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A generalization of Bekenstein’s Tensor-Vector-Scalar (TeVeS) model of modified gravity has recently
been proposed as an alternative to dark matter. This model—which we will refer to as g-TeVeS—utilizes a
Galileon-induced Vainshtein mechanism to suppress modifications to General Relativity in strong gravity
regimes and so avoids the need to introduce the baroque kinetic terms that typically exist in relativistic
models of modified Newtonian dynamics (MOND). We explore the behavior of this model in spacetimes
with exact Friedmann-Robertson-Walker (FRW) symmetry. The ability of the theory to recover MOND
phenomenology places restrictions on the theory’s parameter space and it is found that within an estimate of
this area of parameter space the theory cannot successfully approximate the Friedmannian cosmological
behavior of cold dark matter. It is found that much closer agreement may be recovered in other regions of
the theory’s parameter space and the reasons for this are discussed.

DOI: 10.1103/PhysRevD.95.124023

I. INTRODUCTION

Milgrom’s observation [1] that a wide variety of the
astrophysical phenomena usually attributed to the effects
of dark matter can instead be accounted for by a modifi-
cation to the dynamics of visible matter has provided an
intriguing hint that something may be missing in our
understanding of gravity and/or inertia. In its original
formulation, Milgrom’s modified Newtonian dynamics
(MOND) was nonrelativistic in the same sense that
Newton’s theory of gravity is. If Newtonian gravity is a
limiting form of General Relativity, what is MOND
a limiting form of? One formulation of MOND is as a
modified Poisson equation:

∇⃗ · ½μmðxÞ∇⃗Φ� ¼ 4πGNρb; ð1Þ
where Φ is the gravitational potential felt by nonrelativistic

test particles, x ¼ j∇⃗Φj=a0, ρb is the density of baryonic
matter, GN is the locally measured value of Newton’s
gravitational constant, a0 is a constant with the dimensions
of acceleration and μmðxÞ is a function subject to the
limiting forms μm → 1 as x ≫ 1 and μm → x as x ≪ 1 but
is otherwise unspecified; an explicit form such as μmðxÞ ¼
x=ð1þ xÞ has usually been chosen but such forms lack
theoretical motivation.1

A significant amount of research has gone into studying
the consequences of (1) in astrophysical systems [5–16];

however, the lack of a fully-relativistic formulation of the
theory makes it difficult to know the realm of the equation’s
validity. It was also attempted to derive the MOND formula
from fundamental theory [17]. A number of relativistic
theories that recover MOND-like phenomenology have been
proposed [18–28]. All of these examples possess a similar
ambiguity to (1) in that all possess a function in the
Lagrangian that must be chosen by hand. This makes it
difficult to knowexactlywhat a given theory predicts. Each of
the examples involve the introduction of new degrees of
freedom into physics and it can be that the line between their
interpretation as an additional “dark force” in nature or simply
a type of dark matter becomes blurred. Indeed, alternatively
there have been a number of attempts to produce results forΦ
similar to that in solutions of (1) by instead evoking a dark
matter with exotic dynamics and coupling to matter [29–31].
Recently a model that produces MOND-like phenom-

enology whilst avoiding the use of an unspecified function
has been proposed by Babichev, Deffayet, and Esposito-
Farese [32]. This theory uses Bekenstein’s TeVeS theory as
basis [19,33] but extends it with the addition of a Galileon-
type term [34] and the removal of the free function. The
Galileon term leads to the Vainshtein screening [35] of the
force generated by the scalar field around the high-curvature
environment of the solar system. We will therefore refer to
the current model as g-TeVeS for Galileon extended Tensor-
Vector-Scalar theory. We also note that applying the use of
screening mechanisms to MOND has also been investigate
recently in [36] by utilizing the symmetronmechanism [37].
The action for this theory is as follows:

S ¼ Sgrav½~gμν� þ SA½~gμν; Aμ; λ� þ Sϕ½~gμν;ϕ� þ Smat½gμν; χ�
ð2Þ
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1There do, however, exist examples where nonrelativistic

MOND phenomenology is recovered with a specific counterpart
of μmðxÞ, whose form is fixed by heuristic theoretical consid-
erations [2–4].
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Sgrav ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−~g

p
~R ð3Þ

SA ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−~g

p
½Kαβμν ~∇αAμ

~∇βAν

þ λð~gμνAμAν þ 1Þ� ð4Þ

Sϕ ¼ −
1

8πG

Z
d4x

ffiffiffiffiffiffi
−~g

p
×

�
ϵc ~gμν ~∇μϕ ~∇νϕþ 2

3~a0
~gμν ~∇μϕ ~∇νϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~gαβ ~∇αϕ ~∇βϕj

q

þ 2kgal
3

~ϵαβγδ ~ϵμνρσ ~∇αϕ ~∇μϕ ~∇ν
~∇βϕ ~Rγδρσ þm2

ϕϕ
2

�
;

ð5Þ

where ~R is the Ricci scalar corresponding to the connection
~∇μ compatible with the metric ~gμν (i.e. ~∇μ ~gαβ ¼ 0), ~g is the
determinant of ~gμν and ~ϵαβγδ is the completely antisym-
metric tensor built using it, and χ represent the matter fields
in the universe,

Kαβμν ≡ ðc1 ~gαβ ~gμν þ c2 ~gαμ ~gβν

þ c3 ~gαν ~gβμ þ c4AαAβ ~gμνÞ; ð6Þ

where Aμ ≡ ~gμνAν, and matter is taken to couple to the
metric gαβ:

gμν ≡ e−2ϕ ~gμν − 2 sinhð2ϕÞAμAν: ð7Þ

Additionally one may consider a cosmological constant
term with respect to the Einstein frame volume form but we
will not explore this possibility in the present work. By
comparison, the actions (3)–(5) and the action of
Bekenstein’s TeVeS theory differ only in the form of Sϕ
[19]. In TeVeS there is no Galileon term and, in its
“diagonal frame” formulation [33], the equivalent action
to Sϕ takes the form:

SðTeVeSÞϕ ¼ −
1

8πG

Z
d4x

ffiffiffiffiffiffi
−~g

p
fðXÞ; ð8Þ

where X ≡ ~gμν ~∇μϕ ~∇νϕ and—as in the case of the function
μm in (1)—the function f is required to take certain limiting
forms but it is otherwise unspecified; that there are no free
functions present in (5) is what represents a simplification
over TeVeS.
We now discuss the individual terms in (2) in more

detail. The first term, Sgrav is simply the Einstein-Hilbert
term for the metric ~gμν along with a cosmological constant
term. One may additionally consider a cosmological term
with respect to the metric gμν:

SΛ ¼ −
1

8πG

Z
d4x

ffiffiffiffiffiffi
−g

p
Λ: ð9Þ

The action SA is the Einstein-Aether action [38]. This is the
most general action for a fixed-norm timelike vector field
coupled to ~gμν which produces field equations second order
in time. The first term in Sϕ, proportional to the constant ϵc,
is a canonical kinetic term; it is included as a step towards
providing a well-defined Cauchy problem for the theory in
the limit of weak fields [39]. The second term, proportional
to the constant 1= ~a0, is the term that provides an analog to
the limit where μmðxÞ ∼ x in (1); it is this limit which is
responsible for a dark matterlike effect in astrophysical
systems. The third term is an example of the “Paul”
Galileon Lagrangian of the Fab Four scalar field models
[40]. Its role is to suppress the additional force on test
bodies in high curvature regions that would otherwise exist
due to the 1= ~a0 term. These effects will be discussed in
more detail in Sec. II. Finally, the term proportionalm2

ϕ is a
mass term for the scalar field.
The paper is structured as follows: in Sec. II, the known

constraints on g-TeVeS are discussed. In Sec. III we derive
the equations of motion for the theory in cosmological
FRW symmetry and in Sec. IV we discuss the various
notions of energy density that can be considered for
g-TeVeS in this symmetry. In Sec. V we discuss various
important limits in the cosmological behavior of the theory
and derive a number of approximate solutions to the field
equations. The results of these previous two sections aid
interpretation of the results of Sec. VI wherein we describe
the implementation of a method for determining how close
the evolution of the universe in g-TeVeS model can be to
that of the CDM “concordance model” of cosmology. In
Sec. VII we present our conclusions and the main results of
the paper. Additionally, a number of Appendices are
provided to, respectively, describe some useful identities
for the derivation of equations of motion in FRW sym-
metry; describe in detail the method of numerically solving
the equations of motion in FRW symmetry; and to present
results of the analysis of Sec. VII applied to a realization of
the original TeVeS model.

II. THE PARAMETER SPACE

We now briefly discuss the restrictions on the parameters
of the g-TeVeS theory that were derived by the authors of
[32]. It is found in the theory that on galactic and sub-
galactic scales, the nonrelativistic acceleration g felt by a
test body obeys the relation

g ¼ −ð∇⃗ΦN þ ∇⃗ϕÞ; ð10Þ

where ∇⃗ is the spatial gradient operator and ΦN is the
Newtonian potential due to baryonic matter; thus, spatial
gradients of the field ϕ provide an extra force acting on test
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bodies and the model is constructed to make that force
resemble the phenomenology implied by MOND. It is
found in [32] that in spherical symmetry, outside of a
gravitating object with mass M, dϕ=dr takes the form:

dϕ
dr

¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8kgal
r2

þ r2

GNMa0
þ
�

ϵcr2

2GNM

�
2

s
þ ϵcr2

2GNM

!−1

:

ð11Þ
Importantly, it has been assumed that the following

equalities hold:

G ¼ GN; ~a0 ¼ a0; ð12Þ
i.e. that the parameters fG; ~a0g that appear in action (2) are
to be identified respectively with the locally measured
value of Newton’s constant GN and the scale a0 appearing
in MOND phenomenology. This is a nontrivial assumption.
It is known in the case of TeVeS that GN and a0 will
generally depend on a number of additional quantities such
as the “background” value of the scalar field ϕ (in the case
of a0), certain constants in the tensor Kαβμν should they be
nonzero, and constants in the scalar field action [19,33,41].
In this work we also assume that the equalities (12) hold
though a more comprehensive analysis involving an
extended version of the parametrized post-Newtonian
Vanshteinian (PPNV) formalism [42] may show otherwise
(as is the case of TeVeS).
The authors of [32] identify two distinct length scales rV

and rM ≫ rV which mark transitions between forms of
dϕ=dr:

rV ¼ ð8kgalGNMa0Þ14
�
r ≪ rV →

dϕ
dr

∼
rffiffiffiffiffiffiffiffiffiffi
8kgal

p �
ð13Þ

rM ¼ 1

ϵc

ffiffiffiffiffiffiffiffiffiffiffi
GNM
a0

s �
rV ≪ r ≪ rM →

dϕ
dr

∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNMa0

p
r

; r ≫ rM →
dϕ
dr

∼
GNM
ϵcr2

�
: ð14Þ

The parameters should be such that for regions in the
vicinity of gravitating sources where there is little evidence

for dark matter, then j∇⃗ϕj=j∇⃗ΦN j ≪ 1. For example, when
considering the gravity due to the sun, if scales r within the
solar system are less than rV then the additional force due to
ϕ is proportional to r and actually decreases the closer one
gets to the sun. This is the Vainshtein mechanism created by
the presence of the Galileon term.
It is required that as one moves to larger distances from a

gravitating source then one reaches scales r > rV (e.g.
when considering the motion of stars towards the outer
regions of galaxies) then the additional acceleration due to
ϕ is approximately −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNMa0

p
=r where

a0 ∼ 1.2 × 10−10m=s2 ∼ cH0=6; ð15Þ

andH0 is the measured value of the Hubble constant today.
However, this acceleration cannot persist on much smaller
astrophysical scales such as those of the Solar System as its
presence would result in effects on planetary orbits that are
not observed [43]. If, however, the parameter kgal is
nonzero and typical planetary distances from the sun are
significantly smaller than the radius rV then the additional
acceleration provided by ϕ will be of magnitude r=

ffiffiffiffiffiffiffiffiffiffi
8kgal

p
.

Thus, if kgal is sufficiently big then the additional accel-
eration experienced by objects in the solar system will be
currently undetectable.
We assign a rough measure rSOL of the maximum

distance from the sun probed by experiment to be of the
order of length scales associated with Pluto’s orbit:

rSOL ∼ 109GN M⊙; ð16Þ
and we require that rV for the sun is assumed greater than
rSOL so that the anomalous acceleration is of the form
r=

ffiffiffiffiffiffiffiffiffiffi
8kgal

p
for r < rSOL. This gives the condition:

kgal ≳ 1036ðGN M⊙Þ3
8a0

: ð17Þ

However, as the ratio rV=rM grows as k1=4gal , there is an upper
bound on how big kgal can be. It is also observed that
systems with baryonic mass as little as 103 M⊙ display
mass discrepancy effects so the rV should be smaller than
rM for these systems:

kgal <
103GN M⊙

8a30
: ð18Þ

Hence the constant kgal is restricted from both sides:�
2 × 10−9

1

a0

�
4 ≲ kgal <

�
4 × 10−6

1

a0

�
4

: ð19Þ

The effects of an acceleration dominated by the 1=r term
have been observed at distances from the gravitating source
corresponding to at least 10rM. In the g-TeVeS model, the
MOND Regime is exited for r > rM=ϵc and so we have:

ϵc < 0.1: ð20Þ
In summary then, the value ~a0 is essentially fixed by
accounting for the motion of stars within galaxies which
display evidence for dark matter. The value kgal is restricted
to be small enough so that the Galileon term does not
dominate in the rather low baryonic mass systems which
still display evidence for dark matter but that nonetheless is
big enough to dominate in the Solar System; the value ϵc is
restricted to be small enough so that the MOND term
dominates for a sufficiently great span of scales where there
is evidence for dark matter.
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Additionally there are the four constants fcig in (4). In
the canonical Einstein-Aether theory [the theory which is a
limit of (2) as ϕ → cst ¼ 0], it is known that in the
quasistatic weak-field regime that the parameters c1 and
c4 contribute to a modification of the relation between GN
and G; these and other parameters are involved in devia-
tions of the theory’s parametrized post-Newtonian (PPN)
parameters from those of General Relativity [44]. It likely
must be assumed then that the fcig in general take values
such that they have a negligible effect on PPN parameters,
including the ratio GN=G. Once again, this would involve
an extended version of the PPNV formalism [42] and is left
for a future investigation.
A comprehensive comparison between g-TeVeS and the

standard Λ-cold dark matter cosmological model (ΛCDM)
would require development of its cosmological perturba-
tion theory and the computation of its predictions for the
growth of cosmic structure. In the present paper we take
the first steps in this direction and examine how close the
expansion history of the universe in g-TeVeS can be to that
of ΛCDM. We will see whether there exist parameters in
the restricted parameter space discussed in this section
which lead to similarity to ΛCDM and we will also explore
the remainder of the parameter space, it is important to do
so because—as argued—it is not yet clear what restrictions
the astrophysical limit of the theory places on parameters.

III. FRW SYMMETRY

We now derive the field equations of the g-TeVeS model
assuming FRW symmetry. In this symmetry the Einstein
metric ~gμν can be cast into the following form:

~gμνdxμ ⊗ dxν ¼ − ~N2ðtÞdt2 þ e2sðtÞγijdxi ⊗ dxj; ð21Þ

where one can further adopt the coordinates

γijdxi ⊗ dxj ¼ 1

1 − κr2
dr2 þ r2dS2ð2Þ; ð22Þ

where κ is the spatial curvature scalar of co-moving
spatial hypersurfaces and dS2ð2Þ the line element of a

2-sphere.
The field Aμ, is unit timelike with respect to the metric

~gμν due to the Lagrangian constraint in the action (4). In
FRW symmetry this is satisfied by the following ansatz,
which we will adopt:

Aμ ¼ ∓ ~Nδ0μ: ð23Þ

Without loss of generality we will choose the minus sign
option, so that the vector Aμ ≡ ~gμνAν “points” in the future
direction. The scalar field ϕ is assumed to depend only on
the coordinate t. The matter frame metric gμν then takes the
form

gμνdxμ ⊗ dxν ¼ −N2ðtÞdt2 þ a2ðtÞγijdxi ⊗ dxj; ð24Þ

where

N ¼ ~Neϕ ð25Þ

a ¼ es−ϕ: ð26Þ

We define new variables in order to perform a Hamiltonian
formulation of the action. We furthermore introduce the
variables:

~h≡ ds
dt

ð27Þ

y≡ dϕ
dt

; ð28Þ

and enforce the constraints via Lagrangian multiplier
terms, πs and πϕ. Using some useful results provided in
Appendix A, the FRW-reduced action can be shown
to be:

S ¼ 1

8πG

Z
dt

�
−
3KFe3s

~N
~h2 þ 3κ ~Nes þ e3s

�
ϵc
~N
y2 þ 2

3~a0 ~N
2
jyj3 − ~Nm2

ϕϕ
2

�

þ 8kgal
es

~N3
y3 ~h

�
κ þ e2s ~h2

~N2

�
þ πs

�
ds
dt

− ~h

�
þ πϕ

�
dϕ
dt

− y

��
þ Sm; ð29Þ

where following [45] we define KF ≡ 1þ ðc1 þ 3c2 þ c3Þ=2. A way to explicitly include matter is by considering the
definition of the matter action in terms of its variation which leads to the stress-energy tensor; in particular we have that

δSm ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Tμνδgμν

¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ðe2ϕTμν þ 4 sinhð2ϕÞAαAμTανÞδ~gμν þ 2ðTμνgμν þ 2e−2ϕTμνAμAνÞδϕ

þ 4 sinhð2ϕÞTμνAμ ~gναδAα�: ð30Þ
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We take the matter content to be described a perfect fluid,
where for each matter species Tμν ¼ ρuμuν þ Pðgμν þ
uμuνÞ where uμ ≡ gμνuν and gμνuμuν ¼ −1. After integra-
tion over the trivial spatial integral in the action yields the
FRW-reduced form

δSm ¼ −
Z

dte3s−2ϕ½ρδ ~N − 3 ~NPδs

þ ~Nðρþ 3PÞδϕ�; ð31Þ

where we have assumed that uμ aligns with the direction of
cosmic time basis vector ð∂tÞμ i.e. uμ ¼ ð1N ; 0; 0; 0Þ ¼
ðe−ϕ~N ; 0; 0; 0Þ and uμ ¼ ð−eϕ ~N; 0; 0; 0Þ.
By requiring stationarity of (29) under small variations

of fields, we can proceed to derive the equations of motion.
Varying with respect to s, ϕ, πs, πϕ, ~N give Hamilton’s
equations and the Friedmann equation/Hamiltonian
constraint:

dπs
dt

¼ −
9KFe3s

~N
~h2 þ 3κ ~Nes

þ 3e3s
�
ϵc
~N
y2 þ 2

3~a0 ~N
2
jyj3 − ~Nm2

ϕϕ
2

�

þ 8kgal
e3sy3

~N3
~h

�
κe−2s þ 3~h2

~N2

�
þ 24πG ~Ne3s−2ϕP

ð32Þ

dπϕ
dt

¼ − ~Ne3s½2m2
ϕϕþ 8πGe−2ϕðρþ 3PÞ�: ð33Þ

ds
dt

¼ ~h ð34Þ

dϕ
dt

¼ y ð35Þ

3KF

~N2
~h2 þ 3κe−2s

¼ 8πGe−2ϕρþ y2

~N2

�
ϵc þ

4jyj
3~a0 ~N

�
þm2

ϕϕ
2

þ 8kgal
y3 ~h
~N4

�
3κe−2s þ 5~h2

~N2

�
; ð36Þ

where henceforth ρ and P refer to the total matter density
and pressure, including a potential matter frame cosmo-
logical constant Λ. Finally, varying with respect to ~h and y
gives the constraint equations

πs ¼ e3s
�
−6KF

~h
~N
þ 8kgal

y3

~N3

�
κe−2s þ 3~h2

~N2

��
ð37Þ

πϕ ¼ e3s
�
2ϵc

y
~N
þ 2

~a0

jyjy
~N2

þ 24kgal
y2 ~h
~N3

�
κe−2s þ

~h2

~N2

��
:

ð38Þ

For later use, we introduce the following variables:

H ≡ 1

Na
da
dt

; ~H ≡ 1

~N

ds
dt

; ~Y ≡ 1

~N

dϕ
dt

: ð39Þ

The quantity H is the rate of change of ln a with respect to
the matter frame proper time τ where dτ ¼ Ndt; this is the
matter frame Hubble parameter. The quantity ~H is the
Einstein frame Hubble parameter, expressing the rate of
change of s with respect to Einstein frame proper time ~τ
where d~τ ¼ ~Ndt and ~Y is the rate of change of ϕ with
respect to ~τ. Additionally, we find the following relation
between the two Hubble parameters:

H ¼ e−ϕð ~H − ~YÞ: ð40Þ

Hence ~H2 ¼ e2ϕH2 þ 2eϕH ~Y þ ~Y2 so that (36) leads to the
matter frame Friedmann equation

3KFe2ϕ½H2 þ 2e−ϕH ~Y þ e−2ϕ ~Y2�

¼ 8πGe−2ϕρ − 3κe−2s þ ~Y2

�
ϵc þ

4

3~a0
j ~Yj
�
þm2

ϕϕ
2

þ 8kgal ~Y
3ðeϕH þ ~YÞð3κe−2s

þ 5e2ϕH2 þ 10eϕH ~Y þ 5 ~Y2Þ: ð41Þ

In finding solutions to the equations of motion, for
simplicity we will from now on set κ ¼ 0 and allow the
matter frame cosmological constant Λ to be nonzero.
Additionally we set mϕ ¼ 0 as was done in [32].

IV. ENERGY DENSITIES

We now look a bit more closely at notions of the energy
density of the scalar field ϕ. This will later aid comparison
with the dark sector of the ΛCDM model. It is helpful to
write the matter frame Friedmann equation (41) in a more
familiar form:

3H2 ¼ 8πG
KF

ðρr þ ρdust þ ρΛ þ ρϕÞ; ð42Þ

where

ρϕ ≡ ðρr þ ρdust þ ρΛÞðe−4ϕ − 1Þ

þ e−2ϕ

8πG
~Y2

�
ϵc þ

4

3~a0
j ~Yj þ 40kgal ~Y ~H3

�

þ 3KFe−2ϕ

8πG
ð ~Y2 − 2 ~H ~YÞ: ð43Þ
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We use the subscript r to denote a radiation component
and ρdust ≡ ρb þ ρc where b denotes the baryonic contri-
bution and c denotes the contribution due to nonbaryonic
dust (i.e. a cold dark matter component should one exist).
In writing (41) in the form (42) we have entirely separated
contributions to H2 that depend on ϕ and those who do
not. Furthermore we can develop a notion of fractional
energy density of ΩI of a cosmological component by
writing (42) as

1 ¼
X
I

ΩI where ΩI ≡ 8πG
3KFH2

ρI; ð44Þ

where the index I is over the various types of matter as well
as ϕ. Following earlier TeVeS literature [46], the Einstein
frame Friedmann equation may be written as

3 ~H2 ¼ 8πG
KF

e−2ϕð~ϱr þ ~ϱdust þ ~ϱΛ þ ~ϱϕÞ; ð45Þ

where ~ϱr ¼ ρr etc. for matter species and

~ϱϕ ≡ e2ϕ

8πG
~Y2

�
ϵc þ

4

3~a0
j ~Yj þ 40kgal ~Y ~H3

�
: ð46Þ

This equation may be written as

1 ¼
X
I

~ωI where ~ωI ≡ 8πGe−2ϕ

3KF
~H2

~ϱI: ð47Þ

We can rewrite (45) using (40) to yield

3H2 ¼ 8πGeffð~ϱr þ ~ϱdust þ ~ϱΛ þ ~ϱϕÞ; ð48Þ

where

Geff ¼
Ge−4ϕ

KFð1þ dϕ
d ln aÞ2

: ð49Þ

This equation may be written as

1 ¼
X
I

ωI where ωI ≡ 8πGeff

3H2
~ϱI: ð50Þ

By inspection,

ωI ¼ ~ωI: ð51Þ

The measures of energy density due to the scalar field ρϕ
and ~ϱϕ may differ considerably. The presence of the
Galileon term implies that the signs of these quantities
are not positive definite and ρϕ is not positive definite even
in its absence.

V. REGIMES AND APPROXIMATE SOLUTIONS

We now consider the behavior of the scalar field and
metric in some specific situations. For ease of calculation
we will use a spacetime gauge where ~N ¼ 1 and so we
identify t ¼ ~τ where ~τ measures Einstein frame cosmic
proper time. The evolution equation for πϕ (33) can be
integrated to yield:

πϕ ¼ πϕð0Þ þ
Z

~τ

~τ0

Jd~τ ð52Þ

J ≡ −8πGe3s−2ϕðρþ 3PÞ; ð53Þ

where again ρ and P refer to the total matter densities and
pressures and πϕð0Þ is a constant. From the πϕ constraint

(38) and defining σY ¼ Sign½ ~Y�, we then have:

Að~τÞ ~Y2 þ ~Y þ Cð~τÞ ¼ 0; ð54Þ

where

Að~τÞ≡ 1

ϵc

�
σY
~a0

þ 12kgal ~H
3

�
ð55Þ

Cð~τÞ≡ −
e−3s

2ϵc

�
πϕð0Þ þ

Z
~τ

~τ0

Jd~τ

�
: ð56Þ

Solutions to (54) are the cosmological analog of the
solution (11), in other words, we are dealing with a
temporal Vainshtein mechanism.
We now identify two main regimes of evolution. When

~Y ∼ −C≡ ~Y lin; ð57Þ

we shall refer to this as the Canonical Regime as here the
canonical kinetic term is dominating the evolution of the
field ϕ. When

~Y2 ∼ −
C
A

≡ ~Y2
nonlin; ð58Þ

wewill refer to this as the Nonlinear Regime. The transition
between the linear and nonlinear regimes occurs when
~Y lin ∼ ~Ynonlin i.e. when jCAj ∼ 1 and the Nonlinear Regime
corresponds to jCAj ≫ 1.
Within the Nonlinear Regime limit, there exist two

further distinct subregimes, depending on the dominant
terms inside A. The first of these is when				 σY~a0

				≫ j12kgal ~H3j: ð59Þ

In this limit the MOND term contribution to A dominates
and hence we will refer this to the MOND Regime.
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Alternatively, when

				 σY~a0
				≪ j12kgal ~H3j; ð60Þ

then Að~τÞ is dominated by the Galileon term and so we
refer to this as the Galileon Regime.
The g-TeVeS parameter restrictions of Sec. II enforce

that Að~τÞ is positive-definite during the Galileon era.
Therefore, if these restrictions are adopted then the solution
)58 ) only possesses real solutions if C is negative. By

inspection J is negative-definite for matter sources with
equation of state w ≥ −1 and so the function C may only be
nonpositive with a suitably chosen πϕð0Þ.
Consider two universes with identical CðtÞ and with

parameters enabling similar evolution of the metric but with
one with a sufficiently large AðtÞ to push it into the
Nonlinear Regime. The ratio of ~Y in the universe where
it is in the Nonlinear Regime to that of a universe where it is
in the linear regime is:

~Ynonlin

~Y lin

∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1

AnonlinC

s
ð61Þ

As jAnonlinCj ≫ 1, then the ratio (61) is below unity so that
~Ynonlin is suppressed compared to ~Y lin. This is a realization
of a temporal Vainshtein mechanism. In particular as
es → 0, then ~H → ∞ so that ~Y → 0 and the theory reduces
to GR in the early universe.
We now discuss some approximate solutions to the

theory; these will aid the interpretation of numerical results.

A. Canonical Regime with matter fluid
with constant wmat

First we consider the limit where the scalar field is inside
the Canonical Regime and there is a single matter source
with constant equation of state wmat ≡ Pmat=ρmat. Consider
the following ansatz:

ϕ ¼ nsþ ϕ0: ð62Þ

Then we have ~Y ¼ n ~H and it is found that the evolution
equations for πϕ and πs subject to the Hamiltonian
constraint are consistent if

n ¼ ð1þ 3wmatÞ
ðwmat − 1Þ

KF

ϵc
; ð63Þ

which yields an Einstein frame Friedmann equation:

�
1 −

ϵcn2

3KF

�
~H2 ¼ 8πGeð1þ3wmatÞϕρðmatÞ0

3KFe3sð1þwmatÞ : ð64Þ

It follows then that

~ϱϕ
~ϱϕ þ ρmat

¼ ~ωϕ ¼ ð1þ 3wmatÞ2KF

3ðwmat − 1Þ2ϵc
: ð65Þ

The interpretation of this is that the scalar field tracks the
matter component so that ~ϱϕ=ρmat is a constant. This
situation is identical to ordinary TeVeS [46,47].
Recall now that H ¼ e−ϕð ~H − ~YÞ ¼ e−ϕð1 − nÞ ~H and

so ~H2 ¼ e2ϕH2=ð1 − nÞ2, and also es ¼ eϕa, and so

3H2 ¼ 8πGeff
ρðmatÞ0

a3ð1þwmatÞ ; ð66Þ

where we have defined an effective Newton’s constantGeff :

Geff ≡ e−4ϕG
KF

ð1 − nÞ2
ð1 − ϵcn2

3KF
Þ
: ð67Þ

Note that Geff is not positive-definite and will generally
have a time dependence via ϕ. In the dust-dominated
regime (wmat ¼ 0) and cosmological constant-dominated
regime (wmat ¼ −1), the effective Newton’s constant in the
Canonical Regime is negative for 0 < ϵc=KF < 1=3 and
this should be excluded.
We see from (67) that in the Canonical Regime, the ratio

ϵc=KF controls two important effects. The first is a constant
rescaling of the effective Newton’s constant in the matter
frame Friedmann equation (i.e. the explicit dependence of
Geff on n), the second is a time-dependent rescaling of the
effective Newton’s constant via the factor e−4ϕ. From (62)
we see that dϕ=ds is proportional to n and so a larger value
of KF=ϵc will lead to a more dramatic growth in ϕ.

B. General Regime with negligible gravitation
of scalar field kinetic terms

Again we consider a dominant gravitating matter source
with constant wmat. Now assume that there is a situation
where ~Y has a negligible impact on the Einstein frame
Friedmann equation (36) and evolution equation (32) for s
i.e. that

dπs
d~τ

≃ 24πGe3s−2ϕðwmat − 1Þρw ð68Þ

3KF
~H2 ≃ 8πGe−2ϕρw; ð69Þ

where ρw ≡ ρðwÞ0=a3ð1þwmatÞ. Moreover (33) gives

dπϕ
d~τ

¼ −8πGð1þ 3wmatÞe3s−2ϕρw: ð70Þ

The above equations suggest a linear relation
between πϕ and πs so that we may take the ansatz
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πϕ ¼ βπs þ Cπ—where Cπ is a constant—and comparing
(68) and (70) we have that

β ¼ ð1þ 3wmatÞ
3ð1 − wmatÞ

; ð71Þ

while from (37) and (38) and having in mind that
jKF

~Hj ≫ 4jkgal ~Y3 ~H2j

πϕe−3s ¼ 2ϵc ~Y þ 2

~a0
j ~Yj ~Y þ 24kgal ~Y

2 ~H3

≃ 2ð1þ 3wmatÞ
ðwmat − 1Þ

~HKF þ Cπe−3s: ð72Þ

Given this, in the Canonical Regime for Cπ ¼ 0 we have
~Y ∼∞ ~H which is consistent with the results of Sec. VA.
In the Nonlinear Regime we find the following behavior:

(a) MOND Regime In the MOND Regime we find two
distinct behaviors which depend on the size of the
constant Cπ . If 3jβKF

~Hj ≫ jCπje−3s and ~H > 0 we
have ~Y ≃ −SignðβÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3~a0jβjKF

p
~H1=2. In the radiation

era this corresponds to ~Y ∼ 1=a and ϕ ∼ C1 þ C2a
while in the matter era it corresponds to ~Y ∼ a−3=4 and
ϕ ∼ C1 þ C2a3=4.

2 In both cases, the evolution of ϕ is
negligible with respect to the Friedman equation
where ϕ can be taken to be approximately constant.
If 3jβKF

~Hj ≪ jCπje−3s then ~Y ∼ a−3=2 irrespective
of the equation of state of matter. However, the
evolution of ϕ in the radiation era is ϕ ∼ C1 þ
C2

ffiffiffi
a

p
while in the matter era ϕ ∼ C1 þ C2 ln a. The

later, is akin to the tracker solutions found in Sec. VA.
It is easy to check that both types of behaviors are

consistent and may also be derived using (55) and (56)
into (58) under the a posteriori justified assu-
mption ϕ ∼ C1.

(b) Galileon Regime In the Galileon Regime we find once
again two distinct behaviors which depend on the size
of the constant Cπ . If for 3jβKF

~Hj ≫ jCπje−3s we
have ~Y2 ~H2 ≃ −βKF=ð4kgalÞ. Clearly, this case can
only be satisfied for kgal < 0. Furthermore, during the
radiation era ~Y ∼ a2 and ϕ ∼ C1 þ C2a4 while in the
matter era ~Y ∼ a3=2 and ϕ ∼ C1 þ C2a3.
If 3jβKF

~Hj ≪ jCπje−3s we have that ~Y ∼ a3=2 and
ϕ ∼ C1 þ C2a7=2 while in the matter era ~Y ∼ a3=4 and
ϕ ∼ C1 þ C2a9=4.
In all cases, the constants C2 multiplying the time-

dependent part of ϕ are tiny and are in addition
multiplied by tiny values of the scale factor, so that
ϕ may in fact be taken to be constant during the
Galileon era.

VI. COMPARISON TO ΛCDM

A given set of parameters and initial conditions of the
model will produce an expansion history HðaÞ. The
behavior of this function will reveal the extent to which
the model can imitate the effect of dark matter on the
cosmological background expansion. A simple measure of
the extent to which this agrees with the ΛCDM concord-
ance model expansion historyHΛCDMðaÞ is via the quantity

S ≡
R
an
ai

ðH−HΛCDM
HΛCDM

Þ2d ln aR
an
ai

d ln a
; ð73Þ

where ai is the physical scale factor at the beginning of
integration of the equations of motion (taken to be deep in
the radiation era), an is its value today and HCDMðaÞ is
determined by General Relativity’s Friedmann equation

3H2
ΛCDM ¼ 8πGNðρc þ ρb þ ρr þ ρΛÞ; ð74Þ

where spatial curvature has been assumed to be zero. For
the fiducial ΛCDM model to which we compare to, we use
the following cosmological parameters:

ΩcðanÞ ¼ 0.264

ΩbðanÞ ¼ 0.0492

ΩrðanÞ ¼ 9.25 × 10−5

ΩΛðanÞ ¼ 1 −Ωc −Ωb −Ωr: ð75Þ

The ΛCDM Hubble parameter H0 today is taken to be
67 km s−1Mpc−1. We use units where this value is equal to
unity and hence, in particular, we have H0=a0 ≃ 5.44. We
take the scale factor today an to also be equal to unity and in
looking at g-TeVeS models we take ρb and ρr in general to
be assumed known and identical to their corresponding
values in the ΛCDM case.
Exploration of how S varies across the parameter space

of the k-mouflage model will help us understand what
features of the model are responsible for producing a
similar or dissimilar cosmology to that of ΛCDM. The
parameters of the g-TeVeS model cosmological back-
ground evolution equations are as follows:
(1) ϵc: the canonical kinetic term coefficient,
(2) ~a0: the MOND kinetic term coefficient,
(3) kgal: the Galileon kinetic term coefficient,
(4) KF: Einstein-aether field constant,
(5) ϕiðaiÞ: the initial value of the scalar field at the start

of integration,
(6) yiðaiÞ: the coordinate time derivative dϕ=dt at the

start of integration.
Of the matter content, we allow Λ and—in some cases—ρc
to vary and for simplicity we assume that spatial curvature κ
is negligible. Consider the matter frame Friedmann equa-
tion at some early time deep in the radiation era:

2The constants C1 and C2 are of course not the same in all of
the considered cases.
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3H2 ¼ 8πGe−4ϕi

KF

ρr0
a4

þ…; ð76Þ

where the dots denote assumed subdominant contributions
due to other species of matter and time derivatives of ϕ. If
the Friedmann equation takes this form across a span of
time where ~Y ≪ H deep into the radiation era then the
expansion of the universe will be approximately that of
General Relativity with a value of Newton’s constant
GC ¼ Ge−4ϕi=KF. This implies though that GC will not
necessarily be the same as the locally measured value of
Newton’s constant GN which itself is assumed in [32] to be
equal to G. We will continue this assumption in the
optimization procedure. Constraints on the primordial
helium abundance from Big Bang nucleosynthesis
(BBN) [48] constrain the difference between these two
quantities to be in the following interval:

7

8
<

�
GC

GN

�
2

<
9

8
: ð77Þ

This should be regarded as a conservative constraint; it is
likely that using restrictions from BBN in conjunction with
data from the cosmic microwave background (CMB) will
be able to place much more stringent restrictions on
GC=GN [49]. If the above assumptions hold then the above
bounds constrain the deviation of e−4ϕi=KF from unity and
this is implemented in the procedure to try and find minima
of the quantity (73). Instead of varying the pair fϕi; KFgwe
equivalently vary fϕi; GCg.
The final quantity that we will consider is the (assumed

dustlike) dark matter density ρc (or equivalently the
constant ratio ρc=ρb). For a modified gravity alternative
to dark matter, it may be hoped that the new gravitational
degrees of freedom of the theory may produce a dark matter
effect by themselves; failing that, it is instructive to see how
much dark matter may be needed in addition (not neces-
sarily the amount present in ΛCDM).
We consider the following four models:
(i) Model A: Minimization of S given the restrictions

on the g-TeVeS theory’s parameters described in
Sec. II and the restriction that ρc ¼ 0.

(ii) Model B: Minimization of S given the restrictions
on the g-TeVeS theory’s parameters described in II
and an unrestricted ρc.

(iii) Model C: Minimization of S without any restrictions
on the g-TeVeS theory’s parameters and the restric-
tion that ρc ¼ 0.

(iv) Model D: Minimization of S without any restrictions
on the g-TeVeS theory’s parameters and an unre-
stricted ρc.

To minimize S we employ a Markov Chain Monte Carlo
(MCMC) procedure where random initial values for V ¼
fϵc; ~a0; kgal; GC;Λ; ρc=ρb;ϕi; yig are chosen subject to the
restrictions placed upon the particular model; the equations
of motion are then integrated numerically to generate the
corresponding value S; then, new values are generated and
adopted if the are found to lead to a decrease in S. We note
that the selection of initial data and integration of the
equations of motion requires some care in this model and
this process is described in detail in Appendix B.
The best-fit parameters for each model are contained in

Table I and for each of the best fits given, the ratio of their
predicted HðaÞ vs physical scale factor a is plotted in
Fig. 1. We additionally show the corresponding plot for the
General Relativistic case without dark matter and with
ΩΛ ¼ 1 − Ωb − Ωr and this corresponds to a value
S ¼ 0.11. We stress that we make no comparison with
data and that these “best fits” are with respect to closeness
to our fiducial ΛCDM model. We now discuss the features
of the best fit for each model:
c. Model AThe best-fit value of S for this model is 0.07,

and so in the sense of (73) the Hubble parameter is
somewhat closer to ΛCDM than the General Relativistic
model without dark matter. However, as can be seen from
Fig, 1, the best-fit model has a Hubble parameter sub-
stantially smaller than that of ΛCDM for much of the
cosmological matter era, meaning that the scalar field ϕ is
unable to provide an additional dustlike dark matter
component during this era.
It may be verified that for the entirety of the evolution of

ϕ, the field ~Y is in the Nonlinear Regime with j ~Yj ≫ jCAj
(see Sec. V), being in the Galileon Regime until around
a ∼ 10−5 before transitioning to the MOND Regime; the
feature where the H=HCDM momentarily is greater than
unity shortly before a ∼ 1 corresponds to ~Y changing sign
but quickly returning to the MOND Regime. It was found
in Sec. VA that if the theory is in the Canonical Regime
that the effective Newton’s constant Geff is negative for
0 < ϵc=KF < 1=3; given that ϵc is restricted to be less than
0.1 for Model A, it is possible that this tends to an

TABLE I. Best-fit values for various models, quoted to two significant figures: Model A: Restricted parameters with ρc ¼ 0; Model B:
Restricted parameters with ρc ≠ 0; Model C: Unrestricted parameters with ρc ¼ 0; Model D: Unrestricted parameters with ρc ≠ 0.

S ϵc 1= ~a0 8kgal Λ ρc=ρb ϕi yi GC=G − 1

A 7.0 × 10−2 4.7 × 10−2 5.4 1.6 × 10−24 2.3 0.0 6.0 × 10−2 1.2 × 10−8 6.0 × 10−2

B 3.9 × 10−5 1.6 × 10−13 5.4 1.0 × 10−25 1.6 5.2 1.4 5.6 × 10−9 4.8 × 10−3

C 1.7 × 10−3 2.7 × 101 1.7 × 10−4 −7.2 × 10−39 1.3 × 10−1 0.0 8.9 × 10−3 −3.1 × 10−5 −1.9 × 10−2

D 9.9 × 10−7 2.3 × 1013 8.0 × 10−1 −6.7 × 10−35 2.1 5.4 2.4 × 10−5 −1.1 × 10−8 −2.1 × 10−4
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avoidance of the Canonical Regime. We will see in the case
of Model C that the theory being in the Canonical Regime
for much of the matter era is vital to producing a dark
matter effect.
d. Model B This model retains the parameter restrictions

ofModel A but allows for a nonzero ρc. The best-fit value of
S for thismodel is 3.9 × 10−5, considerably closer toΛCDM
than that of Model A; an inspection of Fig. 1 shows the
corresponding physical Hubble parameter HðaÞ to be
extremely similar to that to the ΛCDM Hubble parameter.
FromTable I we see that a value of ρc ¼ 5.2ρb is preferred—
a contribution of dark matter comparable to that in CDM.
It may be verified that the behavior of j ~Yj for this fit is

roughly similar to that of Model A and hence the theory
remains in the Nonlinear Regime throughout cosmological
evolution but interestingly Model B is the one model of the
four considered here which appears to favour a value of ϕi
of order unity.
e. Model C For this model the astrophysical restrictions

are not used on the parameter space and there is no
additional dark matter. A value of S ¼ 1.7 × 10−3 is found
and hence the closeness to the ΛCDM model compared to
Model A is rather greater. For this model, the evolution of ~Y
and ϕ as a function of physical scale factor a are plotted in
Fig. 2 as well as the quantity 1=jAj of (55) which tracks the
dominant source of nonlinearity; this quantity increases
during the Galileon Regime and is approximately constant
during the MONDRegime. We see then from Fig. 2 that the
theory is initially in the Galileon Regime and during this

time ~Y grows as 1= ~H ∼ a2 (using the approximate pro-
portionality of scale factors b and a due to the near
constancy of ϕ during this era); this evolution is in
accordance with the results of (72), suggesting that its
assumptions such as the linear relation between scalar field
momentum πϕ and gravitational momentum πs are good
ones. If the solution (72) is an accurate approximation then
we see that in the radiation era the scalar field in the
Galileon Regime acts like an effective cosmological con-
stant in the Einstein frame Friedmann equation (36). At
later times during the radiation era, the scalar field
transitions to the MOND Regime and Fig. 2 shows ~Y
decreasing as ~H1=2 ∼ a−1 here, again consistent with the
results of (72) and whilst these approximations hold then
during this regime, terms in ~Y produce an additional,
dustlike contribution to (36).
As the dominant nonscalar field contribution to the

background evolution becomes the baryonic dust, ρϕ will
no longer vary as a−3 during the MOND Regime within the
approximation (72) and the optimization procedure prefers
parameters that produce a transition to the Canonical
Regime at roughly the time when baryons begin to
dominate over radiation; this leads to a preferred value
of ~a0 ∼ 5.9 × 103 and this value is substantially different to
the MOND acceleration scale a0 ≃ 5.44. However, we
emphasize that the relation between ~a0 and a0 may be such
that they need not be numerically close.
From the solutions of Sec. VA, we see that in the limit of

constant ϕ, the scalar field produces an effective rescaling
of Newton’s constant and thus acts like an additional
gravitating source whose density varies as a−3. Crucially

C

A

GR - no DM

B
D

FIG. 1. The ratio of physical Hubble parameter HðaÞ to the
ΛCDM Hubble parameter HΛCDM for best-fit models using
MOND phenomenology restrictions (blue curves) and without
those restrictions (green curves). Solid curves represent fits
obtained without additional dark matter ρc whilst dashed curves
represent fits allowing for a nonzero ρc. The later are visually
almost indistinguishable from the ΛCDM prediction. The black
dotted curve is the corresponding plot for a universe described by
GR with no dark matter and ΩΛ ¼ 1 − Ωr − Ωb.

Galileon

MOND

Canonical

FIG. 2. Evolution of − ~Y (solid green), the quantity 1=jAj
(dotted black), and −ϕ (dashed blue) for Model C best-fit
constant parameters. Sensitivity of ~Y to the dominant term in
1=jAj visible whilst the field ϕ can be seen to deviate signifi-
cantly from its initial value over the Universe’s evolution.
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though, ϕ is found to vary substantially during the era
where the density of baryons is greater than that of radiation
(see Figure 2). The effective dark matterlike contribution to
H in the matter era is then produced by a time-dependent
rescaling of the effective Newton’s constant. From (62) we
see that the rate of growth of ϕ is determined by the ratio
KF=ϵc; this ratio must take the right value so that the
rescaling of Newton’s constant due to ϕ is not too big or too
small. The best fit favors a value ϵc=KF ∼ 27. Additionally,
the best fit involves a negative value of kgal; we note
however that similar but slightly higher values of S can be
reached with positive kgal and so it is not clear how much
cosmology favors one sign of kgal over another. Bear in
mind, however, that the astrophysical Vainshtein mecha-
nism operates only for kgal > 0 and so negative kgal are of
dubious importance.
f. Model D Finally we consider a model which involves

no restrictions on the g-TeVeS parameters and allows for a
dark matter component. An excellent fit is achieved,
with S ¼ 9.9 × 10−7 and, as with Model B, it can be seen
from Fig. 1 that the physical Hubble parameter HðaÞ
is extremely close to HΛCDMðaÞ. The preferred values
for ρc and ΩΛ are close to the values chosen for the
ΛCDM cosmology used. This indicates that the modifi-
cation of gravity due to the fields ϕ and Aμ has been
suppressed.
It can be verified that for this best fit, the field ~Y enters

the Canonical Regime deep in the radiation era and never
spends time in the MOND Regime; this is in part due to the
large value of ϵc ∼ 2.3 × 1013 and this value also leads to a
far smaller gravitational contribution of ~Y, as we expect
from the results of Sec. VA.

A. The initial data for ~Y and the existence
of pathological solutions

It is found that a wide variety of fϵc; ~a0; kgal; GC;Λ;
ρc=ρb;ϕi; yig yield universes that do not reach the defined
present cosmological moment a ¼ 1. This is illustrated in
Fig. (3) which shows the evolution of j ~Yj for varying initial
values of j ~Yj and for parameters that obey the restrictions of
constants of the Model A best fit. Each of the curves that
cease continuing past a particular scale factor a < 1
represent a cosmos that cannot evolve past that scale
factor; this is not due to the expansion rates H or ~H
getting stuck at zero but rather because the equations of
motion no longer possess real solutions at the following
moments. Curves whose evolution is thwarted are those
where j ~Yj- having initially been positive—reaches zero
whilst the Galileon term dominates over the MOND term;
curves which persist to evolve after reaching 0 are those
which reach 0 when the MOND term dominates. Roughly
speaking, in the limit of Galileon domination, the evolution
equation for ~Y may be written in the form:

d ~Y2

dt
¼ ξðtÞ; ð78Þ

hence ~Y2ðtÞ ¼ ~Y2
i þ 2

R
t
ti
ξdt. If the integral contribution is

negative and decreasing as t increases then at some time t0,
~Y2 will reach zero and then evolution will cease as ~Y2

cannot continue on to take negative values. If, instead, the
MOND term dominates then the evolution equation for ~Y
takes the form

j ~Yj d
~Y

dt
¼ ζðtÞ: ð79Þ

This does not encounter the same problem as that with (78).
Upon reaching 0 following an initial, positive ~Yi, ~Y can
pass to a negative value, for which the solution takes the
form − ~Y2ðtÞ ¼ 2

R
t
t0
ζdt, where t0 is the moment that ~Y

reaches 0, and so a continually negative ζðtÞ does not cause
evolution to stop.
Even for curves which persist, it can be verified that of

them in Fig. 3 correspond to universes that eventually begin
collapsing. The values of fϵc; ~a0; kgal; GC;Λ; ρc=ρb;ϕi; zig
are such for these curves that the collapse of the universe
for these universes begins after the present moment a ¼ 1.
As can further be seen from Fig. 3, many curves at early

times follow a solution j ~Yj ∼ e3s=2 which is consistent with
the approximate solution (72) assuming ϕ ∼ cst (hence
a ∝ es) and ~H ∼ e−2s ∼ 1=a2 i.e. that the universe is
radiation dominated. For the larger values of j ~Yij we see

FIG. 3. Evolution of j ~Yj for various initial, positive values in the
case where the constants correspond to best-fit parameters for
Model A. Lower values of ~Yi (all of which are positive numbers)
display evolution that is thwarted at some a < 1; this is observed
to coincide in each case with ~Y2 attempting to pass through zero
and happens only during Galileon domination. All other curves
persist but belong to universes that ultimately (shortly after
a ¼ 1) recollapse.

COSMOLOGY OF THE GALILEON EXTENSION OF … PHYSICAL REVIEW D 95, 124023 (2017)

124023-11



a deviation from this solution before j ~Yj begins decreasing.
The decreasing of j ~Yj marks the onset of the MOND
Regime and the deviation from j ~Yj ∼ a3=2 marks a new
solution where j ~Yj ∼ a1=2 and is having a significant impact
on the background evolution. It is found that higher yet
initial values of j ~Yj to collapse of the universe before a ¼ 1.
These different behaviors are shown in Fig. 4 for a wide
range of initial data fϕi; ~Yig for the Model A best-fit
constant parameters. Initial data in the lower (blue) region
of the plot all lead to thwarted evolution. Initial data in the
upper (green) region correspond to universes where the
universe expands for a period but collapses before a ¼ 1.
The upper region is constructed from two, independent
possibilities: the region above the (interrupted) upper
straight line in Fig. 4 denotes parameter space where no
real, positive solutions to the Einstein frame Friedmann
equation (36) exist; the additional region which splits the
middle region where evolution persists to the present scale
factor involves solutions where the universe evolves for
some time with positive ~h but where ultimately the physical
scale factor H passes through zero to a negative value at a
moment earlier than the present. The accompanying,
unusual, evolution of H for one such universe is shown
explicitly in Fig. 5.
Negative initial ~Yi for Model A parameters are found to

generally lead to similar behavior but with a substantially
narrower range of parameters leading to universes which
persist. For less restricted parameter ranges—particularly
those with kgal < 0—these restrictions on the allowable ~Yi

do not necessarily still apply; the reason for this is likely
that when kgal < 0 then in the Galileon Regime there exist

solutions of (72) for ~Y2 even when ξ ¼ 0—which is not the
case for kgal > 0.
The presence of thwarted evolution and (too early)

collapse of universes represents a challenge to the opti-
mization procedure as many universes become simply
unsuitable for comparison with CDM.

VII. CONCLUSIONS AND DISCUSSION

In this paper we have examined the solutions to the
g-TeVeS theory in FRW symmetry. The theory has been
constructed to replicate the success of MOND which is a
modification toNewtonian gravity and as such involves only
visible matter and the Newtonian gravitational field. The
relativistic theory, however, involves the introduction of new
degrees of freedom in the gravitational sector and these can
not just complicate the relation between constants appearing
in actions and observed quantities but they can also modify
MOND itself. A manifestation of the former is that the
numbers G and a0 associated with MOND may depend on
the local value for the scalar field ϕ. We have seen that if the
theory is to have a dark matter-type effect in the background
cosmology then this will likely involve significant growth of
ϕ over cosmological history. Therefore it may be inaccurate
to assume that jϕj ≪ 1 on astrophysical scales and this
would endanger the assumptions made in [32] that the bare
Newton’s constant G and acceleration scale ~a0 are to be
identified with the measuredNewton’s constant andMOND
acceleration scale.
It is found that the theory can give a reasonablematch to the

ΛCDM expansion history for parameters fϵc; kgal; ~a0g that
differ orders of magnitude from the suggested restrictions on

FIG. 4. Plot of classification of universe evolution for differing
initial data fϕi; ~Yig. The green (top) region denotes universes that
collapse before the universe reaches a ¼ 1; the blue (lower)
region denotes universes which experience thwarted evolution;
the orange (middle) region denotes universes that persist to
a ¼ 1.

FIG. 5. Solution with Model A best-fit constant parameters but
with initial data on ~Y adjusted so as to give a universe which
collapses before the present day. Unusual damped-oscillatory
behavior can be seen in the scale factor a continuing up to the end
of numerical integration.
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them given in [32] however it remains an open question
whether thesevalues (accompanying the substantial deviation
of ϕ from 0) can lead to MOND-like phenomenology.
We can isolate three effects that seem relevant to the

theory resembling a cold dark matter component. The first
is that when the gravitational effect of ϕ is sub-dominant in
the radiation era, if the theory is in the MOND Regime,
then the scalar field’s kinetic terms approximate an addi-
tional dust component; this does not persist into the
(baryonic) matter era and so the MOND Regime must
be exited and the Canonical Regime reached. In this
regime, the growth of ϕ is substantial and this can lead
to an increase in Newton’s constant. If the growth is of the
right amount, then this increase can resemble—by making
matter heavier roughly by a factor of the ΛCDM ratio
ðρb þ ρcÞ=ρb—an additional cold dark matter component.
If approximation to ΛCDM pushes the theory towards
being in the MOND Regime during much of the radiation
era then this tends to suppress kgal relative to ~a0; indeed
similarly good fits for Model C were possible if kgal ¼ 0.
The cosmological moment of transition between MOND
Regime and Canonical Regime is further dictated by ϵc and
~a0 so their values must be tuned to find the right moment.
The amount of rescaling of Newton’s constant chiefly
depends on ϵc=KF and so it must be tuned in isolation.
Though it was not possible to find cosmologies similar to

that of ΛCDM when parameters were restricted to obey the
astrophysical constraints of [32], one may wonder whether
additional terms may be added to the action (2) to modify
the cosmological behavior of the theory. We have inves-
tigated the effect of allowing for a nonzero mϕ and it
appears that this term does not significantly improve the
best-fit in the case of the restricted parameters of Model A.
A reason for this is perhaps that even in the absence of
MOND and Galileon terms in (2), the scalar sector of a
canonical kinetic term together with a mass term is not
equivalent to adding a massive scalar field because of the
different gravitational effect of the scalar field in Einstein
and matter frames; though the contribution of the scalar
field to the Einstein frame Friedmann equation (36) may
approximate that of a massive scalar field in some limits,
this is not the case for the matter frame Friedmann
equation (41) with “cross” terms such as H ~Y present.
Due to the presence of the aether field Aμ, one can build
additional terms to add to the gravitational Lagrangian that
project out timelike variations of ϕ; for example, a term

Aμ ~∇μϕAν ~∇νϕjAσ ~∇σϕj will behave identically to the
MOND kinetic term in the background cosmology but
conceivably will have only a marginal effect on astrophysi-
cal scales. There is currently a lack of a guiding principle as
to why such terms would be expected (or not be expected)
to appear in this model.
We have additionally checked (see Appendix C) that

similar behavior exists in the original TeVeS theory. For

Bekenstein’s original choice of free function, the theory
possesses a limiting form describing a Canonical Regime
and the theory’s parameters can be chosen such that a
similar amount of rescaling of Newton’s constant as in best-
fit g-TeVeS models can occur and it is found that param-
eters of the theory may be chosen that this regime exists for
much of the matter era. Prior to the matter era, the theory
transitions to a Nonlinear Regime which differs from the
MOND Regime and does not give an additional dustlike
contribution during the radiation era. This is perhaps the
reason why the g-TeVeS theory gives a slightly closer fit to
ΛCDM than TeVeS with Bekenstein’s function but the
effect is small, as can be seen from the similarity of the
results shown in Figs. 6 and 7.
An important step in further investigating the cosmo-

logical consequences of g-TeVeS will be to develop the
theory of cosmological perturbations as was done for
the TeVeS theory [47,50]. This will make it possible to
deduce the effect of the new gravitational degrees of
freedom on the cosmological microwave background and
growth of large scale structure and will likely provide a
powerful test of the theory.
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APPENDIX A: QUANTITIES
IN FRW SYMMETRY

Some useful quantities can be calculated given the metric
ansatz (21):

~Γt
tt ¼

1

~N

d ~N
dt

; ~Γt
ij ¼

e2s

~N2

ds
dt

ðA1Þ

~Γi
tj ¼

ds
dt

δij; ~Γi
jk ¼ γijk ðA2Þ

where γijk are the Christoffel symbols corresponding to the
metric γij and spatial derivatives acting on it. From this it
follows that:

~Rtktl ¼ − ~N2γkl

�
d
dt

�
e2s

~N2

ds
dt

�
þ e2s

~N3

d ~N
dt

ds
dt

−
e2s

~N2

ds
dt

ds
dt

�
ðA3Þ

~Rijkl ¼ e2s
�
κ þ e2s

~N2

ds
dt

ds
dt

�
ðγikγlj − γilγkjÞ ðA4Þ
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For the scalar field ansatz ϕ ¼ ϕðtÞ, the only nonvanishing
part of ~∇μϕ will be ~∇tϕ ¼ dϕ=dt. Given our previous
results, it follows that:

~∇t
~∇tϕ ¼ d2ϕ

dt2
−

1

~N

d ~N
dt

dϕ
dt

ðA5Þ

~∇i
~∇jϕ ¼ − ~Γt

ij
dϕ
dt

¼ −
e2s

~N2

ds
dt

dϕ
dt

γij ðA6Þ

All other components of ~∇μ
~∇νϕ being zero. Additionally

we have that:

~∇iAj ¼ ~N ~Γt
ij ¼

e2s

~N

ds
dt

γij ðA7Þ

with all other components of ~∇μAν vanishing.

APPENDIX B: NUMERICAL SOLUTION
STRATEGY

Numerical integration of the equations of motion
requires the evolution of the set fs;ϕ; πs; πϕ; ~h; yg, i.e. a
total of six variables. We also have the three constraints
(36), (37) and (38), hence, there are three independent
variables to be evolved. That is, the space of initial data is
three-dimensional. Finally, we have the four evolution
equations (27), (28), (32) and (33) for s, ϕ, πs, πϕ
respectively, but of course not all three are independent.
Additionally, a specific form of ~N must be chosen. For
integration, first we choose an initial time t0 and set initial
conditions for all variables as follows:
(1) Freely specify values fsðt0Þ;ϕi ≡ ϕðt0Þ; yi ≡ yðt0Þg

as initial conditions and choose a form of the func-
tion ~N.

(2) Use the constraint (36) to find ~hðt0Þ. Of the three
roots to this cubic polynomial in ~h, there is one
positive root which reduces to the result that would
appear in the absence of the Galileon term when we
take the limit kgal → 0 and we choose this root. If,
for example, the contribution of the Galileon term to
the right hand side of (36) is small and positive, there
will be a positive root ~h2 ≫ ~h1 representing another
solution to the field equations but it will deviate
significantly from ΛCDM and will be neglected.

(3) Use the constraint (37) to determine πsðt0Þ.
(4) Use the constraint (38) to determine πϕðt0Þ.

At this point, all initial conditions are consistently set. We
proceed to integrate the four equations (27), (28), (32) and
(33) as follows. For each time tn, repeat the following steps:
(1) Consider a nearby moment tnþ1 > tn. If tnþ1 < tend

then evolve to a nearby moment t ¼ tnþ1 to deter-
mine fsðtnþ1Þ;ϕðtnþ1Þ; πsðtnþ1Þ; πϕðtnþ1Þg using
(27), (28), (32) and (33).

(2) Use the constraints (37) and (38) to determine ~hðtnþ1Þ
and yðtnþ1Þ. This involves solving a pair of coupled

equations cubic in ~h and y. Care must be taken that a
different branch of f ~h; yg solutions is not found here
(much like how it was appropriate to find ~h1 rather
than ~h2 as a root in the initial value equation for ~h).

(3) Check that the constraint (36) is satisfied to reason-
able numerical precision. This should guarantee that
the previous step has avoided skipping onto a
different branch of solutions for f ~h; yg.

APPENDIX C: COMPARISON TO TeVeS

Having seen FRW solutions of the k-mouflage Galileon
model, we now look at how results compare to those of the
original TeVeS theory. This will help show what compar-
ative features of g-TeVeS and TeVeS are responsible for
dark matter-type effects in cosmology. As was discussed in
Sec. I, the two theories differ in their form of the scalar field
action Sϕ; an equivalent formulation of TeVeS has the
following form of scalar field action:

Sϕ½ϕ; μ� ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−~g

p
½μ~gμν ~∇μϕ ~∇νϕþWðμÞ�

ðC1Þ
where the auxiliary field μ has been has been introduced. In
FRW symmetry we have:

Sϕ ¼ 1

16πG

Z
dte3s ~N

�
μ
y2

~N2
−WðμÞ

�
ðC2Þ

From this we have contributions to the s, ~N,y equations of
motion and a new equation of motion-obtained by varying
with respect to μ:

y2

~N2
−
dWðμÞ
dμ

¼ 0 ðC3Þ

It may then be possible to obtain μðyÞ from this equation. In
[19], Bekenstein proposed a specific choice of W which
yielded MOND-like phenomenology on astrophysical
scales. This form is:

WðμÞ ¼ ξB½μ̂ð4þ 2μ̂ − 4μ̂2 þ μ̂3Þ þ 4 ln jμ̂ − 1jÞ� ðC4Þ
where μ̂≡ μ=μ0, where μ0 and ξB are constant parameters.3

The FRW cosmological regime spans from μ̂ ¼ 2 to þ∞.
Applying the optimization procedure to this model- and
again assuming G ¼ GN

4- we find that S is minimized for
the following parameter values:

3The constant ξB is related to Bekenstein’s constant lB and μ0
via ξB ¼ μ3

0

64πl2B
, according to the conventions of [46].

4Strictly speaking G ≠ GN in TeVeS, but rather GN=G ¼ 2=
μ0 þ 2=ð2 − c1 þ c4Þ. However, as we are interested in compar-
ing to g-TeVeS where the exact relation is at present unknown, we
keep using G ¼ GN . In any case, the exact relation between the
two constants will only become important when placing con-
straints using data, which is not what we do in the present work.
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S ¼ 2.4 × 10−3; μ0 ¼ 24; ξB ¼ 2.6 × 107;

yi ¼ −3.3 × 10−11; Λ ¼ 0.17;

ϕi ¼ −3.1 × 10−4;

�
GC

G
− 1

�
¼ 3.2 × 10−2

where all dimensionful parameters are expressed in units
where H0 ¼ 1.
This is a comparatively good fit to the Model C best-fit

unrestricted g-TeVeS model and it can be seen from
Figures 6 and 7 that each fit produces similar expansion
histories and ΩI, ~ωI quantities. It is apparent from Figure 7

that TeVeS reduces to a model dominated by a canonical
kinetic term at around between b ¼ 10−3 and 10−2 (when
the baryons begin to dominate the Einstein frame expan-
sion) due to the tracking of the dominant matter component
in agreement with equation (65). It may be shown that in
the Canonical Regime of TeVeS, the number μ0=KF
corresponds to ϵc=KF; for the TeVeS best-fit and the
Model C g-TeVeS best-fit (see Sec. VI), these quantities
take similar values (approximately 25 and 27 respectively).
Furthermore, the value of ϕ at a ¼ 1 is similar in both
cases: −0.527 (TeVeS) and −0.532 (g-TeVeS).

[1] M. Milgrom, A Modification of the Newtonian dynamics as
a possible alternative to the hidden mass hypothesis, As-
trophys. J. 270, 365 (1983).

[2] M. Milgrom, The modified dynamics as a vacuum effect,
Phys. Lett. A 253, 273 (1999).

[3] F. R. Klinkhamer and M. Kopp, Entropic gravity, minimum
temperature, and modified Newtonian dynamics, Mod.
Phys. Lett. A 26, 2783 (2011).

[4] E. Pazy and N. Argaman, Quantum particle statistics on the
holographic screen leads to Modified Newtonian Dynamics
(MOND), Phys. Rev. D 85, 104021 (2012).

[5] R. H. Sanders and S. S. McGaugh, Modified Newtonian
dynamics as an alternative to dark matter, Annu. Rev.
Astron. Astrophys. 40, 263 (2002).

[6] J. Bekenstein and J. Magueijo, Mond habitats within the
solar system, Phys. Rev. D 73, 103513 (2006).

[7] G. Gentile, B. Famaey, F. Combes, P. Kroupa, H. S. Zhao,
and O. Tiret, Tidal dwarf galaxies as a test of fundamental
physics, Astron. Astrophys. 472, L25 (2007).

[8] X. Wu, H. Zhao, Y. Wang, C. Llinares, and A. Knebe, N-
body simulations for testing the stability of triaxial galaxies
in MOND, Mon. Not. R. Astron. Soc. 396, 109 (2009).

[9] D.-C. Dai, R. Matsuo, and G. Starkman, Limited utility of
Birkhoff’s theorem in modified Newtonian dynamics: Non-
zero accelerations inside a shell, Phys. Rev. D 81, 024041
(2010).

[10] H. Zhao and B. Famaey, Comparing different realizations of
modified Newtonian dynamics: virial theorem and elliptical
shells, Phys. Rev. D 81, 087304 (2010).

[11] J. Magueijo and A. Mozaffari, The case for testing
MOND using LISA pathfinder, Phys. Rev. D 85, 043527
(2012).

FIG. 6. Plots of H=HΛCDM and ΩI for best-fit TeVeS model
(solid blue), best-fit unrestricted g-TeVeS model with ρc ¼ 0
(dashed green), and ΛCDM (dotted black). Ωb is the baryon
contribution; Ωr the radiation contribution; Ωd the contribution
due to the dark sector: dark matter, cosmological constant, and
scalar field.

FIG. 7. Plots of Einstein frame quantities ~ωI ¼ ωI for best-fit
TeVeS model (blue solid lines) and best-fit unrestricted g-TeVeS
model (green dashed lines). Both sets of curves are very similar.
Tracking behavior of the scalar field ϕ is evident in the matter and
Λ dominated era.

COSMOLOGY OF THE GALILEON EXTENSION OF … PHYSICAL REVIEW D 95, 124023 (2017)

124023-15

https://doi.org/10.1086/161130
https://doi.org/10.1086/161130
https://doi.org/10.1016/S0375-9601(99)00077-8
https://doi.org/10.1142/S021773231103711X
https://doi.org/10.1142/S021773231103711X
https://doi.org/10.1103/PhysRevD.85.104021
https://doi.org/10.1146/annurev.astro.40.060401.093923
https://doi.org/10.1146/annurev.astro.40.060401.093923
https://doi.org/10.1103/PhysRevD.73.103513
https://doi.org/10.1051/0004-6361:20078081
https://doi.org/10.1111/j.1365-2966.2009.14735.x
https://doi.org/10.1103/PhysRevD.81.024041
https://doi.org/10.1103/PhysRevD.81.024041
https://doi.org/10.1103/PhysRevD.81.087304
https://doi.org/10.1103/PhysRevD.85.043527
https://doi.org/10.1103/PhysRevD.85.043527


[12] B. Famaey and S. McGaugh, Modified Newtonian dynam-
ics (MOND): Observational phenomenology and relativistic
extensions, Living Rev. Relativ. 15, 10 (2012).

[13] A. Hees, B. Famaey, G. W. Angus, and G. Gentile, Com-
bined Solar System and rotation curve constraints on
MOND, Mon. Not. R. Astron. Soc. 455, 449 (2016).

[14] B. Margalit and N. J. Shaviv, Constraining MOND using the
vertical motion of stars in the solar neighbourhood, Mon.
Not. R. Astron. Soc. 456, 1163 (2016).

[15] J. P. Pereira, J. M. Overduin, and A. J. Poyneer, Satellite Test
of the Equivalence Principle as a Probe of Modified New-
tonian Dynamics, Phys. Rev. Lett. 117, 071103 (2016).

[16] C.-M. Ko, On the problem of deformed spherical systems in
modified Newtonian dynamics, Astrophys. J. 821, 111
(2016).

[17] E. P. Verlinde, Emergent Gravity and the Dark Universe (to
be published).

[18] J. Bekenstein and M. Milgrom, Does the missing mass
problem signal the breakdown of Newtonian gravity?,
Astrophys. J. 286, 7 (1984).

[19] J. D. Bekenstein, Relativistic gravitation theory for the
MOND paradigm, Phys. Rev. D 70, 083509 (2004);
[Erratum, Phys. Rev. D 71, 069901(E) (2005)].

[20] I. Navarro and K. Van Acoleyen, Modified gravity, dark
energy and MOND, J. Cosmol. Astropart. Phys. 09 (2006)
006.

[21] R. H. Sanders, Modified gravity without dark matter, Lect.
Notes Phys. 720, 375 (2007).

[22] T. G. Zlosnik, P. G. Ferreira, and G. D. Starkman, Modify-
ing gravity with the aether: An alternative to dark matter,
Phys. Rev. D 75, 044017 (2007).

[23] M. Milgrom, Bimetric MOND gravity, Phys. Rev. D 80,
123536 (2009).

[24] L. Blanchet and S. Marsat, Modified gravity approach based
on a preferred time foliation, Phys. Rev. D 84, 044056
(2011).

[25] C. Deffayet, G. Esposito-Farese, and R. P. Woodard, Non-
local metric formulations of MOND with sufficient lensing,
Phys. Rev. D 84, 124054 (2011).

[26] R. P. Woodard, Nonlocal metric realizations of MOND,
Can. J. Phys. 93, 242 (2015).

[27] J. Khoury, An alternative to particle dark matter, Phys. Rev.
D 91, 024022 (2015).

[28] M. Kim, M. H. Rahat, M. Sayeb, L. Tan, R. P. Woodard, and
B. Xu, Determining cosmology for a nonlocal realization of
MOND, Phys. Rev. D 94, 104009 (2016).

[29] L. Blanchet and A. L. Tiec, Model of dark matter and dark
energy based on gravitational polarization, Phys. Rev. D 78,
024031 (2008).

[30] L. Berezhiani and J. Khoury, Dark Matter Superfluidity and
Galactic Dynamics, Phys. Lett. B 753, 639 (2016).

[31] L. Berezhiani and J. Khoury, Theory of dark matter super-
fluidity, Phys. Rev. D 92, 103510 (2015).

[32] E. Babichev, C. Deffayet, and G. Esposito-Farese, Improv-
ing relativistic MOND with Galileon k-mouflage, Phys.
Rev. D 84, 061502 (2011).

[33] C. Skordis, The Tensor-Vector-Scalar theory and its cos-
mology, Classical Quantum Gravity 26, 143001 (2009).

[34] C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, From
k-essence to generalised Galileons, Phys. Rev. D 84, 064039
(2011).

[35] A. I. Vainshtein, To the problem of nonvanishing gravitation
mass, Phys. Lett. B 39, 393 (1972).

[36] C. Burrage, E. J. Copeland, and P. Millington, Radial
acceleration relation from screening of fifth forces, Phys.
Rev. D 95, 064050 (2017).

[37] K. Hinterbichler and J. Khoury, Symmetron Fields:
Screening Long-Range Forces Through Local Symmetry
Restoration, Phys. Rev. Lett. 104, 231301 (2010).

[38] T. Jacobson and D. Mattingly, Gravity with a dynamical
preferred frame, Phys. Rev. D 64, 024028 (2001).

[39] J.-P. Bruneton, On causality and superluminal behavior in
classical field theories: Applications to k-essence theories
and MOND-like theories of gravity, Phys. Rev. D 75,
085013 (2007).

[40] C. Charmousis, E. J. Copeland, A. Padilla, and P. M. Saffin,
General second order scalar-tensor theory, self tuning, and
the Fab Four, Phys. Rev. Lett. 108, 051101 (2012).

[41] J. D. Bekenstein and E. Sagi, Do Newton’sG andMilgrom’s
a0 vary with cosmological epoch?, Phys. Rev. D 77, 103512
(2008).

[42] A. Avilez-Lopez, A. Padilla, P. M. Saffin, and C. Skordis,
The Parametrized Post-Newtonian-Vainshteinian Formal-
ism, J. Cosmol. Astropart. Phys. 06 (2015) 044.

[43] R. H. Sanders, Solar system constraints on multi-field
theories of modified dynamics, Mon. Not. R. Astron.
Soc. 370, 1519 (2006).

[44] B. Z. Foster and T. Jacobson, Post-Newtonian parameters
and constraints on Einstein-aether theory, Phys. Rev. D 73,
064015 (2006).

[45] C. Skordis, Generalizing tensor-vector-scalar cosmology,
Phys. Rev. D 77, 123502 (2008).

[46] F. Bourliot, P. G. Ferreira, D. F. Mota, and C. Skordis, The
cosmological behavior of Bekenstein’s modified theory of
gravity, Phys. Rev. D 75, 063508 (2007).

[47] C. Skordis, D. F. Mota, P. G. Ferreira, and C. Boehm, Large
Scale Structure in Bekenstein’s theory of relativistic Modi-
fied Newtonian Dynamics, Phys. Rev. Lett. 96, 011301
(2006).

[48] S. M. Carroll and E. A. Lim, Lorentz-violating vector
fields slow the universe down, Phys. Rev. D 70, 123525
(2004).

[49] A. Avilez and C. Skordis, Cosmological Constraints on
Brans-Dicke Theory, Phys. Rev. Lett. 113, 011101 (2014).

[50] C. Skordis, Teves cosmology: covariant formalism for the
background evolution and linear perturbation theory, Phys.
Rev. D 74, 103513 (2006).

T. G. ZŁOŚNIK and C. SKORDIS PHYSICAL REVIEW D 95, 124023 (2017)

124023-16

https://doi.org/10.12942/lrr-2012-10
https://doi.org/10.1093/mnras/stv2330
https://doi.org/10.1093/mnras/stv2721
https://doi.org/10.1093/mnras/stv2721
https://doi.org/10.1103/PhysRevLett.117.071103
https://doi.org/10.3847/0004-637X/821/2/111
https://doi.org/10.3847/0004-637X/821/2/111
https://doi.org/10.1086/162570
https://doi.org/10.1103/PhysRevD.70.083509
https://doi.org/10.1103/PhysRevD.71.069901
https://doi.org/10.1088/1475-7516/2006/09/006
https://doi.org/10.1088/1475-7516/2006/09/006
https://doi.org/10.1007/978-3-540-71013-4
https://doi.org/10.1007/978-3-540-71013-4
https://doi.org/10.1103/PhysRevD.75.044017
https://doi.org/10.1103/PhysRevD.80.123536
https://doi.org/10.1103/PhysRevD.80.123536
https://doi.org/10.1103/PhysRevD.84.044056
https://doi.org/10.1103/PhysRevD.84.044056
https://doi.org/10.1103/PhysRevD.84.124054
https://doi.org/10.1139/cjp-2014-0156
https://doi.org/10.1103/PhysRevD.91.024022
https://doi.org/10.1103/PhysRevD.91.024022
https://doi.org/10.1103/PhysRevD.94.104009
https://doi.org/10.1103/PhysRevD.78.024031
https://doi.org/10.1103/PhysRevD.78.024031
https://doi.org/10.1016/j.physletb.2015.12.054
https://doi.org/10.1103/PhysRevD.92.103510
https://doi.org/10.1103/PhysRevD.84.061502
https://doi.org/10.1103/PhysRevD.84.061502
https://doi.org/10.1088/0264-9381/26/14/143001
https://doi.org/10.1103/PhysRevD.84.064039
https://doi.org/10.1103/PhysRevD.84.064039
https://doi.org/10.1016/0370-2693(72)90147-5
https://doi.org/10.1103/PhysRevD.95.064050
https://doi.org/10.1103/PhysRevD.95.064050
https://doi.org/10.1103/PhysRevLett.104.231301
https://doi.org/10.1103/PhysRevD.64.024028
https://doi.org/10.1103/PhysRevD.75.085013
https://doi.org/10.1103/PhysRevD.75.085013
https://doi.org/10.1103/PhysRevLett.108.051101
https://doi.org/10.1103/PhysRevD.77.103512
https://doi.org/10.1103/PhysRevD.77.103512
https://doi.org/10.1088/1475-7516/2015/06/044
https://doi.org/10.1111/j.1365-2966.2006.10583.x
https://doi.org/10.1111/j.1365-2966.2006.10583.x
https://doi.org/10.1103/PhysRevD.73.064015
https://doi.org/10.1103/PhysRevD.73.064015
https://doi.org/10.1103/PhysRevD.77.123502
https://doi.org/10.1103/PhysRevD.75.063508
https://doi.org/10.1103/PhysRevLett.96.011301
https://doi.org/10.1103/PhysRevLett.96.011301
https://doi.org/10.1103/PhysRevD.70.123525
https://doi.org/10.1103/PhysRevD.70.123525
https://doi.org/10.1103/PhysRevLett.113.011101
https://doi.org/10.1103/PhysRevD.74.103513
https://doi.org/10.1103/PhysRevD.74.103513

