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We reinvestigate the recently discovered bifurcation phase transition in causal dynamical triangulations
and provide further evidence that it is a higher-order transition. We also investigate the impact of
introducing matter in the form of massless scalar fields to causal dynamical triangulations. We discuss the
impact of scalar fields on the measured spatial volumes and fluctuation profiles in addition to analyzing
how the scalar fields influence the position of the bifurcation transition.
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I. INTRODUCTION

The reasons for attempting to quantize gravity are
manifold, including the fact that every other fundamental
force can be understood within the framework of quantum
field theory. However, treating gravity as a perturbative
quantum field theory results in a complete loss of predictive
power, since in order to define such a theory one would first
need to experimentally determine an infinite number of
independent coefficients. The divergent number of counter-
term coefficients associated with the perturbative treatment
of general relativity has been confirmed by explicit calcu-
lation, appearing at two loops for pure gravity [1] and at one
loop for gravity including matter [2]. The divergences
associated with the perturbative treatment of gravity have
generated considerable interest in nonperturbative formu-
lations; one of the most promising of which is the so-called
asymptotic safety scenario.
First proposed by Weinberg [3], asymptotic safety posits

the existence of an ultraviolet fixed point (UVFP) under the
flow of the renormalization group of gravitational cou-
plings. If there exists only a finite number of such couplings
that are attracted to the fixed point at high energies, then
asymptotic safety may define a finite and predictive theory
of quantum gravity in the nonperturbative regime. There is
mounting evidence for the existence of an UVFP, ranging
from the (2þ ϵ)-expansion of spacetime dimensionality [4]
to functional renormalization group results [5–7]. A lattice
formulation of quantum gravity provides a complimentary
approach to asymptotic safety, since it permits the defi-
nition of a gravitational path integral that can be studied in
the nonperturbative regime. Lattice gravity can also provide
direct evidence for asymptotic safety, since in a lattice
formulation an UVFP would appear as a higher (than first)

order critical point, the approach to which would define a
continuum limit.
One of the first lattice regularizations of quantum gravity

is Euclidean dynamical triangulations (EDT), which
attempts to define a nonperturbative theory of quantum
gravity as the continuum limit of a sum over discrete
spacetime geometries. In this approach, spacetime is
approximated by a network of locally flat d-dimensional
triangles that are connected via their (d − 1)-dimensional
faces. Unfortunately, early EDT simulations found just two
phases, neither of which resembled four-dimensional semi-
classical general relativity.1Moreover, it was shown that
these two phases are separated by a first-order phase
transition, making the existence of a continuum limit
improbable. Motivated by the difficulties encountered in
the original EDT formulation, a causality condition was
added to the model whereby the lattice is foliated into
spacelike hypersurfaces of fixed topology, an approach
known as causal dynamical triangulations (CDT) [9]. The
inclusion of this additional constraint appears to cure the
problems found in the original EDT formulation.
The path integral for pure CDT quantum gravity is

defined by

ZE ¼
X

T

1

CT
e−SEHðTÞ; ð1Þ

where one performs a sum over all discrete triangulations T
allowed by the causality constraint. CðTÞ is a symmetry
factor encoding the number of equivalent ways of labelling
the vertices in T, and SEHðTÞ is the discretized Einstein-
Hilbert action of the triangulation [10], where

SEHðTÞ ¼ −ðκ0 þ 6ΔÞN0 þ κ4ðN4;1 þ N3;2Þ
þ Δð2N4;1 þ N3;2Þ: ð2Þ
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1Although there are some encouraging signs that a particular
modification of EDT may have a suitable infra-red limit after a
certain fine-tuning is implemented [8].
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Ni;j denotes the number of simplicial building blocks with i
vertices on hypersurface t and j vertices on hypersurface
tþ 1. The number of vertices in the triangulation is given
by N0. The CDT action includes three bare coupling
constants κ0, Δ and κ4. κ0 is inversely proportional to
Newton’s constant, Δ is related to the ratio of the length of
spacelike and timelike links on the lattice, and κ4 is
proportional to the cosmological constant. κ4 is tuned to
a (pseudo)critical value in the simulations such that one can
take an infinite-volume limit. The parameter space of CDT
can then be explored by varying κ0 and Δ.
UsingMonte Carlo simulations, the CDT parameter space

spanned by κ0 and Δ has now largely been mapped out, as
shown schematically in Fig. 1. To date, there are four known
phases ofCDT, labelledA,B,CdS andCb. PhasesA andB do
not appear to reproduce general relativity in the semiclassical
limit and are generally regarded as lattice artifacts. The
recently discovered bifurcation phase Cb also has a number
of unphysical features [11] such as a very large, and possibly
infinite, effective spacetime dimension [12]. However, the de
Sitter phase CdS has a volume profile that closely matches
Euclidean de Sitter space [13] and an effective dimension
consistent with 4 [14–16], thus defining the physically
interesting phase of CDT.
TheA − CdS transition is known to be first order, while the

B-Cb transition is likely second order [17]. The order of the
CdS − Cb transition has yet to be definitively determined,
although preliminary calculations suggest a higher-order
transition [18]. Conclusively determining the order of the
CdS − Cb transition may prove an important result in CDT,
since a second-order transition would raise the possibility of
defining a continuum limit from within the physically
interesting de Sitter phase CdS. In this work, we aim to more
definitively determine the order of the CdS − Cb transition.
Another question that this work addresses is how the

inclusion of matter fields affects the phase structure of
CDT. In particular, it is possible that the bifurcation phase
Cb is an artifact of the naive pure gravity formulation of
CDT and that the inclusion of a sufficient number of matter
fields may be a necessary condition for the universe to

exhibit the correct semiclassical behavior, as suggested in
Ref. [19]. In this work, we investigate this possibility by
coupling CDT to N massless scalar fields and examining
how this affects the extent of the bifurcation phase.
This paper is organized as follows. In Sec. II, we define

the order parameter used to study the CdS − Cb phase
transition and detail how a finite-size scaling analysis can
be used to indicate the order of this transition. After
reviewing some technical details in Sec. III regarding the
numerical implementation of adding massless scalar fields
to CDT, we study how the inclusion of such matter fields
affects the position of the CdS − Cb transition in the
parameter space. A discussion and summary of the results
obtained in this work are presented in Sec. IV.

II. ORDER OF THE CdS −Cb TRANSITION

Phase transitions are often associated with a breaking of
some symmetry. To quantify the transition, one can define
an order parameter OP that captures the symmetry differ-
ence between the phases. Such an order parameter is
typically zero (or constant) inside the symmetric phase
and nonzero (or nonconstant) in the symmetry-broken
phase. The first-order phase transition point is then char-
acterized by a discontinuity in the first-order derivative of
the OP in the infinite-volume limit, whereas for an nth-
order transition, the 1;…; ðn − 1Þth-order derivatives are
continuous but the nth-order derivative is not.
In numerical simulations, it is quite difficult to distin-

guish the order of a phase transition by just looking at the
(dis)continuity of some order parameter’s nth derivative.
The reason is twofold. First, numerical simulations are
always performed with finite precision, and it is very
difficult to judge whether a sudden jump in some order
parameter (or its derivative) is caused by a real disconti-
nuity or is actually caused by insufficient measurement
precision. Second, numerical simulations always require
finite systems (volumes), and thus no real phase transitions
take place (all infinities are replaced by large but finite
numbers dependent on the system’s size). One should
therefore carefully analyze finite size effects and extrapo-
late the results to the infinite-volume limit.
For an example, one can locate (pseudo)critical points by

searching the parameter space for peaks in the susceptibil-
ity of the order parameter

χOP ¼ hOP2i − hOPi2: ð3Þ

Positions of such transition points in the parameter space
will typically depend on the system volume, and by
measuring how they change with increasing volume, one
can in principle determine the position of the true phase
transition in the infinite-volume limit by extrapolation.
One can also use the same method to determine critical
exponents, the values of which may indicate the order of the
phase transition.FIG. 1. The updated phase structure of four-dimensional CDT.

J. AMBJORN et al. PHYSICAL REVIEW D 95, 124029 (2017)

124029-2



The results presented in this section are a continuation of
work initiated in Refs. [18,20], in which a suitable choice of
order parameters was suggested based on microscopic
geometric properties of the bifurcation phase Cb.
Distribution of volume in phase Cb is markedly different
than in the de Sitter phase CdS, with spatial volume
concentrated in clusters connected by vertices of a very
high coordination number [11,20]. This geometric differ-
ence is presumably caused by a breaking of homogeneity2

of phase CdS, and it can be exploited to signal the transition
to phase Cb.

When one looks inside the de Sitter phase CdS and
measures the distribution of vertex coordination numbers4

(see Fig. 2, left), one observes that there is no clear gap
between the highest-order vertex OmaxðtÞ (the one with the
maximal coordination number in a given time slice t) and
other vertices present in the same slice OðtÞ. This is
independent of the parity of the lattice time coordinate t.
The situation changes when one goes inside the bifurcation
phase Cb. Here, the distribution of vertex coordination
numbers (see Fig. 2, right) depends on t. For (say) even t,
the distribution is quite similar to the one observed in phase
CdS, whereas for odd t, one observes a clear gap between
the highest-order vertex OmaxðtÞ and other vertices OðtÞ.
The gap rises when one goes deeper and deeper into the
bifurcation phase and also when one increases the total
lattice volume N4;1. As a result, the maximal coordination
number OmaxðtÞ jumps between odd and even spatial slices
in the bifurcation phase Cb, and there is no such jumping
in phase CdS (see Fig. 3). In Refs. [18,20], a simple
order parameter based on the above observation was
proposed,

10 50 100 500 1000 5000

10 8

10 6

10 4

10 2

PDF
Phase CdS

10 100 1000 104

10 8

10 6

10 4

10 2

PDF
Phase Cb

FIG. 2. Histograms of vertex coordination numbers measured in the de Sitter phase CdS (left) and in the bifurcation phase Cb (right).
Blue data points are for the central slice tc, and red data points are for tc þ 1.3 In phase CdS, there is no clear difference between the two
distributions, whereas in phase Cb, the distributions look very different. The difference is due to a single highest-order vertex present in
tc � 1 (and also in tc � 3; tc � 5;…), which is not present in tc (nor in tc � 2; tc � 4;…). The data were averaged over individual
triangulations after performing the centering procedure described in footnote 3. The highest-order vertex coordination number observed
in phase Cb has an approximately Gaussian distribution centred around 10–100 times the coordination number of other high-order
vertices present in tc þ 1. The result is that in phaseCb one observes a clear gap in the coordination number histograms in odd t, whereas
there is no such gap in even t. No gap is visible in phase CdS.

4The vertex coordination number is defined as a number of
4-simplices sharing a given vertex.

3The central time coordinate tc is defined as a lattice time for
which the maximal coordination number of a vertex OmaxðtÞ is
the most symmetric with respect to jt − tcj, and additionally, it is
assumed that the highest-order vertex in the whole triangulation
Omaxðt0Þ is placed in odd t (division into odd and even time slices
is compatible with the observed properties of phase Cb). tc
performs a slow random walk around the periodic time axis. In
averaging over triangulations, one gets rid of this translational
zero mode by redefining the time coordinate such that for each
triangulation tc ¼ 40.

2The homogeneity of phase CdS should be understood in a
statistical sense; i.e. the emergent average semiclassical back-
ground geometry is homogeneous, but individual trajectories of
the path integral (triangulations) are not. This is in analogy with
the ordinary path integral of quantum mechanics where the
classical (average) trajectory is smooth but individual path
integral trajectories are nowhere differentiable. This homogeneity
is not the case in phase Cb where the average geometry is not
homogeneous, and also individual triangulations are much less
homogeneous than inside phase CdS. This is due to the formation
of large-volume clusters around vertices of a very high co-
ordination number present every second lattice time coordinate in
phase Cb (see Fig. 2, right, and Fig. 3). Such volume clusters
constitute most of the individual triangulations of phase Cb, and
they overlap, forming a four-dimensional structure. The geometry
inside the structure is markedly different than the geometry
outside since neither the average spacetime geometry nor average
spatial geometries are homogeneous. In phase CdS, some volume
clusters also form around the highest-order vertices due to
quantum fluctuations; however. in this case, the volume clusters
are much smaller, and their overlap is only statistical. As a result,
there is no distinct four-dimensional structure, and the average
spacetime and spatial geometries seem to be homogeneous. The
differences between the geometry of phases Cb and CdS will be
discussed in detail in forthcoming articles.
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OP2 ¼
1

2
½jOmaxðt0Þ −Omaxðt0 þ 1Þj

þ jOmaxðt0Þ −Omaxðt0 − 1Þj�; ð4Þ
where t0 is chosen in such a way thatOmaxðt0Þ is the highest
coordination number in a triangulation, i.e. the highest
among all high-order vertices OmaxðtÞ:

Omaxðt0Þ ¼ max
t
OmaxðtÞ: ð5Þ

The order parameter is approximately zero in the (more)
symmetric phase CdS and nonzero in the symmetry-broken
phase Cb. If, for example, one starts from some chosen
point in the phase diagram ðκ0;ΔÞ inside phase CdS and
lowers Δ, one encounters the phase transition to phase Cb
when the order parameter starts to rise approximately
linearly with decreasing Δ (see Fig. 4, left). The (pseudo)
critical point Δcrit is signaled by a peak in susceptibility
(Fig. 4, right), and, as already explained, its position depends
on the lattice volumeN4;1. One can fit the measured volume
dependence to the formula

ΔcritðN4;1Þ ¼ Δcritð∞Þ − αN−1=γ
4;1 ð6Þ

and compute the critical exponent γ. A first-order tran-
sition should be associated with γ ¼ 1, and accordingly,
γ ≠ 1 signals a higher-order transition. In Fig. 5, we
present results obtained for a wider choice of lattice
volumes N4;1 and also much longer Monte Carlo runs

FIG. 3. Left: themaximal coordination number of a vertexOmaxðtÞ plotted as a function of lattice time coordinate t. The datawere averaged
over individual triangulations after performing the centering procedure described in footnote 3. Right: the same chart after normalizing the
maximal coordination number by dividing OmaxðtÞ by the total number of 4-simplices having at least one vertex at time t (only a central
part of the triangulation, tc � 5, is shown, which is consistent with the extended part of the CDT universe). In the bifurcation phase Cb,
the maximal coordination number jumps between odd and even time slices. There is no such jumping in the de Sitter phase CdS.
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FIG. 4. The order parameter mean value hOP2i (left) and its susceptibility χOP2 (right) as a function of Δ.
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than in Ref. [18]. The critical exponent fitted using
formula (6) is γ ¼ 2.71� 0.34, which is greater than 1
with a confidence interval of 99%. This result strongly
supports the conjecture that the CdS − Cb phase transition
is a higher-order transition. For comparison, we also
present in Fig. 5 a fit with a forced value of critical
exponent γ ¼ 1 which seems to be much less likely.
A practical problem with using formula (6), and the

reason why we present the updated data, is that one should
have transition points measured for a wide choice of
lattice volumes, which is very computationally expensive.
This is due to the fact that when performing numerical

simulations near phase transitions of higher order one
usually encounters a so-called critical slowing down,
related to very large autocorrelation times of the measured
data. The autocorrelation time (in Monte Carlo time)
peaks at the phase transition, causing the numerical
algorithm to lose efficiency, and consequently a very
long simulation time is needed to get reliable data in the
vicinity of the transition point. This kind of critical
slowdown is clearly observed for the CdS − Cb phase
transition—see Fig 6 (left) where the measured autocor-
relation of the OP2 order parameter

ACOP2ðΔτÞ ¼
hOP2ðτÞOP2ðτ þ ΔτÞiτ − hOP2ðτÞiτhOP2ðτ þ ΔτÞiτ

hOP22ðτÞiτ − hOP2ðτÞi2τ
ð7Þ

is shown as a function of theMonteCarlo time differenceΔτ.
Red data points present autocorrelation at the phase tran-
sition, while other colors are autocorrelations observed
slightly away from the phase transition point. One clearly
sees that autocorrelation is much longer in the vicinity of the
phase transition. This difference can be also exploited to
signal the position of (pseudo)critical points. Figure 6 (right)
presents the autocorrelation time around phase transition
points measured for various lattice volumes. The transition
pointsΔcrit are defined by peaks in susceptibility (3), and the
autocorrelation time τac is obtained by fitting

ACOP2ðΔτÞ ¼ N exp ð−Δτ=τacÞ ð8Þ

to the empirical autocorrelation data (7). One clearly sees that
the peaks in the autocorrelation time are consistent with the
peaks in susceptibility. As a side effect, the very long
autocorrelation time at the phase transition means that a

much longer simulation time5 is needed to decrease the error
bars6 of the measured observables in the vicinity of the phase
transition points. This explains the relatively large error bars
observed for the transition points, e.g. in Fig. 4.
Last but not least, we comment on the double peaks

observed in the OP2 order parameter histograms (see Fig. 8,
left) measured at the CdS − Cb phase transition points
(Δ ≈ Δcrit) as already reported in Ref. [18]. The double
peaks are caused by the order parameter jumping (in
Monte Carlo time) between two values (see Fig. 7), and
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FIG. 6. Left: autocorrelation of the measured order parameter OP2 calculated according to Eq. (7) for the transition point
(red points) and slightly away from the transition point (blue and green points) and the fits of formula (8) to the measured data. The unit
of the horizontal axis is 109 attempted Monte Carlo moves. Right: autocorrelation time τac obtained by fitting formula (8) to the
measured OP2 autocorrelation data plotted as a function of Δ − Δcrit for various lattice volumes. The values of Δcrit were established for
each lattice volume separately by looking at the peaks of susceptibility χOP2. Peaks in autocorrelation time are consistent with peaks in
susceptibility.

5Monte Carlo simulations needed to produce susceptibility
plots with reasonable error bars and as a consequence to produce
Fig. 5 lasted almost one year.

6Measurement errors were estimated using a single-elimination
(binned) jackknife procedure, after blocking the data to account for
autocorrelation errors. The procedure was described in detail in
Ref. [18].
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it was noticed that the frequency of such jumps decreases
with increasing lattice volume (see Fig. 7, left), which
might in principle signal a first-order transition. Now, we
attribute the decrease in jumping frequency or, in other
words, an increase in jumping period to the autocorrelation
time which also increases with increasing lattice volume. If
one, for example, introduces a dimensionless simulation
time by rescaling τ → τ=τac to account for the autocorre-
lation difference observed for various lattice volumes N4;1,
one can see that the jumps are less frequent for smaller lattice
volumes than they are for larger lattice volumes (see Fig. 7,
right). One can also argue that one should look at the
normalized order parameters to account for the volume
difference. Vertex coordination number scales approxi-
mately linearly with the number of simplices in a triangu-
lation, and thus one should look atOP2=N4;1 rather thanOP2.

Consequently, the amplitude of the (normalized) order
parameter jumps seems to decrease with increasing lattice
volume. It is clearly visible if one fits a double Gaussian
function to themeasured histograms ofOP2=N4;1 (see Fig. 8,
left). One observes that the Gaussians are only slightly
separated. In Fig. 8 (right), we plot the separation of the two
peaks as a function of lattice volume N4;1. The separation
seems to decreasewith increasing latticevolume, butwehave
not yet reached a point at which it shrinks to zero. This
analysis suggests that the spurious behavior of OP2 which
mimics some features of a first-order transition is most likely
due to finite size effects, and it supports the conjecture that the
CdS − Cb phase transition is really a higher-order transition.
Similar phenomena were previously observed for the tran-
sition between the bifurcation phase Cb and phase B
(formerly called the C − B transition), which was shown
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FIG. 7. Left: the order parameter OP2 plotted as a function of Monte Carlo time (the unit of the horizontal axis is 109 attempted
moves). In order to compare data measured for different lattice volumes, we use OP2 − hOP2i, and to smooth out small oscillations, the
data were averaged over 100 consecutive values (moving average). The order parameter jumps between two levels. The amplitude of
jumps and the jumping period increase with increasing lattice volume. Right: the same data of the order parameter after a rescaling of
Monte Carlo time τ → τ=τac, where τac is the autocorrelation time defined by formula (8), and OP2 → OP2=N4;1. In this scenario, both
the amplitude of jumps and the jumping period decrease with increasing lattice volume.
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FIG. 8. Left: histograms of the (normalized) order parameter OP2=N4;1 measured at (pseudo)critical points (Δ ¼ Δcrit) defined by the
peaks in susceptibility χOP2 for various lattice volumes. One can observe the double peaks related to the order parameter jumping
between two states. The double peak structure is clearly visible for N4;1 ¼ 140 k where the height of the two peaks is (almost) the same.
The double peaks are slightly less visible for N4;1 ¼ 40 k and N4;1 ¼ 160 k where the height of the peaks is different. This is due to the
fact that for N4;1 ¼ 140 k the data were measured for Δcrit fixed very precisely at the (pseudo)critical point while for other volumes Δcrit

was set slightly away from the true (pseudo)critical point. The chart also shows the fits of the double Gaussian functions to the measured
data (lines). The positions of the two peaks (from the fits) are marked by dashed lines. Right: separation of the two peaks in OP2=N4;1

histograms calculated from the double Gaussian fits plotted as a function of the lattice volume.
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to be a higher-order transition [17], and it was recently
explained by a very nontrivial shape of free energy in the
vicinity of the phase transition line [11].

III. ADDING N MASSLESS SCALAR
FIELDS TO CDT

Motivated by the suggestion of Hartle and Hawking that
a sufficient number of matter fields may be a necessary
condition to produce the correct classical behavior of the
universe [19], we investigate the effect of adding N
massless scalar fields to the bare lattice action of CDT.
We discuss the impact of the scalar fields on average spatial
volume profiles and spatial volume fluctuations in the de
Sitter phase CdS and the bifurcation phase Cb. We also
analyze whether the position of the CdS − Cb transition line
is dependent on the number of massless scalar fields N.
To this end, we employ a bare action of the form

SðT; xÞ ¼ SEHðTÞ þ SMðT; xÞ, where SEHðTÞ is a bare
CDT action for pure gravity (2) and SMðT; xÞ is the action
for N copies of minimally coupled scalar fields x,

SMðT;xÞ¼
1

2

XN

F¼1

X

i

μ2ðxFi Þ2þ
1

2

XN

F¼1

X

i↔j

ðxFi −xFj Þ2; ð9Þ

with a measure

D½x� ¼
YN

F¼1

Y

i

dxFiffiffiffi
π

p : ð10Þ

In (9), we assume that the (real valued) scalar fields are
located in simplex centers, and we express the scalar field
action in terms of the dual lattice. Consequently, the sumsP

i and
P

i↔j are over all 4-simplices and over all
neighboring pairs of simplices, respectively. In this work,
we are only interested in massless scalar fields, and so we
set the mass parameter μ equal to zero.
In order to generate configurations, which now consist of

a triangulation and superimposed scalar fields, according to
action (9), we modify the Metropolis algorithm used thus
far. The heat bath method is applied to update the values of
the scalar fields. Incorporating the scalar fields does not
change the geometrical structure of the Monte Carlo moves,
but it influences their weight so that the detailed balance
condition is fulfilled [21]. Due to the quadratic form of the
scalar field action SM½T; x� (9), the heat bath method
reduces to generating the updated values of the scalar
fields inside the region in which the moves are imple-
mented, i.e. simplices affected by a given move, from a
multivariate Gaussian distribution of which the parameters
depend on the surrounding field values. The scalar fields
are updated regardless of whether the move is accepted or
not. Such a method is very efficient as the field values
inside the region in which the moves are implemented
are always altered and the acceptance rate is not impaired.
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FIG. 9. Spatial volume profiles for CDT including 0, 1, 2 and 3 massless scalar fields.
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The factors which are not covered by the Gaussian
distribution depend only on the field values around
the move region and contribute to the weight of the move.
The normalization factors (matrix determinants) can be
absorbed by bare coupling redefinitions.
A question that arises is how do the scalar fields impact

the spacetime geometry. Here, we concentrate on the
(average) spatial volume profiles n̄t ≡ hN4;1ðtÞi (see
Fig. 9) and fluctuation amplitudes hðN4;1ðtÞ − n̄tÞ2i1=2
(see Fig. 10), where the averages h:i are taken over lattice
configurations. The data measured in the de Sitter phase
CdS are shown on the left and measured in the bifurcation
phase Cb are shown on the right charts. As a result of
adding scalar fields, both the volume and fluctuation
profiles narrow in the time direction. The effect is quali-
tatively the same in the de Sitter phase CdS and in the
bifurcation phase Cb. Additionally, in phase Cb, one may
observe that adding scalar fields leads to a greater decrease
in volume fluctuations in the center of the profile.

Using the OP2 order parameter defined in Eq. (4), we
also analyze the impact of the scalar fields on the position
of the CdS − Cb phase transition line. Once again, we fix κ0
and vary Δ to find the transition point Δcrit by looking for
peaks in the OP2 susceptibility χOP2 (3). Figure 11 shows
the mean values of the order parameter hOP2i and suscep-
tibility χOP2 as functions of Δ for CDT including 1, 2 and 3
massless scalar fields. The peak value of χOP2 indicates that
the (pseudo)critical value of Δ seems to be largely
independent of the number of massless scalar fields,
remaining within the range Δcrit ≈ 0.36—0.38, which is
very close to Δcrit ¼ 0.36� 0.01 observed for pure gravity
simulations with the same lattice volume (N4;1 ¼ 160000).
However, the plots of hOP2i may suggest that the (pseudo)
critical value of Δ slightly increases in response to an
increasing number of scalar fields, although this is far from
conclusive given the data presented. To summarize, the data
presented in Fig. 11 indicate that adding N massless scalar
fields to CDT does not significantly alter the position of the
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FIG. 11. The mean value of the order parameter hOP2i (left) and its susceptibility χOP2 (right) as a function of Δ for CDT including 1, 2
and 3 massless scalar fields with a lattice volume N4;1 ¼ 160k.
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CdS − Cb transition, suggesting that the bifurcation phase is
probably not simply an artifact of the naive pure gravity
formulation of CDT.

IV. DISCUSSION AND CONCLUSIONS

The approach of causal dynamical triangulations has
produced a number of important results; however, some key
questions still remain. Principle among these open prob-
lems is whether CDT has a continuum limit. An important
step toward answering this question will be to determine
whether there exists a second-order phase transition that is
accessible from within the physically interesting phase CdS,
at which point the correlation length becomes infinite so
that one can keep observable quantities fixed in physical
units while the lattice spacing is taken to zero. In this work,
we have presented strong evidence that the transition
between phases CdS and Cb is greater than first order,
therefore presenting a strong candidate for the long sought
after second-order transition.
Using an order parameter that exploits the geometric

differences in phases CdS and Cb, we are able to approx-
imately locate the position of the (pseudo)critical phase
transition for a number of different lattice volumes N4;1. By
measuring how the position of the phase transition depends
on the lattice volume N4;1, we can extract a value for the
critical exponent γ, which indicates the order of the phase
transition. A first-order transition is characterized by a
critical exponent γ ¼ 1, whereas for a higher-order tran-
sition, one would expect γ ≠ 1. Using eight different lattice
volumes, we determine the critical exponent of the
CdS − Cb transition to be γ ¼ 2.71� 0.34. This result
marks a significant improvement on the preliminary results
found in Refs. [18,20] and establishes that the transition is
greater than first order with a 99% confidence interval. This

result strongly supports the conjecture that the CdS − Cb
phase transition is a higher-order transition.
Motivated by Hartle and Hawking’s suggestion that a

sufficient number of matter fields may be a necessary
condition to produce the correct classical behavior of the
universe [19], we have also investigated the effect of adding
N massless scalar fields to the bare lattice action of CDT.
Specifically, we have studied the impact of scalar fields on
average spatial volume profiles and spatial volume fluctu-
ations in the de Sitter phase CdS as well as the bifurcation
phase Cb. We observe that the addition of massless scalar
fields causes both the volume and fluctuation profiles to
narrow in the time direction, with the same qualitative
behavior observed in phases CdS and Cb.
Using the same order parameter studied in the case of

pure gravity (zero massless scalar fields), we have also
analyzed whether the position of the CdS − Cb transition
line depends on the number of massless scalar fields N. We
find that the position of the CdS − Cb transition appears to
be largely independent of the number of massless scalar
fields N, at least for N ¼ 1, 2 or 3. This result may be
interpreted as suggesting that the bifurcation phase is
probably not simply an artifact of the naive pure gravity
formulation of CDT.
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