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We investigate the stability of highly charged Reissner-Nordström black holes to charged scalar
perturbations. We show that the near-horizon region exhibits a transient instability which becomes the
Aretakis instability in the extremal limit. The rates we obtain match the enhanced rates for non-
axisymmetric perturbations of the near-extremal and extremal Kerr solutions. The agreement is shown to
arise from a shared near-horizon symmetry of the two scenarios.
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I. INTRODUCTION

The importance of black holes in modern theoretical
physics cannot be understated. At large scales, numerous
astrophysical phenomena feature black holes as major
players: stellar mass black holes are the end states of
“high-mass” stellar collapse [1], supermassive black holes
have the capacity to source high-energy jets seen in the
centers of galaxies [2], and binary black holes provide a
source of gravitational waves, recently detected for the first
time [3]. At small scales, black holes provide a testing
ground for theories of quantum gravity, which must
reproduce the area law of entropy [4,5] at the semiclassical
level. Mathematically, the nonlinear stability of black holes
is far from understood, though the linear stability problem
of black hole solutions has seen tremendous progress in
recent years [6–8].
Solutions describing black holes near their extremal limits

have attracted additional interest. This may be due in part to
the fact that in the extremal limit many problems become
analytically tractable. For instance, microstate counting
simplifies near the Bogomol’nyi-Prasad-Sommerfield
(extremal) bound where certain fields behave classically.
Hence, extremal solutions have been important for string
theory calculations of black hole entropy [9]. Apart from
their analytical tractability [10–20], extremal black holes
have uniquely interesting physical features. These include
turbulentlike dynamics [21], unique telltale observational
features [22–27], and enhanced symmetries shared by
certain conformal field theories [28].
A new development came in 2010 when Aretakis proved

that extremal horizons are linearly unstable [29–31]. For
perturbations of nonextremal black holes the redshift of
outgoing radiation at the horizon controls transverse deriv-
atives occurring in energy estimates [32]. However, the
redshift factor degenerates in the extremal limit. The lack
of a redshift, combined with the existence of conserved
quantities on the future horizon [33], generically gives rise

unbounded polynomial growth of sufficiently high-order
derivatives at late times [34–36]. The polynomial growth
was shown to arise in a mode expansion from a branch point
in the Laplace transform at the super-radiant frequency [37].
Physically, extremal solutions occupy a set of measure

zero and can never be realized thermodymically in finite
time [38]. However, given the continuous dependence
of the Kerr solution on the spin parameter, the Aretakis
“instability” is exhibited in a tamer form for near-extremal
solutions as well [39,40].
Here we consider charged (denoted q) massless scalar

field perturbations ψ of a Reissner-Nordström (RN) black
hole, the unique static electrovacuum solution in four
dimensions.
There are many reasons to study charged perturbations of

the RN spacetime. For one, the highly charged RN scenario
provides a simplified setting which captures many features
of the rapidly spinning astrophysical Kerr black hole. In this
paper we show that the linearized near-horizon dynamics of
RN, including the horizon instability, share many salient
featureswithKerr and can be understoodwithin background
spherical symmetry. These shared features include a set of
long-lived modes and an Aretakis rate enhancement relative
to neutral scalar perturbations that is identical to the non-
axisymmetric rate enhancement found in [37] for perturba-
tions of Kerr. In fact, many results carry over exactly to the
Kerr analysis by simply mapping q → m, where m is the
azimuthal mode number of a Kerr perturbation. Moreover,
the (near-) extremal RN geometry offers an ideal setup to
study nonlinear interactions between long-lived modes. Such
a study may unearth more evidence of gravitational turbu-
lence in asymptotically flat spaces [21], pushing the limits of
the established fluid gravity correspondence [41,42] wherein
anti–de Sitter (AdS) black branes have been shown to exhibit
turbulent features [43,44]. When allowing for a negative
cosmological constant, yet another reason to study charged
fields in (near-) extremalReissner-Nordströmcomes from the
AdS/CMT correspondence [45], as it may inform our under-
standing of novel low-temperature strongly coupled states
of matter [46,47].*peterzimmerman@email.arizona.edu
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The scalar field ψ is decomposed into a set of discrete
spherical harmonic modes (l, m) on S2. It is also
meromorphically extended into the complex frequency
plane through a Laplace transform, which we invert to
resolve the time dependence. The near-horizon field modes
are shown to organize into spaces (modules) imaged by the
action of the near-horizon symmetry group. The represen-
tations are labeled in part by the so-called “conformal
weight” h. Through the field equations, we find that the
conformal weight is related to the (eigenvalues of the)
SOð3Þ and Uð1Þ Casimirs, Kl ≔ lðlþ 1Þ and q2, by

h ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ Kl − q2

r

: ð1Þ

Our main results apply to modes for which h ∈ C. In the
language of representation theory, these are the “principal
series” representations [48]. The principal representations
were shown to dominate the near-horizon response of the
rapidly spinning Kerr black hole [40], where the azimuthal
mode number m plays the role of q in (1). In the charged
case studied here, we again find that the principal modes
run the show, giving rise to horizon dynamics replicating
extremal Kerr.
One explanation of the similarities with the Kerr scenario

lies in the shared presence of a critical frequency at which
the horizon flux is zero—the super-radiant bound. The
perturbation spectra of both (near-extremal) spacetimes
feature a family of weakly damped quasinormal modes
clustered around the super-radiant bound frequency
[24,25,49–58]. The collective excitation of these slowly
decaying quasinormal modes gives rise to a steeply graded
field with large local energy density measured near the
horizon. In the extremal limit, a confluence of these
resonant modes forms a branch point precisely at the
super-radiant bound frequency. In this paper we analyti-
cally compute the field arising from the long-lived
quasinormal modes (near-extremal case) and branch cut
integral (extremal case), presenting decay rates for each.
We follow the conventions of [59] and use geometric

units G ¼ c ¼ 1.

II. FIELD EQUATIONS

We consider the charged scalar field

DαDαψ ¼ 0; ð2Þ

where Dα ¼ ∇α − iqAα, as a linear perturbation of the
Reissner-Nordström spacetime. The field ψ is constructed
via the Green function governing the linear response to
suitable initial data or a prescribed compact source. The
Green function is defined as the distributional solution of
the adjoint equation

Dα
�Dα�GðX;X0Þ ¼ δ4ðX;X0Þ; ð3Þ

where δ4ðX;X0Þ is the covariant Dirac distribution and
“�” signifies taking the complex conjugate. We choose
GðX;X0Þ to vanish when the spacetime point X is not in the
chronological future of X0. With this choice, the Kirchhoff
representation of the “forward” solution in the absence of
sources is

ψ ¼
Z

Σ
ðψΣD�

αG� −G�DαψΣÞnα
ffiffiffi
h

p
d3y ð4Þ

for given compact support initial data ψΣ and nαDαψΣ
on the spacelike surface Σ with future directed normal nα

and intrinsic metric hjk. We restrict to initial data supported
away from the future outer horizon.
In ingoing coordinates xμ ¼ ðv; r; θ;ϕÞ, the background

metric and gauge field are given by

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dΩ2; ð5Þ

A ¼ −
Q
r
dv; ð6Þ

where fðrÞ ¼ 1 − 2M=rþQ2=r2 ¼ ðr − r−Þðr − rþÞ=r2
with rþ and r− denoting the locations of the inner and

outer horizons, r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. The quantities Q

and M are the ADM charge and mass of the black hole,
respectively.
To separate variables1 we adopt a mode decomposition

G� ¼ 1

2π

X

lm

Ylmðθ;ϕÞY�
lmðθ0;ϕ0Þ

×
Z

icþ∞

ic−∞
e−iωv ~gðr; r0Þμðr0Þdω; ð7Þ

where Ylm are spherical harmonics satisfying ΔS2Ylm ¼
−KlYlm and ~gðr; r0Þ is the “transfer function” obeying

fr2∂2
r ~gðr;r0Þþ2ðr−M− irðωr−qQÞÞ∂r ~gðr;r0Þ

þð−Klþ iðqQ−2ωrÞÞ~gðr;r0Þ¼μ−1ðrÞδðr−r0Þ: ð8Þ

We have also introduced a “weight factor” given by

μðrÞ¼ 1

r2f
exp

�Z
2ðr−M− irðωr−qQÞÞ=ðr2fÞdr

�
ð9Þ

¼ e−2iωr� exp

�
2iqQ

Z
dr
rf

�
ð10Þ

∼ e−2iωr�ðr=rþ − 1Þ2iqQ; r → ∞; ð11Þ

1Here we are separating the adjoint of (3).
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where r� ¼
R
dr=f.2 The quantity c is a small positive

constant chosen to put the integration contour in a strip
where ~g is holomorphic.
A suitable transfer function consistent with the causal

conditions imposed on G may be constructed from homo-
geneous solutions Rin and Rup, which are defined as having
no incoming radiation from the past horizon (in) and past
null infinity (up). To construct this quantity explicitly, we
employ the “variation of parameters” formula

~gðr; r0Þ ¼ Rinðr<ÞRupðr>Þ
W

; ð12Þ

making use of the notation r< ≔ minðr; r0Þ, r> ≔
maxðr; r0Þ, and introducing the scaled Wronskian
W ¼ r2fμðrÞðRin∂rRup − Rup∂rRinÞ such that ∂rW ¼ 0.
As defined, the in solution is regular on the future horizon
and the up solution is regular at infinity.
Following [10], homogeneous radial solutions are

obtained in two asymptotic regions, the near and far zones,
and then matched in a region of common overlap: the
“buffer.” The existence of a buffer region relies on the
presence of an additional parameter deemed small. When
the black hole is extremal, a sufficiently small parameter
arises in our analysis as the deviation of the frequency of
the perturbation from the super-radiant bound frequency.
This is a simple but profound consequence of the fact that
waves of all frequencies defined with respect to the near-
horizon geometry (with frequency conjugate to the near-
horizon time coordinate) limit to the super-radiant bound
when viewed in coordinates adapted to the asymptotically
flat region. We thus pattern our analysis on [11], obtaining
asymptotic solutions by solving the radial equation directly
in the limiting spacetimes [limiting sections on the Uð1Þ
bundle]. In doing so we make use of the near-horizon
symmetries to streamline our derivation of the Aretakis
instability.

III. HOMOGENEOUS SOLUTIONS

A. Near-zone solutions

1. Near-extremal near-zone solution

We now derive the ingoing near-zone solution by solving
the radial equation near the horizon and imposing no
incoming radiation. For near-extremal solutions

σ ≔
rþ − r−

rþ
≪ 1: ð13Þ

We further introduce a shifted radial coordinate

x ≔
r − rþ
rþ

; ð14Þ

which puts the outer horizon at 0, forming the inner
boundary of our working domain.
To begin, we construct the near-horizon geometry by

introducing a scaling parameter λ. For the near-extremal
RN black hole, the near-horizon geometry of interest is the
end point (λ → 0) of a flow along a one-parameter family
of spacetimes having σ ¼ λσ̄. The flow is taken at fixed
“scaled” coordinates v̄ ¼ λv=rþ, x̄ ¼ x=λ, and σ̄. The
limiting metric forms a patch of the Robertson-Bertotti
universe, AdS2 × S2, with metric [60–63]

r−2þ ds2 ¼ −x̄ðx̄þ σ̄Þdv̄2 þ 2dv̄dx̄þ dΩ2: ð15Þ

The gauge field in the form (6) is singular in this limit. We
choose a section on the Uð1Þ bundle compatible with the
near-horizon limit by shifting A → Aþ dχ, where χ ¼ Q

rþ
v,

such that AðrþÞ ¼ 0. The limit λ → 0 gives

Ā ¼ Qx̄dv̄: ð16Þ

The near-zone scalar field frequency in this gauge is then
given by

ω̄ ≔
σ̄rþðω − qΦþÞ

σ
; Φþ ≔

Q
rþ

: ð17Þ

Upon separating variables using e−iω̄ v̄Rðx̄ÞYlmðθ;ϕÞ,
the homogeneous radial equation is found to be an ordinary
hypergeometric equation

x̄ðx̄þ σ̄ÞR″ þ ðσ̄ − 2iðω̄þ qx̄þ ix̄ÞÞR0 − ðKl þ iqÞR ¼ 0;

ð18Þ

where q ≔ rþq. Of the two linearly independent solutions
we choose the ingoing one

Rin
near ¼ 2F1

�
1 − h − iq; h − iq; 1 − ik̄;−

x̄
σ̄

�
; ð19Þ

where we have introduced

k̄ ≔ 2rþðω − qΦþÞ=σ:

Using Eq. (15.8.2) of [64], we find that the ingoing solution
has the large-x̄ (buffer-zone) asymptotics

Rin
near ∼ Āðx̄=σ̄Þh−1þiq þ B̄ðx̄=σ̄Þ−hþiq; x̄ → ∞; ð20Þ

where

2The function μ is a weight in the following sense. Define
E≔ fr2∂2

r þ2ðr−M− irðωr−qQÞÞ∂rþð−Klþ iðqQ−2ωrÞÞ.
Then E is symmetric in the bilinear ða; bÞ ¼ R

aðrÞbðrÞμðrÞdr
in the sense that ða; EbÞ ¼ ðEa; bÞ.
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Ā ¼ Γð2h − 1ÞΓð1 − ik̄Þ
Γðh − iqÞΓðh − ik̄þ iqÞ ; ð21aÞ

B̄ ¼ Āðh ↔ 1 − hÞ: ð21bÞ

The operational meaning of h ↔ 1 − h in (21b) is to
interchange h with 1 − h everywhere in Ā.

2. Extremal near-zone solution

We are also interested in seeing what happens in the
extremal limit. To study this regime, we require the near-
horizon radial functions. These functions are solutions to
the radial differential equation derived from the field
equation in the extremal near-horizon geometry. The
extremal near-horizon limit is obtained by the same limiting
procedure used in the previous section, but now we instead
fix the scaled coordinates

x̂ ¼ x
λp

; v̂ ¼ λpv
rþ

ð22Þ

with p ∈ ð0; 1Þ and take λ → 0 while keeping σ̄ fixed.
The extremal limiting geometry forms a different patch of
AdS2 × S2 with metric

r−2þ ds2 ¼ −x̂2dv̂2 þ 2dv̂dx̂þ dΩ2; ð23Þ

which is diffeomorphic to the near-extremal patch (15)
[62,65].
In the frequency domain, one also must hold

ω̂ ¼ λ−pk; where k ≔ rþðω − qΦþÞ;

fixed to have a well-defined Laplace transform. Then, the
mode functions e−iω̂ x̂Rðx̂ÞYlmðθ;ϕÞ reduce the extremal
near-horizon field equation to

∂ x̂ðx̂2∂ x̂RÞ − 2iðω̂þ qx̂Þ∂ x̂R − ðKl þ iqÞR ¼ 0: ð24Þ

Notice that the regular singular points at the inner and outer
horizon which determined the solution of the near-extremal
near-horizon radial equation (18) have “come together” to
form an irregular singular point at the degenerate horizon
x̂ ¼ 0. The confluence of singular points may be exploited
to generate the ingoing solution of (24) from the previously
obtained ingoing (near-extremal) near-zone solution by
taking the scaling limit

lim
λ→0

2F1ð1−h− iq;h− iq;1−2iλp−1ω̂=σ̄;−λp−1x̂=σ̄Þ ð25Þ

and using the confluence identity [17] Wν;μðzÞ¼
limc→∞2F1ðμ−ν−1=2;1=2−μ−ν;c;1−c=zÞe−z=2zν, where
Wν;μðzÞ is the Whittaker confluent hypergeometric
function. It is easily checked that the result

Rin
nearðx̂Þ ¼

�
−
2iω̂
x̂

�
−iq

exp

�
−
iω̂
x̂

�
Wiq;h−1=2

�
−
2iω̂
x̂

�

ð26Þ

satisfies (24). In the neighborhood of the horizon, the
asymptotic ingoing solution is given by [64]

Rin
near∼

X∞

j¼0

ðh− iqÞjð1−h− iqÞj
j!

�
x̂

2iω̂

�
j
; x̂→0; ð27Þ

where ðaÞj ≔ Γðaþ jÞ=ΓðaÞ is the Pochhammer symbol.
To find the buffer-zone asymptotics, one may either take
the scaling limit λ → 0 of Eq. (20) at fixed hatted
coordinates and with fixed finite ω̂, or equivalently, employ
the large-x̂ asymptotics of (27) directly via Eq. (13.14.18)
of [64]. Taking the former route, and applying Eq. (5.11.12)
of [64], one finds

Rin
near ∼ Âx̂h−1þiq þ B̂x̂−hþiq; x̂ → ∞; ð28Þ

where

Â ¼ Γð2h − 1Þ
Γðh − iqÞ ð−2iω̂Þ

1−h−iq; ð29aÞ

B̂ ¼ Âðh ↔ 1 − hÞ: ð29bÞ

Notice that the extremal buffer-zone coefficients exhibit
branch points at the super-radiant bound ω̂ ¼ 0.

B. Far-zone solutions

To obtain the far-horizon limit, we fix the far (asymp-
totic) coordinates xμ ¼ ðv; r; θ;ϕÞ and take σ → 0 and
k ¼ rþðω − qΦþÞ → 0. This limit corresponds to pertur-
bations of the extremal geometry at the critical fre-
quency k ¼ 0.
In this limit, the inner and outer horizons (singular points

of the ODE) “converge” and the radial equation is

ðx2R0Þ0−2iqxð1þxÞR0−ðKlþ iqð1þ2xÞÞR¼0: ð30Þ

Equation (30) is a confluent hypergeometric differential
equation with solution

Rfar ¼ Pxh−1þiq
1F1ðhþ iq; 2h; 2iqxÞ

þ x−hþiq
1F1ð1 − hþ iq; 2 − 2h; 2iqxÞ: ð31Þ

Again, we have used that hðh − 1Þ ¼ Kl − q2. The far
solution is regular for the choice

P ¼ −
ð−2iqÞ2h−1Γð2 − 2hÞΓðh − iqÞ

Γð2hÞΓð1 − h − iqÞ : ð32Þ
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The buffer-zone asymptotics are obtained using

1F1ða; b; 0Þ ¼ 1 for any a and b∉Z−∪f0g. One may
verify that the large-x̄ asymptotic near-extremal solution,
as given in Eq. (20), matches onto the far-horizon solutions
just obtained. Moreover, the far-zone solution matches onto
the hatted solution Eq. (28), as can be seen by reintroducing
k ≔ λpω̂ in the near-horizon solution and replacing
Âx̂h−1þiq by Aðx=kÞh−1þiq (likewise for the B̂ term).

IV. LINEAR RESPONSE: CHARGED
FIELD INSTABILITY

The time dependence of the Green function has an
intricate relationship with the analytic structure of the
transfer function ~g and the contour of the inversion integral
(3) [66]. Subtleties aside, the qualitative picture goes as
follows. At “early” times, direct propagation on the future
light cone derives from the large-jωj arc. At very late times,
the field exhibits a power-law time dependence deriving
from the branch point(s) located at ω ¼ 0 for the nonex-
tremal black hole, and ω ¼ qΦþ and ω ¼ 0 at extremality.
At “intermediate” times, the field takes the form of a
decaying sinusoid coming from the poles of the transfer
function, the quasinormal modes.

A. Near-extremal case

1. Quasinormal mode spectrum

The spectrum of long-lived quasinormal modes which
characterize the dominant near-horizon ringing is now
obtained. From Eq. (12) we see that for holomorphic
homogeneous solutions, the poles of the transfer function
are given by the 0’s of the Wronskian W alone. Matching
the near and far solutions and demanding linear depend-
ence (W ¼ 0) gives the quasinormal mode condition
Ā ¼ PB̄, or

Γ2ð1−2hÞΓ2ðh− iqÞΓðhþ iq− ik̄Þ
Γ2ð2h−1ÞΓ2ð1−h− iqÞΓð1−hþ iq− ik̄Þ¼ð−2iσqÞ1−2h:

ð33Þ

To find the quasinormal modes, we adopt an ansatz
originating with Hod [67], which approximates the zeros of
W by the negative integer poles of certain gamma functions
containing k̄ in (33). The deviation of the quasinormal
mode pole position from the pole of the gamma function is
parametrized by a complex number η, which weakly
depends on the integer overtone index n. When h ∈ R
the approximation is validated by the perturbative small-
ness of σ and η ¼ OðσhÞ, while for complex h the
Hod approximation has been found to be numerically
accurate to within jηj ≈ 10−3 in typical cases [55,68]. We
find that the near-horizon quasinormal modes fall into two
categories,

k̄n ¼ qþ iðh − 1 − nÞ þ η ðprincipalÞ; ð34aÞ

k̄n ¼ qþ ið−h − nÞ ðsupplementaryÞ; ð34bÞ

where k̄n ≔ 2rþðωn − qΦþÞ=σ at the frequency ωn. The
terminology principal and supplementary has its roots
in the classification of SOð2; 1Þ representations to be
discussed in some detail in Sec. V.
In addition to the weakly decaying near-horizon modes,

there are also damped far-horizon quasinormal modes
distributed in C away from the super-radiant frequency
[56]. As these modes have non-σ-suppressed exponential
decay, they have a negligible contribution relative to the
near-horizon modes after an inverse-σ time scale.

2. Overtone sum

For simplicity, let us assume that the perturbation devel-
ops from compactly supported initial data with amplitude
peaked deep within the far zone where x0 ≫ 1. In this case,
we approximate Rupðx0Þ by its asymptotics

Rup ∼ C∞e2iqx
0 ðx0Þ2iq−1 x0 → ∞: ð35Þ

At large x0 the weight is given by

μ ∼ e−2iqx
0 ðx0Þ−2iq; x0 → ∞ ð36Þ

such that complete x0 dependence is asymptotically given by
μðx0ÞRupðx0Þ ∼ C∞=x0 as x0 → ∞. The transmission ampli-
tudeC∞ is straightforwardly computed from the asymptotics
of (31) subject to the outgoing condition (32).
As in [40], we define a near-horizon-mode (NHM)

Green function due to poles near the super-radiant bound,

GNHM ¼ −
iσ

2rþx0
X

lm

C∞Ylmðθ;ϕÞY�
lmðθ0;ϕ0Þ

×
X∞

n¼0

e−ik̄nV̄
RinðX̄; k̄nÞ
dW=dk̄jk̄¼k̄n

; ð37Þ

where

V̄ ≔ σðv − v0Þ=ð2rþÞ; X̄ ≔ x=σ: ð38Þ

The values of k̄n ≔ 2ω̄n=σ̄ are given by (34).
The residues at the quasinormal mode frequencies are

derived from the zero’s of the scaled Wronskian

W ≔ Γð1 − ik̄Þ
�

aσ1−h−iq

Γðh − ik̄þ iqÞ þ
bσh−iq

Γð1 − h − ik̄þ iqÞ
�
;

ð39Þ
where a ¼ −Γð2hÞ=Γðh − iqÞ, b ¼ Γð2h − 2Þ=Γð1 − h−
iqÞ × P, with P given in Eq. (32). To find the approximate
zero’s ofW we substitute the Hod ansatz (34), differentiate
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with respect to η, and drop OðηÞ error terms. For the
dominant principal modes, we find

dW
dk̄

�
�
�
�
k̄¼k̄n

¼ bσh−iqðið−nÞnþ1n!ÞΓðh − iq − nÞ; h ∈ C;

ð40Þ

where we have used 1=Γð−n − iηÞ ¼ −iηð−1Þnn!þ
Oðη2Þ. The supplementary modes are obtained from (40)
by swapping b ↔ a and h ↔ 1 − h.
To compute the overtone sum we again follow [40].

However, here we restrict to the principal series modes for
which

GNHM ¼ −i
2rþx0

X

lm

σ1−hþiqC∞b−1 · Ylmðθ;ϕÞY�
lmðθ0;ϕ0Þ

× e−iðqþiðh−1ÞÞV̄SP: ð41Þ

The overtone sum

SP ≔
X∞

n¼0

ð−1Þne−nV̄
n!Γðh − iq − nÞ

× 2F1ð1 − h − iq; h − iq; h − iq − n;−X̄Þ ð42Þ

is evaluated by invoking the series representation of the
hypergeometric function and interchanging the two sums.
The result of both summations is

SP ¼ ð1 − e−V̄Þh−iq−1
Γðh − iqÞ ½1þ X̄ð1 − e−V̄Þ�h−1þiq ð43Þ

At late times V̄ → ∞, SP → 1=Γðh − iqÞ, the response
decays exponentially according to (41). At semiearly
times—after a light-crossing time but before the exponen-
tial decay “takes over”—the overtone sum takes the simple
form

SP ≈
V̄h−iq−1
Γðh − iqÞ ð1þ X̄ V̄Þh−1þiq; V̄ ≪ 1; ð44Þ

where ≈ signifies we have expanded e−V̄ and kept first
order in V̄ only. We further overload the ≈ symbol by
restricting to values of V large enough that the contribution
from the large-jωj arc may be ignored, ensuring that the
quasinormal mode sum is convergent. Finally, taking n
radial derivatives of (44) one finds

SðnÞ
P ≈

V̄h−1−iqþn

Γðh − iqÞ ðh − 1þ iqÞnð1þ X̄ V̄Þh−1þiq−n: ð45Þ

Therefore we have demonstrated that n derivatives of a
principal harmonic grow at a rate V̄−1=2þn for V̄ ≪ 1. The
same transitory growth, including the rate, was found for

nonaxisymmetric perturbations of the near-extremal rotat-
ing Kerr black hole [40].

B. Extremal case

The analysis of the previous section suggests unbounded
growth of radial derivatives on the horizon as σ → 0. We
now show how the Aretakis instability arises at the extremal
horizon as a steep-gradient tail by examining the Laplace
transform near the branch point at the super-radiant bound
frequency.
Near the horizon, the asymptotic transfer function for

far-zone initial data (x0 ≫ 1) is given by

~g∼
Rupðx0Þð−2ikÞiq

að−2ikÞ1−hþbð−2ikÞh
X∞

j¼0

Rj

�
x
2ik

�
j
; x→0; ð46Þ

where a ¼ −Γð2hÞ=Γðh − iqÞ, b ¼ Γð2 − 2hÞ=
Γð1 − h − iqÞ × P and Rj ≔ ðh − iqÞjð1 − h − iqÞj=j!.
The k-independent quantity P appearing above in b was
previously given in Eq. (32).
In general, the late-time asymptotics of the Green

function are determined by the singular points of ~g in C
with the largest real part [69]. For perturbations of four-
dimensional stationary (asymptotically flat) extremal
spacetimes, the known uppermost singular points of ~g
are the static (ω ¼ 0) and super-radiant (k ¼ 0) frequen-
cies, both existing as branch points on the real axis. These
branch points arise because the extremal radial equation has
irregular singular points at the horizon and infinity. We
have found that the power-law contribution from the branch
point at the static frequency is subleading in the case of
extremal Kerr [70] and we assume the same to hold for
extremal Reissner-Nordström.
First consider modes having supplemental representa-

tions, where h > 1=2. In this case the a-term in the
denominator of ~g in (46) is more singular near k ¼ 0.
Then, the nth radial derivative of the transfer function at the
horizon to leading order in the late-time “1=k” expansion
[37] is given by

~gðnÞS jHðk→0Þ∼fnðx0Þð−2ikÞh−1−nþiq; h>1=2; ð47Þ

where fnðx0Þ ≔ n!ð−1ÞnRnRupðx0Þ and the subscript S
means supplementary. Using Theorem 37.1 of [69], the
results of which are succinctly summarized in [37], we find
the inverse transform to be

gðnÞS jHðv → ∞Þ ∼ fnðx0Þe−iqv
2Γð1 − hþ n − iqÞ

�
v
2

�
n−h−iq

: ð48Þ

For principal representation modes, both the a and b
terms in the Wronksian [denominator of (46)] are equally
singular [37] at k ¼ 0. The nth derivative of the horizon
transfer function in this case is

PETER ZIMMERMAN PHYSICAL REVIEW D 95, 124032 (2017)

124032-6



~gðnÞP jHðk → 0Þ ∼ fnðx0Þð−2ikÞα
ð−2ikÞ−2iλ þ ζ

; h ∈ C; ð49Þ

where we have introduced fnðx0Þ ≔ ð−1Þnn!RnRupðx0Þ=a,
ζ ≔ b=a, and α ≔ −1=2 − nþ iðq − λÞ as simplifying fac-
tors. Despite considerable effort, we are unable to analytically
invert (49). Instead, we resort to numerical evaluation with
the MATHEMATICA package NumericalLaplaceInversion
[71], which computes the inverse Laplace transform to
arbitrary numerical precision. Through experience with the
same form of integral in the extremal Kerr study [37], we
find it may be fitted to

gðnÞP jHðv → ∞Þ ∼Dne−iqvvn−1=2þip ð50Þ

for complex Dn and p ∈ R. Comparison with (48) reveals
that the principal modes are dominant at late times.

V. SYMMETRY INTERPRETATION

We have shown that a collective ringing of overtones at
the critical frequency gives rise to transient power-law
behavior with duration 1=σ. Though the field itself decays,
the nth transverse derivative grows with scaling σ1=2−n.
Therefore, the energy density Tαβuαuβ ∼ σ−1 measured by
infalling observers at the horizon becomes infinite in the
extremal limit.
The same phenomena were found for nonaxisymmetric

perturbations of the near-extremal and extremal Kerr black
holes [26,37]. In hindsight, the similarities may have been
predicted from their mutual symmetries. Both scenarios
contain a Uð1Þ symmetry in addition to the near-horizon
2þ 1 Lorentz symmetry SOð2; 1Þ. For Kerr the Uð1Þ
manifests as axisymmetry of spacetime, while for charged
scalars it is a gauge symmetry on the principal bundlewith q
playing the role of ∂ϕ angularmomentumm. The triviality of
theUð1Þ bundle—existence of a global section—enabled us
to globally utilize a smooth gauge adapted to the λ → 0
limit wherein the connection between m and q was furni-
shed explicitly through the near-horizon frequency ω̄ ¼
rþðω − qΦþÞ=λ. In thisway, the nonaxisymmetricmodes of
rapidly spinning Kerr may be thought of as a tower of
charged scalar perturbations with integer separated charges.
We now sketch how the near-horizon charged perturba-

tions of extremal Reissner-Nordström fall into modules
of the symmetry group. Symmetry in the background is
defined as

LX;χgαβ ¼ LXgαβ ¼ 0 ð51aÞ

LX;χA ¼ LXA − dχ ¼ 0 ð51bÞ

where X is the set of left-invariant vector fields generating
spacetime isometries and χ is the set of Uð1Þ transition
functions, which, for smooth A, can be uniquely paired

with each X [72]. The generators act on the charged scalar
by LX;χψ ¼ LXψ þ iqχψ. In the extremal limit the soð2; 1Þ
Cartan-Weyl generators carry simple expressions in
ingoing coordinates

H0 ¼ v∂v − x∂x; ð52aÞ

Hþ ¼ ∂v; ð52bÞ

H− ¼ v2∂v − 2ðxvþ 1Þ∂x; ð52cÞ

and satisfy the commutation relations ½Hþ; H−� ¼ 2H0 and
½H�; H0� ¼ H�. These vector fields Lie derive the metric
(23). To Lie derive the vector potential A ¼ vdxwe pairH−
with the transition function χ− ¼ −2v. We also pair H0

with χ0 ¼ 1. With this pairing all generators commute with
the D2 operator. Then, by Schur’s lemma, D2 is propor-
tional to the identity. Therefore we have

D2ψ ¼ ðhðh − 1Þ − Kl þ CÞψ ð53Þ

where Kl labels soð3Þ as before, C ¼ q2 trivially labels
uð1Þ, and hðh − 1Þ is the soð2; 1Þ Casimir [73]. The wave
equation then implies h ¼ 1

2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4þ Kl − C
p

for non-
trivial solutions. Thus for a given l and q, the near-horizon
solutions ψ may be partially classified according to h. The
Casimir h provides only a partial classification because
soð2; 1Þ is noncompact. In general, simple noncompact Lie
algebras require not only the Casimir hðh − 1Þ, but also a
set of roots—simultaneous eigenvalues of the diagonal
generators. For soð2; 1Þ, the Cartan subalgebra is rank 1
(single eigenvalue), so the choice of generator we diago-
nalize is arbitrary without restricting to unitary representa-
tions. Our choice is to classify by the eigenvalue E0 of H0,
which is already diagonal in the ingoing coordinate basis,

LH0
ψ ¼ E0ψ :

One solution of this equation is ψ ¼ vE0fðvxÞ, while
another is ψ ¼ x−E0fðvxÞ. The physical eigensolution
is determined by fixing boundary conditions such as
regularity at x ¼ 0.
General finite representations of SOð2; 1Þ are classified

into four types, three of which have unbounded weight
spectra E0 þ n, where n ∈ Z, and the other is finite
[48,74–77]. The infinite representations are further divided
into principal/supplementary series which have a bilateral
unbounded weight spectrum, and highest/lowest weight
series which are unbounded from above/below n ¼ 0,
respectively. For the principal/supplementary series modes,
h is complex/real, whereas the highest and lowest weight
modes have real h ¼ �E0. For the finite representation,
which occurs for q ¼ 0, h is an integer. The only unitary
finite representation is trivial (l ¼ 0). Axisymmetric linear
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perturbations of Kerr transform as a finite representa-
tion also.
We have been primarily interested in the principal series

representations, which have the dominant contribution to
the horizon instability. As Kl is positive semidefinite, the
field is a principal series solution of (53) when

C > 1=4þ Kl: ð54Þ

For charged fields, C is an arbitrary parameter that may be
chosen such that Eq. (54) is satisfied for some l. In the case
of generic mode perturbations of Kerr,3 principal represen-
tations correspond to 1=4≲m=l [78]. In near-horizon
regions of both RN and Kerr, the principal harmonics
[modes on which the generators act such that (53) and
(54) are satisfied] which respect causal boundary condi-
tions, and continuously match to the far region radiation,
realize nonunitary representations. With respect to the
global near-horizon AdS2 geometry, these modes lack a
positive definite Hermitian form [79] and violate the
Breitenlohner-Freedman bound [80]. Stability results sup-
porting these observations were found for the near-horizon
perturbations of extremal Kerr in [81,82].
Lastly we remark on the explicit action of soð2; 1Þ ∈ g on

thephysical solutions.With thev andxdependencederived in
(44), let us write ψ ¼ vh−1−iqfðvxÞ, ignoring overall con-
stants and also the angular dependence. As fðvxÞ is trivially

Lie derived along H0, LH0
ψ ¼ ðh − 1Þψ follows.4 This

weight spectrum is unbounded, ðLH�Þjψ ≠ 0 ∀j ∈ N, and
has neither a highest nor a lowest weight module. Starting
with ψ one can generate descendant solutions of (53) in both
stable and unstable directions by acting on ψ with either Hþ
orH− at the horizon:H− raisesE0 by an integer and enhances
the Aretakis rate by an integer power of v, whileHþ lowers it
in the sameway in the opposite direction.Thoughwe canmap
solutions into solutions by the action of soð2; 1Þ, to maintain
consistency with the boundary conditions, one must also act
with the Cartan-Weyl generators of soð3Þ, changing the
multipole number, and adjust q suitably to ensure uniqueness
of the solution. This “mixing” limits the practical application
of the construction based on symmetry alone.
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