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We adapt the well-known “displace, cut and reflect” method to construct exact solutions of the
Einstein-Maxwell equations corresponding to infinitesimally thin disks of matter endowed with dipole
magnetic fields, which are entirely supported by surface polar currents on the disk. Our starting point is the
Gutsunaev-Manko axisymmetric solution describing massive magnetic dipoles in general relativity, from
which we obtain a continuous three-parameter family of asymptotically flat static magnetized disks with
finite mass and energy. For strong magnetic fields, the disk surface density profile resembles some well-
known self-gravitating ringlike structures. We show that many of these solutions can be indeed stable and,
hence, they could be in principle useful for the study of the abundant astrophysical situations involving
disks of matter and magnetic fields.
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I. INTRODUCTION

Axially symmetric solutions of the Einstein equations
corresponding to thin disks of matter are rather common in
the physical literature. They can be static or stationary, with
or without radial pressure, accommodate heat flow, electric
charge, and halos, among many other possibilities, see, for
instance [1–16]. Many of the known thin disk solutions can
be obtained by using the so-called “displace, cut and reflect”
(DCR) method, initially due to Kuzmin [17], which, in fact,
hasNewtonian origin andwill be briefly presented in the next
section. Matter disks and other self-gravitating structures in
the presence of magnetic fields are particularly relevant due
to the abundance of possible astrophysical applications, and
there are indeed someprevious examples of these solutions in
the literature [18–21].
In the present work, we will show how to adapt the

standard DCR method to generate consistent solutions of
the Einstein-Maxwell equations corresponding to thin disks
of matter with magnetic fields entirely supported by polar
surface currents on the disk, a situation clearly mimicking
realistic astrophysical thin plasma disks [22]. Our starting
point will be the Gutsunaev-Manko two-parameter family of
solutions describing massive axisymetric objects endowed
with amagnetic dipole moment in general relativity [23–25].
In contrast with other solutions with magnetic fields, as for
instance the long-standing and well-known one due to
Bonnor [26], for the Gutsunaev-Manko family, the object
mass and dipole magnetic moment are really independent
quantities and, hence, we are able to generate a continuous
three-parameter family of magnetized disks with finite total

mass and energy. The three parameters can determine
univocally, for instance, the disk total mass, dipole magnetic
moment, and central superficial density. Such parameters can
be chosen to achieve some desired physical properties, with
special emphasis, of course, to the stability of the solution.
For the stability analysis of the disk, we consider, besides
the usual generalized radial Rayleigh criteria [27,28], also the
vertical stability (oblique orbits) [29]. We show that one
indeed has a large continuous family of magnetized disks
satisfying these stability criteria, which could be useful, in
principle, for the study of the abundant astrophysical
situations involving disks of matter and magnetic fields.
Our magnetized disks have only azimuthal pressure, and
hence they can be interpreted physically as composed by
counterrotating particles, see, for instance, [10] for further
references on this rather common hypothesis for static disks
configurations in general relativity. Incidentally, we notice
that there are indeed some recent observational evidences
for counterrotating stellar disk, see [30,31] and references
therein.
This article is organized as follows. Section II provides

an overview of the DCR method and its necessary
adaptation to generate viable magnetized disks. For sake
of completeness, we also review briefly the main pertinent
results about the stability of thin disks. Section III is
devoted to construct and discuss the stability of the new
solutions, and the last section is left for some concluding
remarks about the stability of our disks.

II. RELATIVISTIC THIN DISKS

The Kuzmin “displace, cut and reflect” (DCR) method
[17] can be used to generate rather generic thin disk
configurations starting from a given solution of Einstein
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(or even Laplace) equations. Considering, for instance, a
point-source solution, we can divide this method accord-
ingly to the following steps: first we choose a hypersurface
(z ¼ z0 in cylindrical coordinates, in our case, see Fig. 1)
separating the spacetime in two regions, one of them
containing the source of the gravitational field. Second,
we discard the part that contains the source and, third, use
the hypersurface z ¼ z0 to reflect the remaining part. The
result of the application of this procedure will be generi-
cally a regular spacetime with a surface singularity or, in
other words, a solution of Einstein equations with an
infinite thin disk of matter located at z ¼ z0. Despite of
being infinite, in many cases, as in the present one, these
disks have finite total mass and energy and, hence, they
might be considered as approximations to some finite size
disks. The DCR procedure is fully equivalent to make the
following mathematical transformation [15]:

z → jzj þ z0 ð1Þ

for all the pertinent quantities, where the disk plane now
will be given by z ¼ 0 and z0 > 0 is a free parameter. Such
a method can be applied virtually to any gravitational
solution, relativistic or Newtonian, resulting generically in
gravitational fields supported by surface distributions of
matter, see [32] for further references.
We are mainly interested here in axisymmetric static

solutions of the Einstein equations, and these solutions can
be conveniently described in cylindrical coordinates
ðt; r; z;φÞ as

ds2 ¼ gμνdxμdxν

¼ eψðr;zÞdt2 − eηðr;zÞðdr2 þ dz2Þ − r2eγðr;zÞdφ2: ð2Þ

The application of (1) gives origin generically to functions
of class C0 across the disk plane. Using the standard
notation ½f� ¼ fjz¼0þ − fjz¼0− for the discontinuities across
the hypersurface z ¼ 0, one has ½gμν� ¼ 0. On the other
hand, the z derivative of the metric tensor is typically
discontinuous at z ¼ 0, and the quantities

½∂zgμν� ¼ bμν ð3Þ

will determine all the physical and geometrical properties
of the disk. In particular, the Christofel symbols and the
Riemann curvature tensor Rσ

αγβ can be define by means of
distributions involving (3), leading to [33]

Rσ
αγβ ¼ Rσ

αγβ þHσ
αγβδ̂ðzÞ; ð4Þ

where δ̂ðzÞ stands for the covariant Dirac δ-function [29],
Rσ

αγβ is the (smooth) Riemann curvature tensor for
z ≠ 0, and

Hσ
αγβ ¼

eη=2

2
ðδzαδzγbσβ − gzσδzγbαβ − δzαδ

z
βb

σ
γ þ gzσδzβbαγÞ:

ð5Þ

From the contractions of (5), one can calculate directly the
disk energy momentum tensor Qαβ, which will be given by

Hαβ −
1

2
gαβH ¼ 8πQαβ; ð6Þ

with Hαβ ¼ Hσ
ασβ and H ¼ Hγ

γ . One finally has [29]

Qα
β ¼

eη=2

16π
½bzαδzβbzzδαβ þ gzαbzβ − gzzbαβ

þ bσσðgzzδαβ − gzαδzβÞ�; ð7Þ
which is diagonal for metrics of the type (2). Its compo-
nents correspond to the surface energy density and the
pressures in the radial, axial, and azimuthal directions,
respectively,

Qα
β ¼ diagðσ;−Pr;−Pz;−PφÞ: ð8Þ

Moreover, is clear from (7) that Pz ¼ 0 for our case, as one
would indeed naturally expect for infinitesimally thin disks.
Assuming the system to be symmetric under reflections
z → −z, one can calculate σ, Pr, and Pφ for static
axisymmetric spacetimes with metric (2), leading to [29]

σ ¼ −
e−η=2

8π

� ∂γ
∂jzj þ

∂η
∂jzj

�
z¼0

; ð9Þ

Pr ¼
e−η=2

8π

�∂ψ
∂jzj þ

∂γ
∂jzj

�
z¼0

; ð10Þ

Pφ ¼ e−η=2

8π

�∂ψ
∂jzj þ

∂η
∂jzj

�
z¼0

; ð11Þ

where the notation ∂
∂jzj means that the derivative is calcu-

lated after the substitution (1). We are now in conditions to
formulate the stability criteria we will use for the disk.

FIG. 1. Illustration of the “displace, cut and reflect” (DCR)
Kuzmin method starting from a central field in cylindrical
coordinates. First, one chooses a hypersurface (dashed line)
separating the spacetime in two regions (left), then we discard
the part containing the source singularity (middle), and finally
reflect the field on the hypersurface (right).
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However, before starting the stability discussion, it is
important to stress that the use of (1) alone is not enough to
generate viable magnetized disks. The problem is that in the
same way the DCR method induces a superficial density of
matter at z ¼ 0, it will generically do with a superficial
density of magnetic monopoles on the disk [34], jeopard-
izing any possible realistic physical application for these
solutions. Fortunately, this can be easily fixed. Suppose we
have a solution of the Einstein-Maxwell equations of the
form (2) with a magnetic field given by the electromagnetic
quadripotential

Aμ ¼ ½0; 0; 0; Aφðr; zÞ�: ð12Þ

The linearity of the Maxwell equations and the quadratic
structure of the Maxwell energy-momentum tensor imply
that both Aμ and −Aμ are solutions of the Einstein-Maxwell
equations for the same metric tensor (2). One can avoid the
appearance of magnetic monopoles on the disk if we
combine (1) with the transformation

Aμ → ðsgn zÞAμ: ð13Þ

By using (1) and (13), we will be able to generate disks of
matter with dipole magnetic fields entirely supported by
surface polar currents on the disk. Since the metric tensor is
invariant under (13), the stability analysis, based solely in
the energy-momentum tensor of the disk, is not affected by
this transformation. On the other hand, (13) is crucial to
obtain the polar currents which indeed generate the disk
magnetization.

A. Disk stability conditions

As we will see, the matter content of our disks has no
radial pressure, and in this case the disk is usually viewed
as being composed of counterrotating identical particles,
which guarantees, besides the vanishing of the radial
pressure, a vanishing total angular momentum for the disk,
despite the rotation of its matter content, see [10] for further
details and references. We will perform two stability tests
for our solutions: radial and vertical perturbations. In fact,
they consist in the (linear) stability analysis of the circular
orbits at z ¼ 0 against small perturbations, and both tests
can be derived from the geodesic motion on the disk plane
and around its vicinity. Since (2) is static and axisymmetric,
its geodesic equations will have two independent constants
of motion: the total energy H and the angular momentum
around the z direction Lz. The (reduced) Hamiltonian for
the geodesics of the metric (2) is given by [29]

H2ðr; z; pr; pzÞ ¼ eψ−ηðp2
r þ p2

zÞ þ Veffðr; zÞ; ð14Þ

where the effective potential

Veffðr; zÞ ¼ eψ
�
1þ e−γ

L2
z

r2

�
ð15Þ

will be crucial for both stability tests.
A pertinent and rather deep question is if this kind of

stability analysis of the circular geodesics in the disk plane
would be enough to guarantee the disk stability beyond the
counterrotating hypothesis. A full answer to this question is
obviously out of scope of the present paper, but we will
return to this point in the last section.

1. The Rayleigh criterion

The Rayleigh criterion establishes the requirements for
the circular orbits on the disk be stable against radial
perturbations. Its relativistic version has been intensively
studied in recent years, see [29]. Essentially, it can be
deduced from the behavior of circular planar solutions of
(14), i.e., the solutions with z ¼ pz ¼ pr ¼ 0 and, con-
sequently, r ¼ r̄ constant, which, of course, occurs for
∂rVeffðr̄; 0Þ ¼ 0. The stability of such circular orbits
requires

∂2Veff

∂r2 ¼ ∂reψ

L2
z

∂rL2
z > 0 ð16Þ

for all r, where

L2
z ¼

r4e2γ∂reψ

eψ∂rðr2eγÞ − r2eγ∂reψ
ð17Þ

is evaluated at z ¼ 0. As one can see, the disk radial
stability requires that both eψ and L2

z be monotonically
increasing functions of r on the disk plane z ¼ 0. The
situation here is clearly analogous to the Newtonian
case [17,35].

2. Vertical stability

Since the dynamics of the geodesics are in fact singular
at z ¼ 0, the stability of the oblique orbits will be
determined solely by the “restoring” vertical force
∂ jzjVeff [29]. In fact, for the metric (2), the condition

∂Veff

∂jzj ¼ 4πeψþη=2

�
Pr þ

�
1þ 2L2

z

r2eγ

�
ðσ þ PφÞ

�
> 0; ð18Þ

evaluated on the plane z ¼ 0, is enough to guarantee the
vertical stability of circular orbits in our disks.

III. MAGNETIZED DISKS

The Gutsunaev-Manko spacetimes [23–25] form a large
family of asymptotically flat, axisymmetric, and stationary
solutions of the Einstein-Maxwell equations. We are
mainly interested here in one of their simplest subcases,
the continuous two-parameter family corresponding to the
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gravitational field of massive magnetic dipoles [24]. It can
be conveniently written, using the cylindrical coordinates
(2), in the Weyl line element form, for which

eψ ¼ e−γ ¼ x − 1

xþ 1
f2; ð19Þ

and

eη ¼ ðxþ 1Þ2
x2 − y2

�
g
f

�
2

; ð20Þ

with

f ¼ ðx2 − y2 þ α2ðx2 − 1ÞÞ2 þ 4α2x2ð1 − y2Þ
ðx2 − y2 þ α2ðx − 1Þ2Þ2 − 4α2y2ðx2 − 1Þ ð21Þ

and

g ¼
�ðx2 − y2 þ α2ðx2 − 1ÞÞ2 þ 4α2x2ð1 − y2Þ

ð1þ α2Þ2ðx2 − y2Þ2
�

2

; ð22Þ

where α is a dimensionless constant, and x and y are the
usual prolate coordinates, related to the cylindrical coor-
dinates r and z by

x ¼ 1

2k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðzþ kÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz − kÞ2

q �
; ð23Þ

y ¼ 1

2k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðzþ kÞ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz − kÞ2

q �
; ð24Þ

where k is a dimensional constant. The dipole magnetic
field, which has the form (12), is given by

Aφ ¼ 4kα3

1þ α2
ð1 − y2Þ

×
2ð1þ α2Þx3 þ ð1 − 3α2Þx2 þ y2 þ α2

ðx2 − y2 þ α2ðx2 − 1ÞÞ2 þ 4α2x2ð1 − y2Þ : ð25Þ

In order to interpret the physical role of the two parameters
k and α, one can cast the metric in spherical coordinates and
analyze the asymptotically flat limit [23–25], leading to the
conclusion that these parameters are related to the mass m
and magnetic dipole μ of the central object by the
expressions

m ¼ 1 − 3α2

1þ α2
k; ð26Þ

μ ¼ 8α3

ð1þ α2Þ2 k
2: ð27Þ

The only restrictions on these parameters in order to have
physically meaningful solutions, for our purposes, are

k > 0 and 3α2 < 1. The Schwarzschild case is recovered
for α ¼ 0, and the solution can accommodate any values
for the mass m and the dipole magnetic moment μ.
In particular, α is given by

8α3

ð1 − 3α2Þ2 ¼
μ

m2
; ð28Þ

from where it is clear that with 3α2 < 1 one can effectively
cover all possibilities for μ and m. The parameter α is
clearly dimensionless, k is the only massive parameter for
these solutions. All the dimensional quantities in our
analysis will be always expressed in units of k. The
Gutsunaev-Manko solutions are asymptotically flat, and
such a crucial property will be inherited by our disks.
The magnetized disks are generated by doing the trans-

formation (1) and simultaneously α → −α, which imple-
ments (13), in all pertinent expressions, giving origin to a
three-parameter ðk; α; z0Þ family of disk solutions for the
Einstein-Maxwell equations. We will restrict ourselves to
configurations such that z0 > k in order to avoid the rather
intricate causal structure of the Gutsunaev-Manko solution
near its center; otherwise, it would be impossible to have
stable disk configurations. We will return to this point in the
last section. Despite all pertinent expressions here involve
essentially only rational functions and, hence, all the calcu-
lations can be straightforwardly carried out, the resulting
expressions are quite cumbersome, and so we opt to present
our results graphically. Nevertheless, we present in the
Appendix all the necessary details to evaluate the algebraic
expressions. The explicit expressions for the Gutsunaev-
Manko solutions allow some useful simplifications.
In particular, since ψ ¼ −γ, see (19), one gets from (10)
that, as we have already advanced, Pr ¼ 0, reducing the
vertical stability criterion to

σ þ Pφ ¼ e−ψ−η=2

4π

∂eψ
∂jzj > 0; ð29Þ

at z ¼ 0, or, in other words, the disk must obey the null
energy condition to assure the stability of vertical perturba-
tions (oblique orbits). Hence, we will guarantee both the
radial and vertical stabilities provided that, on the disk plane
z ¼ 0, ∂ jzjeψ is a positive function, and eψ and

L2
z ¼

r3∂reψ

2e2ψ − r∂re2ψ
ð30Þ

are monotonically increasing in r, see (16).
Let us start with the function eψ given by (19). It is indeed

monotonically increasing in r on the disk plane z ¼ 0 for
large ranges of the parameters. The asymptotic behavior of
eψ , see (14) in theAppendix, assures its monotonic character
for large r, for any value of the parameters. Figure 2 depicts
some typical cases around the disk central region. As one can
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see, the function fails to be monotonically increasing for
some larger values of α. For a given z0, one needs to restrict α
to a certain interval ð−α�; α�Þ in order to have a monotonic
eψ .We can check that ∂reψ ¼ 0 at r ¼ z ¼ 0 for all values of
the parameters α and z0. The nonmonotonic phase is
associated with the concavity change of the function eψ at
the origin. In order to determine the value of α� as a function
of z0 associatedwith this concavity change, one needs to find
the roots of a cumbersome higher order polynomial, so again
we employ numerical and graphical analyses. (See the
Appendix for the details on the algebraic expressions.)
Figure 3 shows the interval limit α� as a function of z0.
Viable disksmust have the parameters ðz0; αÞ lying below the
depicted red (solid) curve.
The parameter z0 can be related to the disk surface

density, which in our case is given by

σ ¼ e−3η=2−ψ

8π

�
eη

∂eψ
∂jzj − eψ

∂eη
∂jzj

�
: ð31Þ

Let us consider the central (r ¼ 0) disk density σ0, which
one can evaluate directly as

σ0 ¼
1

2πk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z0 − k
z0 þ k

s �
fð0Þx þ k2fð0Þ

z20 − k2

�
; ð32Þ

where the ð0Þ superscript indicates that the corresponding
quantities are calculated at the center of the disk. This
calculation is rather tedious, but straightforward, the details
are in the Appendix. For fixed α and large z0, one has

σ0 ∼
mk
2πz20

; ð33Þ

where m is the mass given by (26). Hence, the central
surface density σ0 decreases when z0 increases for fixed α,
i.e., the disk becomes fainter, as one would indeed expect
from the DCR method applied for an asymptotically flat
spacetime. The problem, however, is that for a fixed z0,
there are values of α such that σ0 < 0, challenging the idea
that the disk would be formed by some kind of ordinary
counter-rotating matter. One can determine the values of α
such that, for a given z0, the term between parenthesis in
(32) change its signal. The results are also depicted in
Fig. 3. It is important to stress that the values of α which
leads to a negative σ0 are always larger than those ones
assuring a monotonic function eψ , see Fig. 2. Hence, a
monotonically increasing eψ will also guarantee a positive
central disk superficial density σ0. Furthermore, from (31),
we have for large r

σ ∼
mz0
2πr3

; ð34Þ

and, consequently, the total mass of the disk will be always
finite.

FIG. 2. Typical aspect of the function eψ given by (19) on the
disk plane z ¼ 0, here depicted for z0 ¼ 2k and several values of
α, with the respective curves from bottom to top. The non-
monotonic behavior is associated with the concavity change of
the function eψ at the origin, see the text.

FIG. 3. Diagram 3α2 versus z0=k (monolog scale). The red
(solid) line corresponds to the threshold α� for monotonically
increasing functions eψ , see Fig. 2. Only points lying below this
curve are allowed for stable circular obits on the disk. The blue
(traced) line corresponds to the values of α and z0 such that the
disk central density σ0 vanishes. In order to have a positive σ0, the
parameters α and z0 must lay below this curve. As one can see, is
enough to have a monotonically increasing eψ to assure a positive
σ0. The green numbered points correspond to some typical disk
configurations presented in the next figures and discussed in the
text. Their ðz0=k; αÞ values are, respectively: (2, 0.30), (3, 0.21),
(4, 0.32), (5, 0.32), and (7, 0.21).
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It is instructive also to inspect the graphics of the disk
surface energy density (31), see Fig. 4. For configurations
near the concavity threshold [red (solid) line in Fig. 3], as
for instance the configuration number 1, the maximum
density of the disk is not located at its center, but at a certain
radius r� > 0, typically smaller than z0. This kind of
configuration resembles clearly some well known self-
gravitating ring structures, see [36] for references. In our
case, such rings require strong magnetic fields to exist. For
weak magnetic fields (small α), the maximum of the surface
density will be always located at the disk center.
The Rayleigh criterion for radial stability demands that

both eψ and L2
z be monotonically increasing functions of r

on the disk plane. Figure 5 depicts the aspect of the function
L2
z in the disk central region. Since we have L2

z ∼mr for
large r, we conclude from Fig. 5 that the allowed
configurations (see Fig. 3) are indeed radially stable. It
is interesting also to inspect the aspect of the effective radial
potential (15) on the disk center, see Fig. 6. For large r, we
have Veff ∼ 1 −m=r. It is clear that we can have radially
stable noncircular motion as well.
Finally, one needs to check the vertical stability criterion,

namely the positivity of ∂ jzjeψ on the disk plane. However,
it turns out that the aspect of the function ∂ jzjeψ is very
similar to the surface density (4) depicted in Fig. 4,
including the appearance of some maxima at r� > 0 for
large values of α. Nevertheless, for the allowed configu-
rations [those ones lying below the red (solid) line in
Fig. 3], this function is always positive, assuring both the
radial and vertical stability of circular orbits in our disks.

A. The disk surface currents

Since our disks have dipole magnetic fields, it is
mandatory to investigate their origin. We will see that
the magnetic fields are supported entirely by surface polar

FIG. 4. Disk surface density σ given by (31) as a function of r,
for the disk configurations described in Fig. 3. For strong
magnetic fields (larger α, as for the case of the configuration
number 1), the maximum of the surface density is located at a
r > 0, suggesting a ringlike distribution.

FIG. 5. The squared angular momentum in the z direction L2
z ,

given by (30), for a circular orbit on the disk, as a function of r.
The curves correspond to the disk configurations enumerated in
Fig. 3. It is clear that we have a monotonically increasing function
of r for all curves.

FIG. 6. The effective potential Veff given by Eq. (15) for the
disk configurations of Fig. 2, with the curves disposed from top to
bottom, and L2

z ¼ 1. Other values for L2
z will only change the

repulsive behavior near the origin. The circular orbits at r̄
correspond to the minimum of Veff . It is clear that we can have
radially bounded motion around r̄.

VANESSA P. DE FREITAS and ALBERTO SAA PHYSICAL REVIEW D 95, 124040 (2017)

124040-6



currents on the disk plane. Notice that for the electromag-
netic quadripotential (12), the nonvanishing components of
the electromagnetic tensor are Fφr ¼ −Frφ ¼ ∂rAφ and
Fφz ¼ −Fzφ ¼ −∂zAφ. The former is associated with the
magnetic field Bz in the z direction, while the latter is its
radial component Br. The application of (1) without (13)
would produce a discontinuous Bz across the disk plane
z ¼ 0, while Br would be continuous. Such kind of
discontinuity would lead unavoidably to a nonvanishing
divergence for the magnetic field, implying the annoying
presence of magnetic monopoles on the disk plane, see [34]
for further details on this issue. By applying simultaneously
(1) and (13), the magnetic monopoles are avoided, since
now the normal component of the magnetic field Bz is
continuous across the disk plane, while the discontinuity is
restricted to the radial part Br. However, such a disconti-
nuity in the parallel direction of the disk plane is not a
problem at all, since it can be explained naturally due to the
presence of superficial currents on the disk. In fact, the
nonhomogeneous Maxwell equation

1ffiffiffiffiffiffi−gp ∂μ
ffiffiffiffiffiffi
−g

p
Fμν ¼ 4πJν ð35Þ

can be invoked here to determine the surface current jφ
such that

Jν ¼ gνφjφδ̂ðzÞ; ð36Þ

where δ̂ðzÞ stands for the covariant Dirac δ-function.
Applying the divergence theorem in (35) and taking into
account that the parallel component of the magnetic field is
discontinuous, one has

jφ ¼ e−η=2

2π

∂Aφ

∂jzj ; ð37Þ

leading to the invariant

j2 ¼ jφjφ ¼ eψ−η

4π2r2

�∂Aφ

∂jzj
�

2

; ð38Þ

which aspect is illustrated in Fig. 7 for the disk configu-
rations considered in Fig. 3. Notice that, for large r, we
have (see the Appendix for details on the asymptotic
analysis) the following asymptotic behavior for the current
invariant:

j2 ∼
9μ2z20
4π2r8

; ð39Þ

implying that the total electromagnetic energy stored in the
disk surface currents is finite. Also from Fig. 7, one can see
that the surface current is always distributed in a smooth
ringlike structure, irrespective of the disk superficial

density. The maximum of j2 is typically located at a radius
r > 0 smaller than z0, suggesting strongly that the ringlike
structure in the energy density profile of Fig. 4 has its origin
precisely in the surface currents.

IV. FINAL REMARKS

Starting from the Gutsunaev-Manko solution [23–25]
describing massive magnetic dipoles in general relativity,
we have generated a continuous three-parameter family of
solutions corresponding to static magnetized thin disks. We
have adapted the well known “displace, cut and reflect”
DCR method, due to Kuzmin [17], to avoid the presence of
magnetic monopoles on the disk. Essentially, we combine
with the usual steps of the DCR method the reflection (13)
on the electromagnetic potential. In this way, we obtain a
field configuration such that the magnetic field component
Bz perpendicular to the disk is continuous, whereas the
parallel component Br is discontinuous, leading to a
physical situation without magnetic monopoles, but with
the magnetic field entirely supported by surface polar
currents. Moreover, all disk solutions such that the param-
eters ðz0; αÞ are in the allowed region (laying below the red
(solid) curve in Fig. 3) have circular obits stable against
radial and vertical perturbations. Since our disks have no
radial pressure, it can be considered as formed by counter-
rotating identical particles, and them the stability of circular
orbits is essential to establish the stability of the solution.
A certainly pertinent question here is if the two stability

test we have performed would be enough to assure the
stability of the disk beyond the counterrotating hypothesis.

FIG. 7. The surface electric current invariant j2ð×107Þ given by
(38), as a function of r for the allowed disk configurations of
Fig. 3. The curves corresponding to the configurations number 1
and 5 are rescaled to fit in the graphics. They are, respectively,
multiplied by 10−2 and 102.
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This is quite complicated problem. Since the matter content
of the disk has azimuthal pressure, the motion of its
constituents will not be purely geodesic as one would
expect, for instance, for real dust disks (no pressure at all).
The stability analysis of the disk fluid does require extra
information like, for instance, the fluid equation of state,
see [37]. Also, the dynamics of oblique orbits in disks with
central fields is known to be generically chaotic [38–45],
challenging the view that the counterrotating particles will
keep their circular orbits for long times. These are more
subtle question that we can now put forward once we have
established that our magnetized disks pass by the simplest
stability tests. Our results are, in this sense, the first step to a
deeper study of the stability of these disks.
Finally, we have restricted the application of the DCR

method for the cases where z0 > k. In order to enlighten
such an option, let us consider the inverse of the trans-
formations (23) and (24), namely

r ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
; ð40Þ

z ¼ kxy: ð41Þ

Recalling that the prolate coordinates are such that x ≥ 1
and −1 ≤ y ≤ 1, we see that the vertical segment jzj ≤ k
at the origin r ¼ 0 corresponds to x ¼ 1 and jyj < 1.
However, for x ¼ 1 we have eψ ¼ 0, see (19), and so any
disk constructed by choosing the hyperplane z0 < k will
unavoidably encounter the complicated, and not yet quite
well understood, causal structure of the central part of the
Gutsunaev-Manko solution. In particular, it would be impos-
sible to attain any stable configuration. The situation is
analogous to the disks generated from Schwarzschild sol-
ution. Nevertheless, disk distributions approaching the hori-
zon of generic black holes are certainly interesting for the
study of accretion disks [36,46,47]. This is a rather promising
possibility for our magnetized disks that would deserve
further investigations since they might give some insights of
possible observational signatures which one could seek, for
instance, with the Event Horizon Telescope [48].
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APPENDIX: MATHEMATICAL FORMULAS

The mathematical expressions in this work involve
essentially only algebraic rational functions and, hence,
the evaluation of derivatives and the location of zeros could,
in principle, be straightforwardly done. Nevertheless, the

resulting expressions are typically huge, and we have
indeed taken advantage of MAPLE software to deal with
them. However, we have some useful simplifications for the
asymptotic analysis of large r and in the central region of
the disk. The calculation of the disk central density (32), for
instance, can be considerably simplified noticing that, at the
disk center, which has prolate coordinates x ¼ z0

k and y ¼ 1,

one has g ¼ 1, ∂x
∂jzj ¼ 1

k, and
∂y
∂jzj ¼ 0. The other relevant

quantities at the disk center are

eψ ¼ e−η ¼ z0 − k
z0 þ k

f2; ðA1Þ

∂eψ
∂jzj ¼

2kf2

ðz0 þ kÞ2 þ
2f
k
z0 − k
z0 þ k

∂f
∂x ; ðA2Þ

and

∂eη
∂jzj ¼

1

f2

�
1

k
z0 þ k
z0 − k

�∂g2
∂x −

2

f
∂f2
∂x

�
−

2k
ðz0 − kÞ2

�
: ðA3Þ

It turns out that ∂xg2 vanishes at the disk center, as one can
check after some algebra. Combining these results leads to

eη
∂eψ
∂jzj − eψ

∂eη
∂jzj ¼

4k
z20 − k2

þ 4

kf
∂f
∂x ; ðA4Þ

from where (32) follows directly. The values of f and fx at
the disk center, necessary to determine the zeros of (32), are

fð0Þ ¼ ð1þ α2Þ2ðz20 − k2Þ2
ðz20 − k2 þ α2ðz0 − kÞ2Þ2 − 4α2k2ðz20 − k2Þ ; ðA5Þ

and

fð0Þx ¼ 4

�
z0 −

1

k2
hð0Þfð0Þ

�
fð0Þ; ðA6Þ

where

hð0Þ ¼ ðz0 − kÞ3α4 þ ð2z30 − 3kz20 − 2k2z0 þ k3Þα2
þ z30 − k2z0: ðA7Þ

The concavity analysis of eψ in Fig. 3 requires the
evaluation of ∂reψ and ∂2

reψ at the disk center, r¼ z¼0, or
x ¼ z0

k and y ¼ 1. Since ∂x
∂r ¼ ∂y

∂r ¼ 0 at the disk center, we
will also have ∂reψ ¼ 0. For the second derivative, we have

∂2x
∂r2 ¼

z0=k
z20 − k2

ðA8Þ

and

∂2y
∂r2 ¼ −

1

z20 − k2
ðA9Þ
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at r ¼ z ¼ 0, leading to

∂2
reψ ¼ 2f

z20 − k2

�
z20
k2

f
ðz0 þ kÞ2 þ

z0 − k
z0 þ k

�
z0
k
∂xf − ∂yf

��
;

ðA10Þ

which can be calculated analogously to the case of ∂eψ
∂jzj

above. The critical values α2� of Fig. 3 are the roots of the
higher order polynomial corresponding to ∂2

reψ ¼ 0
at r ¼ z ¼ 0.
For the asymptotic behavior of our solutions for large r

on the disk plane z ¼ 0, notice that from (23) and (24), we
have that x ∼ r

k and y ∼ z0
r for z ¼ 0 and large r. For their

derivatives, we have

∂x
∂r ∼

1

k
;

∂x
∂z ∼

z0
kr

; ðA11Þ

∂y
∂r ∼

z0
r2
;

∂y
∂z ∼

1

r
; ðA12Þ

in the same asymptotic limit. From these asymptotic limits,
one can get

eψ ∼ 1 −
2m
r

; eη ∼ 1þ 2m
r

ðA13Þ

∂eψ
∂r ∼ −

∂eη
∂r ∼

2m
r2

ðA14Þ

∂eψ
∂jzj ∼ −

∂eη
∂jzj ∼

2mz0
r3

ðA15Þ

with m given by (26). For the magnetic potential (25),
we have

∂Aφ

∂jzj ∼ −
24α3

ð1þ α2Þ2
z0k2

r3
¼ −

3μz0
r3

; ðA16Þ

for large r at z ¼ 0, with μ given by (27), from where (39)
follows directly.
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