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We show that a partially massless graviton can propagate on a large set of spacetimes which are not
Einstein spacetimes. Starting from a recently constructed theory for a massive graviton that propagates the
correct number of degrees of freedom on an arbitrary spacetime, we first give the full explicit form of the
scalar constraint responsible for the absence of a sixth degree of freedom. We then spell out generic
conditions for the constraint to be identically satisfied, so that there is a scalar gauge symmetry which
makes the graviton partially massless. These simplify if one assumes that spacetime is Ricci symmetric.
Under this assumption, we find explicit non-Einstein spacetimes (some, but not all, with vanishing Bach
tensors) allowing for the propagation of a partially massless graviton. These include in particular the
Einstein static Universe.
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I. INTRODUCTION

A natural physical question to ask is whether the graviton
has a mass. General relativity predicts that the graviton is a
self-interacting massless spin-2 particle, but it is possible
that small mass corrections to general relativity are present.
This question has received renewed interest since the
experimental discovery of the acceleration of the universe
[1,2], the possibility that this acceleration may be explained
by a large distance modification of gravity related to the
one appearing when the graviton has a mass [3–5], the
better understanding of the so-called Vainshtein mechanism
of massive gravity [6–8], and the recent theoretical dis-
covery of nonlinear ghost free theories of massive spin-2
[9,10] (see [11–13] for reviews).
From the point of view of naturalness, an explanation for

the observed acceleration using a mechanism driven by a
graviton mass would be an improvement over the standard
explanation in terms of a cosmological constant. This is
because a small graviton mass is technically natural [14,15]
whereas a small cosmological constant is not. But such a
mechanism would still leave open the question of why
various large contributions to the cosmological constant
expected from such sources as phase transitions and heavy
particle states do not gravitate (see [16] for a recent
summary of the cosmological status of massive gravity
and its extensions).
When spacetime is not flat, the division of particles

into massless or massive no longer covers all the
possibilities. On de Sitter (dS) space, there exists the

mathematical possibility of gravitons which are neither
massive nor massless, but instead propagate a number of
degrees of freedom greater than that of a massless
graviton but less than that of a massive graviton. These
are called “partially massless” (PM) gravitons, and they
enjoy a scalar gauge invariance responsible for removing
one of the degrees of freedom of the fully massive
graviton [17–27].
This extra scalar gauge symmetry fixes the mass of the

graviton relative to the background curvature, and hence is
a candidate symmetry which could fix the cosmological
constant relative to the already small graviton mass, thus
explaining why the cosmological constant itself is small. It
is primarily for this reason why partially massless fields
are of interest cosmologically1 (see the review [42]). For
this mechanism to be nontrivial, we need to have it
realized in a fully nonlinear theory whose graviton is
partially massless and can be coupled to massive matter.
This has led to many studies of the properties of the linear
theory and possible nonlinear extensions [32,43–64]. As a
result of these studies, various obstructions and no-go
results to an interacting theory have been found, and at this
point there is no known four dimensional example of a
nonlinear ghost-free theory with a finite number of fields

1Quite apart from cosmology, partially massless fields appear
in holographic duals to conformal field theories describing so-
called multicritical points, see e.g. [28–35] for some recent work.
These duals are theories with infinite towers of partially massless
fields of all spins [36–41].
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in which a partially massless graviton mode propagates
fully nonlinearly with a gauge symmetry persisting to all
orders.
If such a fully nonlinear theory exists through some

loophole in the various no-go results, then the partially
massless graviton would be the fluctuation of some fully
nonlinear field around a dS background solution. We would
then expect there to be other solutions which are more
general than dS, and expanding around these other sol-
utions we would expect to see a PM graviton propagating
around these non-dS backgrounds. Thus, to get more
insight into a putative nonlinear theory, we can start by
asking about what kinds of backgrounds a PM graviton can
propagate on. For example, in the fully massless case, a
massless graviton is only known to propagate on an
Einstein space [65,66]. This is a clue pointing to the fact
that the only two-derivative fully nonlinear theory of a
massless spin 2 is Einstein gravity [67,68], whose vacuum
solutions are precisely Einstein spaces.
Up until now, the only known backgrounds upon which a

PM graviton can propagate are Einstein spaces, and
obstructions to propagating on more general spacetimes,
under certain assumptions about the possible gravitational
couplings, have been presented [69,70]. Here, we will relax
one of these assumptions and show that there are more
general non-Einstein spaces upon which a PM graviton can
propagate.
We do this by starting with the construction of [71–73],

which shows how to couple a fully massive graviton to an
arbitrary background metric in such a way that only the
correct five degrees of freedom propagate. We give the full
explicit form of the scalar constraint responsible for
eliminating a possible sixth degree of freedom. We then
proceed to ask under what conditions on the background
and parameters of the theory this constraint becomes
identically satisfied, indicating an extra scalar gauge
symmetry that emerges and makes the graviton partially
massless. While we will not be able to solve for the most
general such conditions, we will be able to find several
classes of examples which are not Einstein spaces, and thus
go beyond the backgrounds previously thought possible.
This gives a hint that there may be some leeway for a fully
interacting partially massless theory of some kind, and
raises the question of what the most general background in
such a theory will be.
This paper is organized as follows. In the following

section we review some technical properties of a massive
and partially massless graviton on curved background
spacetimes. In the next section we construct explicitly
examples of non Einstein spacetimes on which a partially
massless graviton can propagate.
Conventions:Wework in four spacetime dimensions and

use the mostly plus metric signature ð−;þ;þ;þÞ. The
curvature conventions are those of [74]. We (anti) symme-
trize tensors with unit weight, e.g. SðμνÞ ¼ 1

2
ðSμν þ SνμÞ.

II. MASSIVE AND PARTIALLY MASSLESS
GRAVITONS ON CURVED

BACKGROUND SPACETIMES

A. Massive graviton on an Einstein background

Before discussing the theory for a massive graviton on a
general curved background, as introduced in [71–73], we
first review the well known properties of a massive graviton
propagating on a generic Einstein spacetime.2 An Einstein
spacetime is one whose metric gμν obeys

Rμν ¼ Λgμν; ð1Þ

where Rμν is the Ricci tensor and Λ is a constant, the
cosmological constant.
A massive graviton propagating on this background has

field equations reading (here and henceforth the symbol ≃
denotes an on-shell equality)

Eμν ≃ 0; ð2Þ

where Eμν is the field equation operator defined by

Eμν≡Dμν
ρσhρσ −Λ

�
hμν−

1

2
gμνh

�
þm2

2
ðhμν−gμνhÞ: ð3Þ

Here hμν is a symmetric rank two covariant tensor repre-
senting the graviton field, indices are raised and lowered
and traced with the background metric, e.g. h ¼ gμνhμν, and
the linear kinetic operator is given by

Dμν
ρσhρσ ≡ −

1

2
½δρμδσν∇2 þ gρσ∇μ∇ν − δρμ∇σ∇ν − δρν∇σ∇μ

− gμνgρσ∇2 þ gμν∇ρ∇σ�hρσ; ð4Þ

where ∇ denotes the covariant derivative associated with
the background metric gμν. These field equations derive
from an action given by

S½h� ¼ −M2
Pl

Z
d4x

ffiffiffiffiffi
jgj

p �
hμνDμνρσhρσ −Λ

�
hμνhμν −

1

2
h2
�

þm2

2
ðhμνhμν − h2Þ

�
: ð5Þ

Note that the kinetic and Λ dependent terms appearing on
the right-hand side of (3) come from the linearization
around an Einstein spacetime of the usual vacuum Einstein
equations with a cosmological constant.

2Such a theory was first formulated and studied for a
Minkowski background spacetime by Fierz and Pauli [75]. It
was then further generalized to a maximally symmetric and later
to a generic Einstein spacetime [18,19,76,77]. See also [78–81].
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We now review how to count the degrees of freedom
in this model in a covariant way [77], since we will follow
the same pattern in the more complicated case of a general
background. One first notices that, due to the Bianchi
identities identically satisfied by the kinetic operator,

∇μ

�
Dμν

ρσhρσ − Λ
�
hμν −

1

2
gμνh

��
¼ 0; ð6Þ

one has from the definition (3)

∇μEμν ¼
m2

2
ð∇μhμν − gρσ∇νhρσÞ; ð7Þ

resulting in the on-shell relation (assuming m2 ≠ 0)

∇μhμν −∇νh≃ 0: ð8Þ
This relation provides four constraint equations (because
they contain at most first order derivatives) for hμν, which
are referred to as the vector constraints. These eliminate
four degrees of freedom from the original 10 components of
the symmetric tensor hμν, leaving six.
To get down to five, the correct count for a massive

spin-2 field, we need to find an additional scalar constraint.
A second covariant divergence of the field equations gives
the identity

∇μ∇νEμν ¼
m2

2
ð∇μ∇νhμν −∇2hÞ: ð9Þ

If, on the other hand, we trace the field operator (3) with the
metric we get,

gμνEμν ¼ ∇2h −∇μ∇νhμν þ
�
Λ −

3m2

2

�
h: ð10Þ

By comparing (9) and (10) one sees that the linear
combination,

2∇μ∇νEμν þm2gμνEμν ¼
m2

2
ð2Λ − 3m2Þh; ð11Þ

does not contain any second order derivatives (and in fact
no first order derivatives either), and hence constitutes a
scalar constraint reading (assuming m2 ≠ 2Λ=3)

ð2Λ − 3m2Þh≃ 0: ð12Þ
For general parameters this constraint implies h≃ 0 which
together with (8) simplifies the vector constraint into
∇μhμν ≃ 0 and shows that hμν is transverse-traceless in
vacuum. By enforcing these constraints the equations of
motion (3) are reduced to the following system,

ð∇2 −m2Þhμν þ 2Rμ
ρ
ν
σhρσ ≃ 0;

∇μhμν ≃ 0; h≃ 0: ð13Þ
Hence, on generic Einstein spacetime the above theory
describes a massive graviton with five degrees of freedom.

An exception to the above arises in two cases:m2 ¼ 0 and
2Λ ¼ 3m2. When m2 ¼ 0, the case of a massless graviton,
we do not have anydirect constraint (8) but instead aNoether
identity which signals a vector gauge symmetry, which is
nothing but the linearized diffeomorphism symmetry of
general relativity. The case 2Λ ¼ 3m2 is when the mass
saturates the so-called Higuchi bound [19]. In this case,
the linear combination (11) vanishes off-shell, and (11)
becomes a Noether identity signaling the presence of a new
scalar gauge symmetry [21,22]; the field equations are
invariant under hμν → hμν þ Δhμν, where Δhμν is given by

Δhμν ¼
�
∇μ∇ν þ

m2

2
gμν

�
ξðxÞ

¼
�
∇μ∇ν þ

Λ
3
gμν

�
ξðxÞ; ð14Þ

for an arbitrary scalar gauge functionξðxÞ. This is a symmetry
of the quadratic action (5); for an arbitrary variation δhμν of
hμν, the variation of the action (5) is given by

δS ¼ −2M2
Pl

Z
d4x

ffiffiffiffiffi
jgj

p
Eμνδhμν: ð15Þ

Inserting (14) for the variation of hμν, δhμν ¼ Δhμν, integrat-
ing by parts, and using the off-shell vanishing of the right
hand side of (11) whenever the Higuchi bound is saturated
(i.e. 2Λ ¼ 3m2), we see that δS vanishes for the variation
Δhμν.Agauge symmetry removes twodegrees of freedom (in
contrast to a constraint which removes only one), and so we
are left with a total of 10 − 4 − 2 ¼ 4 degrees of freedom.
This can be interpreted as a scalar mode becoming a non-
propagating pure gauge mode at the enhanced symmetry
point, leaving just the four helicity modes (�2;�1). This is a
partially massless graviton.

B. Massive graviton on an arbitrary background

Going beyond Einstein backgrounds, a theory for a
massive graviton hμν on an arbitrary background spacetime
with metric gμν has been obtained in Refs. [71–73]. It is
written using a tensor Sμν which is defined in terms of the
Ricci curvature Rμν of the metric by the relation3

3If we define another rank two tensor, fμν, out of the metric gμν
and the tensor Sμν by the following relation

fμν ¼ gμσSσρSρν; ð16Þ

then this tensor is what is usually called the “reference metric” in
the framework of the de Rham, Gabadadze and Tolley (dRGT)
theory [9,10,82–86]. However, we stress that we use here a point
of view where this reference metric plays no role since we only
consider a linear theory defined on a spacetime endowed with a
single metric gμν and all quantities of interest concerning the
background spacetimes (e.g. the curvature tensor, the covariant
derivatives...) are defined with respect to gμν.
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Rμ
ν ¼m2

��
β0 þ

1

2
e1β1

�
δμν þ ðβ1 þ β2e1ÞSμν − β2ðS2Þμν

�
;

ð17Þ

where β0, β1 and β2 are dimensionless parameters, and
ðS2Þμν denotes the square of the tensor Sμν considered as a
matrix, ðS2Þμν ¼ SμρSρν. Note that the tensor Sμν is
symmetric. This can be seen in several ways, one being
to notice that (17) can be formally solved for Sμν and obtain
an infinite series consisting of powers of Rμν. Since Rμν is
symmetric and powers of a symmetric matrix are sym-
metric, Sμν is also symmetric, as well as algebraic in Rμν.
Also, since the inverse of a symmetric matrix is symmetric,
ðS−1Þμν, when it exists, is also symmetric. The theory is
expressed using the elementary symmetric polynomials
enðSÞ, n ¼ 0;…; 4

e0 ¼ 1; ð18Þ

e1 ¼ Sρρ; ð19Þ

e2 ¼
1

2
ðSρρSνν − SρνSνρÞ; ð20Þ

e3 ¼
1

6
ðSρρSννSμμ − 3SμμSρνSνρ þ 2SρνSνμSμρÞ; ð21Þ

e4 ¼ detðSÞ: ð22Þ

The theory obtained in [71–73] for a massive graviton
hμν on an arbitrary background has the vacuum field
equations

Eμν≡Eμν
ρσhρσ þ

m2

2
½2ðβ0þ β1e1þ β2e2Þhμν

− ðβ1þ β2e1ÞðhμρSρνþhνρSρμÞ
− ðβ1gμνþ β2e1gμν −β2SμνÞhρσSρσ þ β2gμνhρσðS2Þρσ
− ðβ1þ β2e1ÞðgμρδSρνþ gνρδSρμÞ�≃ 0; ð23Þ

where we have defined the linearized Einstein operator

Eμν
ρσhρσ ≡ −

1

2
½δρμδσν∇2 þ gρσ∇μ∇ν − δρμ∇σ∇ν − δρν∇σ∇μ

− gμνgρσ∇2 þ gμν∇ρ∇σ þ δρμδσνR − gμνRρσ�hρσ;
ð24Þ

and the tensor δS has components given by

δSλμ ¼
1

2
gνλ½e4c1ðδρνδσμ þ δσνδ

ρ
μ − gμνgρσÞ þ e4c2ðSρνδσμ þ Sσνδ

ρ
μ − Sμνgρσ − gμνSρσÞ − e3c1ðδρνSσμ þ δσνS

ρ
μÞ

þ ðe2c1 − e4c3 þ e3c2ÞSμνSρσ þ e4c3½δσμ½S2�ρν þ δρμ½S2�σν − gρσ½S2�μν þ δρν½S2�σμ þ δσν ½S2�ρμ − gμν½S2�ρσ�
− e3c2ðSρνSσμ þ SσνS

ρ
μÞ − e3c3ðSσμ½S2�ρν þ Sρμ½S2�σν þ Sρν½S2�σμ þ Sσν ½S2�ρμÞ þ ðe3c3 − e1c1ÞðSρσ½S2�μν þ Sμν½S2�ρσÞ

− ðc1 − e2c3Þð½S2�ρν½S2�σμ þ ½S2�σν ½S2�ρμÞ þ c4½S2�μν½S2�ρσ þ c1ð½S3�μνSρσ þ Sμν½S3�ρσÞ
þ c2ð½S3�μν½S2�ρσ þ ½S2�μν½S3�ρσÞ þ c3½S3�μν½S3�ρσ�hρσ; ð25Þ

with the coefficients ci are given by

c1 ¼
e3 − e1e2

−e1e2e3 þ e23 þ e21e4
; c2 ¼

e21
−e1e2e3 þ e23 þ e21e4

;

c3 ¼
−e1

−e1e2e3 þ e23 þ e21e4
; c4 ¼

e3 − e31
−e1e2e3 þ e23 þ e21e4

:

ð26Þ
This theory can only be formulated if the tensor S is such
that the spectrum of eigenvalues of S, σðSÞ, and the
spectrum of its negative, σð−SÞ, do not intersect, i.e. we
should have σðSÞ ∩ σð−SÞ ¼ ∅. This is generically the
case and will be checked for the solutions we present
further down. This additionally ensures that the denomi-
nators in Eqs. (26) do not vanish. It also implies that the
tensor Sλμ, considered as a matrix, is invertible which will
be used later. Since the equations are linear in hμν, the
theory has a quadratic action given by

S ¼ −M2
Pl

Z
d4x

ffiffiffiffiffi
jgj

p
hμνEμν: ð27Þ

Note that the above theory was derived in Refs. [71–73]
by linearizing the nonlinear ghost-free massive gravity
theory of de Rham, Gabadadze and Tolley [10] (dRGT) on
an arbitrary background [87]. However, the details of this
derivation are inessential for our present purposes and will
not be used here. Rather, we will just use the linear theory
as defined here as our starting point.

C. Covariant constraint counting
on a general background

A key feature of this theory is that, as shown using purely
covariant constraints in [71–73], it always propagates
at most 5 degrees of freedom on generic backgrounds
and hence it is free from the linearized version of
the “Boulware-Deser” ghost [88] that was present in
previous constructions of nonlinear massive gravity or
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non Fierz-Pauli linear theories [75]. This covariant con-
straint analysis is crucial for us, as it will allow us to
formulate generic covariant conditions for partial
masslessness.
The analysis parallels the analysis we reviewed in

Sec. II A for the case of Einstein spacetimes. One first notes
that, because Eμν

ρσhρσ is the linearization of the Einstein
tensor Gμν, the Bianchi identity ∇μGμν ¼ 0 implies that

∇μEμν ≃ 0 ð28Þ

does not involve second order derivatives of hμν and thus
gives vector constraints which are the generalization of
Eq. (8). These generalized vector constraints eliminate four
degrees of freedom of the graviton.
An extra (scalar) constraint can be found [71–73] and

reads

C≡ ðS−1Þνρ∇ρ∇μEμν þ
m2β1
2

gμνEμν þm2β2SμνEμν ≃ 0;

ð29Þ

where we emphasize that the equality on the right-hand side
only holds on-shell, while the fact that this is a constraint
relies on the crucial property that the left-hand side of this
equality has been shown to depend off-shell only on
undifferentiated or once differentiated hμν but not on
second or higher order derivatives of hμν.
We now give the full off-shell expression of this

constraint. It is most easily expressed using new field
variables ~hμν defined through the following equation

hμν ¼ ðSλμδβν þ Sλνδ
β
μÞ ~hβλ:

This, for a given hμν, leads to a unique ~hμν provided that S
obeys the same condition that allows the theory to be well
defined, i.e. that σðSÞ ∩ σð−SÞ ¼ ∅ [73]. In terms of the
new variable ~hμν, the scalar constraint reads

C ¼ m2½ðAβλ þ ~AβλÞ ~hβλ þ Bβλ
ρ ∇ρ ~hβλ�; ð30Þ

where,

Aβλ ≡m2Sβρ

��
β0β1 þ β0β2e1 þ

1

2
β21e1

�
gρλ þ

�
−2β0β2 −

1

2
β21 − 2β22e2 þ β22e

2
1

�
Sρλ − β22e1½S2�ρλ

�
; ð31Þ

~Aβλ ≡ 1

2
ðβ1 þ β2e1Þ½S−1�νγ ½−∇γSρλ∇νS

β
ρ þ∇γSβρ∇λSρν þ∇γSρν∇λSβρ −∇γSρν∇ρSβλ − Sρλ∇γ∇νS

β
ρ þ Sβρ∇γ∇λSρν�

þ β2½S−1�νγ½Sβρ∇λSρν∇γe1 − Sβρ∇νSρλ∇γe1 þ Sλρ∇γSβμ∇νSρμ þ Sβμ∇γSλρ∇νSρμ þ Sλμ∇γSμρ∇νS
β
ρ þ Sμρ∇γSλμ∇νS

β
ρ

− 2Sβμ∇γSμλ∇νe1 − Sρμ∇γSμν∇βSλρ − Sβμ∇γSμρ∇λSρν − Sμρ∇γSβμ∇λSρν − Sβρ∇γSμν∇λSρμ þ Sβμ∇γSμν∇λe1 þ Sμρ∇γSμν∇ρSβλ

− Sλμ∇γSμν∇ρSβρ − Sλμ∇γSβρ∇μSρν − Sβρ∇γSλμ∇μSρν − Sλμ∇γSρν∇μSβρ þ 2Sβμ∇γSμλ∇ρSρν þ 2Sβρ∇γSμν∇μSρλ

þ SλρS
β
μ∇γ∇νSρμ þ ½S2�λρ∇γ∇νS

β
ρ − ½S2�βλ∇γ∇νe1 − ½S2�βρ∇γ∇λSρν − SλμS

β
ρ∇γ∇μSρν þ ½S2�βλ∇γ∇ρSρν�

þ β2½þ∇βSλγ∇γe1 −∇γSβλ∇γe1 −∇μSρμ∇βSλρ −∇μSβρ∇λSρμ þ∇μSβμ∇λe1 þ∇μS
μ
ρ∇ρSβλ −∇μSλμ∇ρSβρ

−∇ρSλμ∇μSβρ þ 2∇μS
β
ρ∇μSρλ − Sβρ∇λ∇μSρμ þ Sβγ∇γ∇λe1 − Sλγ∇γ∇ρSβρ þ Sβρ∇γ∇γSρλ� þ ðβ ↔ λÞ; ð32Þ

Bβλ
ρ ≡ 1

2
ðβ1 þ β2e1Þ½S−1�νγ ½−Sσλδγρ∇νS

β
σ þ δγρS

β
σ∇λSσν þ δλρS

β
σ∇γSσν − Sβλ∇γSνρ�

þ β2½S−1�νγ½δγρSλδSβμ∇νSδμ þ δγρ½S2�λμ∇νS
β
μ − δγρ½S2�βλ∇νe1 − δγρ½S2�βμ∇λSμν − δγρSλμS

β
δ∇μSδν þ δγρ½S2�βλ∇μSμν

þ SβλSμρ∇γSμν þ ½S2�βλ∇γSρν − δβρ½S2�λμ∇γSμν − SβρSλμ∇γSμν �
þ β2½−Sβδ∇λSδρ þ Sβρ∇λe1 − Sλμ∇μSβρ þ 2Sβδ∇ρSδλ þ δβρSλγ∇γe1 − Sβλ∇ρe1 þ Sβλ∇μS

μ
ρ − δβρSλδ∇μSδμ − Sβρ∇μSλμ�

þ ðβ ↔ λÞ: ð33Þ

These tensors are all symmetric in β, λ.
Given these constraints (vector plus scalar), the theory

propagates at most 10 − 4 − 1 ¼ 5 degrees of freedom on
any background spacetime, appropriate for a massive
graviton. One can check that the above constraint (30)
degenerates to the form (12) on Einstein spacetimes.

D. Condition for partial masslessness on a generic
background spacetime

Following the discussion in Sec. II A for Einstein
spacetimes, we now ask whether the analog of partial
masslessness can be found on spacetimes more generic than
Einstein. We will not be able to find here the most general
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spacetimes for which this happens, but we will be able to
exhibit for the first time explicit examples of non Einstein
background spacetimes allowing partial masslessness.
This will happen when the expression for the constraint C

in Eq. (30) vanishes identically off-shell. The off-shell
vanishing of C automatically implies the existence of a
Noether identity and hence a new scalar gauge symmetry.
Indeed, in this case the explicit form of C as written in
Eq. (29) shows that the action and the equations of motion
are invariant under the transformation hμν → hμν þ Δhμν,
where Δhμν is now given by

Δhμν ¼ ½ðS−1Þμρ∇ρ∇ν þ ðS−1Þνρ∇ρ∇μ

þm2β1gμν þ 2m2β2Sμν�ξðxÞ; ð34Þ
with ξðxÞ an arbitrary scalar gauge function. The action is
quadratic,

S½h� ¼ −M2
Pl

Z
d4x

ffiffiffiffiffi
jgj

p
hμνEμν; ð35Þ

so upon varying and using (34), the invariance of the
action follows from the vanishing of C. As before, a gauge
symmetry removes two degrees of freedom, and so we are
left with at most a total of 10 − 4 − 2 ¼ 4 degrees of
freedom.

III. BACKGROUND SPACETIMES
FOR PARTIAL MASSLESSNESS

We now proceed to find several classes of background
spacetimes for which the scalar constraint vanishes iden-
tically so that we have partial masslessness.

A. General solution for models with vanishing β2
Let us first consider the case of models with vanishing

β2. In this case, we will find that the only possible
backgrounds are Einstein spaces.
The vanishing of β2 in turn implies that β1 must be non

vanishing for a sensible massive graviton theory to be
formulated (otherwise, the Eq. (17) does not define a proper
tensor Sμν). For such a theory, Aβλ, ~Aβλ and Bβλ

ρ are given by

Aβλ ¼ β1
m2

2
½ð2β0 þ β1e1ÞSβλ − β1½S2�βλ�; ð36aÞ

~Aβλ ¼ 1

2
β1½S−1�νγ ½−∇γSρλ∇νS

β
ρ þ∇γSβρ∇λSρν þ∇γSρν∇λSβρ

−∇γSρν∇ρSβλ − Sρλ∇γ∇νS
β
ρ þ Sβρ∇γ∇λSρν�

þ ðβ ↔ λÞ; ð36bÞ

Bβλ
ρ ¼ 1

2
β1½S−1�νγ ½−Sσλδγρ∇νS

β
σ þ δγρS

β
σ∇λSσν

þ δλρS
β
σ∇γSσν − Sβλ∇γSνρ� þ ðβ ↔ λÞ; ð36cÞ

and the relation (17) reads

Sμν ¼
1

m2β1

�
Rμν −

1

6
gμνR −

m2β0
3

gμν

�
: ð37Þ

The identical vanishing of the constraint (30) implies that
we must have

Bβλ
ρ ¼ 0: ð38Þ

Now, using the definitions (36) we find that

Bβλ
ρ ðS−1Þβλ¼β1½S−1�νγ ½−δγρ∇νSσσþδγρ∇σSσν−3∇γSνρ�; ð39Þ

while the relation (37) implies that

∇σSσν ¼
1

m2β1

1

3
∇νR ¼ ∇νSσσ: ð40Þ

This shows that the first two terms in the bracket of the left-
hand side of (39) cancel each other and one is left with

Bβλ
ρ ðS−1Þβλ ¼ −3β1½S−1�νγ ½∇γSνρ�: ð41Þ

Thus a necessary condition to get partial masslessness is

½S−1�νγ ½∇γSνρ� ¼ 0: ð42Þ

Now, using ½S−1�νγSνρ ¼ gγρ, we get

½S−1�νγ ½∇γSνρ� ¼ −Sνρð∇γ½S−1�νγÞ ¼ 0: ð43Þ

The last equality means that ð∇γ½S−1�νγÞ is a vector in the
kernel of the (invertible) matrix Sρν and hence it must
vanish. So we must have

ð∇γ½S−1�νγÞ ¼ 0; ð44Þ

which will be used later. We first note that (42) implies that
the last two terms entering in the definition of Bβλ

ρ in
Eq. (33) with β2 ¼ 0 vanish, hence we are left with the
expression

Bβλ
ρ ¼ 1

2
β1½S−1�νρ½−Sσλ∇νS

β
σ þ Sβσ∇λSσν � þ ðβ ↔ λÞ; ð45Þ

which must vanish when symmetrized over β and λ.
Similarly, after using the condition (42) we are left with
the expression for ~Aβλ given by

~Aβλ ¼ 1

2
β1½S−1�νγ ½−∇γSρλ∇νS

β
ρ þ∇γSβρ∇λSρν − Sρλ∇γ∇νS

β
ρ

þ Sβρ∇γ∇λSρν� þ ðβ ↔ λÞ: ð46Þ
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Let us then compute ∇ρBðβλÞ
ρ . The condition (44) implies

that the operator ∇ρ “goes through” the prefactor of S−1 on
the r.h.s. of the above Eq. (45), and we find that when the
condition (44) [and the equivalent (42)] is obeyed, one has

∇ρBβλ
ρ ¼ 1

2
β1½S−1�νγ ½−∇γSρλ∇νS

β
ρ þ∇γSβρ∇λSρν

− Sρλ∇γ∇νS
β
ρ þ Sβρ∇γ∇λSρν� þ ðβ ↔ λÞ: ð47Þ

The right-hand side of the above is found to be identical to
the r.h.s. of (46) which means that the vanishing of Bβλ

ρ

implies the vanishing of ~Aβλ.
After all this, the only remaining condition for partial

masslessness is the vanishing of Aβλ. Factoring out one
power of S and using that S is invertible in the expression
for Aβλ, this implies that Sμν is proportional to the metric,
which in turns shows, using (37), that the spacetime must
be an Einstein spacetime satisfying Rμν ¼ Λgμν for some
appropriate value of Λ. We show next that this conclusion
does not extend to the more general cases with non-
vanishing β2.

B. Sufficient conditions for partial masslessness
in the general case

We now return to the general case with nonvanishing β2,
and attempt to find classes of partially massless spacetimes
beyond Einstein. Finding the most general spacetimes for
which the right-hand side of (30) vanishes identically is a
difficult task given in particular the involved form of the
derivative expressions in (32) and (33). However, one sees
that the form of the constraint C becomes much simpler if
one assumes that Sμν is covariantly constant, i.e. that it
obeys

∇ρSμν ¼ 0: ð48Þ

The background spacetime then admits a covariantly
constant tensor, namely Sμν. We will make this assumption
in the rest of this section, stressing that this assumption
severely restricts the spacetime, and is not necessarily a
property of the most general solution. But, as we will see, it
allows us to find spacetimes more generic than the Einstein
spacetime where the phenomenon of partial masslessness is
known to exist.
There are several important properties that hold

whenever S obeys Eq. (48). First, it does not imply that
Sμν ∝ gμν, and second, it obviously implies that all the
scalar invariants made out of the tensor Sμν are constant,
and hence in particular, we must have that all of e1, e2, e3
and e4 are constant. This together with (48) used in the
relation (17) implies that one must also have

∇ρRμν ¼ 0; ð49Þ

i.e. that the Ricci tensor is covariantly constant. This last
condition defines what is known as a Ricci symmetric
spacetime. Such spacetimes, which obviously form a
subclass of spacetimes with a covariantly constant tensor,
have been studied and classified in various contexts (see
e.g. [89–93]). In the next subsection, we introduce explic-
itly some properties of the Ricci-symmetric background
spacetimes which will be used later to define our partially
massless theory.

C. Some properties of suitable
Ricci symmetric backgrounds

The geometry of a spacetime admitting a covariantly
constant tensor, say Hμν, is constrained by the integrability
conditions that derive from the vanishing of the covariant
derivatives of the covariantly constant tensor, i.e.

∇ρHμν ¼ 0: ð50Þ

For instance, using that

∇½μ∇ν�Hρλ ¼ Rμνρ
σHσλ þ Rμνλ

σHρσ; ð51Þ

and inserting (50), we find that such a spacetime must obey
the following primary integrability conditions

Rμνρ
σHσλ þ Rμνλ

σHρσ ¼ 0: ð52Þ

For a Ricci symmetric space (49), when the Ricci tensor is
covariantly conserved, the above relation becomes a non-
trivial relation involving only the curvature tensor,

Rμνρ
σRσλ þ Rμνλ

σRρσ ¼ 0: ð53Þ

Furthermore, 4-dimensional (simply connected) space-
times admitting a covariantly constant symmetric tensor
field Hμν can be classified as follows. If Hμν is not a
constant multiple of the metric then such spacetimes can be
shown to fall in one of the following two categories [89]
(see also e.g. [90,93])
(1) The spacetime is 2 ⊗ 2 decomposable, meaning that

the metric can be written in the form

gμνdxμdxν ¼ gabðxcÞdxadxb þ gijðxkÞdxidxj; ð54Þ

where here a, b, c ¼ 0, 1 and i, j, k ¼ 2, 3. In this
case, a symmetric and idempotent covariantly con-
stant tensor Hμν can be found, i.e. a symmetric
covariantly constant tensor which satisfies in addi-
tionHμρHρ

ν ¼ Hμν (that such a covariantly constant
idempotent and symmetric tensor exists is true also
for 1 ⊗ 3 decomposable spacetimes but then falls
under point 2. below). For spacetimes (54), the Ricci
tensor is found to obey
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R0
0 ¼ R1

1; R2
2 ¼ R3

3; ð55Þ

with all other components vanishing. This follows
from the fact that the metric (54) is a direct product
of two dimensional metrics, and that the Einstein
tensor vanishes identically in d ¼ 2 dimensions so
that the 2d Ricci tensors are proportional to their
metrics.
An explicit example of such a spacetime which is

also Ricci symmetric and that will be used later is

gμνdxμdxν ¼
2dx0dx1

ð1þ ðR − EÞx0x1=8Þ2

−
2dx2dx3

ð1 − ðRþ EÞx2x3=8Þ2 ; ð56Þ

where ðR − EÞ=4 is the scalar curvature of the
ðx0; x1Þ-space and ðRþ EÞ=4 is the scalar curvature
of the ðx2; x3Þ-space, where both R and E are
constant. As the notation suggests, the constant R
is just the Ricci scalar, Rρ

ρ ¼ R, as can be seen
explicitly from the expression for the Ricci tensor

Rρ
ν ¼

1

4
diag½ðR − EÞ; ðR − EÞ; ðRþ EÞ; ðRþ EÞ�:

ð57Þ

It can be verified that the Ricci tensor satisfies
∇ρRμν ¼ 0. Furthermore one can show, using
Eq. (55), that the Ricci tensor obeys the interesting
relation

ðR2Þρν ¼
R
2
Rρ

ν −
1

16
ðR2 − E2Þδρν; ð58Þ

which can also be deduced directly from the relation
(53). The Weyl (Wμνρσ) and Bach (Bμν) tensors for
this spacetime can also easily be computed and are
both nonvanishing; the explicit form of the Bach
tensor is

Bρ
ν ¼

ER
24

diag½−1;−1; 1; 1�: ð59Þ

We see that in order for the Bach tensor to be
nonzero we need ER ≠ 0. In contrast, the case R ¼ 0
and E ≠ 0 provide examples of Bach flat non
Einstein spacetimes, which will play a role below.
Note further that the spacetimes (56) all belong to
the Petrov type D spacetimes4 and will be referred to
in that way in the next section.

(2) There exists a covariantly constant vector (CCV),
Nμ, in terms of which a covariantly constant tensor
can be constructed as Hμν ¼ NμNν (to which one
can also add an arbitrary constant times the metric).
The CCV can either be spacelike, timelike or null
and its existence implies an integrability condition
similar to (52), given by

Rμνρ
σNσ ¼ 0: ð60Þ

This implies that

Rμ
νNν ¼ 0; ð61Þ

which in turn implies that Nμ is in the kernel of
Rμ

ν. Ricci symmetric spacetimes of interest here
and belonging to this class have their line element
given by

gμνdxμdxν ¼
dx2 þ dy2 − ϵdw2

½1þ Rðx2 þ y2 − ϵw2Þ=24�2
þ ϵdz2; ð62Þ

where ϵ ¼ �1 depending on whether there is a
spacelike (þ) or timelike (−) CCV. The Ricci tensor
is given by

Rρ
ν ¼

R
3
diag½1; 1; 1; 0�: ð63Þ

This satisfies Rn
μν ¼ ðR=3ÞnRμν. In fact, for these

spacetimes we have that

Rμν ¼
R
3
ðgμν − ϵNμNνÞ; ð64Þ

where Nμ is a CCVof square norm equal to ϵ. In the
case where Nμ is timelike, i.e. ϵ ¼ −1, the above
spacetime is an Einstein static spacetime. These
spacetime are both Bach flat and conformally flat,
i.e. have vanishing Bach and Weyl tensors. The
spacetimes (62) all belong to the Petrov type O class
and will be referred to in that way in the next section.
We note that other Ricci symmetric spacetimes
admitting a CCV can be found, in particular for a
null CCV certain pp-wave spacetimes of Petrov type
N (see e.g. [93]). However, considering some
specific examples of this type, we did not find that
those allowed for partial masslessness.

To summarize, the Ricci symmetric spacetimes which
will be shown below to admit partial masslessness will be
either the Petrov type D spacetimes (56) or the Petrov type
O spacetimes (62). The later type includes the well known
Einstein static Universe. These spacetimes all obey an
interesting idempotency-like relation for the Ricci tensor,
reading

4The Petrov classification classifies spacetimes into 6 classes
depending on the nature of principal null directions, see e.g. [93].
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ðR2Þρν ¼ r1Rρ
ν þ r2δ

ρ
ν; ð65Þ

where the constant r1 and r2 are given in the different
cases by

type D∶ r1 ¼
R
2
; r2 ¼ −

1

16
ðR2 − E2Þ;

type O∶ r1 ¼
R
3
; r2 ¼ 0: ð66Þ

D. Ricci symmetric spacetimes admitting
partial masslessness

1. Conditions for partial masslessness
on Ricci symmetric spacetimes

In the case where (48) [and hence also (49)] is obeyed,
and for generic values of β0, β1 and β2, the scalar constraint
(30) reads simply C ¼ m2Aβλ ~hβλ, so that the condition to
get a partially massless graviton is the vanishing of Aβλ.
Assuming that S is invertible and factoring out one power
of S we get that this vanishing reads

δβλ

�
β2β0e1 þ β0β1 þ

β21
2
e1

�

þ Sβλ

�
−2β2β0 þ β22e

2
1 − 2β22e2 −

β21
2

�

− ðS2Þβλðe1β22Þ ¼ 0: ð67Þ

This equation together with the relation between Sμν and
Rμν given by (17) form the system of equation we have to
solve. Note that when β1 ¼ 0, taking the trace of Eq. (67)
implies that β0β2e1 ¼ 0, which further implies β0e1 ¼ 0 as
we have seen that β2 ¼ 0 is not admissible. Then e1 ¼ 0 or
β0 ¼ 0 only yields Einstein spacetime solutions, as can be
seen from Eq. (67). Note that when e1 ¼ 0 the previous
conclusion still hold, even when β1 is not vanishing. Thus
we now assume that β1, β2, e1 ≠ 0.
When (67) is obeyed, one can in general obtain ðS2Þμν as

a linear combination of Sμν and the metric. Using this in
turn in Eq. (17), one obtains a linear relation between the
tensor Sμν, the Ricci tensor Rμν and the metric gμν,

Rρ
ν ¼

m2

β2e1

��
−β0β1 þ

1

2
β1β2e21 −

1

2
β21e1

�
δρν

þ
�
β1β2e1 þ 2β0β2 þ

1

2
β21 þ 2β22e2

�
Sρν

�
: ð68Þ

This can be used back in Eq. (67) to obtain a nontrivial
relation between the metric tensor, the Ricci tensor and the
square of the Ricci tensor. This relation is precisely of the
type (65) found above and explains why Ricci symmetric
spacetimes of the kind introduced previously are suitable

backgrounds allowing the propagation of a partially mass-
less graviton.
We introduce the following notations that will be used

later; we define the parameters u, v and c by

u≡ β0β2
β21

; v≡m2β0
16u2 − 24u − 3

uð4uþ 3Þ ;

and c≡ β21ð4uþ 3Þ: ð69Þ

Note that u and c are dimensionless, while v has mass
dimension two. The relation (68) between the Ricci tensor
and the tensor Sμν can then be written as

Rρ
ν ¼

1

8

�
vδρν þ c

2β0β1
ðv − 2RÞSρν

�
: ð70Þ

From this expression it is obvious that we must demand
ðv − 2RÞ ≠ 0 in order not to get an Einstein spacetime (i.e.
Rρ

ν ∝ δρν). From this linear relation we can also obtain Sρν
in terms of Rρ

ν

Sρν ¼
2β0β1

cðv − 2RÞ ½8R
ρ
ν − vδρν�; ð71Þ

and also its square

ðS2Þρν ¼
4β20β

2
1

c2ðv − 2RÞ2 ½64ðR
2Þρν − 16vRρ

ν þ v2δρν�: ð72Þ

This allows us to compute any quantity that depends on Sρν
in terms of Rρ

ν. In particular, Eq. (67) can be rewritten as a
condition on the curvature, which reads

u½v2ð16u2 þ 12u − 9Þ − 8vRð8u2 þ 6u − 3Þ
þ 4R2β2ð16u2 þ 8u − 3Þ�gβλ

þ
�
vð−64u3 þ 48u2 þ 132uþ 9Þ

þ 4Rð64u3 − 16u2 − 108u − 9Þ − 4c2R2β2
m2β21

�
Rβλ

− 256u2½R2�βλ ¼ 0: ð73Þ

The two Eqs. (67), (17) are then equivalent to the pair (70),
(73) whenever the conditions

β1 ≠ 0; ð74aÞ

β2e1 ≠ 0; ð74bÞ

ðv − 2RÞ ≠ 0; ð74cÞ

c ≠ 0; ð74dÞ
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are obeyed. We have checked that whenever one of these
conditions is not fulfilled, the only possible solutions are
Einstein spacetimes.A theory admitting partial massless-
ness on a Ricci symmetric background of the kind intro-
duced in Sec. III C can thus be searched for, first solving for

the βk and m parameters such that (73) holds [considering
that the background spacetime curvature also obeys (65)],
and then defining the tensor Sμν from the curvature from the
Eq. (70). Specifically, inserting (65) into (73) we obtain the
following two equations to be solved for u and v

�
v2ð16u2 þ 12u − 9Þ − 8vRð8u2 þ 6u − 3Þ þ 4½ð16u2 þ 8u − 3ÞR2 − 64ur2� ¼ 0;

v2ð−64u3 þ 48u2 þ 132uþ 9Þ þ 4v½ð64u3 − 16u2 − 108u − 9ÞR − 64u2r1� − 4R2ð64u3 − 48u2 − 84u − 9Þ ¼ 0:
ð75Þ

In order to solve these equations we now restrict to the different Petrov-type spacetimes introduced in Sec. III C.

2. Examples of Ricci symmetric spacetimes with partial masslessness

Petrov type O.—In this case, for which we use the line element (62), we have r1 ¼ R
3
and r2 ¼ 0, and the system of Eqs. (75)

reduces to:

(
v2ð16u2 þ 12u − 9Þ − 8vRð8u2 þ 6u − 3Þ þ 4ð16u2R2 þ 8uR2 − 3R2Þ ¼ 0;

v2ð−64u3 þ 48u2 þ 132uþ 9Þ þ 4vR
�
64u3 − 112

3
u2 − 108u − 9

	
− 4ð64u3 − 48u2 − 84u − 9ÞR2 ¼ 0:

ð76Þ

First we investigate the case when v ¼ 0. The only
solution in this case is flat spacetime, Rμ

ν ¼ 0, so we
now assume that v ≠ 0. In order to have a solution, both
factors of v2 are nonzero, and combining these two
equations we obtain�
2048

3
u4 þ 1280u3 þ 1344u2 þ 720uþ 108

�
Rv

− ð1024u4 þ 768u3 þ 1344u2 þ 1296uþ 216ÞR2 ¼ 0:

ð77Þ

As when R ¼ 0 the system (76) does not admit any
solution, we now assume that R ≠ 0. If the two expressions
in parenthesis simultaneously vanish, the solution to the
system is given by

u ¼ −
3

4
and v ¼ 8

3
R: ð78Þ

It further implies that c ¼ 0, and thus that the spacetime is
of Einstein-type. Thus we insist that the two parenthesis do
not vanish simultaneously, yielding an expression for v,

v ¼ 6ð32u3 þ 42uþ 9Þ
128u3 þ 144u2 þ 144uþ 27

R: ð79Þ

Inserting this back into the system (76), we obtain the
following equation for u

256u4 þ 1280u3 þ 4320u2 þ 144u − 135 ¼ 0: ð80Þ

This quartic equation admits two real solutions
u≃ ð−0.2006; 0.1575Þ. To each one of these values cor-
responds a value for v, namely v≃ ð0.6622R; 1.757RÞ.
In addition to the conditions (74), we also have to check

that the matrix S is invertible and that its spectrum does not
intersect the spectrum of −S. For these solutions the
corresponding matrix S is given by

Sρν ¼
2β0β1

cðv−2RÞDiag
�
8

3
R−v;

8

3
R−v;

8

3
R−v;−v

�
: ð81Þ

Then all the conditions on S reduce to

v ≠ 2R; v ≠
4R
3
; and v ≠

8R
3
; ð82Þ

which are verified by our set of solutions. To summarize,
for Petrov-type O spacetimes, we have two distinct sets of
partially massless solutions whose parameters are given by

�
β0β2 ≃ −0.2006β21 and m2β0 ≃ −0.119R;
β0β2 ≃ 0.1575β21 and m2β0 ≃ −0.157R:

ð83Þ

Note in the above that β0 can be scaled to one, as it is
nonzero and is degenerate with the value of the mass scale
m. Hence, for a fixed value of R we obtain two one
parameter sets of theories, each parametrized by β1.

Petrov type D.—In this case we have r1 ¼ R
2

and
r2 ¼ − 1

16
ðR2 − E2Þ. The system of equations then reduces

to
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�
v2ð16u2 þ 12u − 9Þ − 8vRð8u2 þ 6u − 3Þ þ 4½ð16u2 þ 12u − 3ÞR2 − 4uE2� ¼ 0;

v2ð−64u3 þ 48u2 þ 132uþ 9Þ þ 4vRð64u3 − 48u2 − 108u − 9Þ − 4ð64u3 − 48u2 − 84u − 9ÞR2 ¼ 0:
ð84Þ

As for type O we can combine these equations to obtain the
following equation (provided that both factors in front of v2

are not zero)

ð768u3 þ 1728u2 þ 720uþ 108ÞRv
− ð1536u3 þ 3456u2 þ 1440uþ 216ÞR2

þ ð−1024u4 þ 768u3 þ 2112u2 þ 144uÞE2 ¼ 0: ð85Þ

As we want to avoid having an Einstein spacetime solution,
we assume that E ≠ 0. First we study the particular case
when R ¼ 0. The system of Eqs. (84) then admits six real
solutions, given by

8<
:

u≃ 1.884 and v≃�0.654E;

u≃ −0.070 and v≃�0.339E;

u≃ −1.604 and v≃�2.159E:

ð86Þ

We stress that, as can be seen from Eq. (59), the above six
solutions provide background solutions which are non
Einstein but Bach flat. That such solutions existed was
argued impossible in [69].
We now assume also that R ≠ 0, Eqs. (85) can be solved

for v, and we obtain

v ¼ 2Rþ 4uð−9 − 132u − 48u2 þ 64u3Þ
3Rð9þ 60uþ 144u2 þ 64u3Þ E

2: ð87Þ

Inserting this into Eqs. (84), we obtain the following
equation

R2ð−648 − 4320u − 10368u2 − 4608u3Þ
þ E2ð81þ 2376uþ 18288u2 þ 11520u3

− 14592u5 þ 4096u6Þ ¼ 0: ð88Þ

We can solve this equation for E to obtain

E2 ¼ 72ð9þ 60uþ 144u2 þ 64u3Þ
ð−9 − 132u − 48u2 þ 64u3Þ2 R

2; ð89Þ

which when inserted into Eq. (87) gives

v ¼
�
2þ 96u

−9 − 132u − 48u2 þ 64u3

�
R: ð90Þ

For given values of R and E, v and u are determined by the
above two Eqs. (89)–(90). Note that one might question the
existence of real solutions to these equations. It is however
easy to see that it is always possible to find such solutions,

at least by setting the value of the ratio r ¼ R2=E2 to be
sufficiently large. Indeed, the only worrisome equation is
the Eq. (89) obeyed by u [once u is found, it determines a
value of v through Eq. (90)], which can be rewritten as

4096u6 − 61440u5 − 14592u4 þ ð11520 − 4608rÞu3
þ ð18288 − 10368rÞu2 þ ð2376 − 4300rÞu
þ 81 − 648r ¼ 0: ð91Þ

A large enough value of r shows that the sextic polynomial
to solve is negative at the origin and diverges to þ∞ for
large values of u and hence the sextic equation must have in
this case at least two real solutions.
We now look after the conditions that the matrix S should

fulfill. For the solutions given by (89)–(90), as well as for
the solutions (86), the matrix S takes the form

Sρν ¼
2β0β1

cðv − 2RÞDiag½2ðR − EÞ − v; 2ðR − EÞ − v;

2ðRþ EÞ − v; 2ðRþ EÞ − v�: ð92Þ

In order for S to be invertible and not to have common
eigenvalues with −S, the following conditions need to be
verified,

v ≠ 2ðR − EÞ; v ≠ 2ðRþ EÞ; and v ≠ 2R: ð93Þ

These are obviously true for the solutions (86) (which have
vanishing R), but are nontrivial for the solutions (89)–(90).
In this latter case these conditions translate into some
forbidden values for u, that in turn correspond to some
forbidden values for E and R. More precisely we obtain the
following prohibited set of parameters:

u ≠ 0; corresponding to E2 ≠ 8R2; ð94aÞ

u ≠ −
3

4
; corresponding to E2 ≠ R2; ð94bÞ

u ≠ −
1

4
; corresponding to E2 ≠

9

25
R2; ð94cÞ

u ≠ −1.764; corresponding to E2 ≠ 0: ð94dÞ

To summarize, for Petrov-type D spacetimes, we have an
infinite number of solutions. More precisely, for any given
value of the set ðR;EÞ [except for the forbidden values of
Eq. (94)], we have up to six different solutions given by
Eqs. (89) and (90), or for the case R ¼ 0 by (86).
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E. Example of a non-Einstein PM theory

We can now write explicitly the field equations for the
solutions we have obtained. For simplicity’s sake, we only
give here the expression for one specific example of the
type O solution, the Einstein static universe. We consider
the line element

ds2 ¼ gμνdxμdxν ¼ −dt2 þ a2dΣ2; ð95Þ

where the metric on the 3-dimensional space is given
in spherical coordinates by dΣ2¼γijdxidxj¼ dr2

1−kr2þ

r2ðdθ2þsin2θdϕ2Þ, with k ¼ 0;�1 the curvature. For this
metric we have

Rt
t ¼ 0; and Rr

r ¼ Rθ
θ ¼ Rϕ

ϕ ¼ 2k
a2

; ð96Þ

R ¼ 6k
a2

: ð97Þ

We can then write the field equations for a partially
massless graviton propagating on an Einstein static
universe, and get

Ett ¼ Dtt
ρσhρσ þ

1

6ð3þ 4uÞð−3− 24uþ 16u2Þðv− 2RÞ2
�
ð−18uv3 þ 24u2v3 þ 96u3v3 þ 27v2Rþ 468uv2R− 48u2v2R

− 576u3v2R− 108vR2 − 1368uvR2 − 256u2vR2 þ 1152u3vR2 þ 108R3 þ 1008uR3 þ 576u2R3 − 768u3R3Þ ~h

−
1

3
ð54uv3 − 27v2R− 504uv2R− 96u2v2Rþ 192u3v2Rþ 108vR2 þ 1296uvR2 þ 448u2vR2 − 768u3vR2

− 108R3 − 1008uR3 − 576u2R3 þ 768u3R3Þhtt
�
; ð98aÞ

Eti ¼ Dti
ρσhρσ þ

1

6ð3þ 4uÞð−3 − 24uþ 16u2Þð3v − 4RÞðv − 2RÞ2 ½−108uv
4 þ 72u2v4 þ 288u3v4 þ 81v3R

þ 1440uv3R − 96u2v3R − 2112u3v3R − 432v2R2 − 5304uv2R2 − 1472u2v2R2 þ 5760u3v2R2 þ 756vR3

þ 7728uvR3 þ 3776u2vR3 − 6912u3vR3 − 432R4 − 4032uR4 − 2304u2R4 þ 3072u3R4�hti; ð98bÞ

Eij ¼ Dij
ρσhρσ þ

1

3ð3þ 4uÞð−3 − 24uþ 16u2Þðv − 2RÞ2
�
1

2
ð−36uv3 þ 24u2v3 þ 96u3v3 þ 27v2Rþ 360uv2R

þ 96u2v2R − 576u3v2R − 108vR2 − 1080uvR2 − 640u2vR2 þ 1152u3vR2 þ 108R3 þ 1008uR3

þ 576u2R3 − 768u3R3Þhij þ ðuv2ð9v − 18Rþ 8uRÞÞa2γijhtt
þ 1

6
ð54uv3 − 27v2R − 504uv2R − 192u2v2Rþ 192u3v2Rþ 108vR2 þ 1296uvR2 þ 704u2vR2

− 768u3vR2 − 108R3 − 1008uR3 − 576u2R3 þ 768u3R3Þa2γij ~h
�
; ð98cÞ

where we have defined ~h≡ δijh
j
i . The parameters ðu; vÞ are

given by the solutions (83). Looking, for example, at the
first set of solutions, namely ðu; vÞ ¼ ð−0.2006; 0.6622RÞ,
we obtain

Ett ¼ Dtt
ρσhρσ − 0.0414R ~hþ 0.0926Rhtt; ð99aÞ

Eti ¼ Dti
ρσhρσ − 0.4233Rhti; ð99bÞ

Eij ¼ Dij
ρσhρσ þ 0.0709Ra2γij ~h − 0.0414Ra2γijhtt

− 0.5177Rhij: ð99cÞ

These equations of motion can be derived from the
quadratic action

S ¼ −M2
Pl

Z
d4x

ffiffiffiffiffi
jgj

p
hμνEμν: ð100Þ
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Finally the scalar gauge symmetry under which the action
is invariant is given by

Δhtt ¼
�
−
ð4uþ3Þðv−2RÞ

v
∇t∂t

þ uð6Rþ8Ru−3vÞv
ð−3−24uþ16u2Þð−2RþvvÞ

�
ξðxÞ;

Δhti ¼−
ð4uþ3Þðv−2RÞð8R

3
−2vÞ

2vð8R
3
−vÞ ∇ðt∂iÞξðxÞ;

Δhij¼
�
−
ð4uþ3Þðv−2RÞ

8R
3
−v

∇i∂j

þ uvð−18Rþ8Ruþ9vÞ
3ð−3−24uþ16u2Þð−2RþvÞa

2γij

�
ξðxÞ; ð101Þ

or, when ðu; vÞ are evaluated at their partially massless
value,

Δhtt ¼ ½4.4397∇t∂t − 0.0973R�ξðxÞ;
Δhti ¼ 1.4865∇ðt∂iÞξðxÞ;
Δhij ¼ ½−1.4668∇i∂j − 0.1838Ra2γij�ξðxÞ: ð102Þ

IV. CONCLUSIONS

We have shown that there are non-Einstein backgrounds
on which a partially massless graviton can propagate.
We have done this by taking the construction in [71–73]
of a fully massive graviton propagating on an arbitrary
background, and finding backgrounds and values of the
parameter for which an additional scalar gauge symmetry
emerges.
Before this, the only known backgrounds on which a

partially massless graviton could propagate were Einstein
spaces. Indeed, it was argued in [69] that only Einstein
backgrounds can propagate a PM graviton. There were
certain assumptions going into this argument, and one of
these assumptions was that the mass term for the graviton is
at most linear in the curvature of the background spacetime.
Our examples here violate this assumption by having mass
terms with arbitrarily high powers of the curvature of the
background metric (if one expands the mass term in a
power series of the curvature). However, there are still at
most two derivatives acting on the dynamical field as well

as on the background metric. In other words, there are
highly nonminimal curvature couplings that allow for PM
on non Einstein backgrounds. Note that this allows not only
a PM graviton to propagate on some non-Einstein back-
grounds, but also on such backgrounds [in the case of
solutions (86)] with a vanishing Bach tensor, which was
also argued impossible in [69].
There are several questions that this raises. One is the

nature of the most general backgrounds allowing for a
partially massless mode. We have not attempted to find the
most general possible background within the class of
models [71–73] which propagate a partially massless mode.
We have only found a few restricted classes of backgrounds
beyond Einstein spaces, and there may very well be more
examples. It would be interesting to find and characterize
the most general possible background, and this would give
a clue as to the nature of the backgrounds which may
emerge from the equations of motion of a putative non-
linear theory.
Another open question is the nature of propagation of the

partially massless graviton about these non-Einstein back-
grounds. The partially massless graviton on dS space is
known to propagate exactly luminally [17]. It would be
interesting to see whether this continues to be true for these
more general backgrounds.
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