~a1 and keep the other parameters fixed, the
lines 2b̂1x, 2b̂2x, and all lines in-between, approach each
other until they finally cease to exist, see Fig. 3. Without
these lines the ranges of coordinates x1, x2 are not well
defined.
As will be discussed in the next subsection [see (2.57)

below], the problem of existence of tangent points x̂1, x̂2
leads to the condition

λJ ðx̂2μ̄Þ − 2λx̂2μ̄J
0ðx̂2μ̄Þ ¼ 0; μ̄ ¼ 1; 2; ð2:41Þ

which, unfortunately, cannot be solved explicitly in a
general number of dimensions. In four dimensions,
J ðx2Þ ¼ ð ~a2 þ x2Þð1=λþ x2Þ and the condition (2.41)
reads

3λx̂4 þ ð1þ λ ~a2Þx̂2 − ~a2 ¼ 0: ð2:42Þ

Solving this equation, we can find that the tangent point x̂
exists iff

λ ≥ 0 or λ < 0; ~a <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 − 4

ffiffiffi
3

p

−λ

s
: ð2:43Þ

Therefore, under this assumption, the coordinate x has
well-defined endpoints �x. In six dimensions and for
vanishing cosmological constant, λJ ¼ð ~a21þx2Þða22−x2Þ
and the condition (2.41) gives again biquadratic equation,

3x̂4μ̄ þ ð ~a21 − a22Þx̂2μ̄ þ ~a21a
2
2 ¼ 0; μ̄ ¼ 1; 2: ð2:44Þ

Similarly, it says that the tangent points x̂1, x̂2 exist (and lie
between 0 and a2) iff
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~a1 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 − 4

ffiffiffi
3

pq
a2: ð2:45Þ

In higher dimensions (or/and with nonzero cosmological
constant), the condition (2.41) for tangent points x̂1, x̂2, leads
to higher degree polynomial equations and finding the
explicit conditions of their existence is more difficult.
Instead of trying to find x̂1, x̂2 in these cases, we simply
assume that such solutions exist and determine the ranges of
coordinates.
With such choices of parameters and ranges of coor-

dinates, we believe that the metric (2.22) still represents a
geometry of a rotating black hole with NUT charges and the
cosmological constant. However, an exact relation of the
parameters to physical quantities is still not completely
clarified. In particular, it is not obvious which parameters
describe rotations and which are actually responsible for
effects caused by NUT charges. Nevertheless, it seems
reasonable to distinguish the two regimes of the rotating
black hole with NUT charges. In particular, the spacetime
with real parameters aμ̄, and small parameters bμ̄,

jbμ̄j≲ 1; ð2:46Þ

represents a Kerr-like (rotating) black hole with small NUT
charges. On the other hand, the choice with one imaginary
parameter a1, and parameters bμ̄ near the critical values b̂μ̄,

jbμ̄ − b̂μ̄j≲ 1; ð2:47Þ
corresponds to the NUT-like black hole with small rota-
tional parameters.
The former spacetime was discussed in [40], where the

authors studied the warped metrics of two (off-shell) Kerr-
NUT-(A)dS metrics which arise when the limits aν̄ → 0,
xν̄ → 0 are taken in several directions ν̄. It was shown that
such spacetimes have just one parameter less then the
original Kerr-NUT-(A)dS metric, but the meaning of such
parameters changes significantly. For example, if we take
the limit in N̄ directions, the resulting metric is static,
though it still contains parametrized twists in the angular
part of the metric (components with mixed angular direc-
tions). Thanks to the warped structure, the limiting pro-
cedure can be applied successively to untwist the angular
directions. We end up with a metric containing N param-
eters, where one contributes to the conicity and the others
can be interpreted as deformations. Since these spacetimes
were found under the assumption of small parameters bμ̄,
(2.46), it is not surprising that no solution with distinctive
NUT-like behavior described by some NUT parameters is
obtained by such a procedure.
On the contrary, the spacetimewith general parametersbμ̄,

is not necessarily restricted just to the warped structure.
In the next sections, we focus exactly on this case. Namely,
we study the limits bν̄ → b̂ν̄, �xν̄ → x̂ν̄ that are taken in
several directions ν̄. Graphically speaking, it says that the

corresponding lines 2bν̄x are approaching the tangents 2b̂ν̄x
of the polynomial λJ ðx2Þ. Such limits result in spacetimes
which exhibit significant NUT-like behavior, for instance,
the higher-dimensional generalization of the Taub-NUT-(A)
dS spacetime.
The Wick rotated coordinate xN corresponds to the radial

coordinate r, see (2.19). Unlike the xμ̄ coordinates, the
coordinate r does not have to be restricted between roots of
the metric function, because the metric remains Lorentzian
when we cross the root of the function Δ, cf. (2.22), (2.23).
However, the coordinate r changes its character. It is spatial
(∂r is spacelike) iff Δ > 0 and temporal (∂r is timelike) iff
Δ < 0. The surfaces Δ ¼ 0 thus correspond to horizons,
which separate the stationary and nonstationary regions
of the spacetime. Here, we study the assumptions under
which the spacetime admits a black hole horizon, namely
the conditions on the parameters which exclude the naked
singularities and other nonphysical cases for r > 0.
Nevertheless, we also discuss the analytic extension of
such solutions to r < 0 as it is usual in four dimensions.
First, consider the Kerr-like choice of parameters and

ranges of coordinates. The graph of the metric function Δ
for this situation is depicted in Fig. 4. In order to get a true
black hole solution with all horizons, we choose the massm
so that it satisfies

0 < m̂ < m; λ ≤ 0;

0 < m̂ < m < m̂ðλÞ; λ > 0; ð2:48Þ

then the horizons are ordered as follows:

0 < −r < r̂ < þr; λ ≤ 0;

−rðλÞ < −
1ffiffiffi
λ

p < 0 < −r < r̂ < þr < r̂ðλÞ < þrðλÞ <
1ffiffiffi
λ

p ;

λ > 0: ð2:49Þ

FIG. 4. Graph of the polynomial −λJ ð−r2Þ for Kerr-like
choice and an appropriate mass parameter m, cf. (2.48). Inter-
sections of the polynomial and the line 2mr passing through the
origin represent the horizons �r, �rðλÞ, see (2.49).
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Here, −r, þr, and �rðλÞ are inner, outer, and two cosmo-
logical horizons (above and below r ¼ 0) respectively. The
cosmological horizons as well as the other related quan-
tities exist only in the case of positive cosmological
constant. Value m̂ is a critical mass for which the horizons
−r, þr merge into a single extreme horizon r̂. A similar
situation also occurs with the horizons þr, þrðλÞ for the
critical mass m̂ðλÞ, which gives rise to an extreme horizon
r̂ðλÞ. Tangent points r̂ and r̂ðλÞ correspond to the double
roots of the polynomial Δ for m ¼ m̂ and m ¼ m̂ðλÞ,

Δðr̂Þjm¼m̂ ¼ 0; Δ0ðr̂Þjm¼m̂ ¼ 0;

Δðr̂ðλÞÞjm¼m̂ðλÞ ¼ 0; Δ0ðr̂ðλÞÞjm¼m̂ðλÞ ¼ 0: ð2:50Þ

The second line of Eq. (2.49) is not always met for the
same reason as it was for (2.40). Again, the key property is
the existence of the tangent lines 2m̂r, 2m̂ðλÞr. The equation
for the tangent point r̂ of the Wick rotated coordinate r can
be written as [see (2.57) below]

λJ ð−r̂2Þ þ 2λr̂2J 0ð−r̂2Þ ¼ 0;

λJ ð−r̂ðλÞ2Þ þ 2λr̂ðλÞ2J 0ð−r̂ðλÞ2Þ ¼ 0: ð2:51Þ

In four dimensions, the solution of Eq. (2.51) can be found
analytically, it exists iff

λ ≤ 0 or λ > 0; a <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 − 4

ffiffiffi
3

p

λ

s
: ð2:52Þ

For NUT-like choice, the polynomial lies below zero
near the origin, because it has two additional roots� ~a1, see
Fig. 5. Therefore, we can assume that m is restricted by the
relations

0 < m; λ ≤ 0;

0 < m < m̂ðλÞ; λ > 0: ð2:53Þ

Then, the horizons are ordered differently,

− ~a1<−r<0< ~a1<þr; λ≤0;

−rðλÞ<−
1ffiffiffi
λ

p <− ~a1<−r<0< ~a1<þr< r̂ðλÞ<þrðλÞ<
1ffiffiffi
λ

p ;

λ>0: ð2:54Þ

We see that the horizon −r is shifted to the negative
values and the tangent line 2m̂r disappeared. Altogether,
we found that the properties of the radial coordinate (the
positions of the horizons, etc.) are qualitatively similar to
the four-dimensional case.

C. Tangent-point parametrization

In the following it will be convenient to choose a
different parametrization of the polynomial J ðx2Þ. First
we discuss this reparametrization for a general metric (2.1)
and later we specify it for the Lorentzian cases studied in
the previous subsection.
Let us assume that for a particular value bμ ¼ b̂μ the

polynomial Xμ has a double root xμ ¼ x̂μ,

Xμðx̂μÞjbμ¼b̂μ
¼ 0; X0

μðx̂μÞjbμ¼b̂μ
¼ 0: ð2:55Þ

If x̂μ and b̂μ are real, then the double root x̂μ graphically
represents a tangent point where the tangent line 2b̂μx
touches the polynomial λJ ðx2Þ and we call x̂μ tangent
points. We generalize this notion also to imaginary
points x̂μ with imaginary critical values b̂μ, since such
quantities correspond to Wick rotated tangent points and
critical values of the polynomial in the Wick rotated
coordinate r.
Clearly, the tangent points are quantities determined by

the polynomial λJ , i.e., by the roots aμ, see (2.4). This
relation can be reversed. A collection of N tangent points
x̂μ, μ ¼ 1;…; N, can be used to parametrize the polynomial
J . Moreover, since the polynomial J ðx2Þ is an even
function of x, we can restrict ourselves to the parameters
x̂μ > 0. We call this the tangent-point parametrization.
The condition (2.55) implies that the critical values b̂μ of

the parameters bμ are

b̂μ ¼
λJ ðx̂2μÞ
2x̂μ

; ð2:56Þ

and tangent points x̂μ must satisfy

λJ ðx̂2μÞ − 2λx̂2μJ 0ðx̂2μÞ ¼ 0 ð2:57Þ

FIG. 5. Graph of the polynomial −λJ ð−r2Þ for NUT-like
choice and an appropriate mass parameter m, cf. (2.53). Inter-
sections of the polynomial and the line 2mr passing through the
origin represent the horizons �r, �rðλÞ, see (2.54).

IVAN KOLÁŘ and PAVEL KRTOUŠ PHYSICAL REVIEW D 95, 124044 (2017)

124044-8



for all μ. Thus, the polynomial J ðx2Þ − 2x2J 0ðx2Þ of the
degree N in x2 has the roots x̂2ν, ν ¼ 1;…; N. The
coefficient of the highest order in x2 is −ð2N − 1Þ, so
the polynomial can be written as

J ðx2Þ − 2x2J 0ðx2Þ ¼ −ð2N − 1ÞĴðx2Þ: ð2:58Þ

Here, Ĵðx2Þ (and, similarly, other “hatted” quantities ÂðkÞ
μ ,

Ûμ, etc.) are defined in terms of parameters x̂μ in the same

way as Jðx2Þ (and AðkÞ
μ , Uμ, etc., respectively) in terms of

coordinates xμ, cf. (A1) [and (A4), (A7), etc., respectively].
Comparing coefficients of powers of x2 [see. (A1)]

we find

ð2N − 2k − 1ÞAðkÞ ¼ ð2N − 1ÞÂðkÞ; ð2:59Þ

for k ¼ 0;…; N. These equations constitute implicit
relations between the original parameters aμ and the new

parameters x̂μ. Indeed, AðkÞ are built from aμ and Â
ðkÞ from

x̂μ, cf. (A2).
Equation (2.59) can also be alternatively rewritten as an

integral relation between functions J and Ĵ,

J ðx2Þ ¼ ð2N − 1Þx
Z x

Ĵðy2Þ
y2

dy: ð2:60Þ

So far we have assumed that the polynomial λJ has N
different tangent points. Here, we investigate this
assumption in more detail. As it is difficult to solve the
equations for tangent points of the polynomial λJ ðx2Þ in
general, we proceed to the discussion of the Kerr-like and
NUT-like choices from the previous subsection. Results are
qualitatively summarized in Table I.
Polynomial λJ ðx2Þ admits a full set of tangent points in

all cases (N points for λ ≠ 0 and N̄ points for λ ¼ 0),
however, some tangent points are not real but imaginary
(Fig. 2 and Fig. 3). These imaginary tangent points
correspond to the Wick rotated real tangent points of the
polynomial −λJ ð−r2Þ (Fig. 4 and Fig. 5). In particular, the
tangent point x̂1 is real only for the NUT-like choice, but it
becomes imaginary x̂1 ¼ ir̂ for the Kerr-like choice, where
it corresponds to the Wick rotated real tangent point r̂ of the
polynomial −λJ ð−r2Þ.

The situation also varies for different values of the
cosmological constant. If λ < 0, the polynomial λJ ðx2Þ
has an additional real tangent point, denoted by x̂N, but for
λ > 0 it becomes imaginary x̂N ¼ ir̂ðλÞ and translates to the
real tangent point r̂ðλÞ of the polynomial −λJ ð−r2Þ.
Altogether, we have enough parameters to parametrize

the polynomial J by means of the tangent points, but the
gauge condition (2.27) says that these new parameters are
not all independent. Since a2N is a root of J , it implies that

0 ¼ J
�
−
1

λ

�
¼
XN
k¼0

AðkÞλ−Nþk: ð2:61Þ

Employing (2.59) and (A8), we can rewrite this con-
dition as

0 ¼
XN
k¼0

2N − 1

2N − 2k − 1
ÂðkÞλ−Nþk

¼
XN
k¼0

2N − 1

2N − 2k − 1
ðÂðkÞ

N þ x̂2NÂ
ðk−1Þ
N Þλ−Nþk: ð2:62Þ

Solving this equation with respect to x̂2N , and realizing

that ÂðkÞ
N ¼ 0 for k ¼ −1 and k ¼ N, we can express x̂N

in terms of the other tangent points x̂μ̄,

x̂2N ¼ −
1

λ

P
k

λk ˆ̄AðkÞ

2N−2k−1P
k

λk ˆ̄A
ðkÞ

2N−2k−3

; ð2:63Þ

where our conventions imply ˆ̄A
ðkÞ ¼ ÂðkÞ

N . The expression
in (2.63) is divergent for λ → 0 due to the fact that neither
real nor imaginary tangent point x̂N exists for λ ¼ 0.

III. LIMITING PROCEDURE

Our main goal is to investigate a situation when some
of the metric functions Xμ have double roots. However, a
well-defined metric cannot be achieved without an appro-
priate rescaling of coordinates xμ. The reason is that xμ
typically runs between two adjacent roots of Xμ and we are
interested in the limit when these two roots coincide. It
turns out that it is not enough to rescale just xμ coordinates.
We need to adjust the angular coordinates as well. In the
following section we discuss both: scaling of xμ and a
proper transformation of Killing coordinates.
As it was discussed in Sec. II B, the Wick rotated

coordinate xN corresponds to the radius r. This coordinate
makes sense both above and bellow horizons, so it does not
have to be restricted between roots of the metric function
unlike the coordinates xμ̄. Therefore, the double-root
limiting procedure where the Wick rotated coordinate
degenerates slightly differs from the Euclidean case. For
simplicity, we restrict ourselves to the Euclidean case in this

TABLE I. Tangent points x̂μ of the polynomial λJ ðx2Þ.
Imaginary tangent points are Wick rotated real tangent points
of the polynomial −λJ ð−r2Þ.

Kerr-like NUT-like

λ > 0 ir̂; x̂2;…; x̂N̄ ; ir̂
ðλÞ x̂1; x̂2;…; x̂N̄ ; ir̂

ðλÞ
λ < 0 ir̂; x̂2;…; x̂N̄ ; x̂N x̂1; x̂2;…; x̂N̄ ; x̂N
λ ¼ 0 ir̂; x̂2;…; x̂N̄ x̂1; x̂2;…; x̂N̄
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section. We will discuss the necessary changes for degen-
eration of the Wick rotated coordinate separately in Sec. V.

A. Scaling of coordinates xμ
Let us introduce a limiting procedure in which N̆ of the

coordinates xμ are squeezed to the double root of the
corresponding metric functions Xμ. We indicate these
coordinates using “breved” indices and complementary

we denote N
̯
¼ N − N̆ coordinates, for which we do not

take the limit, by “inverse-breved” indices:

μ̆; ν̆;… ¼ f…degenerate directions…g;
μ
̯
; ν
̯
;… ¼ f…regular directions…g: ð3:1Þ

The ranges of degenerated coordinates xμ̆ are restricted
between adjacent roots −xμ̆ and þxμ̆ of the corresponding
polynomial Xμ̆,

Xμ̆ð�xμ̆Þ ¼ 0: ð3:2Þ

It is straightforward to scale xμ̆ by distances between the
roots, introducing rescaled coordinates ξμ̆ ∈ ð−1; 1Þ,

xμ̆ ¼
þxμ̆ þ −xμ̆

2
þ

þxμ̆ − −xμ̆
2

ξμ̆: ð3:3Þ

The limit in which both roots approach the real tangent
points, �xμ̆ → x̂μ̆, corresponds to the parameters bμ̆
approaching its critical values, bμ̆ → b̂μ̆. We can introduce
a small parameter ε ≪ 1 governing expansions of �xμ̆ and
bμ̆ near their limiting values in such a way that the distances
between the roots is of the first order in ε > 0,

þxμ̆ − −xμ̆ ¼ 2δxμ̆ε: ð3:4Þ

The coefficients δxμ̆ > 0 control how fast the roots �xμ̆ are
approaching each other. We will fix them later.
The limiting procedure ε → 0 thus corresponds to

zooming in on a region around the tangent points x̂μ in
which new coordinates ξμ̆ are introduced. This zooming is
accompanied by adjusting parameters bμ̆ so that they
approach their critical values b̂μ̆ and the roots �xμ̆ approach
x̂μ̆, see Fig. 6.
Functions Xμ̆jbμ̆¼b̂μ̆

can be expanded near x̂μ̆ using Taylor
expansion,

Xμ̆jbμ̆¼b̂μ̆
¼ −ð2N − 1ÞλÛμ̆ðxμ̆ − x̂μ̆Þ2 þOððxμ̆ − x̂μ̆Þ3Þ;

ð3:5Þ

where we used (2.55) to eliminate the first two terms in the
expansion. The factor Ûμ̆ entered through the identity

J 0ðx̂2μ̆Þ þ 2x̂2μ̆J
00ðx̂2μ̆Þ ¼ −ð2N − 1ÞÛμ̆; ð3:6Þ

which can be obtained by differentiation of (2.58) and
evaluation at x̂μ̆. Employing (3.5), we can express the
metric functions as

Xμ̆ ¼ −2ðbμ̆ − b̂μ̆Þxμ − ð2N − 1ÞλÛμ̆ðxμ̆ − x̂μ̆Þ2
þOððxμ̆ − x̂μ̆Þ3Þ: ð3:7Þ

Substituting general ε expansions of �xμ̆ and bμ̆ into
condition (3.2) with Xμ̆ given by (3.7), one finds that, in the
first order in ε, roots þxμ̆ and −xμ̆ have the same distance
from the tangent point x̂μ̆,

�xμ̆ ¼ x̂μ̆ � δxμ̆εþOðε2Þ; ð3:8Þ

which implies that relation (3.3) for rescaled coordinate ξμ̆
reads3

xμ̆ ¼ x̂μ̆ þ δxμ̆ξμ̆εþOðε2Þ: ð3:9Þ

Also, we find that the parameters bμ̆ differ from their
critical values only in the second order in ε,

bμ̆ ¼ b̂μ̆ − ð2N − 1ÞλÛμ̆

δx2μ̆
2x̂μ̆

ε2 þOðε3Þ: ð3:10Þ

In order to get the limiting metric, we need expansions of
the metric functions Xμ̆. Substituting expansions (3.9) and
(3.10) into Xμ̆ given by (3.7), we obtain

Xμ̆ ¼ ð2N − 1ÞλÛμ̆δx2μ̆ð1 − ξ2μ̆Þε2 þOðε3Þ: ð3:11Þ

FIG. 6. Approximation procedure of the polynomial Xμ̆ is
illustrated in terms of the lines passing through the origin and
approaching the tangent line on the left. This is accompanied by
zooming in on the region close to the tangent point x̂μ̆, where a new
coordinate ξμ̆ is introduced. The resulting polynomial Xμ̆ is
approximated by a quadratic function in coordinate ξμ̆ on the right.

3The middle point ðþxμ̆ þ −xμ̆Þ=2 differs from x̂μ̆ in the second
order in ε, but an exact form will not be needed.
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The metric function Xμ̆ is thus approximated by a quadratic
function in new coordinate ξμ̆ with roots ξμ̆ ¼ �1.
Moreover, Xμ̆ is of the order ε2 which allows us to

compensate behavior dx2μ̆ ∼ ε2dξ2μ̆ in metric terms Uμ̆

Xμ̆
dx2μ̆.

However, we need to eliminate this ε2 behavior in metric
terms proportional to Xμ̆. To do so, it is necessary to rescale
also the Killing coordinates.

B. Scaling of Killing coordinates

It turns out that all Killing coordinates ψk have to be
rescaled by 1=ε to achieve a finite limit of the metric.
However, among the leading terms of these N coordi-

nates only N̆ of them are independent. Remaining N
̯

coordinates are related to the subleading order of coor-
dinates ψk.
We start with the metric (2.15) written in the angular

coordinates ϕμ, introduced in (2.13). The coordinates ϕμ

can be associated with coordinates xμ labeled by the same
index μ. It allows us to distinguish two sets of these
coordinates: degenerate coordinates ϕμ̆ and regular coor-
dinates ϕμ

̯ .
Motivated by this distinction, we assume that constants

x
̥
μ̆ from the definition (2.13) which are related to degen-
erate directions are close to x̂μ̆. Thus they can be para-

metrized by rescaled constants ξ
̥
μ̆ according to (3.9),

x
̥
μ̆ ¼ x̂μ̆ þ δxμ̆ξ

̥
μ̆ε; ξ

̥
μ̆ ∈ ½−1; 1�: ð3:12Þ

Constants ξ
̥
μ̆ will be parameters of the limiting metric,

which may be related to the regularity of the metric at fixed
points. A similar parameter is used to adjust the regularity
on semiaxes in four dimensions. On the other hand,
parameters x

̥
μ
̯ corresponding to the regular directions

can be chosen arbitrarily. It turns out that the resulting
metric is independent of them.
Now we rescale angular coordinates ϕμ̆ corresponding

to degenerate directions xμ̆ by divergent factor 1=ε.
Coefficients of the leading order define new finite coor-
dinates φμ̆,

ϕμ̆ ¼ −J
̯̥
ðx̂2μ̆Þφμ̆

1

ε
: ð3:13Þ

Here, −J
̯̥
ðx̂2μ̆Þ are properly chosen constant factors

which will simplify some expressions later. The inverse
breve ̯ says that only regular directions are involved,
but no degenerate directions. Here, it means that the

polynomial J
̯̥
ðx2Þ contains only the constants x

̥
μ
̯ ,

J
̯̥
ðx2Þ ¼

Y
ν
̯
ðx̥ 2ν̯ − x2Þ: ð3:14Þ

Similarly, we will introduce another breved and inverse-
breved quantities that are constructed using the degenerate
and regular directions, respectively.
Thus, N̆ coordinates ϕμ̆, or equivalently φμ̆, control

divergent parts of the original Killing coordinates ψk.
Indeed, substituting (3.13) into (2.13), we find

ψk ¼ −
1

ε

X
ν̆

ð−x̂2ν̆ÞN−k−1

ˆ̆Uν̆

φν̆ þOðε0Þ; ð3:15Þ

cf. also (3.12) and (3.19) below. Remaining information is

encoded in N
̯
coordinates ϕμ

̯ .
However, to eliminate a dependence on arbitrary con-

stants x
̥
μ
̯ , it will be useful to combine these coordinates to

another set of N
̯
Killing coordinates ψ

̯
k
̯ . We employ a

transformation analogous to (2.13), involving, however,
only regular directions:

ψ
̯
k
̯ ¼

X
ν
̯

ð−x̥ 2ν̯ ÞN
̯
−k
̯
−1

U
̯̥

ν
̯

ϕν
̯ ; ϕμ

̯ ¼
X
l
̯
A
̯ ̥ ðl

̯
Þ

μ
̯ ψ
̯
l
̯ : ð3:16Þ

Here, the latin indices associated with regular directions

take values k
̯
; l
̯
;… ¼ 0; 1;…; N

̯
− 1, and similarly for

indices associated with degenerate directions, k̆; l̆;… ¼
0; 1;…N̆ − 1. Coordinates ψ

̯
k
̯ thus encode information

hidden in subleading order of the original Killing coor-
dinates ψk.
Starting with the first equation in (3.16) and substituting

(2.13) for ϕν
̯ , we can express ψ

̯
k
̯ in terms of the original

coordinates ψk (with no expansion involved) as

ψ
̯
k
̯ ¼

X̆N
l̆¼0

Ă
̥
ðl̆Þ
ψ
l̆þk

̯ : ð3:17Þ

Here, we used an identity

A
̥ ðkÞ
μ
̯ ¼

X
l
̯
Ă
̥ ðk−l

̯
Þ
A
̯̥ ðl
̯
Þ

μ
̯ ; ð3:18Þ

which can be proven by calculating the ðN − k − 1Þth
derivative of J

̥
μ
̯ ðx2Þ ¼ J

̯̥

μ
̯ ðx2ÞJ̆

̥
ðx2Þ with respect to ð−x2Þ

at x ¼ 0.
At the first sight it seems that the left-hand side of (3.17)

is finite and the right-hand side is of order 1=ε. However,
it is possible to check that the leading orders of ψ ’s, given
by (3.15), cancel in (3.17) and one has to take into account
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a contribution from the subleading order of ψ ’s to
obtain ψ

̯
k
̯ .

We also see, that (3.17) employs only breved polyno-

mials Ă
̥
ðl̆Þ which contain only constants x

̥
μ̆ corresponding to

the degenerate sector. Any dependence on x
̥
μ
̯ from the

regular sector has disappeared. Similarly, the relation
between ψk and φμ̆ is also independent of x

̥
μ
̯ in the leading

term, see (3.15).

C. Limit of metric

After describing transformation from xμ̆ to ξμ̆ and from
ψk to φμ̆;ψ

̯
μ
̯ , we can write down the leading terms of ε

expansions of various metric functions and terms of the
metric. Substituting expansion (3.9) into definitions (A1),
(A3) and (A7) we obtain

Uμ̆ ≈ ˆ̆Uμ̆J
̯
ðx̂2μ̆Þ; Uμ

̯ ≈ ˆ̆Jðx2
μ
̯ ÞU
̯
μ
̯ ; ð3:19Þ

Jμ̆ðx
̥
2
μ̆Þ ≈ ˆ̆Uμ̆J

̯
ðx̂2μ̆Þ;

Jμ̆ðx
̥
2
ν̆Þ ≈

2x̂ν̆δxν̆
x̂2μ̆ − x̂2ν̆

ðξν̆ − ξ
̥
ν̆Þ ˆ̆Uν̆J

̯
ðx̂2ν̆Þε; μ̆ ≠ ν̆;

Jμ̆ðx
̥
2
ν
̯ Þ ≈ ˆ̆Jμ̆ðx

̥
2
ν
̯ ÞJ
̯
ðx̥ 2ν̯ Þ;

Jμ̯ ðx
̥
2
ν̆Þ ≈ 2x̂ν̆δxν̆ðξν̆ − ξ

̥
ν̆Þ ˆ̆Uν̆J

̯
μ
̯ ðx̂2ν̆Þε;

Jμ̯ ðx
̥
2
ν
̯ Þ ≈ ˆ̆Jðx̥ 2ν̯ ÞJ

̯
μ
̯ ðx̥ 2ν̯ Þ; ð3:20Þ

where we denote the equality in leading order by ≈.
Using these formulas we can expand angular terms in the

metric for degenerate and regular directions:

X
k

AðkÞ
μ̆ dψk ¼

X
ν

Jμ̆ðx
̥
2
νÞ

U
̥
ν

dϕν ≈ −
1

ϵ
J
̯
ðx̂2μ̆Þdφμ̆;

X
k

AðkÞ
μ
̯ dψk ¼

X
ν

Jμ̯ ðx
̥
2
νÞ

U
̥
ν

dϕν ≈
X
k
̯
A
̯ ðk

̯
Þ

μ
̯ dψ

̯
k
̯

−
X
ν̆

2x̂ν̆δxν̆ðξν̆ − ξ
̥
ν̆ÞJ
̯
μ
̯ ðx̂2ν̆Þdφν̆: ð3:21Þ

It is important that terms associated with degenerate
directions are proportional to 1=ε since it cancels ε2

behavior of metric functions Xμ̆.
Indeed, taking into account expansions (3.11) of Xμ̆,

(3.19) and just derived expressions, the terms in the metric
corresponding to degenerate directions become

Uμ̆

Xμ̆
dx2μ̆ ≈

J
̯
ðx̂2μ̆Þ

ð2N − 1Þλ ˆJ
̯
ðx̂2μ̆Þ

dξ2μ̆
1 − ξ2μ̆

; ð3:22Þ

Xμ̆

Uμ̆

�X
k

AðkÞ
μ̆ dψk

�
2
≈ ½ð2N − 1Þλ ˆJ

̯
ðx̂2μ̆Þδx2μ̆�J

̯
ðx̂2μ̆Þ

× ð1 − ξ2μ̆Þdφ2
μ̆: ð3:23Þ

Now we can use freedom in specifying limiting param-
eters δxμ̆. The resulting metric simplifies if we choose

δxμ̆ ¼
1

ð2N − 1Þjλ ˆJ
̯
ðx̂2μ̆Þj

: ð3:24Þ

With such a choice, the limiting metric reads

g ¼
X
μ̆

δxμ̆jJ
̯
ðx̂2μ̆Þj

�
dξ2μ̆

1 − ξ2μ̆
þ ð1 − ξ2μ̆Þdφ2

μ̆

�

þ
X
μ
̯

� ˆ̆Jðx2
μ
̯ ÞU
̯
μ
̯

Xμ
̯ dx2

μ
̯ þ Xμ

̯

ˆ̆Jðx2
μ
̯ ÞU
̯
μ
̯

×

�X
k
̯
A
̯ ðk

̯
Þ

μ
̯ dψ

̯
k
̯ −
X
ν̆

2x̂ν̆δxν̆J
̯
μ
̯ ðx̂2ν̆Þðξν̆ − ξ

̥
ν̆Þdφν̆

�
2
�
;

ð3:25Þ

where we used the fact that the sign of λ
ˆ
J
̯
ðx̂2μ̆Þ corresponds

to the sign of J
̯
ðx̂2μ̆Þ for our choice (NUT-like or

Kerr-like).
We can observe that terms ð1 − ξ2μ̆Þ−1dξ2μ̆ þ ð1 − ξ2μ̆Þdφ2

μ̆
describe homogeneous metrics on two-spheres. Since their

prefactors J
̯
ðx̂2μ̆Þ depend only on regular coordinates xν̯ , the

limiting metric looks almost as a multiply warped geometry
with the base metric given by the second sum in (3.25) and
the seed metrics given by two-spheres. The base metric has
a similar structure as the original Kerr-NUT-(A)dS metric,
however, it contains an additional nontrivial coupling to the
seed sectors (terms with dφν̆) which spoils a simple warped
structure.
Alternatively, we can write the metric (3.25) in terms of

the orthonormal frame of one-forms [cf. (2.10), (2.16)],
which naturally remains finite in the limit. It takes the form

eμ̆ ¼
�

1 − ξ2μ̆

δxμ̆jJ
̯
ðx̂2μ̆Þj

�
−1
2

dξμ̆; eμ
̯
¼
�

Xμ
̯

ˆ̆Jðx2
μ
̯ ÞU
̯
μ
̯

�
−1
2

dxμ̯ ;

êμ̆ ¼ −
1

σμ̆

�
δxμ̆jJ

̯
ðx̂2μ̆Þjð1 − ξ2μ̆Þ

�1
2dφμ̆;

êμ
̯
¼
�

Xμ
̯

ˆ̆Jðx2
μ
̯ ÞU
̯
μ
̯

�1
2

�X
k
̯
A
̯ ðk

̯
Þ

μ
̯ dψ

̯
k
̯

−
X
ν̆

2x̂ν̆δxν̆J
̯
μ
̯ ðx̂2ν̆Þðξν̆ − ξ

̥
ν̆Þdφν̆

�
; ð3:26Þ
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where we denoted the sign of λ
ˆ
J
̯
ðx̂2μ̆Þ [or J

̯
ðx̂2μ̆Þ] by σμ̆.

It is easy to verify that the corresponding dual frame of
vectors is

eμ̆ ¼
�

1 − ξ2μ̆

δxμ̆jJ
̯
ðx̂2μ̆Þj

�1
2 ∂
∂ξμ̆

;

eμ̯ ¼
�

Xμ
̯

ˆ̆Jðx2
μ
̯ ÞU
̯
μ
̯

�1
2 ∂
∂xμ̯

;

êμ̆ ¼ −σμ̆
�
δxμ̆jJ

̯
ðx̂2μ̆Þjð1 − ξ2μ̆Þ

�
−1
2

×

�
∂

∂φμ̆
þ 2x̂μ̆δxμ̆ðξμ̆ − ξ

̥
μ̆Þ
X
k
̯
ð−x̂2μ̆ÞN

̯
−k
̯
−1 ∂

∂ψ
̯
k
̯

�
;

êμ̯ ¼
�

Xμ
̯

ˆ̆Jðx2
μ
̯ ÞU
̯
μ
̯

�
−1
2 X

k
̯

ð−x2
μ
̯ ÞN

̯
−k
̯
−1

U
̯
μ
̯

∂

∂ψ
̯
k
̯ ; ð3:27Þ

but it can also be calculated directly from (2.17) by
employing the relations analogous to (3.19), (3.20) with
all xμ and x

̥
μ swapped.

D. Symmetry enhancement

Starting with the Killing vectors (2.14), we introduce
another set of Killing vectors in directions of coordinates
φμ̆ and ψ

̯
k
̯ , which are finite in the limit ε → 0,

r̆ðμ̆Þ ¼ −
J
̯̥
ðx̂2μ̆Þ
ε

r
̥
ðμ̆Þ ¼

∂
∂φμ̆

; l
̯
ðk
̯
Þ ¼

X
μ
̯
A
̯̥ ðk

̯
Þ

μ
̯ r
̥
ðμ̯ Þ ¼

∂

∂ψ
̯
k
̯
:

ð3:28Þ

Because the metric (3.25) is considerably simplified in the
degenerate directions, it is not surprising that the symmetry
of this spacetime has been enhanced. Indeed, it can be
verified with the use of the connection forms (B3) that
the spacetime possesses additional independent Killing
vectors,

r̆ð1Þðμ̆Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2μ̆

q
cosφμ̆

∂
∂ξμ̆

þ sinφμ̆ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2μ̆

q �
ξμ̆

∂
∂φμ̆

þ 2x̂μ̆δxμ̆ð1 − ξ
̥
μ̆ξμ̆Þ

X
k
̯
ð−x̂2μ̆ÞN

̯
−k
̯
−1 ∂

∂ψ
̯
k
̯

�
;

r̆ð2Þðμ̆Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2μ̆

q
sinφμ̆

∂
∂ξμ̆

þ cosφμ̆ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2μ̆

q �
ξμ̆

∂
∂φμ̆

þ 2x̂μ̆δxμ̆ð1 − ξ
̥
μ̆ξμ̆Þ

X
k
̯
ð−x̂2μ̆ÞN

̯
−k
̯
−1 ∂

∂ψ
̯
k
̯

�
; ð3:29Þ

which, together with the Killing vectors r̆ð0Þðμ̆Þ [a linear

combinations of r̆ðμ̆Þ and l
̯
ðk
̯
Þ],

r̆ð0Þðμ̆Þ ¼ r̆ðμ̆Þ − 2x̂μ̆δxμ̆ξ
̥
μ̆

X
k
̯
ð−x̂2μ̆ÞN

̯
−k
̯
−1l
̯
ðk
̯
Þ; ð3:30Þ

generate the algebra of SO(3) group,

½rð1Þðμ̆Þ; r
ð2Þ
ðμ̆Þ� ¼ rð0Þðμ̆Þ; ½rð2Þðμ̆Þ; r

ð0Þ
ðμ̆Þ� ¼ rð1Þðμ̆Þ;

½rð0Þðμ̆Þ; r
ð1Þ
ðμ̆Þ� ¼ rð2Þðμ̆Þ; ð3:31Þ

for each μ̆, which is due to the fact that these vectors are
simply the Killing vectors for the two-sphere modified by a
few additional terms with ∂ψ

̯
k
̯ vectors. All the other Lie

brackets of the Killing vectors vanish. In total, we have a

complete set of 3N̆ þ N
̯
Killing vectors:

r̆ð0Þðμ̆Þ; r̆ð1Þðμ̆Þ; r̆ð2Þðμ̆Þ; l
̯
ðk
̯
Þ; ð3:32Þ

which describe the explicit symmetries of the spacetime.
Thus, we can conclude that the symmetry group of the
spacetime is enhanced from U(1) to SO(3) for each
degenerate direction.
Also, the rank-two Killing tensors (2.18) of hidden

symmetries corresponding to degenerate directions sim-
plify [see (3.19), (3.20), and (3.27)],

q
̥
ðμ̆Þ ¼

1

σμ̆δxμ̆J
̯̥
ðx̂2μ̆Þ

�
ð1 − ξ2μ̆Þ

∂2

∂ξμ̆
þ 1

1 − ξ2μ̆

�
∂

∂φμ̆

þ 2x̂μ̆δxμ̆ðξμ̆ − ξ
̥
μ̆Þ
X
k
̯
ð−x̂2μ̆ÞN

̯
−k
̯
−1 ∂

∂ψ
̯
k
̯

�
2
�
: ð3:33Þ

Furthermore, they can be expressed as a linear combination
of the Killing vectors (3.32) with constant coefficients,

q
̥
ðμ̆Þ ¼

1

σμ̆δxμ̆J
̯̥
ðx̂2μ̆Þ

��
r̆ð0Þðμ̆Þ
�
2 þ

�
r̆ð1Þðμ̆Þ
�
2 þ

�
r̆ð2Þðμ̆Þ
�
2

− 4x̂2μ̆δx
2
μ̆

�X
k
̯
ð−x̂2μ̆ÞN

̯
−k
̯
−1l
̯
ðk
̯
Þ

�
2
�
; ð3:34Þ

thus, unlike the Killing tensors of regular directions q
̥
ðμ̯ Þ,

they are not independent.

IV. NUT-LIKE LIMITS

We now turn to the particular examples of the limiting
metric (3.25) from the previous section. First, we consider
the NUT-like choice of parameters and ranges of coordi-
nates. The polynomial J can be parametrized by real
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tangent points x̂μ̄, μ̄ ¼ 1;…; N̄, and (for λ ≠ 0) either by
imaginary or real tangent point x̂N , see Table I. This
additional tangent point, however, can be expressed in
terms of x̂μ̄, cf. (2.63).

A. NUT-like limit in one direction

First, let us study the case where the limit is taken in one
direction, N̆ ¼ 1. Then the metric (3.25) reads4

g ¼ −
Δ

ðr2 þ x̂2ÞJ̄
̯
ð−r2Þ

�
dτ þ

X
k̄
̯
Ā
̯
ðk̄
̯
þ1Þdχ

̯
k̄
̯ −

2x̂
δ
J̄
̯
ðx̂2Þðξ − ξ

̥
Þdφ

�
2
þ ðr2 þ x̂2ÞJ̄

̯
ð−r2Þ

Δ
dr2

þ ðr2 þ x̂2ÞjJ̄
̯
ðx̂2Þj

δ

�
dξ2

1 − ξ2
þ ð1 − ξ2Þdφ2

�
þ
X
μ̄
̯

2
64ðr2 þ x2

μ̄
̯ Þðx̂2 − x2

μ̄
̯ ÞŪ
̯
μ̄
̯

X
μ̄
̯ dx2

μ̄
̯

þ
X

μ̄
̯

ðr2 þ x2
μ̄
̯ Þðx̂2 − x2

μ̄
̯ ÞŪ
̯
μ̄
̯

�
dτ þ

X
k̄
̯
ðĀ
̯ ðk̄

̯
þ1Þ

μ̄
̯ − r2Ā

̯ ðk̄
̯
Þ

μ̄
̯ Þdχ̯

k̄
̯ þ 2x̂

δ
ðr2 þ x̂2ÞJ̄

̯
μ̄
̯ ðx̂2Þðξ − ξ

̥
Þdφ

�
2

3
75; ð4:1Þ

where we dropped the index corresponding to the degen-
erate direction. Moreover, we renamed the Killing coor-
dinates,

τ ¼ ψ
̯
0; χ

̯
k̄
̯ ¼ ψ

̯
k̄
̯
þ1
; ð4:2Þ

and introduced the symbol δ ¼ 1=δx, which can be
rewritten with the help of (2.63), (3.24) as

δ ¼ ð2N − 1Þj ˆJ̄
̯
ðx̂2Þj

0
BB@
P

k
λkð ˆĀ

̯ ðkÞþx̂2
ˆ
Ā
̯ ðk−1ÞÞ

2N−2k−1P
k
λkð ˆĀ

̯ ðkÞþx̂2
ˆ
Ā
̯ ðk−1ÞÞ

2N−2k−3

þ λx̂2

1
CCA: ð4:3Þ

We used the fact that λðx̂2 − x̂2NÞ is positive for the NUT-
like choice. The functions Δ, X

μ̄
̯ are given by (2.23),

with the polynomial J ðx2Þ expressed by means of the
tangent-point parametrization (2.60) and x̂2N replaced
by (2.63).
After all these substitutions, the metric (4.1) contains

the parameters x̂, x̂
μ̄
̯ , b

μ̄
̯ , m, λ, and an additional

parameter ξ
̥
∈ ½−1; 1� which can be set to an arbitrary

value. Thus, the limiting procedure eliminated only one
parameter from the original metric. In four dimensions,
the spacetime reduces to the Taub-NUT-(A)dS and the

choice ξ
̥
¼ �1 gives the metric which is regular on one

of the semiaxes ξ ¼ �1.

B. Taub-NUT-(A)dS

Another important example is when the limit is taken
in all directions of the Euclidean sector, N̆ ¼ N − 1.
The metric takes the form

g ¼ −
Δ

ˆ̄Jð−r2Þ

�
dτ −

X
μ̄

2x̂μ̄
δμ̄

ðξμ̄ − ξ
̥
μ̄Þdφμ̄

�
2
þ

ˆ̄Jð−r2Þ
Δ

dr2

þ
X
μ̄

r2 þ x̂2μ̄
δμ̄

�
dξ2μ̄

1 − ξ2μ̄
þ ð1 − ξ2μ̄Þdφ2

μ̄

�
; ð4:4Þ

where we denoted the temporal coordinate ψ
̯
0 by τ and

introduced δμ̄ ¼ 1=δxμ̄, which reads [cf. (2.63), (3.24)]

δμ̄ ¼ ð2N − 1Þ
 P

k
λk ˆ̄AðkÞ

2N−2k−1P
k

λk ˆ̄AðkÞ
2N−2k−3

þ λx̂2μ̄

!
: ð4:5Þ

Again, we employed λðx̂2μ̄ − x̂2NÞ > 0, which is a conse-
quence of the NUT-like choice. The function Δ is given by
(2.23), (2.60), where x̂2N can be replaced by the expression
(2.63). Alternatively, it can be rewritten (after some
algebraic manipulation) as

Δ ¼ r
Z r�

δ1 − ð2N − 1Þλðx̂21 þ s2Þ
� ˆ̄Jð−s2Þ

s2
ds − 2mr:

ð4:6Þ

The metric (4.4) corresponds to the higher-dimensional
analogy of the Taub-NUT-(A)dS metric. It agrees with the
geometry of “multiply nutty” spacetimes which was found in
[27]. The only difference is that the conditions for constants
δμ̄ from [27] are solved by the explicit expression (4.5).

4A combination of accents inverse breve and bar on a quantity,

for instance Ā
̯
ðk̄
̯
Þ, indicates that such a quantity is constructed out

of all xμ except xN and x, which is a coordinate of the degenerate
direction.
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The metric contains the parameters x̂μ̄, m, λ, and the

constants ξ
̥
μ̄ ∈ ½−1; 1�, which can be set arbitrarily.

We can observe that by switching off the parameters x̂μ̄,
the metric takes the form

g ¼ −fdτ2 þ 1

f
dr2

þ
X
μ̄

r2

2N − 3

�
dξ2μ̄

1 − ξ2μ̄
þ ð1 − ξ2μ̄Þdφ2

μ̄

�
; ð4:7Þ

with the metric function

f ¼ 1 − λr2 −
2m
r2N−3 : ð4:8Þ

Although (4.7) has the same radial dependence in the
Lorentzian sector as the Schwarzschild-Tangherlini solu-
tion, it differs in the Euclidean sector. In the case of
Schwarzschild-Tangherlini, the Euclidean part is given
by the homogeneous metric on 2ðN − 1Þ-sphere instead
of a sum of two-spheres, but they both reduce to the
Schwarzschild metric in four dimensions. Also, (4.7) for
m ¼ 0 is not a maximally symmetric spacetime in higher
than four dimensions.

V. NEAR-HORIZON LIMITS

The double-root limiting procedure from Sec. III can be
generalized to the case where the degenerated direction is in
the Lorentzian sector. It means that the radial coordinate r is
squeezed to the real double root of the polynomialΔ, which
is either r̂ or r̂ðλÞ. The former exists only for the Kerr-like
choice and corresponds to the position where the inner and
outer horizons merge, while the latter represents the
coinciding outer and cosmological horizons, which is
present only if λ > 0. We restrict ourselves to r̂, which
is more physically interesting, however, we will discuss the
case r̂ðλÞ in connection with the completely degenerate case
in Sec. VI. For this reason, we focus on the Kerr-like
choice first.

A. Limiting procedure in Lorentzian sector

In order to study limits in Lorentzian sector, we have to
take into account a few very important distinctions that
occur here. As was discussed above, the radius r does not
have to be restricted between roots of the metric function.
Actually, one can set the value of mass to its critical value
m̂, which corresponds to the double root r̂, without
scaling the coordinate r at all, obtaining thus the extreme
black hole.
However, it is also interesting to zoom to the neighbor-

hood of the extreme horizon and to study so-called a near-
horizon limit of the black hole solution [13]. Indeed, one
can rescale the radial coordinate in such a way that the

degenerating horizon remains in the zoomed region. Since
the range of r is unrestricted, there is a greater freedom to
squeeze the radial coordinate and introduce rescaled
coordinate near the extreme horizon.
We study three possible limits leading to the extreme

case which differ by a correlation between the coordinate
scaling and how we approach the critical value m̂, see
Fig. 7. In so called extreme limit, one simply sets m ¼ m̂
and scales the radial coordinate independently [13]. In
subextreme limit, one approaches m → m̂ in such a way
thatΔ has two real roots near the critical value r̂ [41]. Thus,
there are two horizons which coincide in the limit, and the
coordinate scaling is adjusted to these horizons. Finally, in
superextreme limit, one approaches m → m̂ with no hori-
zons before the limit, see e.g. [42]. Thus, Δ does not have
real roots approaching r̂. Instead, it has two complex
conjugated roots which coincide in real extreme limit
and the coordinate scaling is adjusted to them.
Another important difference arises due to the structure

of tangent points for the Kerr-like choice, see Table I.
In this case, the tangent point x̂1 ¼ ir̂ of J ðx2Þ is imaginary
and its imaginary part r̂ represents the real tangent point of
J ð−r2Þ. Thus the limit r ≈ r̂ is just the Wick rotated limit
xN ≈ x̂1. It is, however, a limit of a different type than the
limits xμ ≈ x̂μ which we studied in Sec. III. Fortunately,
this distinction requires only small modifications in our
formulas.

B. Extreme near-horizon limit

A common near-horizon limiting procedure usually
begins with the extreme case where mass is set to the
critical mass,

m ¼ m̂; ð5:1Þ

FIG. 7. Three distinct approximation procedures of the poly-
nomial Δ are illustrated in terms of lines passing through the
origin on the left. The line approaching the tangent line has either
two intersections (two real roots), no intersection (two complex
conjugate roots), or is tangent from the very beginning (a double
root). This is accompanied by zooming in on the region close to
the tangent point r̂, where a new coordinate ρ is introduced. The
resulting polynomial Δ is approximated by one of the three
quadratic functions in coordinate ρ on the right.
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and the horizons þr, −r simply coincide þr ¼ −r ¼ r̂. Then
we zoom in on this extreme horizon by introducing the
rescaled coordinate ρ ∈ R,

r ¼ r̂þ δrρεþOðε2Þ; ð5:2Þ

where ε ≪ 1 is a small positive parameter and δr > 0 is a
factor which will be specified below. The polynomial Δ is
then approximated by a quadratic function in the order ε2,

Δ ¼ −ð2N − 1ÞλĴ1ð−r̂2Þδr2ρ2ε2 þOðε3Þ; ð5:3Þ

where x̂2N is expressible in terms of other constants
via (2.63).
As before, the transformation of the coordinate rmust be

accompanied by a proper transformation of the Killing
coordinate ϕN ,

5

ϕN ¼ J̄
̥
ð−r̂2Þt 1

ε
ð5:4Þ

with t being a new temporal coordinate.
We do not assume any particular scaling of the parameter

x
̥
N . We simply set

r
̥ ¼ r̂; ð5:5Þ

where r
̥
denotes the Wick rotated parameter x

̥
N ¼ ir

̥
.

Employing (5.3), the formulas analogous to (3.19),
(3.20), taking the limit ε → 0, and fixing

δr ¼ 1

−ð2N − 1ÞλĴ1ð−r̂2Þ
; ð5:6Þ

we obtain the metric

g ¼ J̄ð−r̂2Þ
δ

�
−ρ2dt2 þ dρ2

ρ2

�
þ
X
μ̄

"
ðr̂2 þ x2μ̄ÞŪμ̄

X μ̄
dx2μ̄

þ X μ̄

ðr̂2 þ x2μ̄ÞŪμ̄

�X
k̄

Āðk̄Þ
μ̄ dψ̄ k̄ −

2r̂
δ
J̄μ̄ð−r̂2Þρdt

�
2
#
;

ð5:7Þ

where we introduced the symbol δ ¼ 1=δr which can be
expressed as [cf. (5.6), (2.63)]

δ ¼ ð2N − 1Þ ˆ̄J1ð−r̂2Þ

0
B@
P

k
λkð ˆ̄AðkÞ

1 −r̂2 ˆ̄Aðk−1Þ
1 Þ

2N−2k−1P
k
λkð ˆ̄AðkÞ

1 −r̂2 ˆ̄Aðk−1Þ
1 Þ

2N−2k−3

− λr̂2

1
CA: ð5:8Þ

The positiveness of δr (and δ) follows from the Kerr-like
choice in which −λðr̂2 þ x̂2NÞ is positive.
Functions X μ̄ are given by (2.23), (2.60), where x̂2N

is replaced by the expression (2.63). The metric (5.7)
represents the near-horizon limit of the extreme Kerr-NUT-
(A)dS spacetimes. This result was derived earlier in [37],
where authors used a standard parametrization in terms
of aμ instead of tangent points x̂μ. We see that the terms
−ρ2dt2 þ ρ−2dρ2 in degenerated sector describe the metric
of the two-dimensional anti–de Sitter spacetime.
The frame of one-forms and the dual frame of vectors

[cf. (2.16) and (2.17)] are

eμ̄ ¼
�

X μ̄

ðr̂2þ x2μ̄ÞŪμ̄

�
−1
2

dxμ̄; eN ¼ i

�
−δ

J̄ð−r̂2Þρ
2

�
−1
2

dρ;

êμ̄ ¼
�

X μ̄

ðr̂2þ x2μ̄ÞŪμ̄

�1
2

�X
k̄

Āðk̄Þ
μ̄ dψ̄ k̄−

2r̂
δ
J̄μ̄ð−r̂2Þρdt

�
;

êN ¼
�
J̄ð−r̂2Þ
−δ

ρ2
�1

2

dt; ð5:9Þ

and

eμ̄ ¼
�

X μ̄

ðr̂2þ x2μ̄ÞŪμ̄

�1
2 ∂
∂xμ̄

; eN ¼−i
�

−δ
J̄ð−r̂2Þρ

2

�1
2 ∂
∂ρ

;

êμ̄ ¼
�

X μ̄

ðr̂2þ x2μ̄ÞŪμ̄

�
−1
2
X
k̄

ð−x2μ̄ÞN̄−k̄−1

Ūμ̄

∂
∂ψ̄ k̄

;

êN ¼
�
J̄ð−r̂2Þ
−δ

ρ2
�
−1
2

�
∂
∂t

þ 2

δ
ρ
X
k̄

r̂2ðN̄−k̄Þ−1 ∂
∂ψ̄ k̄

�
;

ð5:10Þ

respectively.

C. Subextreme and superextreme limits

We can also start the limiting procedure with a general
subextreme mass m > m̂ for which the polynomial Δ has
two real roots þr and −r corresponding to outer and inner
horizons respectively. Still, we describe a limit in which the
horizons approach the extreme radius þr; −r → r̂. We scale
the radial coordinate r by introducing a new rescaled
coordinate ρþ ∈ R,

r ¼
þrþ −r

2
þ

þr − −r
2

ρþ: ð5:11Þ

Also, we introduce a small positive parameter ε ≪ 1 which
controls how fast the roots are approaching each other
[cf. (3.4)],

þr − −r ¼ 2δrε: ð5:12Þ
5The coordinate ϕN can also be expressed in terms of the

coordinates (2.20) as ϕN ¼ T þPk̄Ā
̥
ðk̄þ1Þχ k̄.
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Along with the squeezing of the radial coordinate, we
assume that the mass decreases to its critical value m → m̂.
As in (3.9) and (3.10), we can derive the expansions of r
and m in ε,

r ¼ r̂þ δrρþεþOðε2Þ; ð5:13Þ

m ¼ m̂ − ð2N − 1ÞλĴ1ð−r̂2Þ
δr2

2r̂
ε2 þOðε3Þ: ð5:14Þ

We find that Δ is approximated by a quadratic function

Δ ¼ −ð2N − 1ÞλĴ1ð−r̂2Þδr2ðρ2þ − 1Þε2 þOðε3Þ; ð5:15Þ

which differs from the extreme case (5.3) only by the term
ðρ2þ − 1Þ instead of ρ2.
Alternatively, we can start with the superextreme mass

m < m̂, without inner or outer horizons. However, we
assume that the roots þr and −r are complex conjugate, but
they are still approaching the real extreme value r̂. Since the
difference of two complex conjugate numbers is imaginary,
we appropriately modify the relations (5.12), (5.11),
introducing a rescaled coordinate ρ− ∈ R:

þr − −r ¼ 2iδrε; ð5:16Þ

r ¼
þrþ −r

2
− i

þr − −r
2

ρ−: ð5:17Þ

The factor −i in (5.17) corresponds to the Wick rotation
around the point ðþrþ −rÞ=2 which projects the roots to
the real axis where we introduce the coordinate ρ−.
Following the steps before, we find that the coordinate r

is expanded in the same way,

r ¼ r̂þ δrρ−εþOðε2Þ ð5:18Þ

and the expansion of m differs in sign,

m ¼ m̂þ ð2N − 1ÞλĴ1ð−r̂2Þ
δr2

2r̂
ε2 þOðε3Þ: ð5:19Þ

Finally, we obtain the approximation of the polynomial Δ,

Δ ¼ −ð2N − 1ÞλĴ1ð−r̂2Þδr2ðρ2− þ 1Þε2 þOðε3Þ; ð5:20Þ

which differs by the term ðρ2− þ 1Þ.
Applying the same procedure as before [δr is chosen

according to (5.6)], we end up with the metrics

g¼ J̄ð−r̂2Þ
δ

�
−ðρ2� ∓ 1Þdt2� þ dρ2�

ρ2� ∓ 1

�

þ
X
μ̄

�ðr̂2þ x2μ̄ÞŪμ̄

X μ̄
dx2μ̄

þ X μ̄

ðr̂2þ x2μ̄ÞŪμ̄

�X
k̄

Āðk̄Þ
μ̄ dψ̄�k̄−

2r̂
δ
J̄μ̄ð−r̂2Þρ�dt�

�
2
�
;

ð5:21Þ

where we distinguished the two cases by adding the
subscripts � to some coordinates. The factor δ is still
given by (5.8). In what follows, we show that both metrics
(5.21) and the original one (5.7) actually represent the same
spacetime, but in different coordinate systems. The three
systems of coordinates are similar to the ones which are
often used in four-dimensional Robinson-Bertotti space-
time, see e.g. [43].
Let us start by expressing the AdS2 in Poincaré and two

other types of static coordinates

gAdS2 ¼ −ρ2dt2 þ dρ2

ρ2
¼ −ðρ2� ∓ 1Þdt2� þ dρ2�

ρ2� ∓ 1
;

ð5:22Þ
where the transformations are given by the relations

tþ ¼ −
1

2
log

				t2 − 1

ρ2

				; ρþ ¼ −ρt;

cot t− ¼ −
1

2t

�
t2 −

1

ρ2
− 1

�
; ρ− ¼ ρ

2

�
t2 −

1

ρ2
þ 1

�
:

ð5:23Þ

These are the correct coordinate transformations of the
degenerate sector, however, they produce wrong terms in
the other parts of the full metric. Fortunately, they can be
compensated by an appropriate transformation of the
coordinates ψ̄�k̄,

6

ψ̄þk̄ ¼ ψ̄ k̄ −
2

δ
r̂2ðN̄−k̄Þ−1Re artanh ρt;

ψ̄−k̄ ¼ ψ̄ k̄ −
2

δ
r̂2ðN̄−k̄Þ−1Re artanh

2ρt
ρ2t2 þ ρ2 þ 1

: ð5:24Þ

Thus, we confirmed that both limits lead to the extreme
near-horizon geometry (5.7). Transformations (5.23),
(5.24) are generalizations of their four-dimensional ana-
logues, which can be found, e.g., in [42].
The supplementary transformations (5.24) can be

derived as follows: We start with a general transformation
of the form (no changes of xμ̄ are needed)

6Alternatively, (5.24) can be written in terms of the logarithmic
function with the use of the identity: Re artanh x ¼ 1

2
log j xþ1

x−1 j.
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ψ̄�k̄ ¼ ψ̄�k̄ðt; ρ; ψ̄ l̄Þ: ð5:25Þ

By expressing the metric (5.21) in the original coordinates
t, ρ, ψ̄ l̄ [by means of (5.23), (5.25)], and comparing with
(5.7) (the nontrivial part is only the one inside the round
bracket in third line), we get the equations

X
k̄

Āðk̄Þ
μ̄

∂ψ̄�k̄

∂t ¼ 2r̂
δ
J̄μ̄ð−r̂2ÞT�;

X
k̄

Āðk̄Þ
μ̄

∂ψ̄�k̄

∂ρ ¼ 2r̂
δ
J̄μ̄ð−r̂2ÞR�;

X
k̄

Āðk̄Þ
μ̄

∂ψ̄�k̄

∂ψ̄ l̄
¼ Āðl̄Þ

μ̄ : ð5:26Þ

Here, we introduced the shorthands

Tþ ¼ ρ

ρ2t2− 1
; Rþ ¼ t

ρ2t2− 1
;

T− ¼
ρ
2
ðt2− 1

ρ2
− 1Þ

ρ2

4
ðt2 − 1

ρ2
þ 1Þ2þ 1

; R− ¼
t
2
ðt2 − 1

ρ2
þ 1Þ

ρ2

4
ðt2− 1

ρ2
þ 1Þ2þ 1

:

ð5:27Þ

Equations (5.26) can be inverted with the help of (A10) and
integrated out, so we obtain (5.24).
The inverse transformations to � coordinates are

t ¼ � ρþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jρ2þ − 1j

p e−tþ ; ρ ¼ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jρ2þ − 1j

q
etþ ;

ψ̄ k̄ ¼ ψ̄þk̄ −
2

δ
r̂2ðN̄−k̄Þ−1Re artanh ρþ; ð5:28Þ

and

t¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2−þ 1

p
sin t−

ρ−þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2−þ 1

p
cos t−

; ρ¼ ρ−þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2−þ 1

q
cos t−;

ψ̄ k̄ ¼ ψ̄−k̄þ
2

δ
r̂2ðN̄−k̄Þ−1Reartanh

sin t−ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2−þ 1

p
þ ρ− cos t−

:

ð5:29Þ

D. Symmetry enhancement

Since the form of the metric (5.7) is simplified in the
degenerated Lorentzian sector, we can expect the enhanced
symmetry as with the Euclidean case in Sec. III D. It is
actually a well-known fact that the near-horizon limit of the
Kerr-NUT-(A)dS spacetime has enhanced symmetry in
four dimensions as well as in higher dimensions [38,39].
From the extreme limiting procedure, we find the Killing

vectors associated with the coordinates t and ψ̄ k̄,

∂
∂t

¼ J̄
̥
ð−r̂2Þ
ε

r
̥
ðNÞ;

∂
∂ψ̄ k̄

¼
X
μ̄

Ā
̥
ðk̄Þ
μ̄ r
̥
ðμ̄Þ: ð5:30Þ

Similarly, the subextreme and superextreme limiting pro-
cedures lead to the coordinate systems with the temporal
coordinates tþ and t−. The corresponding Killing vectors
together with (5.30) form an independent set. Thus, we
define

tð○Þ ¼
1ffiffiffi
2

p ∂
∂t

; tðþÞ ¼
∂
∂tþ

; tð−Þ ¼
∂
∂t−

; sðk̄Þ ¼
∂

∂ψ̄ k̄
:

ð5:31Þ

With the help of the inverse transformations (5.28) and
(5.29), the vectors tðþÞ and tð−Þ can also be expressed in
terms of the coordinates t, ρ, ψ̄ k̄, see (5.42) below.
Although these Killing vectors are independent, their

algebra has an unusual form,

½tðþÞ; tð−Þ� ¼
ffiffiffi
2

p
tð○Þ − tð−Þ; ½tðþÞ; tð○Þ� ¼ tð○Þ;

½tð−Þ; tð○Þ� ¼
1ffiffiffi
2

p tðþÞ; ð5:32Þ

where we omitted the vectors sðk̄Þ, which Lie-commute with
all Killing vectors. Obviously, we can improve (5.32) by
choosing a different set of Killing vectors, in particular, a
different combination of vectors tðAÞ.
A form of the Lie brackets is given by the structure

constants CAB
C,

½tðAÞ; tðBÞ� ¼ −
X
C

CAB
CtðCÞ: ð5:33Þ

Structure constants naturally define the Killing form

KAB ¼ −
1

2

X
C;D

CAC
DCBD

C; ð5:34Þ

which can be regarded as a metric tensor on the Lie algebra.
Thus, the inverse Killing metric is given by the inverse
matrixK−1AB and it can be lifted to the spacetime manifold,

K−1 ¼
X
A;B

K−1ABtðAÞtðBÞ: ð5:35Þ

The Killing metric with respect to the frame tðþÞ, tð−Þ, tð○Þ
reads7

K−1 ¼ −t2ðþÞ þ
ffiffiffi
2

p
tð−Þ∨tð○Þ − 2t2ð○Þ: ð5:36Þ

7The symbol ∨ denotes the symmetric product of two vectors.
For two vectors A and B, it is given by A∨B ¼ ABþ BA.
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From this we see that the set of vectors is not chosen well
and it can be adjusted twofold; to the orthonormal frame or
to the null frame with respect to the Killing form.
Let us introduce the Killing vectors

tð×Þ ¼ tð−Þ −
ffiffiffi
2

p
tð○Þ; tð•Þ ¼

ffiffiffi
2

p
tð−Þ − tð○Þ: ð5:37Þ

Then, the Killing-orthonormal frame corresponds to the
choice tðþÞ, tð×Þ, tð−Þ, which gives the algebra

½tð×Þ; tð−Þ� ¼ tðþÞ; ½tð−Þ; tðþÞ� ¼ tð×Þ;

½tð×Þ; tðþÞ� ¼ tð−Þ: ð5:38Þ

It can be easily seen that the corresponding Killing form is
diagonal in this frame,

K−1 ¼ −t2ðþÞ − t2ð×Þ þ t2ð−Þ: ð5:39Þ

Another common choice is the Killing-null frame tðþÞ, tð•Þ,
tð○Þ, which leads to the algebra

½tð•Þ; tð○Þ� ¼ tðþÞ; ½tð•Þ; tðþÞ� ¼ tð•Þ;

½tðþÞ; tð○Þ� ¼ tð○Þ: ð5:40Þ

With respect to this frame, the Killing form is

K−1 ¼ −t2ðþÞ − tð•Þ∨tð○Þ: ð5:41Þ

In (5.38) [or (5.40)] we recognize the algebra of
SLð2;RÞ ∼ SOð1; 2Þ group. In fact, these Killing vectors

are actually the Killing vectors of the two-dimensional
anti–de Sitter spacetime with a few additional terms
involving ∂ψ̄ k̄

directions. For example, the Killing-
orthonormal frame tðþÞ, tð×Þ, tð−Þ in the Poincaré
coordinates reads

tðþÞ ¼ ρ
∂
∂ρ

− t
∂
∂t

;

tð×−Þ ¼
1

2

�
1

ρ2
þ t2 ∓ 1

�
∂
∂t

− ρt
∂
∂ρ

þ 2

δ

1

ρ

X
k̄

r̂2ðN̄−k̄Þ−1 ∂
∂ψ̄ k̄

: ð5:42Þ

The projections of the Killing vectors to the AdS2
directions are shown in conformal diagrams in Fig. 8.
Altogether the explicit symmetries of the near-horizon

geometry are fully described by a set of 3þ N̄ Killing
vectors, e.g.,

tðþÞ; tð×Þ; tð−Þ; sðk̄Þ; ð5:43Þ

or alternatively

tðþÞ; tð•Þ; tð○Þ; sðk̄Þ: ð5:44Þ

This indicates that the symmetry is enhanced from
R × Uð1ÞN̄ to SLð2;RÞ × Uð1ÞN̄ .
Moreover, the rank-two Killing tensor (2.18) in the

degenerate direction is also simplified [see (3.19), (3.20),
and (5.10)]

FIG. 8. Conformal diagrams of the AdS2 spacetime with various static coordinate charts. Arrows denotes the Killing vectors tðþÞ, tð−Þ,
tð×Þ, tð○Þ, tð•Þ (from left to right) projected to the AdS2 directions. Left and right vertical lines are the infinities of AdS2, while the diagonal
lines denote the Killing horizons of the corresponding AdS2 Killing vectors. The diagram should continue in vertical directions, since
only the spatial (horizontal) directions are compactified.
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q
̥
ðNÞ ¼

δ

J̄
̥
ð−r̂2Þ

�
ρ2

∂
∂ρ

2
−

1

ρ2

�
∂
∂t

þ 2

δ
ρ
X
k̄

r̂2ðN̄−k̄Þ−1 ∂
∂ψ̄ k̄

�
2
�
:

ð5:45Þ

It can be easily verified that such a tensor can be actually
written as a combination of the Killing vectors (5.43),

qðNÞ ¼
δ

J̄
̥
ð−r̂2Þ

�
t2ðþÞ þ t2ð×Þ − t2ð−Þ −

�
2

δ

X
k̄

r̂2ðN̄−k̄Þ−1sðk̄Þ

�
2
�
;

ð5:46Þ

or in terms of the Killing vectors (5.44) as

qðNÞ ¼
δ

J̄
̥
ð−r̂2Þ

�
t2ðþÞ − tð○Þ∨tð•Þ −

�
2

δ

X
k̄

r̂2ðN̄−k̄Þ−1sðk̄Þ

�
2
�
;

ð5:47Þ

which agrees with the result obtained in [39]. The part
of the Killing tensor which does not contain the direc-
tions sðk̄Þ resembles the form of the Killing metric,
cf. (5.39), (5.41).

VI. COMPLETE DEGENERATION

Finally, we would like to discuss the limit when all
directions degenerate, N̆ ¼ N. The complete degeneration
is possible only in the NUT-like choice for λ > 0, because
only then all coordinates x1;…; xN̄; r possess the corre-
sponding real tangent points x̂1;…; x̂N̄ ; r̂

ðλÞ, see Table I, so
we can expand these coordinates around such double roots.
As with the NUT-like limits, we introduce a rescaled

coordinate ξμ̄,

xμ̄ ¼
þxμ̄ þ −xμ̄

2
þ

þxμ̄ − −xμ̄
2

ξμ̄; ð6:1Þ

and parametrize the convergence of the roots þxμ̄, −xμ̄, by
the positive parameter ε ≪ 1,

þxμ̄ − −xμ̄ ¼ 2δxμ̄ε; ð6:2Þ

where δxμ̄ > 0. As in (3.9) and (3.10), the expansions of xμ̄,
bμ̄ read

xμ̄ ¼ x̂μ̄ þ δxμ̄ξμ̄εþOðε2Þ: ð6:3Þ

bμ̄ ¼ b̂μ̄ − ð2N − 1ÞλÛμ̄

δx2μ̄
2x̂μ̄

ε2 þOðε3Þ; ð6:4Þ

which leads to the approximations of the polynomials X μ̄

[cf. (3.11)],

X μ̄ ¼ −ð2N − 1ÞλÛμ̄δx2μ̄ð1 − ξ2μ̄Þε2 þOðε3Þ: ð6:5Þ

The radial coordinate can be expanded by any of three
procedures described in Sec. V, but, for simplicity, we use
the procedure which starts with the extreme case, see
Sec. V B. This time, however, we begin with a different
critical value,

m ¼ m̂ðλÞ ð6:6Þ

which corresponds to the extreme horizon r̂ðλÞ and intro-
duce the rescaled coordinate ρ in the vicinity of r̂ðλÞ,

r ¼ r̂ðλÞ þ δrρεþOðε2Þ; ð6:7Þ

where δr > 0. The polynomial Δ is then approximated as

Δ ¼ −ð2N − 1ÞλĴNð−r̂ðλÞ2Þδr2ρ2ε2 þOðε3Þ: ð6:8Þ

In order to obtain a finite metric, the transformation (6.7)
must be supplemented with an appropriate transformation
of the Killing coordinates,

ϕμ̄ ¼ φμ̄
1

ε
; ϕN ¼ t

1

ε
: ð6:9Þ

We simply set x
̥
μ ¼ x̂μ, but other scaling of these param-

eters would lead to the same resulting metric. Taking the
limit ε → 0 and fixing

δxμ̄ ¼ δr ¼ 1

δ
; δ ¼ ð2N − 1Þλ; ð6:10Þ

we obtain the resulting metric

g ¼ 1

δ

�
−
dρ2

ρ2
þ ρ2dt2 þ

X
μ̄

�
dξ2μ̄

1 − ξ2μ̄
þ ð1 − ξ2μ̄Þdφ2

μ̄

��
:

ð6:11Þ

It is a direct product spacetime of two-dimensional de Sitter
spacetime and homogeneous metrics on two-spheres, i.e. a
generalization of a four-dimensional Nariai spacetime.
Also, it is not surprising that the rescaled radial coordinate
ρ plays a role of time, since in the extreme spacetime of
coinciding outer horizon þr and cosmological horizon
þrðλÞ, the coordinate r is timelike.

VII. CONCLUSIONS

In this paper, several limits of the Kerr-NUT-(A)dS
spacetimes were investigated.
Although the Kerr-NUT-(A)dS spacetimes have been

widely studied in the last decade, their full interpretation is
not yet achieved. There is still missing understanding of the
geometry in the presence of NUT parameters. In Sec. II we
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have given a rather extensive discussion of the parameter
choices leading to physically interesting subcases of the
Kerr-NUT-(A)dS geometry. We have identified the “Kerr-
like” and “NUT-like” choices which generalize analogical
dichotomy of Kerr and Taub-NUT solution in four dimen-
sions. We hope that this discussion makes at least a small
step in further understanding the Kerr-NUT-(A)dS metric.
However, the main goal of the paper was investigating

nontrivial limits of the Kerr-NUT-(A)dS solution, namely
the limits of the double roots of the metric functions Xμ.
Such limits generalize two interesting cases known from
the four dimensions: the Taub-NUT limit and the near-
horizon limit of the extreme Kerr black hole. For the
purpose of the limiting procedure we have reparametrized
the solution using so-called tangent-point parametrization.
In this language it was possible to control the limiting
process when two roots of the metric function coincide at
the critical value. The limiting procedure had to be
accompanied by a proper rescaling of coordinates which
effectively zooms in on the neighborhood of the critical
points of the metric functions.
We have presented limits along arbitrary number of

planes of rotations, which give rather complicated geom-
etries. Next, we have discussed particular cases, recovering,
for example, the “multiply nutty” spacetimes of [27].
When the “double-root” limit is taken for the metric

function governing the position of the horizons, it leads to
the near-horizon limit [13]. In our discussion we have
identified three different ways how one can zoom in on the
near-horizon region. It naturally leads to the near-horizon
geometry written in different coordinates, each of them
adjusted to a different static Killing vector.
We have identified enhanced symmetry of the limiting

spacetimes and showed that the hidden symmetries of the
original spacetime encoded by Killing tensors become
reducible to a richer structure of the explicit symmetries
given by Killing vectors.
Finally, we have also studied the double-root limit taken

in all coordinates xμ and obtained a rather trivial direct
product spacetime generalizing four-dimensional Nariai
spacetime.
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APPENDIX A: FUNCTIONS J, A, U

Throughout the paper we use many polynomial func-
tions, such as Jðx2Þ, AðkÞ, Uμ, and their generalizations.
Although these are just polynomial functions, it turns out
that they satisfy important identities which appear in almost
any calculations regarding the Kerr-NUT-(A)dS space-
times. We use here the notation which was established
mainly in [23,40] and is widely used in many related
papers. All definitions come in two variants, as polyno-
mials of variables xμ and aμ. The most important functions
are functions J, which give rise to both A and U. Their
simplest variants are defined by

Jðx2Þ ¼
Y
μ

ðx2μ − x2Þ ¼
XN
k¼0

AðkÞð−x2ÞN−k;

J ða2Þ ¼
Y
μ

ða2μ − a2Þ ¼
XN
k¼0

AðkÞð−a2ÞN−k; ðA1Þ

where the coefficients are

AðkÞ ¼
X
μ1 ;…;μk
μ1<…<μk

x2μ1…x2μk ; AðkÞ ¼
X
μ1 ;…;μk
μ1<…<μk

a2μ1…a2μk : ðA2Þ

We can generalize (A1) by omitting an index μ,

Jμðx2Þ ¼
Y

ν
ν≠μ

ðx2ν − x2Þ ¼
X
k

AðkÞ
μ ð−x2ÞN−k−1;

J μða2Þ ¼
Y

ν
ν≠μ

ða2ν − a2Þ ¼
X
k

AðkÞ
μ ð−a2ÞN−k−1; ðA3Þ

which generate the functions

AðkÞ
μ ¼

X
ν1 ;…;νkν1<…<νk
νj≠μ

x2ν1…x2νk ; AðkÞ
μ ¼

X
ν1 ;…;νk
ν1<…<νk

νj≠μ

a2ν1…a2νk : ðA4Þ

Similarly, we could also define the functions Jμνðx2Þ,
J μνðx2Þ, AðkÞ

μν , A
ðkÞ
μν by skipping the indices μ, ν. Besides

this we set

Að0Þ ¼ Að0Þ
μ ¼ Að0Þ

μν ¼ … ¼ 1;

Að0Þ ¼ Að0Þ
μ ¼ Að0Þ

μν ¼ … ¼ 1; ðA5Þ

and

Jμðx2ÞjN¼1 ¼ Jμνðx2ÞjN¼2 ¼ … ¼ 1;

J μða2ÞjN¼1 ¼ J μνða2ÞjN¼2 ¼ … ¼ 1: ðA6Þ

We also assume that the functions J and A are zero if the
indices μ, ν overflow. Finally, the special case of (A3) are
the functions
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Uμ ¼ Jμðx2μÞ ¼
Y

ν
ν≠μ

ðx2ν − x2μÞ;

Uμ ¼ J μða2μÞ ¼
Y

ν
ν≠μ

ða2ν − a2μÞ:
ðA7Þ

These functions satisfy the following identities:

AðkÞ ¼ AðkÞ
μ þ x2μA

ðk−1Þ
μ ; ðA8Þ

AðkÞ
μ ¼ AðkÞ

μν þ x2νA
ðk−1Þ
μν ; ðA9Þ

X
μ

AðlÞ
μ
ð−x2μÞN−k−1

Uμ
¼ δlk; ðA10Þ

X
k

AðkÞ
μ

ð−x2νÞN−k−1

Uν
¼ δνμ; ðA11Þ

X
κ

Jνða2κÞ
Uκ

J κðx2μÞ
Uμ

¼ δμν ; ðA12Þ

AðkÞ
μ;ν ¼ 2xν

x2ν − x2μ
ðAðkÞ

μ − AðkÞ
ν Þ; ðA13Þ

Uμ;ν ¼ δμν
X

ρ
ρ≠μ

2xμ
x2μ − x2ρ

Uμ þ ð1 − δμνÞ
2xν

x2ν − x2μ
Uμ: ðA14Þ

APPENDIX B: CONNECTION FORMS

From the first structure equations,

dea þ
X
b

ωa
b ∧ eb ¼ 0; ωab þ ωba ¼ 0; ðB1Þ

and by employing (A14) and (A13), we can obtain the
connection forms [44]

ωμν ¼ ð1− δμνÞ
1

x2ν − x2μ

�
xν

�
Xν

Uν

�1
2

eμþ xμ

�
Xμ

Uμ

�1
2

eν
�
;

ωμν ¼ ð1− δμνÞ
1

x2ν − x2μ

�
xμ

�
Xν

Uν

�1
2

eμþ xν

�
Xμ

Uμ

�1
2

eν
�
;

ωμν ¼ δμν

�
−
��

Xμ

Uμ

�1
2

�
;μ
êμþ

X
ρ

ρ≠μ

xμ
x2μ− x2ρ

�
Xρ

Uρ

�1
2

êρ
�

þð1− δμνÞ
xμ

x2μ− x2ν

��
Xν

Uν

�1
2

êμ−
�
Xμ

Uμ

�1
2

êν
�
; ðB2Þ

where the underscored indices of the connection forms
correspond to ê’s while the ordinary ones correspond to e’s.
By taking the limit that is described in Sec. III, we find

the connection forms of the limiting metric (3.25) with
respect to the orthonormal frame (3.26). The nonvanishing
connection forms are

ωμ
̯
ν
̯ ¼ 1

x2
ν
̯ − x2

μ
̯

�
xν̯
�

Xν
̯

ˆ̆Jðx2
ν
̯ ÞU
̯
ν
̯

�1
2

eμ
̯
þ xμ̯

�
Xμ
̯

ˆ̆Jðx2
μ
̯ ÞU
̯
μ
̯

�1
2

eν
̯
�
; ωμ̆ν

̯ ¼ xν̯

x2
ν
̯ − x̂2μ̆

�
Xν
̯

ˆ̆Jðx2
ν
̯ ÞU
̯
ν
̯

�1
2

eμ̆;

ωμ
̯
ν
̯ ¼ 1

x2
ν
̯ − x2

μ
̯

�
xμ̯
�

Xν
̯

ˆ̆Jðx2
ν
̯ ÞU
̯
ν
̯

�1
2

eμ
̯
þ xν̯

�
Xμ
̯

ˆ̆Jðx2
μ
̯ ÞU
̯
μ
̯

�1
2

eν
̯
�
; ωμ̆ ν

̯ ¼ x̂μ̆
x2
ν
̯ − x̂2μ̆

�
Xν
̯

ˆ̆Jðx2
ν
̯ ÞU
̯
ν
̯

�1
2

êμ̆;

ωμ
̯
ν
̯ ¼ xμ̯

x2
μ
̯ − x2

ν
̯

��
Xν
̯

ˆ̆Jðx2
ν
̯ ÞU
̯
ν
̯

�1
2

êμ
̯
−
�

Xμ
̯

ˆ̆Jðx2
μ
̯ ÞU
̯
μ
̯

�1
2

êν
̯
�
; ωμ̆ν

̯ ¼ x̂μ̆
x̂2μ̆ − x2

ν
̯

�
Xν
̯

ˆ̆Jðx2
ν
̯ ÞU
̯
ν
̯

�1
2

eμ̆;

ωμ
̯
μ
̯ ¼ −

��
Xμ
̯

ˆ̆Jðx2
μ
̯ ÞU
̯
μ
̯

�1
2

�
;μ
̯ ê

μ
̯
þ
X

ρ
̯

ρ
̯
≠μ
̯

xμ̯

x2
μ
̯ − x2

ρ
̯

�
Xρ
̯

ˆ̆Jðx2
ρ
̯ ÞU
̯
ρ
̯

�1
2

êρ
̯
; ωμ

̯
ν̆ ¼

xμ̯

x̂2ν̆ − x2
μ
̯

�
Xμ
̯

ˆ̆Jðx2
μ
̯ ÞU
̯
μ
̯

�1
2

êν̆;

ωμ̆μ̆ ¼ ξμ̆
�
δxμ̆jJ

̯
ðx̂2μ̆Þjð1 − ξ2μ̆Þ

�
−1
2êμ̆ þ

X
ρ
̯

x̂μ̆
x̂2μ̆ − x2

ρ
̯

�
Xρ
̯

ˆ̆Jðx2
ρ
̯ ÞU
̯
ρ
̯

�1
2

êρ
̯
; μ

̯
≠ ν

̯
: ðB3Þ
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