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Binary black hole mergers are among the most violent events in the Universe, leading to extreme
warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most
compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary
systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the
premerger orbital energy and angular momentum. A nonvacuum system can in principle shed more of this
energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that
accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying
quadrupole moment. This toy model may capture the merger of (low mass) neutron stars, but it may also be
used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more
rigorous numerical investigations into these systems.
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I. INTRODUCTION

The first detections of gravitational waves by the LIGO
and Virgo collaborations [1,2] have ushered in the era of
gravitational wave astronomy. Both observed events,
GW150914 and GW151226, are consistent with the merger
of two stellar-mass black holes. Although the collabora-
tions have confirmed that there were no detections of
systems containing matter during advanced LIGO’s first
observing run, they anticipate making detections of systems
containing neutron stars in the next few years as advanced
LIGO’s sensitivity increases [3] and VIRGO joins the
detector network.
Binary black holes are regarded as ideal sources of

strong gravitational waves, and the recent detections have
clearly confirmed this expectation. It is also customary to
consider binary black holes giving rise to scenarios capable
of radiating most efficiently in gravitational waves. This
expectation is supported by the fact that intense gravita-
tional fields and high speeds are probed in the merger of
black holes and thus the peak strain can be correspondingly
large. Although a large peak strain allows a great deal of
information to be gleaned about the final, nonlinear, stages
of merger, it does not necessarily yield the most detectable
source of gravitational waves nor does it imply binary black
holes would emit the most energy for a given mass in quasi-
circular encounters.
A gravitational wave detector is sensitive to the total

energy impingent on the detector within its frequency

sensitivity, making a merger that emits more energy over
longer time scales potentially more detectable than a black
hole merger of equivalent mass. In a binary black hole
merger, a significant portion of the orbital angular momen-
tum at coalescence is retained in the angular momentum of
the resulting Kerr black hole [4]. A merger event of
equivalent mass that could shed more of its initial orbital
binding energy in a merger could emit a larger total energy
in gravitational waves, and therefore be, in principle, more
detectable.
One candidate for such a “super-emitting” event is a

binary neutron star system which forms a long-lived
neutron star as a result of the merger. Such a star spins
down as angular momentum is radiated away in gravita-
tional radiation [7–9]. This radiative stage will come to an
end when either the massive neutron star that results from
the merger stops rotating or its time-dependent quadrupole
moment vanishes. Such different types of behavior allowed
by neutron stars is also representative, at a qualitative level,
to the type of phenomenology that other more exotic
objects might provide. Whether a binary neutron star or
another more exotic compact binary system can in principle
emit more total energy than a black hole binary depends, as
we shall discuss below, to leading order on the compaction
C ¼ GM=R of the merging objects withM, R the mass and
radius of the object respectively and G Newton’s constant
(and the speed of light c has been set to 1). For neutron
stars, C ∼ 10−1 and, more generally, exotic compact objects
can have a somewhat larger compaction and could emit
significantly more total energy than a black hole merger of
equivalent mass. Of course, for sufficiently large individual
masses in binary neutron star systems, a prompt collapse to
a black hole ensues [10] (see e.g. [11]). Since the
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gravitational wave strain is proportional to the chirp mass,
low masses have a low chirp mass and thus the detectability
horizon is lower. On the other hand, possible massive exotic
compact objects—of which there is not certainty on
possible mass bounds—could have a farther horizon and
the absence of detection from such objects would signifi-
cantly constrain their existence.
Assessing the amount of energy that can be radiated and

the characteristics of gravitational waves produced by
generic compact binary mergers provides guidance into
the observational opportunities ahead. In this paper, we
investigate the gravitational radiation emitted in a simple
model binary system composed of spherically symmetric,
nonrotating compact objects, and assess the detectability of
such events. While we expect this model to be quite far
from realistic systems, it can provide a rule of thumb for the
qualitative range of signatures that could be expected in
principle. In particular, rather than concentrating on the
radiative properties of binaries composed of specific exotic
objects (e.g. [12,13]) our model accounts for alternatives in
a simplistic manner with the goal of extracting the broad
qualitative features that general compact systems in qua-
sicircular mergers can yield. For the sake of presentation,
and departing slightly from the standard convention,
throughout our discussion, we will reserve the term
“compact object” to refer to objects which are not black
holes—e.g. neutron stars (NS) and exotic compact objects
(ECO). Such objects do not have an event horizon but give
rise to strong gravitational fields in their vicinity.
Additionally we will often employ the term “merger” to
denote the full dynamics of the binary; i.e. inspiral,
collision, post-merger and final state stages.

II. A MODEL FOR BINARY SUPER-EMITTERS

Before describing our simple model for nonvacuum
binaries, recall the standard binary black hole scenario.
The absolute bound on the energy radiated from a binary
black hole system comes from black hole thermodynamics.
In order for the entropy of the final merged black hole to be
nondecreasing, the area of the final black hole must be at
least as large as the area of the two initial black holes [14].
Since area scales as M2, the final mass, Mf, obeys M2

1 þ
M2

2 ≤ M2
f for non-rotating black holes, implying for equal

mass binaries that
ffiffiffi
2

p
M ≤ Mf ≤ 2M. This yields a maxi-

mum gravitational radiation efficiency of 29% of the binary
mass. In order for the final black hole to have no rotation,
and for this bound to be satisfied, all of its angular
momentum would need to be radiated away during the
merger, or somehow extracted via the interactions with
additional fields (e.g. via the Penrose, Blandford-Znajek
processes [15,16] and related), in which case it would no
longer be a pure vacuum binary black hole spacetime.
Numerical relativity predictions for nonrotating, equal-
mass black holes indicate such cases have a lower

efficiency radiation loss at ∼4% of the binary mass [17]
scaling with η2, where η ¼ M1M2=ðM1 þM2Þ2 ≤ 0.25, for
a fixed total mass. The predicted gravitational radiation
efficiency has been confirmed observationally with
GW150914 which radiated ∼5% of its mass in gravitational
waves [1]. We will therefore consider ∼4–5% to be the
threshold beyond which an equal mass compact binary
system, with individual objects without intrinsic angular
momentum, will be said to radiate more than its binary
black hole counterpart.
Our model consists of two nonspinning, spherical

compact objects as depicted in Fig. 1. The heavier object
has mass M1, radius R1, and moment of inertia I1; the
lighter object mass M2, radius R2, and moment of inertia
I2. Our toy model includes three phases of evolution:
inspiral, post-merger, and final fate. In the inspiral phase,
the persistent emission of gravitational radiation causes the
compact objects to undergo a slowly decaying nearly
circular Keplerian orbit about the center of mass. The
center of mass is located a distance Δ1;2 from each
respective mass, and a distance Δ≡ Δ1 þ Δ2 from each
other. As the objects come into contact, we define the post-
merger phase as the time at which the separation between
the objects is approximately constant and some fraction of
the orbital energy is converted to gravitational radiation.
This is in contrast to a binary black hole coalescence, which
is characterized by a quick plunge from an approximate
inner most stable circular orbit (ISCO). We also allow for
the possibility that energy is released in other nongravita-
tional-wave forms e.g. electromagnetic radiation, neutrinos
and mass shedding denoted as Eother. After some time, the
merged object achieves its “final fate” which is defined by

FIG. 1. A toy model for compact object quasicircular merger.
During the inspiral phase, two objects of mass M1;2 and radius
R1;2 (we assume M1 ≥ M2) undergo a nearly spherical decaying
Keplarian orbit about their center of mass (located a distance Δ1;2

from masses 1 and 2 respectively). Once the objects come into
contact, they undergo a merged phase during which orbital
energy is converted to gravitational radiation and possibly other
forms of radiation (of total energy Eother). After some time, the
objects merge into an axisymmetric object of constant density
with massMtot ≃M1 þM2 with moment of inertia If rotating at
a constant angular velocity Ωf.
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having no residual quadrupole moment (e.g. an axisym-
metric or nonrotating object). The mass of the final object is
assumed to be approximately conserved,Mtot ≃M1 þM2,
i.e., the stars do not shed significant mass, and any residual
rotational energy is locked into the spin of the final object at
angular frequency Ωf. Below, it will be useful to write
quantities in terms of the compaction of the initial and final
objects Ci ¼ GMi=Ri; with i ¼ 1; 2; f labelling object 1, 2
or the final object respectively.

A. Energy emitted in gravitational waves

During the inspiral phase, the objects orbit at an
instantaneous angular frequency Ωinsp about the center of
mass, which to leading order, is given by the Keplerian
expression Ωinsp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMtot=Δ3

p
. The center of mass is

located a distance Δ1;2 ¼ M2;1Δ=Mtot from mass 1 and 2
respectively. Setting the energy to zero for infinitely
separated objects, the total change in energy during the
inspiral phase due to gravitational wave emission can
be estimated as the total energy at the moment when the
objects come into contact,

ΔEinsp ¼
�
−
GM1M2

Δ
þ 1

2
IΩ2

insp

�
Δ¼R1þR2

: ð1Þ

The moment of inertia I is given by,

I ¼ ~I1M1R2
1 þ ~I2M2R2

2 þ μΔ2; ð2Þ

where μ ¼ M1M2=Mtot is the reduced mass and we have
chosen to parametrize the moment of inertia of the initial
state objects by dimensionless constants ~I1;2. For constant
density spheres, ~I1;2 ¼ 2=5, while a more realistic distri-
bution of mass would yield somewhat smaller values of
~I1;2 (e.g. [18]).
Once the objects come into contact, they no longer

execute a Keplerian orbit and the understanding of the
binary’s dynamics requires a more delicate analysis includ-
ing further physics. For instance, in the case of binary
neutron stars, nonlinear, general relativistic magnetohydro-
dynamics accounting for relevant microphysics in the
system (see e.g. [8] and references therein) should be
considered. With the purpose of deriving an upper bound
for generic objects, here we envision a highly idealized
post-merger phase, where at the initial contact stage, the
objects do not deform and simply fuse into a “Janus
dumbell” as illustrated in Fig. 1. This phase terminates
in what we refer to as “the final fate” where no further
gravitational waves are emitted. Naturally this phase either
describes a nonrotating object or an axisymmetric, sta-
tionary, object. We recognize that during this post-merger
phase there might be non-negligible energy loss via
electromagnetic and scalar radiation or particle emission,
(e.g. neutrinos in the case of neutron stars) which must also

be accounted for (for some recent examples see [19–24]).
The change in energy of the binary system due to
gravitational wave emission between these two stages is
given by the difference between the orbital energy at the
beginning of the merged phase and the residual energy in
the rotation of the final object as well as any non-
gravitational-wave energy loss, Eother,

ΔEpm ¼ −
�
1

2
IΩ2

insp

�
Δ¼R1þR2

þ 1

2
IfΩ2

f þ Eother; ð3Þ

where the moment of inertia of the final merged object
is If.
Combining Eq. (1) and Eq. (3), the total energy emitted

in gravitational radiation is given by the gravitational
potential energy of the two masses in contact less the
residual rotational energy of the final object,

EGW;CO ¼ −ðΔEinsp þ ΔEpmÞ

¼ GM1M2

Δ
−
1

2
IfΩ2

f − Eother: ð4Þ

Examining the relative contribution from the inspiral and
post-merger phases, if little energy is radiated or tied up in
the rotation of the final state object, then more gravitational
radiation could be emitted during the post-merger phase
than during inspiral. For example, in the case of identical
objects (M1 ¼ M2 ¼ M, R1 ¼ R2 ¼ R, C1 ¼ C2 ¼ C,
~I1 ¼ ~I2 ¼ ~I) and Ωf → 0 (i.e. a phase ending in a
nonrotating object), we have

max½EGW;CO� ¼
ð1 − ~IÞMC

4|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ΔEinsp

þ ð1þ ~IÞMC
4|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ΔEmerg

¼ MC
2

: ð5Þ

Note that for constant density spheres ( ~I ¼ 2=5), 70% of
the total energy in gravitational radiation can be emitted
during the post-merger phase. This stage in the evolution
can therefore be very significant in assessing the detect-
ability of compact object mergers, as we discuss in more
detail below.
How close a realistic scenario gets to the upper bound in

Eq. (5) depends on the details of the merger scenario, the
composition of the merging objects and the possible final
fate of the merger. These will determine the amount of
energy radiated and stored in the spin and mass of the final
object. For ECOs, our knowledge is naturally restricted to a
few proposed models and further limited by the small
number of works that have explored the nonlinear regime
described by the merger; indeed, to our knowledge, only
boson stars have been studied in this context [12,25].
The case of neutron star mergers is on better footing,

with significant efforts exploring their complex phenom-
enology during and after coalescence and including several
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mechanisms through which the system can loose energy
and redistribute angular momentum. A detailed estimate of
the post-merger object’s behavior must account for mag-
netohydrodynamical effects, as well as the possibility of
mass shedding, emission in electromagnetic radiation and
neutrinos in Eother. All of these potentially affect the
lifetime of configurations with a time-dependent quadru-
pole. As a bound on the total energy emitted electromag-
netically, we can appeal to the estimated energy emitted in
short gamma ray bursts. Such bursts are thought to be
driven by neutron star mergers, and the total energy emitted
is of order EGRB ∼ 1051 ergs ∼ 10−3 M⊙, far below the
energy emitted in gravitational radiation. An even larger
amount of energy is carried away by neutrinos, but this is
still arguably smaller than that in gravitational waves
[19,26]. Simulations of binary neutron star mergers also
indicate that tidal effects arise during the inspiral phase
[9,19,22–24,27,28], but they are small, especially for
higher compaction cases (which, as we shall discuss, are
the cases which could radiate more energy than the analog
black hole system). These estimates imply that Eother will
be small compared to the energy emitted in gravitational
radiation. Finally, for neutron stars with the right masses
and EoS, the time scale for the post-merger phase can be as
long as 10–104 s [29,30]. Provided a time-varying quadru-
pole lasts this long, the system can potentially execute
millions of post-merger orbital periods (see Sec. III), and
allow a significant amount of energy to be emitted as
gravitational radiation during the post-merger phase.
Assuming that Eother is negligible, the expression Eq. (5)

provides a bound that depends on the compaction of the
merging objects and the rotational energy of the final
object. Assuming most of the gravitational binding energy
is released as gravitational radiation and does not get
locked in the rotational energy of the final object we can
estimate an upper bound on the energy that could be
emitted in a nonvacuum compact binary merger. In general,
the total energy emitted increases with compaction. An
upper bound on the compaction of spherically symmetric
objects is given by Buchdal’s theorem to be C ≤ 4=9 [31],
which sets the maximum possible energy emitted in
gravitational radiation during our envisioned merger. The
emitted energy is greatest when the compaction of both
objects is saturated at C1 ¼ C2 ¼ 4=9, yielding the bound,

EGW;CO ≤
4μ

9
: ð6Þ

For equal mass, nonspinning objects, this bound implies
that the total energy emitted in gravitational radiation can
reach up to ∼11% of the total rest mass of the system.
Compare this value to that of the expected ∼4–5% of the
total mass for equal mass, nonspinning binary black hole
systems (e.g. [1,17,32]).

A lower limit on gravitational radiation in the post-
merger phase can be computed by assuming that the final
state, different from a black hole, is “instantaneously”
produced conserving angular momentum. This fixes Ωf

to be,

Ωf ≃
ðIΩinspÞΔ¼R1þR2

If
; ð7Þ

which implies that the energy change during the merger is

ΔEpm ¼ −
�
1 −

I
If

��
1

2
IΩ2

insp

�
Δ¼R1þR2

þ Eother: ð8Þ

ΔEpm can be zero in this scenario. However, unless the
initial (I) and final (If) moments of inertia are the same,
energy must be dissipated in the form of gravitational
radiation, electromagnetic radiation, neutrinos, mass shed-
ding, etc. If I is significantly different than If, the energy
loss can be an appreciable fraction of the total rest mass of
the system. This is a simple motivation for the importance
of searching for electromagnetic and neutrino counterparts
to compact object mergers (e.g. [33–35]), which could
elucidate the energy and momentum balance more effec-
tively than observing a single channel.
In the absence of other radiation, Eother, and assuming no

mass shedding, conservation of energy implies in this
prompt-final-state scenario that I ≤ If, which imposes a
restriction on the configuration of the final fate object that
can be produced in the merger. Imposing this requirement
and assuming both the initial and final state objects are
spherically symmetric with constant density, with the final
object characterized by a compaction Cf, we bound

C=Cf ≥
ffiffiffiffiffiffiffiffi
7=8

p
, or equivalently, Rf=R ≥

ffiffiffiffiffiffiffiffi
7=2

p
. The lower

FIG. 2. The energy radiated per unit mass versus dimensionless
final spin and final compaction for equal object binaries described
by Eq. (4) and assuming equal mass, equal radius, and equal
compaction objects merge to form a final object of maximal
compaction (4=9) and uniform density (If ¼ 2=5).
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bound for the emitted energy from the system is provided
in this case by the inspiral phase, which we estimated
in Eq. (5).
Between these upper and lower limits, there will be a

range of merger scenarios in which the energy emitted in
gravitational waves is larger than the corresponding black
hole system. In Fig. 2 we show the energy radiated per unit
mass versus dimensionless final spin and final compaction
for equal object binaries described by Eq. (4). Assuming
equal mass, equal radius, and equal compaction objects
merge to form a final object of maximal compaction (4=9)
and uniform density, the energy radiated can exceed that of
the equivalent binary black hole system (∼4%) for a family
of final objects with dimensionless spin af ≡Ω2

f=M
2 ≲

0.07 and Cf ≳ 0.15.

B. A more realistic scenario: neutron star mergers

Numerical simulations of neutron star mergers provide a
less idealized scenario than the one described above. Such
simulations are already furnishing a more complete under-
standing of binary neutron star systems. However, such
studies are computationally demanding due to the intrinsic
cost associated with each one, the larger parameter space
describing the binary (when compared to binary black
holes systems), and the inclusion of different physical
effects that can play a role over a disparate set of time and
length scales. Here we employ some partial information
inferred from simulations to enrich our model at a modest
level while maintaining its simplicity. We begin by con-
sidering the post-merger neutron star is characterized, to
leading order, by its rotation frequency and moment of
inertia. Assuming conservation of angular momentum
during the collision,

If ¼ I
Ωinsp

Ωpm
; ð9Þ

where I and Ωinsp are evaluated at Δ ¼ R1 þ R2. During
the post-merger phase, the change in energy due to emitted
gravitational radiation is

ΔEpm ¼ −
1

2
IfΩ2

pm ð10Þ

¼ −
�
1

2
IΩ2

insp

�
Ωpm

Ωinsp
; ð11Þ

where we have omitted the terms in Eq. (11) associated
with other forms of radiation and we assume that the final
fate object does not rotate.
An estimate of the ratio of angular frequencies can be

obtained in numerical relativity simulations, which indicate
that Ωpm=Ωinsp ≃ 2 (e.g. [19,20,36–38]) is a reasonable
expectation, yielding,

ΔEpm ¼ −IΩ2
insp; ð12Þ

and therefore

EGW;NS ¼
1

2
IΩinsp þ

GM1M2

Δ
: ð13Þ

Note that this is larger than the binding energy of the
individual objects, and therefore in principle larger than in
the toy model presented above. This is because: (i) we have
neglected additional radiative degrees of freedom (which
need not be significant depending on the objects involved)
and (ii) some of the internal binding energy of the two
objects has been converted to gravitational radiation in
deforming the merging compact objects into the final
compact object, which is reflected in the change in the
moment of inertia.
In the case of the merger between identical objects and

assuming the absence of other radiative degrees of freedom,
we can again compare the total energy emitted by a binary
neutron star system to an equivalent mass binary black hole
system. The total energy emitted in the neutron star system
is EGW;NS ¼ 17MC=20. Comparing against the energy
emitted in the equivalent black hole system, the neutron
star system will emit more total gravitational radiation as
long as C > :14. This is comparable to reasonable com-
pactions in neutron stars, implying that in principle a
neutron star binary can emit more total gravitational
radiation than the equivalent black hole system if there
is no significant dissipation in other forms of energy and the
final object is nonrotating; i.e. for relatively low total mass
binaries that avoid collapse to a black hole (e.g. [39,40]).

III. THE WAVEFORMS

The two polarizations of gravitational wave in our model
are given by

hþ ¼ 4GΩ2μ2Δ2

r
cosð2ΩtÞ

h× ¼ 4GΩ2μ2Δ2

r
sinð2ΩtÞ: ð14Þ

During the inspiral phase, both Δ and Ω evolve in time as
the orbit decays. During the merger phase, Δ ¼ R1 þ R2

and only the frequency changes in time. The inspiral is
associated with a chirp, e.g. an increase in frequency [41],
but the merger is associated with an antichirp, which is a
decrease in frequency as the merged, nonaxis-symmetric
object spins down [42,43].
We can determine the time dependence of the frequency

by computing the power emitted in gravitational waves and
comparing to the time derivative of the orbital energy. The
power emitted in gravitational waves is
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dE
dt

¼ −
G
5

�
d3J
dt3

·
d3J
dt3

�
t; ð15Þ

where Jij is the reduced quadrupole tensor. Assuming
rotation along the z-axis of Cartesian coordinates, this is
given by

J ¼ μΔ2

2

0
BB@

cosð2ΩtÞ − 1
3

sinð2ΩtÞ 0

sinð2ΩtÞ − cosð2ΩtÞ − 1
3

0

0 0 − 2
3

1
CCA; ð16Þ

which yields

dE
dt

¼ −
32Gμ2Δ4Ω6

5
: ð17Þ

During the inspiral phase, we can compare the power
emitted in gravitational waves Eq. (17) to the time
derivative of the orbital energy

dE
dt

¼
�
GM1M2

Δ2

dΔ
dΩ

þ IΩ
	
dΩ
dt

; ð18Þ

in order to obtain the time derivative of the orbital
frequency. During the early stages of inspiral where
Δ ≫ R1; R2, we obtain

dΩ
dt

¼ 96G5=3μM2=3
tot Ω11=3: ð19Þ

During the merger phase, dΔ=dt ¼ 0 in our simple model,
and we therefore have

dΩ
dt

¼ −
32Gμ2Δ4Ω5

5IΔ¼R1þR2

: ð20Þ

Setting the time of contact between the two compact
objects to be t ¼ 0, the solutions to Eq. (19) and (20) are

ΩðtÞ ¼ Ωinsp

ð1 − αinsptÞ3=8
; t < 0 ð21Þ

ΩðtÞ ¼ Ωinsp

ð1þ αpmtÞ1=4
; t > 0; ð22Þ

where the time constants αinsp and αpm are given by

αinsp ¼
8Ω8=3

insp

3
96G5=3μM2=3

tot ¼ 32C4

GM
; ð23Þ

and

αpm ¼ 4Ω4
insp

32Gμ2Δ4

5IΔ¼R1þR2

¼ 16C4

7GM
; ð24Þ

where Ωinsp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
GMtot

p ðR1 þ R2Þ−3=2 ¼ C3=2=ð2GMÞ and
in the second equality here and above we present the result
for identical merging objects.
In Fig. 3 we sketch an example of the wave form for

identical objects with C ¼ :1, including both the inspiral
and post-merger phases. The time constants set the char-
acteristic rate of change of the frequency, while Ωinsp sets
the characteristic frequency. For identical objects of mass
M ¼ M⊙ and compactions of order C ¼ 0.1, the time
constants are approximately α−1insp ≃ 1.6 ms and
α−1pm ≃ 20 ms. This can be compared to the orbital period
at contact, Ω−1

insp ¼ 0.3 ms, which is far smaller than the
decay time. Comparing with lifetimes of as long as
10–104 s for the time dependent quadrupole of merged
neutron stars [29,30], we also see that the frequency can
decay appreciably in realistic systems, which implies that a
significant amount of energy is radiated in gravitational
waves. More generally, the number of cycles compared to
the time constants scales like αwd;insp=Ωinsp ∼ C−5=2, which
can be quite large for small compaction. Therefore, during
the post-merger phase, the comparatively large frequency
and slow decay of the frequency give rise to a nearly
monochromatic signal.
Of course, our simple model captures the post-merger

waveforms of realistic systems such as neutron star mergers
only at a qualitative level. Missing from the model are:
modulations in the waveforms resulting tidal effects as well
as from compression/decompression of the merged object
(in the case of neutron stars, see e.g. [23,37,44,45]), the
main frequency of the early post-merger stages differing
from Ωinsp by a factor of ≃2 (for neutron stars, see e.g.
[23]), additional modes resulting from normal modes of the

FIG. 3. An example of the waveform Eq. (14) for the merger of
compact objects including an inspiral phase (blue) and ring down
phase (red) for identical objects of mass M ¼ M⊙ with C ¼ :1.
The chirp during inspiral has a higher pitch than the anti-chirp
during ring down, creating a quasi-monochromatic signal during
the post-merger phase.

HANNA, JOHNSON, and LEHNER PHYSICAL REVIEW D 95, 124042 (2017)

124042-6



star, new modes resulting from possible instabilities
[21,46,47], as well as additional physical effects driven
by angular momentum transport and cooling (in neutron
stars see, e.g. [7,19,20,48]) or interactions of characteristics
fields of exotic compact objects (for the case of boson stars
see [12]). The relevance and importance of each of these
effects depends upon the nature of the merging objects. It is
possible to enrich the model in order to account for some of
these features, as has been done for neutron star mergers in
Ref. [44]. However, careful modelling of specific systems
is beyond the scope of the present work, which is intended
only to provide a general rule of thumb for generic compact
object mergers (detached as much as possible from specific
cases), and a benchmark for comparison with black hole
mergers of equivalent mass.

IV. DETECTABILITY

We have shown above that it is in principle possible for
more total energy in gravitational radiation to be emitted in
the merger of compact objects than in the equivalent mass
black hole system. However, because gravitational wave
detectors are sensitive only over a range of frequencies, this
extra energy may or may not be easily detectable. In this
section, we address the detectability of the gravitational
waves emitted by the model described above.
An estimate of the signal to noise ratio (SNR) can be

obtained assuming an optimal filter is applied to hypo-
thetical time stream data. The square of the SNR is given in
frequency space by [49]

hSNR2i ¼ 4

Z
∞

0

jhcharðfÞj2
SnðfÞ

df; ð25Þ

where SnðfÞ is the one-sided noise power spectral density.
We consider two representative spectral densities. The first

is the projected sensitivity of advanced LIGO [50], shown
as the black line in Fig. 4, which for convenience we take to
be infinity outside the interval 10 Hz < f < 4 × 103 Hz.
The second is a scale invariant noise, defined in the same
frequency interval as the LIGO sensitivity curve, given
by hnðfÞ≃ 3.5 × 10−23f−1=2.
The one-sided signal power spectrum is defined as

hcharðfÞ2 ≡ 5Gð1þ zÞ2
8π2DLðzÞ2

f−2




 dEdf






ð1þzÞf

; ð26Þ

where z is the redshift to the binary,DLðzÞ is the luminosity
distance, and dE=df is the energy loss as a function of
frequency evaluated at the redshifted frequency.
For a compact object merger with our model, the energy

will vary differently with frequency during the inspiral and
post-merger phases, so we analyze these two cases sepa-
rately. Beginning with the inspiral phase, and identifying
f ¼ Ω=π, we obtain





 dEdf





insp

ðf < fpmÞ ¼
π2=3G2=3

3
μM2=3

tot f
−1=3

− π2ð ~I1M1R2
1 þ ~I2M2R2

2Þf; ð27Þ

where we have used the Keplerian relation between Δ and
Ω, and fpm is the frequency at the end of the inspiral phase,

given by fpm ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMtot=π2

p
ðR1 þ R2Þ−3=2. Comparing this

to the plunge frequency [51], for identical merging objects
we have fpm ¼ fplC3=2ðΔplunge=GMtotÞ3=2 ≃ 6.55C3=2fpl.
Note that for compactions larger than C > :29, the merger
frequency will be larger than the plunge frequency. During
the post-merger phase, we obtain

FIG. 4. Characteristic strain versus frequency for a variety of noise scenarios and merger events. The black solid line is the projected
characteristic strain noise jhnðfÞj for advanced LIGO. The orange solid line is the characteristic strain noise in a scenario with scale-
invariant sensitivity across the advanced LIGO frequency range. The red dashed line is the characteristic strain of a black hole-black hole
merger withM1 ¼ M2 ¼ 1.25 M⊙ at a redshift of z ¼ 0.01, computed in the PhenomD phenomenological model. The grey dot-dashed
lines are the characteristic strain produced in the inspiral [Eq. (30)] and post-merger [Eq. (31)] phases of a compact object merger in our
toy model with M1 ¼ M2 ¼ 1.25 M⊙ at a redshift of z ¼ 0.01 (the same as the fiducial black hole system) with ~I1 ¼ ~I2 ¼ 2=5 and
compaction C ¼ 0.02 (left panel) and C ¼ 0.1 (right panel). The total characteristic strain for the compact object merger (Eq. (29) is
shown as the solid blue line.
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 dEdf





pm
ðfff < f < fpmÞ ¼ π2IΔ¼R1þR2

f ð28Þ

where fff is the frequency at which the post-merger phase
terminates. Notice this frequency is < fmerg as a result of
the spin-down of the post-merger object due to the emission
of gravitational waves; in particular if the object retains its
quadrupole, then fff ¼ 0.
We consider the contributions to the characteristic strain

from the inspiral and post-merger phases separately:

hCOðfÞ2 ¼ hCO;inspðfÞ2 þ hCO;pmðfÞ2 ð29Þ

where it is understood that hCO;insp is defined in the
interval f < fmerg and hCO;merg is defined in the interval
fff < f < fmerg. For the inspiral phase, we obtain:

hCO;inspðfÞ2 ≃ 5

8
ð1þ zÞ5=3

�
Mpc
DLðzÞ

�
2 μ

M⊙

�
Mtot

M⊙

�
2=3

× 10−38 Hz1=3f−7=3

− 0.78ð1þ zÞ3
�
~I1

C2
1

�
M1

M⊙

�
3

þ
~I2

C2
2

�
M2

M⊙

�
3
	

×
�

Mpc
DLðzÞ

�
2

f−1 × 10−44 Hz−1: ð30Þ

For the post-merger phase, we obtain:

hCO;pmðfÞ2 ≃ 0.78ð1þ zÞ3 ×
�

Mpc
DLðzÞ

�
2

f−1 × 10−44 Hz−1

×

�
~I1

C2
1

�
M1

M⊙

�
3

þ
~I2

C2
2

�
M2

M⊙

�
3

þ μ

M⊙

�
M1

M⊙C1

þ M2

M⊙C2

�
2
	
: ð31Þ

We can now compare our compact binary model with a
binary black hole waveform. To properly capture the
merger and ring-down phases, we adopt the “PhenomD”
model [52], one of the phenomenological waveform
models that has been tuned with numerical relativity
simulations.
In Fig. 4, we show the characteristic strain for a system of

two compact objects of mass M1 ¼ M2 ¼ 1.25 M⊙ at a
redshift of z ¼ 0.01 (the same as the fiducial black hole
system) with ~I1 ¼ ~I2 ¼ 2=5 and compaction C ¼ 0.02
(left panel) and C ¼ 0.1 (right panel). For these masses, a
long-lived neutron star is a likely outcome of the merger.
Here, we have assumed that fff lies outside the frequency
range of the sensitivity curves. The dashed grey curves
show the contribution from h2CO;pm and h2CO;insp, while the
blue curve shows their sum. The relative SNR between the

compact object and black hole systems is both a function of
the compaction and of the strain noise.
To examine the relative SNR quantitatively, in Fig. 5 we

plot the SNR of the fiducial black hole system and an
equivalent mass system of identical compact objects from
our model, as a function of the compaction. The result for
the advanced LIGO strain noise is shown in blue, with the
corresponding SNR for the black hole shown as the dashed
blue curve. The result for the scale invariant strain noise is
shown in orange, with the corresponding SNR for the black
hole shown as the dashed orange curve. We have again
assumed that fff lies outside (and below) the frequency
range of the sensitivity curves. The SNR is larger than the
corresponding black hole system for compactions larger
than C ∼ :015 for the advanced LIGO strain noise scenario
and C ∼ :01 for the scale invariant noise scenario. The
growth in the SNR with compaction for the scale invariant
sensitivity curve is in accord with the intuition that systems
where more total energy is emitted are also more detectable.
For the LIGO sensitivity curve, the story is a little more
complicated. Since LIGO is not sensitive to the majority of
the gravitational radiation emitted in the post-merger phase
for this fiducial example at large compaction, the SNR first
rises then falls. However, for all but the largest compactions
where the post-merger phase for the compact objects exits
the LIGO sensitivity window, the cases where more total
energy is emitted are also more detectable.
Scanning a range of masses [53] between M⊙ < M <

30 M⊙, we found the compaction that yields the maximum
boost in SNR over the equivalent mass black hole system
for the advanced LIGO and scale invariant sensitivity strain
noise scenarios. For the advanced LIGO case, the maxi-
mum boost in squared SNR is nearly flat over redshift and
mass, equal to ∼1.8–2.5. The compaction at which the
maximum boost occurs increases with mass and is rela-
tively independent of redshift, ranging from C ∼ :03 for
M ¼ M⊙ to C ∼ :25 for M ¼ 30 M⊙. For the scale
invariant sensitivity scenario, the maximum boost is

FIG. 5. The SNR squared (Eq. (25) for the fiducial compact
object mergers shown in Fig. 4 as a function of compaction for
the advanced LIGO (blue) and scale invariant sensitivity (orange)
strain noise scenarios. The SNR squared for the corresponding
black hole systems are shown as dashed lines.
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similar, relatively flat over the parameter space and of order
∼1.3–2.0. The compaction at which the maximum occurs,
however, is always saturated at the maximum value (see
Fig. 5), which in this case is C ¼ 4=9.
We conclude that compact object mergers can, in

principle, emit more total gravitational energy than their
counterpart black hole system and can generally be more
detectable with present detectors provided, of course, the
conditions described are met. The boost in SNR is ∼

ffiffiffi
2

p
.

V. CONCLUSIONS

In this paper we have investigated a toy model binary
merger of two compact objects that can in principle emit
more energy in gravitational radiation than a black hole
system of equivalent mass. While very simplistic, this
model illustrates what might be possible in more realistic
systems such as the merger of two neutron stars, or perhaps
more exotic compact objects. We have found that the
merger of objects with compactions of order C ∼Oð0.1Þ
and larger that avoid collapse to a black hole can yield more
energy in gravitational radiation than the corresponding
black hole system by up to a factor of roughly two. The
SNR for such compact object mergers in a gravitational
wave detector such as advanced LIGO can exceed that of
the corresponding black hole merger by a factor of ∼

ffiffiffi
2

p
for

somewhat smaller compactions C ∼Oð0.03Þ. This is in
accord with the two-fold increase in total energy emitted in
the most optimistic merger scenario.
Compact object mergers have the potential to radiate

more energy and be more detectable than the merger of
equivalent mass black holes, but do they? This depends
somewhat on how representative the assumptions under-
lying our toy model are. First, we have assumed that the
only sink for orbital energy is in the form of gravitational
radiation. This is clearly incorrect, as in any realistic
scenario energy will be dissipated mechanically in the
deformation of the objects, radiatively through electromag-
netic (and possibly scalar) radiation, or through neutrino (or
other particles) emission. A complete treatment accounting
for this would influence the total energy emitted, and the
energy spectrum of the outgoing gravitational waves,
which could change the prospects for detectability. We
have also been generous in assuming that the post-merger

phase terminates at frequencies lower than 10 Hz (i.e.
below the lowest in the LIGO band). Relaxing this
assumption would diminish the boost in detectability.
Additionally, we have neglected general relativistic and
tidal effects on the inspiral and post-merger phases. For
large compactions as those we have considered, these
effects are arguably small [54,55]. Finally, we have also
considered nonspinning objects. Black holes could in
principle be highly spinning and, if relatively well aligned
with the orbital angular momentum, their total radiated
energy could be considerably higher [56]. On the other
hand, as in the case of neutron stars, a bound on the spin of
non-vacuum compact objects could exist to prevent mass
shedding; consequently spin might only modestly boost the
energy radiated in such cases. Nevertheless, according to
current estimates of the projected spin along the orbital
angular momentum through gravitational waves, this is low
[58]; thus our no-spin treatment in this work does not
appear to be overly restrictive.
These loose ends motivate a more systematic treatment

which, in turn, involves specializing to specific objects (see
e.g. [44,59]) with all the implications/physical require-
ments that their analysis would require.
Given the impending flood of data from LIGO and future

gravitational wave detectors, we stand to learn a great deal
about sources of gravitational radiation in our Universe.
Since compact object mergers can in principle both yield
more energy in gravitational radiation and be more detect-
able by advanced LIGO, it is important to keep an open
mind about what surprises might await, and strive to gain
some idea about how big such a surprise might be.
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