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Exact solutions describing the spherical collapse of null fluids can contain regions which violate the
energy conditions. Physically the violations occur when the infalling matter continues to move inward even
when nongravitational repulsive forces become stronger than gravity. In 1991 Ori proposed a resolution for
these violations: spacetime surgery should be used to replace the energy condition violating region with an
outgoing solution. The matter bounces. We revisit and implement this proposal for the more general Husain
null fluids including a careful study of potential discontinuities and associated matter shells between the
regions. Along the way we highlight an error in the standard classification of energy condition violations
for type II stress-energy tensors.
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I. INTRODUCTION

Vaidya spacetimes are the best known exact solutions
describing dynamical black (or white) holes. The basic
solution describes a null dust infalling onto a black hole (or
radiating from a white hole) and was later generalized to
charged null dust in [1] and to a null fluid with pressure in
[2]. Focusing on collapse solutions, the inclusion of these
extra interactions can result in regions where the energy
conditions are violated (see, for example, [2–5]). For
collapsing matter, these are regions where the fluid con-
tinues moving inward despite nongravitational repulsive
forces becoming stronger than the gravitational attraction
[Fig. 1(a)].
For the case of the charged Vaidya solution, Ori [3]

argued for a construction to remove the apparent violations.
By carefully considering the Lorentz force on the dust and
thus including a Lorentz force term in the equations of
motion, he showed that on the hypersurface dividing
regular spacetime from the region of violations, the wave
vector of the fluid vanishes.
This suggested a physical reinterpretation of charged

Vaidya in which the vanishing wave-vector hypersurface
signals a bounce from infalling to outgoing dust.
Geometrically this reinterpretation corresponds to a new
hybrid spacetime built from violation-free regions of
infalling and outgoing Vaidya solutions (Fig. 1). These
regions join along a common spacelike bounce surface.1

This bounce resolves the energy condition violations
with the critical hypersurface corresponding physically to

the location where the Lorentz repulsive force over-
comes gravity and the charged fluid turns around.
This interpretation is consistent with the null limit for
timelike fluids [3] as well as the evolution of null charged
particles in Reissner-Nordström (RN) spacetimes [3] (and
Appendix A of this paper) and null charged thin shells [8].
Generalizations of this procedure have recently been

applied to modified fðRÞ theories of gravity [9] as well as
the extremal case of the charged Vaidya solution [10].
However in [10] a possible inconsistency was noted in Ori’s
original calculation. In [3] it was found that the extrinsic
curvatures of the component spacetimes matched along the
junction and so, by the standard Israel-Darmois junction
conditions [11], the connection is smooth to first order. In
[10] it was shown that, at least in the extremal case, the
extrinsic curvatures do not match and so a thin-shell
discontinuity (which is the instantaneous appearance of a
stress tensor) is required to connect the spacetimes across
the bounce surface. Though this was a very special limiting
case, it was in tension with the apparently more general
result.
In this paper we revisit Ori’s construction with two goals.

First, we generalize to Husain null fluid spacetimes [2]. In
general these are interpreted as null fluids with pressure,
however they include Vaidya Reissner-Nordström (VRN)
as a special case where the energy density and pressure are
reinterpreted as arising from a Maxwell field. Second, we
carefully reexamine the spacetime surgery to determine
whether or not there is a thin-shell discontinuity. When
looking at the more general case of Husain null fluids, we
also answer the question as to why there are conflicting
results in [3,10]: it turns out that both are mathematically
correct but differ due to a choice in how to match along the
junction hypersurface.
In general, when matching two spacetimes along a

spacelike hypersurface, there will not be a unique way
in which the matching can take place. We find that in
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1This is not a physical restriction but rather based on the

available solutions. A timelike bounce would necessarily include
regions with both infalling and outgoing dust but we do not have
an exact solution describing this situation. Hence the construction
can only be used to describe spacelike bounces.
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general there are two distinct ways to match the spacetimes
along the bounce surface: a time reflection and a second,
more complicated, matching (which in the static case is
simply equivalent to the transformation from ingoing to

outgoing coordinates). For extremal VRN, only the time
reflection is possible and in that case it is intuitively clear
that the extrinsic curvatures will be the negatives of each
other. However this does not show that there is also a thin
shell in Ori’s case: he used the second matching. In that
case the shell vanishes not only for VRN but also for the
more general Husain null fluids. Thus the two results do not
contradict each other.
Along the way we note another, minor result. Almost all

stress-energy tensors studied in this paper are of type II
[12]. Since we are concerned with energy condition
violations, we reexamined those conditions and were
surprised to find an error in their original presentation in
[12]. While we have subsequently learned that this has been
previously noted (see, for example, [13–16]), the error is
not universally known and the incorrect conditions have
been and continue to be used in the literature (see, for
example, [2,9,17–21]). As such for future reference we
explicitly present the correct form of the energy conditions
in an Appendix B to this paper.
The paper is organized as follows. Section II reviews

Husain null fluids as a generalization of the charged Vaidya
solution and discusses energy condition violations in these
spacetimes. Section III considers the (non)existence of a thin
shell at a spacelike junction hypersurface for the Husain
spacetimes and examines other possible discontinuities in
the matter fields. Section IV demonstrates a concrete
example of the matching conditions and so confirms that
the conditions assumed in the previous section are consistent
with real examples. Section V reviews and discusses
implications of the work. Finally, Appendix A reviews null
particle paths in Reissner-Nordström spacetimes while
Appendix B studies the energy conditions for type II
stress-energy tensors.
For notation, early alphabet latin letters ða; b; c;…Þ are

used as four-dimensional abstract indices, greek letters
ðα; β; γ;…Þ are used as four-dimensional coordinate indi-
ces and midalphabet latin letters with hats ð{̂; |̂; k̂;…Þ are
used as indices for a three-dimensional orthonormal space-
like triad spanning the tangent space of the junction surface.

II. HUSAIN NULL FLUIDS

In this section, we review the geometry and physics of
the Husain null fluid spacetimes as presented in [2] and
the occurrence of energy condition violations for these
solutions.

A. The spacetime

The (infalling) Husain solution is obtained by assuming
a general spherically symmetric solution with mass
function mðv; rÞ:

ds2 ¼−
�
1−

2mðv;rÞ
r

�
dv2þ 2dvdrþ r2dΩ2; ð1Þ

(a)

(b)

(c)

FIG. 1. Surgery to remove energy condition violating regions
from Vaidya Reissner-Nordström. (a) shows infalling Vaidya RN
(dust accreting onto a RN black hole) while (b) shows outgoing
Vaidya RN (dust being emitted from a RN white hole). In both
cases energy condition violations exist in the shaded region.
However, as shown in (c) if energy condition violating regions of
each spacetime are removed along the spacelike dashed line, then
the remaining pieces may be reconnected into a nonenergy
condition violating spacetime (apart from maybe at the
junction—see Sec. III). In all diagrams, apparent rather than
event horizons are shown and so in regions where matter crosses
the horizon they are spacelike (see, for example, [6,7]). The
dotted lines on all figures indicate that they continue in those
directions (but into regions that are not of direct interest for us).
Note that in the violation-free spacetimes, matter crosses neither
the black hole nor the white hole horizon.
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where v labels infalling null geodesics and r (the areal
radius) is an affine parameter along those geodesics: see
Fig. 1(a).
Then from the Einstein equations, the associated stress-

energy tensor may be written relative to radially outward-
and inward-pointing null vectors,

l ¼ ∂
∂vþ

1

2

�
1 −

2mðv; rÞ
r

� ∂
∂r ð2Þ

and

N ¼ −
∂
∂r ; ð3Þ

as

Tab ¼ μNaNb − ρq⊥ab þ P ~qab; ð4Þ

where ~qab and q⊥ab are respectively the induced metric on
the surfaces of constant ðv; rÞ and that on the normal space
to those surfaces:

q⊥ab ¼ −laNb − Nalb ð5Þ
and

~qab ¼ gab − q⊥ab: ð6Þ
Further,

μ ¼ mv

4πr2
; ð7Þ

ρ ¼ mr

4πr2
; ð8Þ

and

P ¼ −
mrr

8πr
: ð9Þ

where the subscripts are partial derivatives.
Interpreting these components of the stress-energy ten-

sor, this is an inward falling, self-interacting null fluid. μ is
the flux of energy in the (inward) Nα direction, while ρ is
the energy density associated with the self-interaction and
P is a tangential pressure.
At this stage mðv; rÞ is arbitrary, however restrictions on

its allowed forms are imposed by the energy conditions as
outlined in Appendix B. For individual energy conditions,
the restrictions that we find are not equivalent to those
given in [12], however the restrictions imposed if we
require that all four energy conditions hold are equivalent.
Requiring that the weak, null, dominant and strong all hold
for (4), we must have

μ ≥ 0; ρ ≥ 0; and 0 ≤ P ≤ ρ: ð10Þ

That is,

mv ≥ 0; mr ≥ 0; and − 2mr ≤ rmrr ≤ 0: ð11Þ

B. Polytropic fluids

1. (a = 1) fluid infalling onto a black hole

Even with the energy condition restrictions the range of
allowed forms for mðv; rÞ is still large. However for any
particular null fluid one expects an equation of state to
relate at least the pressure P and energy density ρ. Husain
focuses on polytropic fluids for which

P ¼ kρa; ð12Þ

for some constants k and a. For our purposes it will be
sufficient to consider fluids for which a ¼ 1. Other, more
complicated equations of state are considered in [2].
P ¼ kρ yields an integrable equation for the mass

function mðv; rÞ and has the solution

mðv; rÞ ¼ MðvÞ − gðvÞ
2r2k−1

; ð13Þ

where MðvÞ and gðvÞ are arbitrary functions. That is,

ds2 ¼ −
�
1 −

2MðvÞ
r

þ gðvÞ
r2k

�
dv2 þ 2dvdrþ r2dΩ2:

ð14Þ

We restrict our attention to asymptotically flat spacetimes
k > 1

2
. Note in particular that choosing k ¼ 1 and gðvÞ ¼

QðvÞ2 we recover the charged Vaidya solution.

2. Energy conditions

Let us now consider restrictions imposed on these
solutions by the energy conditions. First for (14)

ρ ¼ mr

4πr2
¼ ð2k − 1Þ

8π

gðvÞ
r2kþ2

: ð15Þ

Hence with k > 1
2
,

ρ ≥ 0 ⇒ gðvÞ ≥ 0 ð16Þ

and so we can rewrite the line element of the Husain
spacetime as

ds2 ¼ −
�
1 −

2MðvÞ
r

þ
�
ΞðvÞ
r

�
2k
�
dv2

þ 2dvdrþ r2dΩ2; ð17Þ
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where we have rewritten gðvÞ ¼ ΞðvÞ2k so that the free
function ΞðvÞwill have dimensions of length. For k ¼ 1we
recover VRN with ΞðvÞ ¼ QðvÞ.
Next

0 ≤ P ≤ ρ ⇒ k ≤ 1 ð18Þ

and so now k is bound both above and below: 1
2
< k ≤ 1.

Finally μ ≥ 0 requires

mv ¼ Mv − kΞv

�
Ξ
r

�
2k−1

≥ 0: ð19Þ

Unlike other violations this one cannot always be removed
by restricting our attention to a subclass of solutions.
Defining

Ro ¼ Ξ
�
k

���� Ξv

Mv

����
�

1=ð2k−1Þ
; ð20Þ

there are four cases:
(1) Ξv > 0, Mv ≤ 0 ⇒ violations for all r,
(2) Ξv > 0, Mv > 0 ⇒ violations for r < Ro,
(3) Ξv < 0, Mv < 0 ⇒ violations for r > Ro,
(4) Ξv < 0, Mv ≥ 0 ⇒ no violations.

As a special case note that if ΞvΞ2k−1 ¼ 0 then there are no
violations as long as Mv ≥ 0. These are VRN spacetimes
but with uncharged dust.
For general VRN (k ¼ 1, Ξ ¼ Q) there are clear physical

interpretations in analogy with the paths of null particles
moving in a background RN field. Those paths are
considered in some detail in Appendix A and in making
the connection note that the radial evolution of any
particular shell of constant v is equivalent to that of a
corresponding particle of with an energy at infinity of

E∞ ¼ Mv

4π
ð21Þ

and charge

q ¼ Qv

4πr2
ð22Þ

moving in a background RN spacetime withQ ¼ QðvÞ and
M ¼ MðvÞ. Then the four cases above respectively map
onto cases Iþ−, Iþþ, I−−, and I−þ from Appendix A.
The interpretation of Mv as proportional to energy at

infinity continues for the k ≠ 1 cases however the individ-
ual particle interpretation is then not so clear.

3. (a = 1) fluid radiating from a white hole

Thus far we have considered spacetime with matter
infalling onto a black hole, however a judicious application

of negative signs switches these solutions to ones with
matter radiating from a white hole.
In this case the line element is

ds2 ¼ −
�
1 −

2MðuÞ
r

þ
�
ΞðuÞ
r

�
2k
�
du2

− 2dudrþ r2dΩ2; ð23Þ

where u labels the outgoing radial null geodesics and r is
still the affine parameter. The stress-energy tensor still takes
the form (4) though this time for null vectors:

l ¼ ∂
∂v −

1

2

�
1 −

2m
r

� ∂
∂r ; ð24Þ

N ¼ ∂
∂r : ð25Þ

N continues to point in the direction of the fluid motion and
so in this case outward rather than inward.
The ρ ≥ 0 and 0 ≤ ρ ≤ P conditions are unchanged and

for μ ≥ 0 with

~Ro ¼ Ξ
�
k

���� Ξu

Mu

����
�

1=ð2k−1Þ
; ð26Þ

there are the same four cases:
(1) Ξu > 0, Mu ≤ 0 ⇒ violations for all r,
(2) Ξu > 0, Mu > 0 ⇒ violations for r < ~Ro,
(3) Ξu < 0, Mu < 0 ⇒ violations for r > ~Ro,
(4) Ξu < 0, Mu ≥ 0 ⇒ no violations.

Again the k ¼ 1 the cases may be understood in terms of
the evolution of charged null particles in a RN background.
This time they are the outgoing particles Oþ−, Oþþ, O−−,
and O−þ discussed in Appendix A.

III. SURGERY TO REMOVE ENERGY
CONDITION VIOLATIONS

The complementary energy condition violations for
infalling and radiating null fluids suggest replicating
Ori’s construction for these more general spacetimes.
That is, for Mv > 0 excise the r < RoðvÞ section of an
infalling spacetime (14) and replace it with the r < ~RoðuÞ
section of a radiating spacetime (23) with the parameters
chosen so that the induced metrics match on r ¼ RoðvÞ ¼
~RoðuðvÞÞ for some function uðvÞ.
As we shall now see, the Israel-Darmois junction

conditions require du
dv < 0 along the matching surface.

Thus, referencing the lists in Secs. II B 2 and II B 3, these
are case 2 ↔ 3 matchings.

A. Hypersurface geometry

First, we study the intrinsic and extrinsic geometry of
spherically symmetric hypersurfaces.
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It will be convenient to consider both infalling and
radiating spacetimes simultaneously and so we write

ds2 ¼ −fðw; rÞdw2 þ 2ϵdwdrþ r2dΩ2; ð27Þ

where ϵ ¼ �1 with w ¼ v (ingoing) for ϵ ¼ 1 and w ¼ u
(outgoing) for ϵ ¼ −1. We leave the metric function in the
general form

fðw; rÞ ¼ 1 −
2mðw; rÞ

r
: ð28Þ

For this discussion the more specialized form (17) is not
required and in fact it is simpler to write our expressions in
terms of fðw; rÞ or mðw; rÞ.
Now consider a general spherically symmetric hyper-

surface B parametrized by w ¼ WðλÞ and r ¼ RðλÞ. Then
the induced metric on B is

dΣ2 ¼ ð−f _W2 þ 2ϵ _W _RÞdλ2 þ R2dΩ2; ð29Þ

with dots indicating derivatives with respect to λ. We
restrict our attention to spacelike B and so the functions
must satisfy

_Wð−f _W þ 2ϵ _RÞ > 0: ð30Þ

Turning to the extrinsic geometry it is convenient to work
with a hypersurface-adapted tetrad. The timelike unit
normal pointing in the positive w direction is

ûα∂α ≡ êαð0Þ∂α

≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵRw − f

p
� ∂
∂wþ ðϵf − RwÞ

∂
∂r

�
; ð31Þ

and the spacelike unit tangent pointing in the positive r
direction is

n̂α∂α ≡ êαð1Þ∂α ≡ ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵRw − f

p
� ∂
∂wþ Rw

∂
∂r

�
: ð32Þ

In both cases Rw ≡ _R
_W
¼ dR

dw if we reparametrize B as
r ¼ RðwÞ. Finally the tangential unit vectors are

êαθ∂α ≡ êαð2Þ∂α ≡ 1

r
∂
∂θ ;

êαϕ∂α ≡ êαð3Þ∂α ≡ 1

r sin θ
∂
∂ϕ : ð33Þ

The extrinsic curvature of B relative to the tetrad is

K{̂ |̂ ¼ êα{̂ ê
β
|̂∇αûβ: ð34Þ

That is,

K ¼
�
−ϵð2Rww þ ffrÞ þ ðfw þ 3frRwÞ

2ð2ϵRw − fÞ3=2
�
ðn̂ ⊗ n̂Þ

þ
�

ϵf − Rw

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵRw − f

p
�
ðêθ ⊗ êθ þ êϕ ⊗ êϕÞ: ð35Þ

Subscripts indicate (partial) derivatives: fr ¼ ∂rf,
fw ¼ ∂wf, and Rww ¼ d2

dw2 RðwÞ.
Finally note that relative to the hypersurface tetrad

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵRw − f

p
2

ðûþ ϵn̂Þ; ð36Þ

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵRw − f

p ðû − ϵn̂Þ: ð37Þ

The spacelike tangent vector n always points in the
positive-r direction but l and N are instead tied to the
fluid flow and so change orientations depending on
whether we are considering the infalling or radiating
solution.

B. Matching infalling and radiation solutions
across B: Geometry

Now consider B embedded into both an infalling
spacetime M− and a radiating spacetime Mþ (the sub-
script indicates that in the final construction M− will be in
the past of Mþ as in Fig. 1). Parametrize the two
embeddings as

ðv;rÞ ¼ ðVðλÞ;RðλÞÞ and ðu;rÞ ¼ ðUðλÞ; ~RðλÞÞ: ð38Þ

We then restrict our attention to matchings for which

f−ðUðλÞ; RðλÞÞ ¼ fþðVðλÞ; RðλÞÞ: ð39Þ

While it may be possible to construct matchings for more
general surfaces, this is both computationally convenient
and gives rise to solutions with desirable physical proper-
ties (Sec. III C).

1. Matching the induced metric

Matching the components of the induced metrics (29) on
B, the angular components give

RðλÞ ¼ ~RðλÞ ð40Þ

and so henceforth we discard the tilde. The ðλ; λÞ compo-
nents give

f _V2 − 2 _V _R ¼ f _U2 þ 2 _U _R; ð41Þ

where we have omitted the superscripts to distinguish
the f’s since they agree on B. Then the induced metrics
match if
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ð _V þ _UÞðfð _V − _UÞ − 2 _RÞ ¼ 0: ð42Þ

Thus there are two possible matchings2 which we label as

Reflective∶ _U ¼ − _V ⇒ Uv ¼ −1 and ð43Þ

Ori∶ _U ¼ _V −
2 _R
f

⇒ Uv ¼ 1 −
2Rv

f
; ð44Þ

where the right-hand expressions arise if we adopt the
ingoing v as our surface parameter: λ ¼ v. Henceforth we
make this choice. Note that in both cases Uv < 0.
As suggested by the label, the first solution (43)

corresponds to a time-reversal symmetry between the
regions: Kþ

{̂ |̂ ¼ −K−
{̂ |̂. This is the matching condition that

was used in [10]. However the second solution (44) is the
one that was used by Ori. For pure Schwarzschild or RN
this is just the transformation that reparametrizes the
surface from ingoing to outgoing coordinates.
Given that different matchings were being used the

disagreement between the papers is not surprising. Note
however that this was unavoidable, as in [10] the matching
was along the apparent horizon where f ¼ 0 and so Ori’s
choice was not available (or noticed by the author).

2. Matter shell from matching the extrinsic curvatures

For either of these choices, we can apply the Israel-
Darmois junction conditions [11] to calculate the stress
tensor necessary to account for any discontinuities intro-
duced by the construction. Recall that if the extrinsic
curvatures of B in M− and Mþ are not equal then K−

{̂ |̂ ≠
Kþ

{̂ |̂ and there is a thin shell of matter at B with stress tensor

S{̂ |̂ ¼ −
1

8π
ð½K{̂ |̂� − ½K�h{̂ |̂Þ; ð45Þ

where

½K{̂ |̂� ¼ Kþ
{̂ |̂ − K−

{̂ |̂ ð46Þ

and similarly ½K� ¼ h{̂ |̂½K{̂ |̂�. Then the radial and tangential
pressure densities are respectively

Sn̂ n̂ ¼
1

4π
½Kθ̂ θ̂�; ð47Þ

Sθ̂ θ̂ ¼ Sϕ̂ ϕ̂ ¼ 1

8π
ð½Kθ̂ θ̂� þ ½Kn̂ n̂�Þ: ð48Þ

These components can be calculated from (35):

½Kθ̂ θ̂� ¼
2Rv − fð1 − UvÞ

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rv − f

p ð49Þ

is easy while

½Kn̂ n̂� ¼
2Rvvð1 − UvÞ þ 2RvUvv þ ffrð1 −U3

vÞ
2ð2Rv − fÞ3=2

−
ðfv þ 3frRvÞð1þ U2

vÞ
2ð2Rv − fÞ3=2 ð50Þ

is more complicated. In both of these calculations we have
eliminated Ru using Ru ¼ Rv

Uv
in the numerators and

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f − 2Ru

p ¼ −
Uvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−f þ 2Rv
p ; ð51Þ

which can be derived directly from (41), for denominators.
Now we specialize to the reflective and Ori matchings.

For reflective Uvv ¼ 0 and so

Srefn̂ n̂ ¼
Rv − f

2πR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rv − f

p ; ð52Þ

Sref
θ̂ θ̂

¼ Rv − f
4πR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rv − f

p þ 2Rvv þ frðf − 3frRvÞ − fv
8πð2Rv − fÞ3=2 ;

ð53Þ

while for Ori

Uvv ¼ −
2Rvv

f
þ 2frR2

v

f2
þ 2fvRv

f2
ð54Þ

and so

SOrin̂ n̂ ¼ 0; ð55Þ

SOri
θ̂ θ̂

¼ fv
4πR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rv − f

p : ð56Þ

Thus far B has been a general spacelike surface.
However we are mainly interested in surfaces for which
the matching is as smooth as possible and so now restrict
our attention to B defined by

μ ¼ 0 ⇔ fv ¼ 0: ð57Þ

Then by the discussion surrounding (7) the flow of energy
in the ingoing null direction vanishes at B and can
continuously switch from ingoing to outgoing.
That this physically motivated choice is achievable is

demonstrated in Sec. IV, but for now we note that with
fv ¼ 0,

2Equivalent matchings have previously been discussed in
[22–24] for matching spherically symmetric spacetimes along
a surface of arbitrary signature.
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SOri{̂ |̂ ¼ 0; ð58Þ

while the reflective matching retains nonzero components.
In a little more detail for the polytropic fluid and a

reflective matching:

fp;rv ¼ 0 ⇔

�
Ξ
r

�
2k

¼ Ξ
kr

1
Mv
Ξv

ð59Þ

and we can apply the right-hand side equality to show that

fp;rr ¼ 2M
R2

�
1 −

Ξ
M

Mv

Ξv

�
: ð60Þ

In particular note that if ΞðvÞ ¼ ξMðvÞ for some constant ξ,
then fr vanishes as well (but is still not sufficient to cause
the reflective stress tensor to vanish). We will return to this
in Sec. IV B.

C. Matching infalling and radiation solutions
across B: Matter fields

We can also consider potential discontinuities in the
matter fields across B, apart from the shell. We begin by
considering jumps in the bulk stress-energy tensor.

1. Discontinuities in the bulk Tbulk
ab

From the standard junction condition formalism, the
stress-energy tensor for the full spacetime is

Tab ¼ Θ−T−
ab þ δBSab þ ΘþTþ

ab; ð61Þ
where Θ� ¼ 1 on M� but vanishes on M∓ and δB is a
Dirac delta function centered on B. Thus even if there is no
thin shell induced on B it is still possible to have a
discontinuity in the bulk stress energy across B.
The canonical example of such a jump is across the
boundary separating the Friedmann-Robertson-Walker
from the Schwarzschild region during Oppenheimer-
Snyder collapse [25].
To see if there is such a discontinuity in our case we

compare the limiting behavior of Tbulk
ab as we approach B

from the M− and Mþ sides. These limits are easily
calculated as the fields are continuous up to B. For
μ ¼ 0 one can apply (4), (36), and (37) to find that at B:

Tbulk
ab ¼ ρûaûb − ρn̂an̂b þ P ~qab: ð62Þ

It is straightforward to see that ρþ ¼ ρ− on B. From
fþ ¼ f−:

d
dλ

ðfþðUðλÞ; RðλÞÞÞ ¼ d
dλ

ðf−ðVðλÞ; RðλÞÞÞ; ð63Þ

but since f−u ¼ fþv ¼ 0 (from μ ¼ 0) and _R ≠ 0 this implies
that

fþr ¼ f−r ⇔ ρþ ¼ ρ−; ð64Þ

and the only possible stress-energy discontinuity is from
the pressure:

ΔTab ¼ ðPþ − P−Þ ~qab: ð65Þ

For the special case of a polytropic null fluid P ¼ kρ and so
there is no discontinuity in the stress-energy tensor.
The easiest way to do a fþ ¼ f− match for such a fluid is

to require

M−ðVðλÞÞ ¼ MþðUðλÞÞ and Ξ−ðVðλÞÞ ¼ ΞþðUðλÞÞ:
ð66Þ

This is also a physically convenient choice: for this
matching when a shell bounces it will return to infinity
with the same energy density M (and Ξ) as when it left.

2. Other discontinuities

It is possible to have discontinuities in fields that do not
show up in either the boundary or bulk stress energy. For
example, discontinuities in the electric field can signal the
existence of thin shells of charge. This is a standard result
from undergraduate electromagnetism but as an example in
general relativity3 consider two Reissner-Nordström space-
times of the same mass but opposite charge attached across
an r ¼ constant surface. The geometry is indifferent to the
sign of the charge. In particular both the metric and stress
energy depend only on the square of the charge:

f ¼ 1 −
2M
r

þQ2

r2
; ð67Þ

Tab ¼
Q2

8πr4
ð−q⊥ab þ ~qabÞ: ð68Þ

However in this case the stress-energy tensor is generated
by the underlying Maxwell field:

Fab ¼
Q
r2
ðlaNb − NblaÞ; ð69Þ

where l and N are cross-normalized radial null vectors
l · N ¼ −1 and E⊥ ¼ Q

r2 is the radial component of the
electric field that can be integrated over surfaces of constant
r to obtain the contained charge Q. Hence if Qin ¼ −Qout,
then even though there are no geometric or stress-energy
discontinuities there is an induced (total) charge of 2Qin at
the interface.
One could ask if similar discontinuities can arise in our

more general models. The answer is no—unless there is an

3For further discussion of these matching conditions in spheri-
cally symmetric general relativity see, for example, [23,24].
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underlying theory generating the μ, ρ, and P. Without an
additional theory, all that there is the stress-energy tensor
and so if that is continuous,4 that is the end of the story. This
is the situation for our general models except for the
polytropic fluid with k ¼ 1. There one can either (1) take μ,
ρ, and P at face value as the energy densities and pressure
associated with a null fluid or (2) reinterpret μ, ρ, and P as
arising from charged null dust. From the perspective of the
stress-energy tensor this distinction is irrelevant, however
taking the Maxwell interpretation opens the possibility of
an electric field discontinuity as discussed above.
Even with the null dust–Maxwell interpretation and thus

VRN spacetimes there is no discontinuity for the (66)
cases: if Qþ ¼ Q− and the metrics match then so do the
normal components of the electric field. There is no thin
shell of charge.

IV. BOUNCING NULL FLUID EXAMPLE

We have now seen several properties of the matching
surface but have not yet established whether there is any
mðv; rÞ for which it exists with the properties that we have
assumed. For example, is it actually possible to pick
mðv; rÞ so that μ ¼ mv ¼ 0 is spacelike and the surface
is not inside a trapped region? In this section we demon-
strate that at least one example exists.

A. Trapped and untrapped regions

First, we establish the location of the trapped regions in
our spacetimes. For (27) the outward and inward null
expansions are

θðlÞ ¼ ~qab∇alb ¼
ϵf
r

ð70Þ

and

θðNÞ ¼ ~qab∇aNb ¼ −
2ϵ

r
: ð71Þ

Figure 1(a) shows spacetime with ϵ ¼ 1 and an infalling
fluid. In that case spherical surfaces are outer trapped
(θðlÞ < 0) for f < 0, marginally outer trapped (θðlÞ ¼ 0)
for f ¼ 0 (that is, an apparent horizon), and outer
untrapped (θðlÞ > 0) for f > 0. For all of these θðNÞ < 0

and so when f < 0 the surfaces are fully trapped and so
inside a black hole.
By contrast Fig. 1(b) with ϵ ¼ −1 shows a radiating

white hole spacetime. The apparent horizon is again at
f ¼ 0 but this time the shaded region is totally untrapped
(θðlÞ > 0, θðNÞ > 0) when f < 0. So again the region of
regular spacetime has f > 0.

B. Linear matter

Thus the surface μ ¼ 0 is spacelike and always outside
of the black and white hole regions if there is a choice of
MðvÞ and ΞðvÞ such that both

2ϵRw − fðw;RðwÞÞ > 0 and fðw;RðwÞÞ > 0; ð72Þ

where RðwÞ is implicitly defined by fwðw;RðwÞÞ ¼ 0.
To see that these conditions can be met, consider the

simple choice

ΞðwÞ ¼ ξMðwÞ; ð73Þ

where ξ > 0 is a constant. In the charged Vaidya case, ξ
corresponds to the charge-to-mass ratio of the fluid. With
this choice (20) gives that the junction hypersurface is

RðwÞ ¼ χMðwÞ; ð74Þ

where χ ¼ ξðkξÞ1=ð2k−1Þ.
Then

fðw;RðwÞÞ ¼ 1 −
2

χ
þ
�
ξ

χ

�
2k

¼ 1 −
1

χ

�
2k − 1

k

�
ð75Þ

is constant along the surface and is positive (the shaded
region of Fig. 2) if

χ >
2k − 1

k
⇔ ξ >

ð2k − 1Þ2k−12k

k
: ð76Þ

FIG. 2. Allowed values of ξ so that the surface mw ¼ 0 will be
between the horizon and r ¼ ∞:ξ must be chosen in the shaded
region above 1

k ð2k − 1Þ2k−12k .

4In fact it is not hard to see that polytropic fluids the
components are actually C1 and so overachieve this target. See
Appendix C.
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In particular note that for the k ¼ 1 charged Vaidya case,
this condition implies that the charge-to-mass ratio must be
greater than 1. The special ðk ¼ 1; ξ ¼ 1Þ case is the
dynamical extremal horizon considered in [10].
Next, the junction surface in the ingoing spacetime is

spacelike if 2Rv ≥ F. That is, on applying (74),

Mv >
f
2χ

¼ 1

2kχ2
ðkχ þ 1 − 2kÞ: ð77Þ

Thus for any choice of ðk; ξÞ there is a lower bound
on Mv. Equivalently this is a lower bound on the
allowed fluid energy at infinity (Appendix A). Because
we have restricted our attention to junction surfaces
outside the black hole this lower bound is necessarily
positive: that is, there is a minimum allowed rate of
expansion. Similarly in the radiating region there is a
minimum allowed rate of contraction. This minimum is
shown in Fig. 3.
In the extreme Vaidya limit (k → 1; ξ → 1) this bound

goes to zero but in all other cases it is positive. As such
these constructed spacetimes can only describe continuous
(eternal) expansions. They cannot describe spacetimes
which either depart from or return to equilibrium.
However once again it is important to emphasize that this
is not a restriction on the allowed physics of spacetimes but
rather a restriction on which spacetimes can be described
by this particular model.
We now examine the stress energy at a reflective junction

for this linear matter. Since both fv and, by (60), fr vanish
the expressions become quite simple:

Srefn̂ n̂ ¼
Mv − f=χ

2πχ1=2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mv − f=χ

p ; ð78Þ

where f is given by (75). Meanwhile from (53) we have

Sref
2̂ 2̂

¼ 1

4πχ1=2

�
Mv − f=χ

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mv − f=χ

p þ Mvv

ð2Mv − f=χÞ3=2
�
:

ð79Þ

For the special case of linear accretionM ¼ ðf=χÞv both
of these vanish, but in general that is not the case.

V. CONCLUSION

In this paper we have extended Ori’s resolution of VRN
energy condition violations to Husain null fluids. We saw
that with his matching condition, the no-thin-shell bounce
result extends to the Husain null fluids. The bounce is
naturally caused by the fluid pressure.
By contrast for the reflective matching conditions used in

[10], apart from a very special choice of the parameter
functions, there continues to be a thin shell at the bounce
surface. This is the physical cause of that bounce: it
provides the necessary energy to turn the matter around.
However note that it in itself can be interpreted as violating
the energy conditions: it is pressure without a correspond-
ing energy density.
We have also examined the bulk stress-energy tensor and

have identified the conditions under which there are
discontinuities in the bulk stress-energy tensor at B. For
polytropic fluids with the most convenient matching con-
ditions, the stress-energy tensor and its first derivatives are
continuous across the transition. For the special case of
VRN where the stress-energy tensor is interpreted as
arising from a null dust–Maxwell system, there is no thin
shell of charge on B.
Finally, we have explicitly demonstrated the existence of

parameter choices [ΞðvÞ ¼ ξMðvÞ] such that the bounce
surface is spacelike and outside of any trapped region.
However we have also seen that these choices restrict us to
describing cases where MvðvÞ is always greater than some
positive constant. Thus it necessarily describes an eternally
expanding junction surface. While this particular ansatz of
solutions cannot describe departures from or returns to
equilibrium it still serves to establish the existence of
solutions for which our matching conditions apply.
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APPENDIX A: CHARGED NULL PARTICLE
PATHS IN REISSNER-NORDSTÖM

A charged timelike particle moving in a spacetime with
an electromagnetic field does not move along geodesics but
instead with unit four-velocity v̂a which obeys

v̂a∇av̂b ¼
q
m
Fb
cv̂c; ðA1Þ

where q and m are respectively its charge and mass.
Similarly Ori [3] argued that the (null) “wave vector” ka

of a massless particle should obey

ka∇akb ¼ qFb
ckc; ðA2Þ

where q is again the charge. The scaling of the null vector is
significant as an observer with unit four-velocity ua would
measure it to have energy E ¼ −k · u. In particular we will
find it useful to label these paths by their energy observed
by an observer at infinity E∞ ¼ −k · u∞.
We study the evolution of charged null particles in RN

spacetime. We restrict our attention to particles moving
radially and so while we already know that they must
follow the same paths as null geodesics, (A2) will fix the
scaling of the null vectors. We work with RN in ingoing
Eddington-Finkelstein coordinates:

ds2 ¼ −fdv2 þ 2dvdrþ r2dΩ2; ðA3Þ

where f ¼ 1 − 2M
r þ Q2

r2 in the usual way but unlike in the
main text M and Q are constants. The associated electro-
magnetic field is generated by the potential

A ¼ −
Q
r
dv ⇒ F ¼ −

Q
r2
dv ∧ dr: ðA4Þ

We work with a null dyad of the same form as in the main
text:

l ¼ ∂
∂vþ

f
2

∂
∂r ; ðA5Þ

N ¼ −
∂
∂r : ðA6Þ

We consider ingoing and outgoing particles whose wave
vectors necessarily take the form

k− ¼ g−ðrÞN; kþ ¼ gþðrÞl ðA7Þ

for some functions g−ðrÞ and gþðrÞ respectively. By (A2),

g−ðrÞ ¼ E−
∞ −

qQ
r

; ðA8Þ

gþðrÞ ¼ 2

f

�
Eþ
∞ −

qQ
r

�
: ðA9Þ

Thus the observer hovering at constant r with four-velocity

u ¼ 1ffiffiffi
f

p ∂
∂v ðA10Þ

measures energies

E− ¼ 1ffiffiffi
f

p
�
E−
∞ −

qQ
r

�
; ðA11Þ

Eþ ¼ 1ffiffiffi
f

p
�
Eþ
∞ −

qQ
r

�
; ðA12Þ

with E∞ clearly being the limit as r → ∞.
Then possible particle paths are shown in Fig. 4.

Intuitively they can be understood as the electromagnetic
field redshifting or blueshifting k� depending on whether
or not the particle is moving with or against the field.5 The
energy vanishes at

ro ¼
qQ
E�
∞
: ðA13Þ

That is, in order for the particle to have energy E�
∞ at

infinity it must have zero energy at ro. For particular
choices of q, Q, and E�

∞ certain regions of spacetime are
forbidden to (future-oriented) positive energy particles.
Ori then argued that physically it makes more sense to

view particles reaching ro as switching from ingoing to
outgoing null paths rather than continuing in a straight line
and thus becoming negative energy particles. Thus in Fig. 4
the ingoing particles in Iþþ redshift to zero energy at ro and
thus bounce to become the outgoing particles of Oþþ.
Similarly the outgoing particles of O−þ bounce to become
the ingoing particles of I−þ.
This same interpretation may be applied to the particles

making up the charged fluid in Vaidya RN. In that case the
particles making up the shell of constant v (or u) essentially
move as if they were particles of charge

q ¼ Qv

4πr2
ðA14Þ

moving in a background RN spacetime with mass MðvÞ
and charge QðvÞ.

5Thanks to Hari Kunduri for suggesting this interpretation.
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APPENDIX B: ENERGY CONDITIONS FOR TYPE
II STRESS-ENERGY TENSORS

Stress-energy tensors are classified in [12] by their
eigenvectors. For physical fields by far the most common
are type I tensors which have a timelike eigenvector ξa

whose eigenvalue is the (negative) energy density as
measured by an observer with that four-velocity:

Ta
bξ

b ¼ −μξa: ðB1Þ

However the focus of this paper is type II tensors which
have no timelike eigenvector but instead have a double null
eigenvector. Then for some tetrad ðl; N; eð2Þ; eð3ÞÞ where l
and N are null, future oriented and cross scaled so that
l · N ¼ −1 and eð2Þ and eð3Þ are orthonormal (to each
other) and orthogonal to l and N, the stress-energy tensor
will necessarily take the form

Tab ¼ μNaNb − ρq⊥ab þ P2eað2Þe
b
ð2Þ þ P3eað3Þe

b
ð3Þ: ðB2Þ

Here μ ≠ 0 (μ ¼ 0 is type I) and q⊥ab is as defined in (5).
This particular arrangement of the constants has been
chosen to be consistent with (4), though in that case note
that P2 ¼ P3.
Then we can consider the restrictions placed on μ, ρ, P2,

and P3 by the energy conditions. The weak, dominant, and
strong conditions are each based on measurements of the
stress energy made by timelike observers. Thus we

consider an arbitrary future-oriented unit timelike vector
field which can be defined by parameters α, β, and γ:

ξa ¼ coshαffiffiffi
2

p ðeβla þ e−βNaÞ

þ sinh αððcos γÞeað2Þ þ ðsin γÞeað3ÞÞ: ðB3Þ

The null energy condition is based on an arbitrary null
vector which we write similarly as

ka ¼ eαffiffiffi
2

p ðeβla þ e−βNaÞ þ eαððcos γÞeað2Þ þ ðsin γÞeað3ÞÞ:

ðB4Þ

It is then straightforward to check the energy conditions.
We present these in more detail than the complexity of the
calculations might warrant as the results differ from those
presented in [12]. While the correct energy conditions have
been noted and applied by others [13–16,26] it also true
that the error in [12] does not seem to be universally known.
The incorrect conditions are used in, for example,
[2,9,17–21].

1. Weak energy condition

The weak energy condition Tabξ
aξb ≥ 0 says that no

timelike observer sees negative energy densities. From (B2)
and (B3) this becomes

FIG. 4. Possible charged null particle paths in RN spacetimes. Only the region between the black and white hole event horizons and
null is shown. The labels indicate whether the particle moves along ingoing (I) or outgoing (O) null paths with the first and second
subscripts respectively indicating the signs of qQ and E∞. Physically the gray forbidden zones can be best understood as resulting from
an electromagnetic (EM) redshifting of the wave vector when the particle moves against the field or a blueshifting when the particle
moves with the field. In the gray zones the energy becomes negative (or equivalently the particles must move backwards in time). The
dividing line between zones is always located at r ¼ qQ

E∞
.
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�
e2β

2
μþ ρ

�
þ ðP2cos2γ þ P3sin2γÞtanh2α ≥ 0 ðB5Þ

for all α, β, γ. By considering extreme cases we can find the
bounds on μ, ρ, P2, and P3. Then

α ¼ 0; β → ∞ ⇒ μ ≥ 0; ðB6Þ

α ¼ 0; β → −∞ ⇒ ρ ≥ 0; ðB7Þ

while

α → ∞; β → −∞ ⇒ ρþ Pi ≥ 0

for i ∈ f2; 3g. Other limits are redundant.

2. Null energy condition

The null energy condition replaces the timelike vector ξa

in the weak energy condition with ka. That is,

e2βμþ 2ρþ 2ðP2cos2γ þ P3sin2γÞ ≥ 0; ðB8Þ

where the eα overall scaling of the null vector becomes
irrelevant. Thus,

β → ∞ ⇒ μ ≥ 0; ðB9Þ

β → −∞ ⇒ ρþ Pi ≥ 0 ðB10Þ

for i ∈ f2; 3g. Other limits are redundant and in the usual
way this is implied by the weak energy condition.

3. Dominant energy condition

The dominant energy condition says that −Ta
bξ

a should
be future directed and causal. That is, timelike observers
should only see matter flowing forwards in time with speed
less than or equal to the speed of light. Future-directed is
ensured by

Tabξ
alb ≥ 0 ⇒ μeβ þ ρe−β ≥ 0 ⇒ μ; ρ ≥ 0; ðB11Þ

with the corresponding Na condition being redundant.
Causality implies that ∥Tabξ

b∥2 ≤ 0. This becomes

ρðμe2β þ ρÞcosh2α − ðP2
2cos

2γ þ P3sin2γÞsinh2α ≥ 0:

ðB12Þ

The α ¼ 0 limit is redundant with (B11) however:

α → ∞; β → −∞ ⇒ jPij ≤ jρj ðB13Þ

for i ∈ f2; 3g. Other limits are redundant.

4. Strong energy condition

The strong energy condition Rabξ
aξb ≥ 0 can be inter-

preted in a physical way but in essence is the geometric
condition that must be assumed to prove results such as the
singularity theorems. With our usual substitutions it
becomes

0 ≤
1

2
ðe2βμþ P2 þ P3Þ

þ
�
ρ −

1

2
ð1 − 2cos2γÞP2 −

1

2
ð1 − 2sin2γÞP3

�
tanh2α:

ðB14Þ

Then

α ¼ 0; β → ∞ ⇒ μ ≥ 0; ðB15Þ

α ¼ 0; β → −∞ ⇒ P2 þ P3 ≥ 0; ðB16Þ

while

α → ∞; β → −∞ ⇒ ρþ Pi ≥ 0 ðB17Þ

for i ∈ ð2; 3Þ. Other limits are redundant.

5. Summary of energy conditions

To summarize, for a stress-energy tensor of form (B2) the
energy conditions are
(1) Weak: μ ≥ 0, ρ ≥ 0, ρþ Pi ≥ 0
(2) Null: μ ≥ 0, ρþ Pi ≥ 0
(3) Dominant: μ ≥ 0, ρ ≥ 0, jPij ≤ jρj
(4) Strong: μ ≥ 0, P2 þ P3 ≥ 0, ρþ Pi ≥ 0.

If we restrict ourselves to type II stress-energy tensors of
this form, then μ > 0.
As noted, individually these are not equivalent to the

conditions given in [12]. However if P1 ¼ P2 and we
require all of them to be satisfied simultaneously, then this
is the same as requiring that all of the conditions in [12] be
satisfied simultaneously. For anisotropic angular pressures
(P1 ≠ P2) the combined conditions are not quite equiv-
alent, as [12] also requires the pressures to be individually
positive.

APPENDIX C: STRESS ENERGY
IS C1 ACROSS B

In this appendix we demonstrate that the stress energy of
polytropic fluids is not only continuous across B, but the
derivatives are also continuous. To see this we first derive
the equations of motion governing the null fluid. Either by
expanding the divergence of (4) or (equivalently) by
combining (7)–(9) it is straightforward to show that they are

LNð~ερÞ þ PLN ~ε ¼ 0; ðC1Þ
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Llð~ερÞ þ PLl ~ε ¼ −LNð~ϵμÞ; ðC2Þ

where ~ε ¼ r2 sin2 θdθ ∧ dϕ is the usual spherically sym-
metric area element. As always, these are conservation
equations balancing evolving energy densities and work
terms.
Now consider what these say about how the fields

change across B. Writing the tangent and normal vectors as

X ¼ αlþ βN; ðC3Þ

X⊥ ¼ αl − βN; ðC4Þ

the equations of motion (C1) and (C2) can be recast as

LXð~ερÞ þ PLX ~ε ¼ LX⊥ð~ερÞ þ PLX⊥ ~ε

¼ α

2β
ðLX⊥ − LXÞð~εμÞ: ðC5Þ

On B with fþ ¼ f− and μ ¼ 0, we saw in Sec. III that
intrinsic and extrinsic curvatures match and also ρþ ¼ ρ−.
Then it immediately follows that

ðΔPÞLX ~ε ¼ ~εðΔLX⊥ρÞ þ ðΔPÞLX⊥ ~ε

¼ ~ε
α

2β
ΔðLX⊥μÞ; ðC6Þ

where ΔP ¼ Pþ − P− and similarly for the other
quantities. Hence discontinuities in P imply disconti-
nuities in the normal derivatives of μ and ρ. However
for polytropic models P ¼ kρ and thus not only do
μ, ρ, and P match across B but so do their normal
derivatives.
By the matching conditions we already know that

the tangential derivatives are continuous. Hence the
derivatives of the stress-energy components are also
continuous.
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