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Light bosonic fields are ubiquitous in extensions of the Standard Model. Even when minimally coupled
to gravity, these fields might evade the assumptions of the black-hole no-hair theorems and give rise to
spinning black holes which can be drastically different from the Kerr metric. Furthermore, they allow for
self-gravitating compact solitons, known as (scalar or Proca) boson stars. The quasiperiodic oscillations
(QPOs) observed in the x-ray flux emitted by accreting compact objects carry information about the strong-
field region, thus providing a powerful tool to constrain deviations from Kerr’s geometry and to search for
exotic compact objects. By using the relativistic precession model as a proxy to interpret the QPOs in terms
of geodesic frequencies, we investigate how the QPO frequencies could be used to test the no-hair theorem
and the existence of light bosonic fields near accreting compact objects. We show that a detection of two
QPO triplets with current sensitivity can already constrain these models and that the future eXTPmission or
a LOFT-like mission can set very stringent constraints on black holes with bosonic hair and on (scalar or
Proca) boson stars. The peculiar geodesic structure of compact scalar/Proca boson stars implies that these
objects can easily be ruled out as alternative models for x-ray source GRO J1655-40.

DOI: 10.1103/PhysRevD.95.124025

I. INTRODUCTION

As the simplest macroscopic objects in the Universe,
black holes (BHs) are unique probes of fundamental
physics and of gravity in extreme conditions [1].
Stationary vacuum solutions of Einstein’s equations are
uniquely described by the Kerr metric [2], which depends
only on two parameters, namely the mass M and the
angular momentum J ≔ a⋆GM2=c—cf., e.g., [3]. BH no-
hair theorems guarantee that this uniqueness holds true also
for a variety of matter fields minimally coupled to gravity
(see [4] for a historical account and [5,6] for recent
reviews). These theorems strongly suggest that the plethora
of BHs which populate our Universe in various mass ranges
are universally described by the Kerr family [7].
This paradigm has been recently challenged. The authors

of Ref. [8] realized that—within general relativity—the no-
hair theorem can be evaded if matter fields are time
dependent in such a way that their stress-energy tensor
remains stationary. The same type of time dependence
occurs in the familiar stationary states of nonrelativistic
quantum mechanics. Even when minimally coupled to
gravity, these matter fields give rise to stationary BH

solutions which—in addition to the mass M and angular
momentum J—are characterized by an extra parameter,
namely by a Noether charge Q (cf. Ref. [9] for a detailed
discussion). These solutions have been found for (massive,
complex) scalar [8] and for vector [10] fields and can be
dramatically different from the classical Kerr solution.1 A
visually striking illustration of these differences is provided
by the corresponding BH shadows [14,15]. Interestingly,
these hairy BHs are related to the threshold of the super-
radiant instability of Kerr BHs, which also provides one
possible natural mechanism for their formation [16,17]: in
the presence of light bosons, Kerr BHs which can form in
the gravitational collapse or in a merger can lose angular
momentum due to the occurrence of the superradiant
instability; part of the energy is transferred to a bosonic
condensate and the BH develops a bosonic “hair”
(cf. Ref. [18] for an overview of BH superradiance).
These solutions interpolate between a Kerr BH (when
Q ¼ 0) and a boson star (when Q is maximum). The latter

1Extensions with scalar self-interactions [11,12] and electro-
magnetic fields [13] have also been constructed.
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is a self-gravitating compact object made of a scalar [19,20]
or a Proca [21] condensate. Scalar boson stars, hereafter
simply “boson stars” following widespread terminology,
have been studied for long time (cf. Refs. [22,23] for
reviews) as an example of exotic compact objects that can
mimic the properties of a BH but lack an event horizon [1].
Somewhat surprisingly, their vector cousins, Proca boson
stars, hereafter simply “Proca stars” following [21], have
only recently been constructed.
While BHs with bosonic hair and boson/Proca stars exist

for any nonvanishing boson mass mb ¼ μℏ, their ADM
mass, M, is restricted2 to Mμ≲ 1. This requires an ultra-
light bosonic field, mb ≲ 10−11ð10 M⊙=MÞ eV. Much
higher boson field masses, say of ∼GeV can lead to hairy
BHs with astrophysical ADM masses ≳M⊙, if bosonic
self-interactions are included [12]. But, as observed in [12],
for the BH horizon mass to be ≳M⊙ or higher, an ultralight
bosonic field is still required.
Such ultralight fields are ubiquitous in extensions of the

Standard Model, such as the hidden Uð1Þ sector [24,25],
and are predicted from string theory models such as the
“string axiverse” scenario [26]. Furthermore, sub-eV fields
are natural dark-matter candidates that are attracting
increasing attention, see, e.g., [27], in light of the negative
results of WIMP-like dark matter searches [28]. In
several models, the mass spectrum of ultralight bosons
roughly ranges from ∼10−33 eV to the sub-eV scale [26].
Interestingly, the superradiant instability time scale
depends strongly on the value ofMμ and it is only effective
for BHs with mass M ∼ 1=μ [18]. Thus, depending on the
value of the boson mass, Kerr BHs might be unstable in a
certain mass range and dynamically evolve [16] towards the
hairy solutions discussed here, whereas much heavier/
lighter Kerr BHs would remain stable. In other words,
these models predict that both Kerr BHs and hairy BHs or
boson stars can exist in the Universe, and it is important to
devise tools to distinguish among different solutions.
The spectrum emitted by accreting compact objects

provides us with invaluable information to study the
properties of strong gravitating systems. Most of the
radiation originates very deep in the gravitational field
of these objects and holds the potential to test the near-
horizon region of BHs. Indeed, x-ray observations are a
powerful tool to study accreting BHs, either of stellar mass
in binary systems or supermassive in Active Galactic
Nuclei (AGNs), and accreting neutron stars. The accretion
disks of these objects have a soft x-ray continuum emission,
whose highest temperature allows to measure the innermost
disk radius, which is quite naturally assumed to correspond
to the innermost stable circular orbit (ISCO). It is thus

possible to infer the spin of stellar mass BHs, since the
latter is directly related to the ISCO radius, assuming the
Kerr model (for a review see [29]). A powerful diagnostic
technique is based on the analysis of the broad iron Kα line,
which is observed in the x-ray spectrum of accreting BHs
(both in binaries and in AGNs) around ∼6 keV. The shape
of this line carries the imprint of the emissivity and of the
geometrical properties of the inner disk region (for a review
see, e.g., [30,31]).
The first proposals to study the geodesic motion in the

strong field, inner disc region using the fast variability of
the x-ray flux emitted by matter close to BHs and neutron
stars date back to the 1970s (e.g., [32]). However, this
approach has only been applied 20 years later, when
quasiperiodic oscillations (QPOs) were discovered in the
x-ray flux from accreting compact objects. QPOs from
accreting BHs in binaries have frequencies up to ∼450 Hz,
close to those expected from bound orbits near the ISCO
(for a review see [33]). QPOs have also been detected in the
x-ray flux from AGNs [34]. Several models have been
proposed to describe this phenomenon; almost all of them
involve frequencies associated to the orbital motion of
matter in the inner disk region. In this strong-field region, a
Newtonian description—but also a weak-field expansion of
general relativity—is inadequate.
The first suggestion that QPOs may be used to test the

strong-field regime of gravity was based on a simple model
in which the QPO frequencies correspond to the geodesic
motion of a test particle, e.g., a blob of fluid in the accretion
disk [35,36]. Although such a simplistic model has been
ruled out as an origin for QPOs (because it would imply a
large number of higher harmonics which are not observed
in the spectrum [37] or because the blob of fluid can be
quickly destroyed by shear [38]), viable extensions of
the original idea (e.g., considering blobs extended along
the azimuthal direction or due to some replenishment
mechanism for the blobs) are still under consideration.
Furthermore, virtually all models aiming at explaining the
QPOs observed from accreting compact objects are based
on the motion of fluid along the accretion disk as a key
ingredient. These include more realistic models which are
based on an analysis of eigenmodes of accretion fluid
[39–46] (cf., e.g., Ref. [47] for a recent review on QPOs in
BH x-ray binaries).
Due to its connection to the motion of matter near the

ISCO, if properly modeled, the QPO signal can provide
a powerful diagnostic of strong gravitational fields.
Compared to neutron stars, BHs are especially promising
in this respect due to their simplicity, the lack of strong
magnetic fields, and the absence of a “hard” surface, which
can alter considerably the dynamics of matter inflow.
Simultaneous QPOmodes in BHs have so far been detected
only in a few cases; the BH x-ray binary GRO J1655-40
is the only BH system in which three simultaneous
QPOs were observed. This triplet corresponds to two

2We stress that we use G ¼ c ¼ 1 units, in which μ has the
dimensions of an inverse length. In physical units, the dimen-
sionless quantity reads GMmb=ðℏcÞ ¼ Mmb=ðM2

PlanckÞ. Thus,
the ADM mass is restricted by Mmb=ðM2

PlanckÞ < 1.
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high-frequency modes (in the ratio 3∶2, as observed in
several other sources) and a low-frequency mode. Although
high-frequency QPOs from BHs are much weaker and
more intermittent than their neutron-star counterparts, their
frequency appears to be more constant over the baseline
and, hence, better suited for precision tests. All these
properties are challenging to explain within a single
QPO model. For example, the relativistic precession model
(RPM) considered in this work (see Sec. III) can explain the
QPO triplet naturally, but does not explain the rational ratio
of the twin kHz QPOs. On the other hand, resonance
models [48,49] can explain this fixed ratio in terms of
nonlinear resonances between modes of accretion disk
oscillations, but require some extension [50] to accom-
modate the QPO triplet of GRO J1655-40. Recently, by
interpreting the QPO triplet with the RPM, Ref. [51]
derived precise measurements of the BH mass and spin,
the former being in agreement with the mass obtained from
optical observations.
Next-generation large area x-ray instruments—such as the

upcoming eXTP satellite [52,53] and the proposed detector
LOFT [54]—are expected to detect several simultaneous
QPOs in a variety of BHs and tomeasure their frequencies to
high precision and accuracy, so that a better modeling of the
QPO signal and quantitative tests of gravity in the strong-
field regime will become feasible. An analysis of the QPO
frequencies to test the nature of the Kerr metric was
performed in Ref. [55] for a phenomenological deformation
of the Kerr metric, whereas the QPO spectroscopy of
spinning BHs in modified theories of gravity with quadratic
curvature terms has been recently performed in Ref. [56] and
in Refs. [57,58], finding that—especially in the case of
Einstein-dilaton-Gauss-Bonnet gravity [1]—interesting con-
straints can be obtained by future QPO measurements.
In this paper, we calculate the azimuthal and epicyclic

frequencies of spinning BHs with scalar and Proca hair, and
find that these can differ dramatically from their Kerr
counterpart. This is no surprise, since spinning BHs with
scalar and Proca hair are not necessarily described by small
deformations of the Kerr solution as in most theories of
modified gravity [1]. Indeed, these solutions interpolate
between Kerr BHs and boson stars, the latter being
horizonless objects more akin to stars than to BHs.
Using the RPM, we show that the differences between
the QPO frequencies of a Kerr BH and of a BH with
bosonic hair or of a boson star are already detectable with
current facilities, and that future large-area x-ray instru-
ments such as eXTP will provide very stringent constraints
on these solutions.
Recently, similar tests have been performed on BHs with

scalar hair and on (scalar) boson stars using the iron Kα line
expected in the reflection spectrum of accreting BHs
[59,60]. Our results using QPO diagnostics are qualitatively
similar to those derived with the iron Kα line and, in
addition, extend those conclusions to the vector case.

II. SPINNING BLACK HOLES
WITH BOSONIC HAIR

We stress that the objects under inspection arise as
solutions of standard general relativity minimally coupled
to a (massive, complex) scalar or vector field. The theory
can be described by the following action (we use units in
which G ¼ c ¼ 1),

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

2
∂aΨ̄∂aΨ −

1

2
μ2SΨ̄Ψ

−
1

4
FabF̄ab −

1

2
μ2VĀaAa

�
; ð1Þ

where R is the Ricci curvature, Ψ is the (complex) scalar
field, Fab ¼ ∂aAb − ∂bAa, Aa is the (complex) Proca field
and a bar denotes complex conjugation. Since, in our study,
we consider the scalar and the vector cases separately, we
unify the notation by setting μ ¼ μS or μ ¼ μV for the mass
term3 of the scalar field and of the vector field, respectively.
In the action above, we have assumed that the bosonic field
is very weakly coupled to ordinary matter (e.g., to the
plasma of an accretion disk) so that we can effectively
ignore this coupling. This is a very natural assumption if the
field is a dark-matter candidate and is also consistent with
the fact that ultralight fields have not been detected so far in
particle-detector experiments [24,25].
The field equations of the theory are the standard

Einstein equations, Gab ¼ 8πTab, where the stress-energy
tensor reads

Tab ¼ ∂ðaΨ̄∂bÞΨ −
1

2
gab½∂cΨ̄∂cΨþ μ2Ψ̄Ψ� ð2Þ

for the scalar field and

Tab ¼ −FcðaF̄bÞdgcd −
1

4
gabFcdF̄cd

þ μ2
�
AðaĀbÞ −

1

2
gabAcĀc

�
ð3Þ

for the vector field. Einstein’s equations are supplied by
either the Klein-Gordon equation or the Proca equation,

□Ψ ¼ μ2Ψ; ð4Þ

∇aFab ¼ μ2Ab; ð5Þ

in the scalar and vector case, respectively.
The Kerr metric is clearly a solution of the above field

equations when Ψ ¼ 0 and Aa ¼ 0. However, it is not the

3Note that, in geometrical units G ¼ c ¼ 1, μ has dimensions
of an inverse mass, cf. Eq. (1). The physical mass of the field is
simply mb ¼ μℏ.
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only stationary and axisymmetric regular BH in this theory
[8–10]. A new family of solutions describing Kerr BHs
with scalar or vector hair4 [hereafter, hairy BHs (HBHs)]
can be obtained when the scalar or the vector fields have an
oscillatory behavior, namely

Ψ ¼ ϕðr; θÞeiðmφ−wtÞ; ð6Þ

Aa ¼ Baðr; θÞeiðmφ−wtÞ; ð7Þ

where m is an integer and w is the characteristic frequency
of the oscillation. In this case, the stress-energy tensor is
stationary. As a consequence, the metric remains stationary,
and it can be described by the following ansatz,

ds2 ¼ −e2F0Ndt2 þ e2F1

�
dr2

N
þ r2dθ2

�
þ e2F2r2sin2θðdφ −WdtÞ2; ð8Þ

where N ≔ 1 − rH=r and rH is the BH horizon, while Fi
and W are functions of ðr; θÞ. The metric and the scalar
(resp. the vector) field can be obtained by solving numeri-
cally Einstein’s equations coupled to the Klein-Gordon
(respectively, Proca) equation [8–10].
The numerical solutions are defined by five parameters:

the ADM mass M, the ADM angular momentum J, a
Noether chargeQ, the azimuthal harmonic indexm and the

FIG. 1. Left panels: The the mass-frequency (Mμ − w=μ) parameter space for spinning BHs with scalar (top panel) and vector (bottom
panel) hair with azimuthal numberm ¼ 1 (cf. Ref. [9,10]). The solutions considered in this work are denoted by markers. The properties
of each solution are listed in Table I below. The continuous red lines (q ¼ 1) denote scalar/Proca boson stars. The dashed black curves
(q ¼ z ¼ 0) corresponds to Kerr BHs which are marginally stable against the superradiance instability. The thin dotted black curves
denotes solutions of constant z value [cf. (12)]. Standard Kerr BHs exist below the dashed blue line, defined by the condition a⋆ < 1 or
Mμ < m

2
μ
w. Right panels: the corresponding spin-mass (a⋆ ≔ J=M2 −Mμ) parameter space. The markers and the curves are the same as

in the left panels. In this case Kerr BHs exist only on the left of the dashed blue line, where a⋆ < 1.

4This terminology intends to stress that these solutions are
continuously connected to the vacuum Kerr solution, in the same
spirit as that used for the Kerr-Newman [61] or Kerr-Sen [62]
metrics. Of course, in general, the hairy BHs are different from
Kerr, like the last two examples, and only reduce to vacuum Kerr
in a particular limit. To avoid confusion, in the following, we will
refer to them simply as hairy BHs.
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node number n [8,9]. In this work, we shall restrict to
the most interesting cases and consider m ¼ 1 and only the
fundamental states (n ¼ 0 and n ¼ 1 for the scalar and
vector case, respectively). It is convenient to introduce a
normalized Noether charge q ≔ mQ=J, such that 0 ≤ q ≤ 1
[8,9].5 For each value of M, J, m, n, and fixed μ, there can
be (at most) three solutions: the Kerr solution, with q ¼ 0;
the boson star solution, with q ¼ 1; and a HBH solution,
with 0 < q < 1. The normalized charge q for the HBH
solution is a function M, J, m, n (and of course of the

scalar/vector field mass μ, which is a parameter of the
theory).
As discussed in Refs. [8,9], stationary metric solutions

only exist at the threshold of the superradiant condition
[18], i.e., when

w ¼ mΩH; ð9Þ

where ΩHðM; J; qÞ is the angular velocity at the event
horizon. Therefore, the frequency w for the HBH solution is
completely fixed in terms of M, J and q (cf. Ref. [9] for
details).
It is important to notice that the mass term μ enters the

solutions simply as a rescaling factor. Hence, for fixed
values of the spin parameter a⋆ and of the normalized
Noether charge q, solutions with the same combinationMμ
are the same. In the following, we will present our results in
terms of the dimensionless quantities,

TABLE I. Properties of the HBH solutions and of the boson/Proca stars considered in this work. Scalar and vector solutions are
denoted by sX and vX, respectively (X ¼ 1; 2; 3;…). Labels with a star denote boson/Proca stars. HBH solutions are ordered by
growing values of z ¼ qð1 − w2=μ2Þ [see discussion around Eq. (12)]. MB and a⋆B ≔ JB=M2 denote the mass and the (dimensionless)
angular momentum of the bosonic condensate as computed in Refs. [6,8], whereas rH and R99 are the BH horizon and the radius
containing 99% of the bosonic mass [23]. ρISCO is the circumferential radius [ρ ≔ reF2ðrÞ, cf. line element (8)] of the ISCO, and ρKerrISCO is
the corresponding value for a Kerr BH with the same mass and spin (provided a⋆ < 1).

Label z q Mμ a⋆ MB=M a⋆B w=μ rH=M ρISCO=M ρKerrISCO=M R99=M

s1 0.0008 0.014 0.441 0.994 0.007 0.014 0.97 0.317 2.117 2.060 46.69
s2 0.0063 0.127 0.415 0.996 0.054 0.127 0.975 0.481 2.150 2.034 56.47
s3 0.0346 0.585 0.489 1.089 0.317 0.634 0.97 0.511 1.738 (a⋆ > 1Þ 46.40
s4 0.0584 0.988 0.615 1.339 0.818 1.334 0.97 0.325 0.850 (a⋆ > 1Þ 45.13
s5 0.1233 0.649 0.777 0.913 0.502 0.591 0.9 0.103 1.177 2.777 12.46
s6 0.1448 0.762 0.823 0.897 0.594 0.682 0.9 0.182 1.043 2.843 12.65
s7 0.1875 0.987 1.011 0.894 0.883 0.882 0.9 0.198 0.577 2.857 12.76
s8 0.2765 0.844 0.933 0.851 0.749 0.719 0.82 0.107 0.830 3.138 6.003
s9 0.3157 0.877 0.947 0.850 0.793 0.744 0.8 0.106 0.778 3.145 5.154
s10 0.3308 0.919 1.011 0.829 0.827 0.762 0.8 0.138 0.713 3.239 5.385
s11 0.3596 0.999 1.232 0.799 0.959 0.799 0.8 0.081 1.146 3.413 5.674
s12 0.5360 0.997 0.976 0.895 0.982 0.893 0.68 0.041 0.819 2.915 2.166
s13* 0.2775 1 1.250 0.834 1 0.834 0.85 0 2.473 3.277 8.029
s14* 0.5775 1 1.110 0.877 1 0.877 0.65 0 1.091 3.037 2.112
s15* 0.5100 1 0.811 0.953 1 0.953 0.7 0 0.212 2.532 1.389

v1 0.004 0.08 0.365 0.971 0.030 0.083 0.9775 0.679 2.367 2.201 72.73
v2 0.019 0.248 0.466 1.027 0.130 0.256 0.96 0.373 1.954 (a⋆ > 1Þ 40.38
v3 0.027 0.686 0.418 1.202 0.319 0.908 0.98 0.694 1.911 (a⋆ > 1Þ 76.61
v4 0.028 0.370 0.485 1.043 0.203 0.388 0.96 0.387 1.844 (a⋆ > 1Þ 39.85
v5 0.053 0.677 0.561 1.071 0.426 0.725 0.96 0.417 1.497 (a⋆ > 1Þ 38.08
v6 0.180 0.949 1.029 0.821 0.825 0.774 0.9 0.185 0.674 3.264 13.75
v7 0.188 0.988 1.164 0.773 0.888 0.758 0.9 0.163 0.521 3.503 13.34
v8 0.229 0.88 0.816 0.924 0.802 0.804 0.86 0.067 0.872 2.717 10.08
v9 0.232 0.91 0.915 0.875 0.821 0.791 0.863 0.098 0.764 3.006 10.23
v10 0.260 0.999 1.254 0.736 0.922 0.727 0.86 0.116 0.434 3.689 9.412
v11 0.360 0.999 0.836 0.938 0.981 0.917 0.8 0.024 0.393 2.635 6.639
v12 0.372 0.99 1.173 0.783 0.970 0.780 0.79 0.051 0.316 3.507 6.198
v13* 0.190 1 1.454 0.708 1 0.708 0.9 0 none 3.861 12.75
v14* 0.438 1 1.274 0.768 1 0.768 0.75 0 none 3.600 5.982
v15* 0.407 1 0.840 0.948 1 0.948 0.77 0 none 2.571 7.060

5In the scalar case, q is the fraction of the total angular
momentum stored in the scalar field, JΨ=J. This follows from
JΨ ¼ mQ. For the Proca field, there is a (numerically always
small) correction to this interpretation, as the angular momentum
stored in the field is not precisely quantized in terms of the
Noether charge, in the presence of a horizon—see Appendix C
in [10].
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Mμ ∼ 0.748

�
M

10 M⊙

��
mb

10−11 eV

�
; ð10Þ

ν

μ
∼ 0.066

�
ν

kHz

��
10−11 eV

mb

�
; ð11Þ

for the BH mass and for the geodesic frequencies, respec-
tively. By using the above relations, it is straightforward to
convert our results in physical units for a given boson mass
mb ¼ μℏ expressed in eV.
The parameter space of HBH solutions is summarized in

Fig. 1. The numerical solutions considered in this work
(denoted by markers) are a representative sample of the
entire parameter space. Some relevant properties of these
solutions are listed in Table I. In particular, note that some
HBHs can exceed the Kerr bound on the spin; i.e., they
have a⋆ > 1 without being naked singularities [8,9].
The parameter space of HBHs is very rich, and there is

no single known parameter that captures all the deviations
from the Kerr case [9]. The normalized Noether charge q,
which vanishes for Kerr, has certainly some information
about these deviations; but alone it is not always a faithful
indicator of the departures from Kerr since experience
shows the latter do not grow monotonically with q. To
illustrate the limitations of q, consider a solution with a
fairly large q but with a very spread-out bosonic hair with
respect to the horizon scale. In this case, the energy density
of the bosonic field (and, in turn, its backreaction on the
metric) is small. Thus, it is expected that such models
can be very similar to Kerr in terms of the near-horizon
physics, despite the large q. To propose an improved
deviation parameter, we observe that a measure of how
much the bosonic field is spread out is provided by its
asymptotic decay, which reads, say for the scalar field,

Ψ ∼ e−
ffiffiffiffiffiffiffiffiffiffi
μ2−w2

p
r=r. The factor λ ∼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − w2

p
is the

asymptotic decay scale of the bosonic field, and hence
provides a measure of how much the latter is diluted. With
this motivation, we found it convenient to introduce another
phenomenological parameter,

z ≔ qð1 − w2=μ2Þ; ð12Þ

in terms of which the deviations of the BH solutions indeed
display a smoother behavior, cf. Table I and the discussion
in the next sections. In particular, in the analyses presented
below, we found that for larger z, it is easier to distinguish
HBHs (both in the scalar and in the vector case) from their
Kerr counterpart. From the definition (12), we note that z is
small when q ∼ 0 (i.e., close to vacuum Kerr BHs), but also
when w ∼ μ, i.e., in the rightmost lower part of the
parameter space shown in the left panels of Fig. 1, in
which q can also be close to unity but the bosonic field is
noncompact, and the boson/Proca stars are in the
Newtonian regime.

III. QUASIPERIODIC OSCILLATIONS IN THE
X-RAY FLUX OF ACCRETING BLACK HOLES

QPOs in the x-ray spectrum from accreting BHs and
neutron stars provide a clean environment to study the
properties of strong gravitational fields through the motion
of matter that generates these oscillations (for some reviews
see [47,63]). In the last decades, a few models have been
developed to describe the QPO spectra. Among them,
especially successful models are the RPM and the epicyclic
resonance model [48,49]. In this work we base our analysis
upon the RPM, although qualitatively similar results apply
to any QPO model based on geodesic motion [58].
The RPM was originally formulated to model the QPO

triplets, formed by twin QPOs around ∼1 kHz and a low-
frequency QPO mode (the so-called horizontal branch
oscillations), observed in the x-ray spectra from accreting
neutron stars [36,64]. The high-frequency twin QPOs are
identified with the azimuthal frequency (νφ) and the
periastron precession frequency (νper ¼ νφ − νr) of matter
in a quasicircular orbits with a given radius r, while the
low-frequency QPO mode is identified with the nodal
precession frequency (νnod ¼ νφ − νθ). Here νr, νθ are the
radial and vertical epicyclic frequencies of the quasicircular
orbit, respectively. We remark that the three QPOs at
frequencies νφ, νper and νnod are emitted at the same radius
r̄. Different QPO triplets observed from individual neutron
stars are well reproduced in the RPM, since they are
assumed to correspond to different emission radii.
The RPM has been applied to BH systems [65], but only

recently, when a QPO triplet has been detected in the
accreting BH system, a complete application of the RPM
model to BHs has been possible. Two high-frequency and
one low-frequency QPOs have been simultaneously
detected from GRO J1655-40 [51,66]. Their centroid
frequencies have been measured by the Rossi X-ray
Timing Explorer (RXTE) mission with 1σ uncertainties
in the 1–2% range:

νφ ¼ 441þ2
−2 Hz; νper ¼ 298þ4

−4 Hz; νnod ¼ 17.3þ0.1
−0.1 Hz:

ð13Þ

By fitting this QPO triplet with the RPM frequencies
corresponding to the Kerr metric, it has been possible to
obtain precise values of the BH mass and spin, M ¼
ð5.31� 0.07Þ M⊙ and a⋆ ¼ 0.290� 0.003, and the value
of the radius from which the QPO triplet originated. The
value of the mass is fully consistent with the value
inferred from optical/NIR spectrophotometric observations,
ð5.4� 0.3Þ M⊙ [67]. The QPO radius has been found
to be r̄ ¼ ð5.68� 0.04Þ M, very deep in the BH gravita-
tional field.
From the detection of a single QPO triplet, it is only

possible to extract the three quantities M, a⋆, r̄, with no
redundancy. Detections of more triplets from the same BH
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can give additional information on the properties of strong-
field gravity, such as, for instance, the radial dependence of
the azimuthal and epicyclic frequencies. Since the signal-
to-noise ratio of incoherent signals like QPOs scales
linearly with the rates of photons detected by counting
instruments, the precision in QPO measurements increases
with the area of the detector. Large-area detectors, such as
the future eXTP satellite [52,53] and the proposed LOFT
detector [54], will allow the detection of QPOs from
accreting BHs with much larger accuracy. In this article,
our calculations are based on the large area instrument
LAD/eXTP, which is expected to be ∼5 times more
accurate than RXTE-PCA. Thus, for instance, we expect
that a measurement with eXTP would have errors ∼5 times
smaller than the RXTE errors reported in Eq. (13).

A. Azimuthal and epicyclic frequencies
of a spinning compact object

If the extra bosonic field is only weakly coupled to
ordinary matter, it does not interfere with the dynamics of
test bodies, except for its own gravitational potential. Thus,
the motion of test particles on the equatorial plane is
geodesic and can be conveniently studied in terms of the
epicyclic frequencies (e.g., [56,68–70]). Here we follow the
derivation of [57] [cf. also Refs. [71] for earlier work] for
the epicyclic frequencies of a stationary and axisymmetric
geometry such as (8). Namely, we consider

ds2 ¼ gttdt2 þ grrdr2 þ gθθdθ2 þ 2gtφdtdφþ gφφdφ2;

ð14Þ

where gμν ¼ gμνðr; θÞ and the angular velocity of corotating
orbits reads

Ω ≔ 2πνφ ¼
−∂rgtφ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂rgtφÞ2 − ∂rgtt∂rgφφ

q
∂rgtt

; ð15Þ

whereas the radial and angular frequencies are

ν2r ¼
ðgtt þΩgtφÞ2
2ð2πÞ2grr

∂2U
∂r2

�
r;
π

2

�
;

ν2θ ¼
ðgtt þΩgtφÞ2
2ð2πÞ2gθθ

∂2U
∂θ2

�
r;
π

2

�
: ð16Þ

Here we have defined

Uðr; θÞ ¼ gtt − 2lgtφ þ l2gφφ; ð17Þ

with l ≔ L=E, and

E ¼ −
gtt þ gtφΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gtt − 2gtφΩ − gφφΩ2
q ; ð18Þ

L ¼ −gtφ þ gφφΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt − 2gtφΩ − gφφΩ2

q ð19Þ

are the specific energy and angular momentum of the
corotating orbit. Note that U is related to the standard
effective potential VðrÞ for radial, equatorial motion,

_r2 ¼ VðrÞ ≔ −g−1rr ½1þ E2Uðr; π=2Þ�; ð20Þ

where a dot denotes derivative with respect to the proper
time. In particular, circular orbits at r ¼ r̄ require E2 ¼
−1=Uðr̄; π=2Þ (and therefore Uðr̄; π=2Þ < 0) as well as
∂U
∂r ðr̄; π=2Þ ¼ 0. The ISCO is defined by the further

condition ∂2U
∂r2 ðrISCO; π=2Þ ¼ 0 (i.e., νr ¼ 0), and therefore

the stability of circular orbits requires ∂2U
∂r2 ðr̄; π=2Þ > 0

(i.e., νr > 0).
Finally, the periastron and nodal precession frequencies

read

νnod ¼ νφ − νθ; νper ¼ νφ − νr: ð21Þ

In several models, the QPO frequencies are related to the
epicyclic frequencies defined above. In particular, in the
RPM, the azimuthal frequency, νφ, defined in Eq. (15), and
the two above frequencies are identified with a QPO triplet.

IV. RESULTS

A. Azimuthal and epicyclic frequencies
of BHs with bosonic hair

We have computed the frequencies νφ, νr, νθ, νper and
νnod for the HBH solutions presented in Fig. 1 and in
Table I. In Fig. 2, we show the azimuthal and epicyclic
frequencies for some representative example of solutions,
and we compare them with their Kerr counterparts, which
are given by [72–74]

νKerrφ ¼ 1

2π

M1=2

R3=2 þ a⋆M3=2 ; ð22Þ

νKerrr ¼ νKerrφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

6M
R

þ 8a⋆ M
3=2

R3=2 − 3a⋆2M
2

R2

s
; ð23Þ

νKerrθ ¼ νKerrφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4a⋆ M

3=2

R3=2 þ 3a⋆2M
2

R2

s
; ð24Þ

where R is the standard Boyer-Lindquist radial coordinate,
which is related to the radial coordinate defined in Eq. (8)
by a simple shift, r ¼ R − a⋆2M=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a⋆2

p
Þ [9].

When a⋆ < 1, we have performed this transformation in
order to evaluate both metrics in the same coordinate
system.
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In Fig. 2, we show that the behavior of the azimuthal and
epicyclic frequencies of the HBH solutions can be dras-
tically different from that of a Kerr BH with the same mass
and spin. In particular, the geodesic frequencies near the
ISCO display order-one deviations and, as shown in
Table I, the circumferential radius of the ISCO itself can
differ by more than a factor of 5 [8,9].
For clarity, in Fig. 3, we show the azimuthal and

epicyclic frequencies for solution s11. It is interesting

to note that the hierarchy of the frequencies depends on the
emission radius.
We stress that in the theory under consideration

[cf. Eq. (1)] the boson-mass term μ is a scale factor for
all dimensionful quantities. In particular, we found it
convenient to normalize the frequencies shown in
Figs. 2 and 3 by μ. By using Eq. (11), it is straightforward
to convert the values of ν=μ to the corresponding frequency
expressed in Hertz, after a given mass μ is specified. With
our normalization, the results presented in Figs. 2, 3 and
below are valid for any value of μ.

B. QPO spectroscopy of BHs with bosonic hair

According to the RPM, the three simultaneous QPO
frequencies ðνφ; νper; νnodÞ are all generated at the same
radial coordinate r̄ in the accretion flow. In the Kerr case, for
each such triplet, Eqs. (22)–(24) can be solved analytically
for the three unknown parameters ðM; a⋆; r̄Þ. However, as
discussed above, HBHs have an extra parameter. Therefore,
at least onemore QPO triplet is required in the RPM in order
to develop a null-hypothesis test of the Kerr metric.
Furthermore, as previously explained solutions with the
same (Mμ, a⋆, q) are equivalent, so it is sufficient to set the
value of μ to make the massM agree with the observations.
It is expected that future very high effective-area instru-

ments will allow for the detection of multiple QPO triplets

FIG. 3. Azimuthal and epicyclic frequencies ðνφ; νr; νθÞ of the
spinning BH with scalar hair solution s11. Note that the
hierarchy of the frequencies depends on the emission radius.

FIG. 2. Azimuthal and epicyclic frequencies ðνφ; νr; νθÞ of a spinning BH with scalar hair (first two columns, corresponding to
solutions s6 and s11) and vector hair (last column, corresponding to solution v6), compared with the corresponding frequencies for a
Kerr BH with the same massM and spin J. The radial coordinate is normalized by the ISCO of the corresponding solution. The vertical
dashed lines denote the radii r̄ ¼ 1.1rISCO and r̄ ¼ 1.4rISCO that we have considered in the χ2 analysis of Fig. 5.

NICOLA FRANCHINI et al. PHYSICAL REVIEW D 95, 124025 (2017)

124025-8



corresponding to different radii in individual stellar mass
BHs, which can therefore provide several independent
tests. In this section, following the framework developed
in Ref. [57], we explore the potential of such observations
to discriminate HBHs against Kerr BHs in the strong-field
gravitational regime.
We concentrate first on the case in which two different

QPO triplets are measured. We proceed as follows:
(1) We assume the source of the QPOs is an accreting

BH with bosonic hair, and choose a specific solution
of Table I. From the tabulated solution, we can
extract the mass, spin, Noether charge, and all
relevant parameters, as explained in Refs. [9,10].

(2) For a given solution, we compute numerically two
tripletsνref1¼ðνφ;νper;νnodÞ1 andνref2¼ðνφ;νper;νnodÞ2,
corresponding to two different fiducial emission
radii, r1=rISCO ¼ 1.1 and r2=rISCO ¼ 1.4, respec-
tively6 As previously discussed, we assume that
these are the QPO frequencies measured by a next-
generation large-area instrument (e.g., eXTP), with
corresponding relative uncertainties 5 times smaller
than those measured with the RXTE-PCA for GRO
J1655-40 [see Eq. (13)]. In practice, we consider that
in the relevant range the QPO frequencies will be
detectedwith≈0.2% relative accuracy.We denote the
corresponding absolute errors on the frequencies as
ðσφ; σper; σnodÞ.

(3) We then interpret these simulated data as if they were
generated from the accretion disk of a standard Kerr
BH, and solve Eqs. (22)–(24) to infer the values of
ðMj; a⋆j ; r̄jÞ, with j ¼ 1, 2 corresponding to the two
QPO triplets.

If the triplets νref1, νref2 were generated by a Kerr BH
(i.e., with q ¼ 0 ¼ z), this procedure would yield the same
values of the mass and spin parameters (M1 ¼ M2 and
a⋆1 ¼ a⋆2 ), to within statistical and numerical uncertainties.
Conversely, when q ≠ 0, we expect that this procedure
would yield different values M1 ≠ M2 and a⋆1 ≠ a⋆2 .
To quantify this discrepancy, we use the same

Monte Carlo approach developed in Ref. [57]. For each
solution in Table I, we compute numerically νref1 and νref2
and then draw N¼104 values ðνφ; νper; νnodÞj (with j¼1, 2
for νref1 and νref2, respectively), from a Gaussian distribu-
tion, whose mean value is νref1 or νref2 and with standard
deviation ðσφ;σper;σnodÞ. Then, by inverting Eqs. (22)–(24),
we compute the corresponding 2N values of ðM; a⋆; r̄Þ,
which would correspond to the mass, spin and emission
radius if the source was a Kerr BH. It is straightforward to
check that, if N is sufficiently large, these quantities follow
two multivariate Gaussian distributionsN 1ðM1; a⋆1 ; r1;Σ1Þ
and N 2ðM2; a⋆2 ; r2; Σ2Þ, where ðMj; a⋆j ; rjÞ are the

expectation values of the two sets of parameters (j ¼ 1,
2), whereas Σj are their covariance matrices.
In Fig. 4, we show the distribution of mass (top panel)

and spin (bottom panel) obtained by this procedure, for
solution s10 in Table I. For this specific solution, it is
already clear from Fig. 4 that the distributions are grossly
incompatible with the null hypothesis M1 ¼ M2, a⋆1 ¼ a⋆2 .
This analysis suggests that a measurement of two QPO
triplets with the typical accuracy of a next-generation large
effective-area detector can be used to distinguish HBHs
from their counterparts in a very clear way. In order to
quantify this statement, we perform a χ2-analysis similar to
that developed in [57]. Namely, we construct the χ2

distributed variable with 3 degrees of freedom,

χ2 ¼ ðx⃗ − p⃗ÞTΣ−1ðx⃗ − p⃗Þ; ð25Þ

where p⃗¼ðΔM;Δa⋆;Δr̄Þ,ΔM¼M1−M2,Δa⋆ ¼ a⋆1 − a⋆2 ,
and Δr̄ ¼ r̄1 − r̄2. The condition χ2 ¼ 3.53, 8.03, 14.16
defines the regions of ΔM, Δa⋆, Δr̄ that correspond to 1σ,
2σ, and 3σ confidence level in a Gaussian distribution
equivalent, respectively.

FIG. 4. Distribution of the BH mass M (top panel) and spin a⋆
(bottom panel) as obtained from the measurement of the
azimuthal and epicyclic frequencies ðνφ; νper; νnodÞ at two differ-
ent radii for the solution s10 in Table I. The generated
frequencies follow Gaussian distributions with relative widths
5 times lower than those measured with the RXTE/PCA from
GRO J1655-40, as expected for the eXTP/LAD instrument.

6We have checked that changing the emission radii in the near-
ISCO region does not affect our results significantly.
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In Fig. 5, we show the results of this statistical analysis
applied to the case when the two simulated QPO triplets
ðνφ; νper; νnodÞ1;2, are computed assuming some represen-
tative solution of Table I. Each panel shows—for a different
solution—the regions in the parameter space ðμΔM;Δa�Þ
which correspond to 1σ, 2σ, and 3σ confidence level (top
and bottom rows correspond to the scalar and the vector
case, respectively). The red cross denotes ΔM ¼ 0 ¼ Δa�;
i.e., it identifies the point of the parameter space in which
the solution would be compatible to a Kerr BH. The two
left panels correspond to solutions which are close to their
Kerr counterpart (cf. Fig. 1 and Table I) and, accordingly,
the red cross falls within the 1σ ellipse. The two middle
panels correspond to the case in which the red cross is
marginally outside the 3σ confidence level. As anticipated,
the deviations grow monotonically for increasing values of
z (although not shown, we have checked this statement for
all solutions listed in Table I). In particular, solutions with z
larger than that considered in the two middle panels of
Fig. 5 are all well outside the 3σ confidence level, as shown
in the right panel for two representative cases. This analysis

indicates that—if the RPM provides an accurate description
of the QPO phenomenology—BHs with scalar hair with
z≳ 0.12 and with vector hair with z≳ 0.025 could be
excluded/detected by future instruments at more than
3σ level.
It is also interesting to investigate whether current

facilities can already put constraints on these models. By
repeating the above analysis for the typical uncertainties of
RXTE (at the level of 1%), we obtain two representative
examples shown in Fig. 6. These results show that BHs with
scalar hair with z≳ 0.27 can be constrained at least at 3σ
level. Future facilities will perform significantly better. For
example, the scalar solution s7 would be compatible with
Kerr at 1σ level with RXTE (cf. left panel of Fig. 6) but it
would be incompatible at more than 5σ level using eXTP
(cf. top right panel of Fig. 5). In this case, an improvement
by a factor of 5 in the effective area of the detector is crucial.

C. Tests with multiple QPO detections

Let us now discuss the putative case in which more than
two QPO triplets are detected from the same BH.We follow

FIG. 5. The confidence levels with which Kerr BHs can be tested against BHs with scalar (top row) and Proca hair (bottom row) hair
are plotted in the ðΔM;Δa⋆Þ plane (see text for details). Each panel shows a different solution listed in Table I. The red cross is the origin
of the plane and corresponds to the Kerr case.
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the approach discussed in Refs. [51,57]. In particular, for
each solution listed in Table I, we choose N equally
spaced values of r̄ in the range r̄ ¼ ½1.1 − 1.4�rISCO,
and compute the corresponding set of N QPO triplets
ðνφ; νnod; νperÞj¼1;…;N . We then express the azimuthal fre-
quency νφ in terms of the radius by solving Eq. (22) for r
(recall that the coordinate R is related to r by a simple shift).
Upon replacing this expression in Eqs. (23)–(24), we obtain
the functions νKerrnod ðνφ;M; a⋆Þ and νKerrper ðνφ;M; a⋆Þ. For each
triplet, we simulate the QPO frequencies by drawing from a
Gaussian distribution centered at each given frequency νφ
and with the same standard deviation as discussed before,
namelyweassume a relative error of 0.2%oneach frequency.
For each drawn value of νφ, we span theMμ − a⋆ parameter
space and minimize the variable,

χ2 ¼
XN
j¼1

�ðνnod − νKerrnod Þ2j
σ2nod

þ ðνper − νKerrper Þ2j
σ2per

�
; ð26Þ

where νnod and νper are those drawn previously. This
procedure is equivalent to fitting the dependence of the
simulated valuesνnod andνper onνφ basedon the assumptions
that they were generated in the Kerr case. The χ2 has average
E½χ2� ¼ 2N − 2 and standard deviation σ½χ2� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
.

Finally, the minimum of Eq. (26) corresponds to the best-fit
parameters ðM̂; â⋆Þ.
As a representative example, in Fig. 7 we show the

results of this analysis for scalar HBH solutions s1 and s7
and considering N ¼ 10 multiple QPO triplets. The former
solution represents the case of our sample which is closer to

FIG. 7. The differences Δνnod ¼ ðνnod − ν̂nodÞ and Δνper ¼ ðνper − ν̂perÞ as functions of the azimuthal frequency νφ, for HBH solutions
s1 and s7 listed in Table I. The quantities ν̂per;nod are the periastron and nodal frequencies computed for the best-fit parameters
ðM̂μ; â⋆Þ, which have been obtained minimizing the chi-square variable (26). The error bar is 1σ and it is not visible on the scale of the
top right panel.

FIG. 6. The same as in Fig. 5 but for a relative error in the measured QPO frequencies at the percent level, typical of RXTE. The left
and right panels show solution s7 and s8, respectively.
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Kerr (q ≈ 0.014, z ≈ 0.0008), whereas the latter solution
could be already excluded by a two-triplet detection (cf. top
right panel of Fig. 5). In these cases, the minimization
yields χ2 ≃ 20 and χ2 ≃ 8674, respectively. For the first
data set the χ2 is compatible with the expectation value
E½χ2� ¼ 18 within 2σ, while for s7 the χ2 is incompatible
at more than 1400σ. This already indicates that the
observed data would disagree with the theoretical model
based on the assumption of a Kerr BH. Furthermore, for s1
the values ofΔνper ¼ðνper− ν̂perÞ andΔνnod ¼ ðνnod − ν̂nodÞ
are all distributed around zero roughly within 1σ, while for
s7 the plot shows a clear trend, identifying a correlation
with the azimuthal frequency.

D. QPO constraints on boson and Proca stars

Besides allowing for Kerr BHs with bosonic hair,
model (1) predicts the existence of self-gravitating solitons
(i.e., smooth particlelike configurations without an event
horizon) sustained by the wavelike, dispersive nature of the
bosonic field. In the scalar and vector case these solutions
are called boson stars and Proca stars, respectively (for a
review on boson stars, see [23]). The same techniques
discussed above can be applied to boson- and Proca-star
configurations, in order to test whether the x-ray signal
from these objects can be used to distinguish them from a
Kerr BH or to simply detect them.
The geodesic structure of spinning boson/Proca stars is

remarkably different from that of a Kerr BH—see, e.g.,
Refs. [75,76] for earlier studies. These solutions can be
sorted by their position along the red curve in the left panels
of Fig. 1 in a counterclockwise sense,7 with the first
solutions having the smallest compactness [9]. Because
the bosonic field extends from the center of the star to
infinity, a boson/Proca star does not have a well defined
radius, at variance with the case of perfect-fluid stars. An
effective size can be defined by the radius R99 that contains
99% of the bosonic mass [9,23], cf. Table I. Nonrelativistic
solutions (i.e., those with R99 ≫ M), clearly cannot model
compact objects. We focus here on relativistic solutions,
which lie near the maximum of the red curve in the left
panels of Fig. 1.
Relativistic boson stars display qualitative differences

relative to the Kerr case. For example, solutions s13*-
s15* admit circular corotating orbits only for r̄ larger than
a critical radius, below which the angular frequency in
Eq. (15) becomes complex. These orbits are stable so the
critical radius is effectively the ISCO of these geometries,
even though in this case νr at the ISCO is nonzero. As show
in Fig. 8, the epicyclic frequencies near the ISCO of these

objects are completely different from the corresponding
Kerr case with the same mass and spin.
Indeed, the same analysis performed in the BH case can

even provide a null result for boson stars. If the emission
radius of the QPO triplet ðνφ; νper; νnodÞ is near the ISCO,
either the inversion to obtain the mass, spin and emission
radius of a Kerr BH is impossible, or such inversion gives
a value of the Kerr spin exceeding the Kerr bound,8

i.e., a⋆ > 1. In principle, there might exist a different
triplet (e.g., a linear combination of νφ, νper, νnod) which
yields an invertible relation. However, such a new combi-
nation of epicyclic frequencies should have an intrinsic
geometrical meaning and should therefore be valid for any
object (including Kerr BHs) and for any emission radius.
Given the dramatic differences in the epicyclic frequencies
shown in Fig. 8, it is very unlikely that a combination
thereof would be similar to the Kerr counterpart for all
boson/Proca stars. On the other hand, the standard inver-
sion is not problematic if the emission occurs at larger
distances, since for larger values of r̄ the frequencies
approach their asymptotic values, independently of the
structure of the central object [cf. Figs. 8 and 9].
As a representative example, for solution s15*,

the inversion gives a⋆ > 1 when the emission radius
r̄≲ 3.2rISCO. This already suggests that it is very unlikely
to mistake the QPO emission of an accreting Kerr BH by
that of an accreting boson star within the RPM, since it is
natural to expect that the QPO signal originates deep inside
the gravitational potential of the object and near the ISCO,
where the density of the accretion disk peaks. Furthermore,
even in the unlikely case in which the emission happens at
larger distances, the geodesic structure of boson/Proca stars
might be so different from that of a Kerr BH that it would be
easy to distinguish between the two cases. A representative
example is shown in the left panel of Fig. 10, where we
apply the χ2 analysis previously presented to solution
s15*, in which we consider two emission radii at
3.3rISCO and 3.6rISCO, which are slightly larger than the
critical radius below which the inversion of the QPO triplet
is meaningless.
The situation for Proca stars is even more dramatic, since

the solutions listed in Table I do not have an ISCO for
corotating orbits. (This property holds true also for other
Proca stars that we have analyzed but which were not
reported in Table I.) Therefore, it is hard to conceive a
mechanism that would produce a cutoff frequency asso-
ciated to the accretion flow for these objects. Matter on the
equatorial plane would simply inspiral down all the way to
the center of the star or—in the case of some coupling to the
vector field—to some effective “surface,” where the vector-
field density is non-negligible (we recall that boson/Proca7Note that, for the branch located before the minimum

frequency, the solutions can be equivalently sorted by increasing
values of the parameter z, which in the case of scalar/Proca stars
simply reads z ≔ 1 − w2=μ2, cf. Eq. (12), with 0 < z < 0.584 for
boson stars and 0 < z < 0.445 for Proca stars.

8The Kerr bound is exceeded by a subset of configurations
between the vacuum limit (M ¼ J ¼ 0) and 0 < z < 0.149 for
boson stars or 0 < z < 0.0736 for Proca stars.
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stars do not have a definite surface). In both cases, the
emission is expected to be completely different from that of
an accretion disk which extends down to the ISCO.
Nonetheless, for completeness, in the right panels of
Figs. 8 and 9, we show the azimuthal and epicyclic
frequencies for the Proca-star solution v15*, whereas in

the right panel of Fig. 10, we show the χ2 analysis for the
same object, in which we consider two emission radii at
4.76 M and at 5.95 M. Note that the emission radius has
some degree of arbitrariness in this case due to the absence
of an ISCO that would set the scale of an accretion disk. As
shown in the right panels of Fig. 8, at large emission radii,

FIG. 9. Same as Fig. 8 but showing the azimuthal and epicyclic frequencies in the same plot.

FIG. 8. Same as in Fig. 2 but for the boson-star solution s15* (left panels) and for the Proca star solution v15* (right panels). The
vertical dashed lines denote the radii that we have considered in the χ2 analysis of Fig. 10.
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the frequencies are similar to their Kerr counterpart.
However, the relative deviations are at the level of a few
percent, i.e., larger than the observational errors of future
detectors. This explains why, even if we consider relatively
large emission radii, the χ2 analysis shown in the right
panel of Fig. 10 excludes this solution at more than the 3σ
level. Had we chosen smaller emission radii, such devia-
tions would have been even larger.
We have applied the above analysis to several boson/

Proca star solutions with various emission radii, finding
results that are always qualitatively similar to those shown
in Fig. 10; this suggests that boson/Proca star solutions
would be easily distinguishable from a Kerr BH using QPO
diagnostic.

V. DISCUSSION AND CONCLUSION

Future large-area x-ray detectors, such as the upcoming
eXTP, will allow for precision QPO spectroscopy of
accreting compact objects. In this work, we have shown
that, if supported by a solid astrophysical model, the QPO
spectrum can be used to distinguish between BHs with
bosonic hair and Kerr BHs. The former are stationary
solutions of standard general relativity minimally coupled
to a (complex) massive scalar or massive vector field.
Furthermore, we have shown that the same technique can
be straightforwardly applied to boson/Proca stars which are
also predicted by Einstein’s theory in the presence of light
bosonic fields.
We have performed a thorough geodesic analysis on

several numerical solutions for spinning BHs and boson/
Proca stars with arbitrary (i.e., not necessarily small) spin,
which have been recently obtained in Refs. [8–10]. We
have identified a phenomenological parameter z, which is a
combination of the extra Noether charge of the solutions

[cf. Eq. (12)], and which provides a good indicator of the
deviations from the Kerr metric.
In particular, our main results can be summarized as

follows:
(i) Assuming the RPM as the model to explain the QPO

frequencies, our analysis suggests that BHs with
scalar (resp. vector) hair with z≳ 0.12 (respectively,
z≳ 0.025) can be excluded by future instruments at
more than 3σ level (assuming, of course, the
observational data will be compatible with Kerr).

(ii) The geodesic structure of boson and Proca stars is so
peculiar that their QPO spectrum might even be
incompatible with the RPM applied to the Kerr case.
For these systems, the possibility of inverting the
expressions of the QPO triplet to obtain the proper-
ties of a corresponding Kerr BH depends on the
emission radius and would in general give incon-
sistent results if the emission radius is very close to
the ISCO, as expected for realistic accretion-disk
models.

(iii) All Proca stars that we have analyzed do not even
possess an ISCO; this would drastically affect the
dynamics of accretion and, in turn, the x-ray flux.

(iv) Our results suggest that the QPO triplet (13) ob-
served in the x-ray spectrum of GRO J1655-40
[51,66] cannot be generated by either a boson or a
Proca star, at least if the nature of the QPOs is
predominantly geodesic. Indeed, such frequencies
would either be incompatible to the RPM (i.e., they
would not correspond to a single mass, spin, and
emission radius) or they would correspond to an
emission radius much larger than the ISCO (if the
latter exist), and therefore highly disfavored by
astrophysical considerations. Furthermore, in the
latter case, the physical parameters (mass and spin)
of the object extrapolated from the QPO inversion

FIG. 10. Same as in Fig. 5 but for the same boson-star solution s15* (left panel) and for the Proca star solution v15* (right panel),
whose geodesic frequencies are shown in Fig. 8.
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could be largely inconsistent with the expectations
or with independent astrophysical observations
(we recall that the mass of GRO J1655-40 inferred
from optical/NIR spectro-photometric observations
is ð5.4� 0.3Þ M⊙ [67]). Thus, under our working
assumptions, the QPO detection from GRO J1655-
40 rules out the possibility that this compact source
is a boson or a Proca star.

To model the QPOs, we have adopted a simple model
(the RPM) as a proxy to interpret the QPOs in terms of
geodesic frequencies, but most of the QPO models (includ-
ing more realistic ones [39–46]) assume some correlation
between the QPO frequency and geodesic motion of matter
in the accretion disk, and would provide similar results. For
example, the constraints coming from QPO spectroscopy
using the RPM or a modified Epicyclic Resonance model
[50] are similar [58]. This is expected since all these models
predominantly depend on the geometry of the accretion
disk and, in particular, on the ISCO location.
In order for the metric to be stationary, the bosonic field

needs to be complex. However, light real bosonic fields
might give rise to solutions which are dynamical only on
extremely long time scales and which are presumably
qualitatively similar to the stationary solutions presented
here. This case has been studied for oscillatons [77]—
which are the weakly dynamical counterparts of boson
stars—and for BHs with scalar hair in the adiabatic
approximation and neglecting backreaction [16]. We expect

that our analysis can be straightforwardly extended also to
these cases, providing potentially interesting constraints on
real bosonic fields (such as axions and dark photons) near
compact objects.
Finally, our results confirm the enormous potential of

QPO spectroscopy for strong-field tests of gravity (see also
Refs. [55,57,58]). Because these tests are less limited by
instrumental precision than by astrophysical systematics,
we strongly advocate the development of reliable precise
astrophysical models of QPO signal from accreting BHs.
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