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The precession angular velocity of a gyroscope moving along a general geodesic in the Kerr spacetime is
analyzed using the geometric properties of the spacetime. Natural frames along the gyroscope world line
are explicitly constructed by boosting frames adapted to fundamental observers. A novel geometrical
description is given to Marck’s construction of a parallel propagated orthonormal frame along a general
geodesic, identifying and clarifying the special role played by the Carter family of observers in this general
context, thus extending previous discussion for the equatorial plane case.
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I. INTRODUCTION

The recent discovery of gravitationalwaves byLIGO [1,2]
has emphasized that the most promising sources of gravi-
tational radiation are coalescing binary systems made of
spinning compact objects during thewhole process (inspiral,
merger, and ringdown). As a consequence, the relativistic
community has experienced a renewed interest in all those
rotational effects associated with the gravitational interaction
between two such bodies, namely orbital, spin-orbital, and
spin-spin effects, in order to build more and more accurate
templates for gravitational wave emission profiles. Spin
couplings have been computed (only) by using standard
approximation schemes, like post-Newtonian (PN) theory
through a certain PN order both in the framework of
Hamiltonian dynamics [3,4], perturbation theory [5–8] (only
for motion along circular and eccentric equatorial orbits
around a nonspinning black hole), and by using effective
field theory techniques [9–11]. In all cases a key role is
played by the spin precession angular velocityΩðprecÞ of one
spinning body with spin vector S in the gravitational field of
its companion. For instance, in the Hamiltonian description
this coupling is taken into account by the spin-orbit
HamiltonianHSO ¼ ΩðprecÞ · S. The problem of determining
HSO as a function of the coordinates, conjugatemomenta and
spin has been successfully addressed forADMcoordinates in
Ref. [3], followed by Ref. [4], where the constrained
Hamiltonian of a spinning test particle was derived to linear
order in the particle’s spin byusing standardBoyer-Lindquist
coordinates. The latter work has been recently extended in
Ref. [12] to include also quadratic in spin interactions.
A general relativistic model describing the interaction of a

small (test) spinning body with a spinning black hole is
provided by theMathisson-Papapetrou-Dixon (MPD)model
[13–15], which in the pole-dipole approximation accounts
for spin couplings only at linear order in the particle’s spin.
An iterative prescription, implicit in the MPD construction,

then allows the incorporation of the quadrupolemoment (and
higher multipole moments) as well as taking into account
affects which are higher order in spin. According to such a
model, in the pole-dipole approximation the orbit of a
spinning object deviates from geodesic motion due to
acceleration effects arising from spin-curvature couplings,
the spin vector being parallel transported along the path.
Therefore, the evolution of the spin vector to first order in
spin is that of a test gyroscopemoving along a geodesic of the
background spacetime, and ΩðprecÞ is the precession angular
velocity measured with respect to a Cartesian-like frame
(defined all along its orbit) whose axes are aligned with the
“fixed stars” at spatial infinity. In this work wewill study the
precession of a test gyroscope orbiting a Kerr black hole in
generic geodesicmotion, completing a programdeveloped in
a series of previous papers [16,17].
To make a long story short and give a more precise

context to our research we recall that gyroscope precession
has attracted attention since the pioneering works of Lense
and Thirring [18–20] and Schiff [21], leading to the Gravity
Probe B mission [22,23] which launched a “test gyroscope”
moving along a geodesic with its spin vector parallely
propagated along it. Most theoretical investigations of this
phenomenon have been limited to gyroscopes moving
along circular equatorial plane orbits [24–30] due to their
extremely simple geometrical properties. More recently, the
generalization of previous results to both bound and
unbound equatorial plane eccentric geodesic orbits in a
Kerr spacetime has been analyzed in Refs. [16,17]. For
gyroscopes in generic orbits around a Kerr black hole, very
little work has been done but Ref. [31] deserves mention.
This (mostly numerical) study is performed in the fre-
quency domain using functional techniques developed in
Ref. [32] for bound geodesics, which are characterized by
three fundamental frequencies [33,34].
The main difficulty in extending the results for planar

motion is that one must deal with generic rotations instead
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of the simpler planar rotations, complicating all the calcu-
lations. For equatorial plane orbits where the spin precession
reduces to an azimuthal rotation characterized by a single
scalar angular velocity directly interpretable as a frequency,
this was accomplished simply by using the readily available
frame found by Marck [35,36], which in that case is rigidly
attached to the natural static spherical framemodulo a pair of
boosts in the radial and azimuthal directions, taking advan-
tage of a parallel transported direction associated with the
Killing-Yano 2-form which exists for the Kerr spacetime.
Instead, for the general nonequatorial plane orbits considered
in the present paper, the angular velocity vector describing
the spin precession has three nontrivial components, describ-
ing the time rate of change of the composition of the rotations
needed tomap from “body-fixed” axes in the gyroscope local
rest frame to the axes in the rest frame of the “fixed stars,”
modulo the unique boost between these two frames. One has
the choice of continuing to use Marck’s frame as an
intermediary in evaluating the angular velocity of a parallel
transported spin vector relative to boosted static spherical
axes, or of simply directly evaluating the angular velocity of
those boosted axes. We take both approaches and compare
their relationship.
As with many questions in general relativity, where

everything is “relative,” the definition of spin precession is
a relative notion—one must compare the direction of the
parallel transported spin vector of a gyroscope in geodesic
motion in the Kerr spacetime in its local rest framewith a set
of axes which are locked onto the “distant stars” by the
stationary symmetry, in a different local rest frame associated
with static observers in relativemotion.Byboosting the static
observer axes to the gyroscope local rest frame by the unique
boost associated with the relative motion, one removes the
effects of stellar aberration due to that motion, but one must
also take into account the rotation of the static spherical axes
which occurs as the gyroscopemoves in the angular direction
with respect to the static grid associated with Boyer-
Lindquist spherical-like coordinates. This is accomplished
by introducing the naive Cartesian frame associated with the
spherical frame as in flat space in order to lock the static axes
to the distant sky at spatial infinity as onemoves around in the
spacetime. Combining these two effects leads to a way to
quantify the precession of the gyroscope axes with respect to
the distant sky in its local motion.
After reviewing the description of timelike geodesics in

Boyer-Lindquist coordinates, we introduce three funda-
mental observer families in the Kerr spacetime and their
associated adapted frames: static observers, zero angular
momentum observers (ZAMOs) and Carter observers.
These are all related to each other by boosts in the
azimuthal angular direction associated with the rotational
Killing vector field. Modulo these boosts, they all share the
same orthonormal spatial frame obtained by normalizing
the Boyer-Lindquist spherical-like coordinate frame vec-
tors. This frame has its axes locked to the distant sky at
spatial infinity, but only the static observers following the

timelike Killing vector world lines see an unchanging
distant sky from the null geodesics arriving from spatial
infinity. Using the Cartesian-like frame corrects this orbital
contribution to the rotation of the spherical axes due to
motion in the coordinate grid.
Next, we compute the gyroscope precession angular

velocity as measured by each family of observers in their
natural frames, and determine their relationships. The static
observers are locked to the “fixed stars” and as such are key
to measuring precession with respect to them, so they are
the preferred family of “fiducial observers,” but for motion
relative to those observers, one needs a Cartesian-like frame
rather than a spherical frame in order to lock the reference
directions with respect to those fixed stars as the angular
location changes.
We then discuss several examples of both general bound

and unbound off-equatorial geodesic orbits as well as the
special cases of orbits at constant radius (spherical and polar)
and those constant polar angle θ. Subsequently, we will
explicitly find the relation between the boosted static frame
and Marck’s parallely propagated frame. The latter reduces
the equations of parallel transport to a single ordinary
differential equation involving a scalar angular velocity
which may be expressed in terms of the constants of the
motion characterizing the geodesic. Finally, Appendix A
shows how thekinematical properties of both static observers
and ZAMOs affect precession, while Appendix B demon-
strates that for general motionMarck’s frame loses its special
property of diagonalizing the curvature tidal matrices which
holds in the equatorial plane orbit case. The relation with
existing results using Hamiltonian approaches is shortly
addressed in Appendix C.
We use standard notation withG ¼ 1 ¼ c, Greek indices

running from 0 to 3, while Latin indices run from 1 to 3.
The signature of the spacetime metric is −þþþ. We will
denote by S♭ the totally covariant form of an arbitrary
tensor field S, and by S ∟ T the right contraction with
another tensor T, i.e., their tensor product with a contrac-
tion between the leftmost contravariant index of T with the
rightmost covariant index of S.

II. GENERAL GEODESIC MOTION

Following the notation of Misner, Thorne and Wheeler
[37], the Kerr metric written in Boyer-Lindquist coordi-
nates ðt; r; θ;ϕÞ is given by

ds2 ¼ gαβdxαdxβ

¼ −dt2 þ Σ
Δ
dr2 þ Σdθ2 þ ðr2 þ a2Þsin2θdϕ2

þ 2Mr
Σ

ðdt − asin2θdϕÞ2; ð1Þ

where M and a are the mass and the specific angular
momentum of the source, respectively, and
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Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð2Þ

Rotational properties of this spacetime are associated with
the azimuthal coordinate ϕ associated with the axisym-
metric Killing vector field ∂ϕ. The outer horizon occurs at

the zero rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
of Δ, while the ergosphere

occurs at the zero rE ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2cos2θ

p
of gtt.

A. Timelike geodesics

A geodesic timelike world line has a 4-velocity unit
tangent vector U ¼ Uα∂α with coordinate components
Uα ¼ dxα=dτ which can be expressed using the Killing
symmetries [38,39] as a system of first order differential
equations

dt
dτ

¼ 1

Σ

�
aBþ ðr2 þ a2Þ

Δ
P
�
;

dr
dτ

¼ ϵr
1

Σ
ffiffiffiffi
R

p
;

dθ
dτ

¼ ϵθ
1

Σ
ffiffiffiffi
Θ

p
;

dϕ
dτ

¼ 1

Σ

�
B

sin2θ
þ a
Δ
P

�
; ð3Þ

where τ is a proper time parameter along the geodesic, ϵr
and ϵθ are sign indicators, and

P ¼ Eðr2 þ a2Þ − La;

B ¼ L − aEsin2θ;

R ¼ P2 − Δðr2 þ KÞ;

Θ ¼ K − a2cos2θ −
B2

sin2θ
: ð4Þ

Here E and L denote the conserved Killing energy and
angular momentum per unit mass and K is a separation
constant, usually called the Carter constant. In place of K
one often uses

Q ¼ K − ðL − aEÞ2 ≡ K − x2; ð5Þ

which vanishes for equatorial plane orbits. Corresponding
to the 4-velocity vector field U is the index-lowered 1-form

U♭ ¼ −Edtþ Σ
Δ
_rdrþ Σ_θdθ þ Ldϕ: ð6Þ

In what follows we will use the overdot notation _f ¼
df=dτ for the proper time derivative along the geodesic.
In addition to the generic case of nonequatorial plane

motion, we will also consider some special classes of such
orbits which have interesting behavior, namely orbits at
constant radius r ¼ r0, _r ¼ 0 (spherical orbits, generalizing

the circular orbits in the equatorial plane) and orbits at
constant polar angle θ ¼ θ0, _θ ¼ 0. The former include the
interesting physical case of precessing polar orbits which
model the GPB experiment.

1. Spherical orbits

Examining the geodesic Eqs. (3), spherical geodesics are
characterized by constant r ¼ r0 and R ¼ 0 ¼ dR=dr, so
that [40]

E ¼ ðr −MÞðr2 þ KÞ þ rΔ
2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðr2 þ KÞ

p ;

L ¼ 1

2ar
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðr2 þ KÞ

p frðr2 þ a2ÞΔ

þ ðr2 þ KÞ½Mðr2 − a2Þ − rΔ�g; ð7Þ

with arbitrary K ≥ x2 (or Q ≥ 0), the equality correspond-
ing to circular equatorial orbits, i.e., K− ≤ K ≤ Kþ with

K� ¼ r
Mr2ðr − 3MÞ þ ra2ðrþMÞ � 2aΔ

ffiffiffiffiffiffiffi
Mr

p

rðr − 3MÞ2 − 4Ma2
: ð8Þ

The motion thus oscillates between the (supplementary)
values of θ which satisfy the equation Θ ¼ 0, crossing
repeatedly the equatorial plane. In terms of the variable
z ¼ cos2 θ the previous condition can be rewritten as

a2ð1 − E2Þz2 − ½a2ð1 − E2Þ þ J2�zþQ ¼ 0; ð9Þ

with solutions

z� ¼ a2ð1 − E2Þ þ J2 � ffiffiffiffi
D

p

2a4ð1 − E2Þ2 ; ð10Þ

where D ¼ ½a2ð1 − E2Þ þ J2�2 − 4a4ð1 − E2Þ2Q, J ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þQ

p
denotes the total angular momentum per unit

mass of the particle, such that L ¼ J cos ι and
ffiffiffiffi
Q

p ¼ J sin ι
in terms of the “inclination” angle ι. The range of allowed
values for z is then between zero and the smaller root z−,
implying that θ− ≤ θ ≤ π − θ−.
Polar orbits are the subclass which intersect the sym-

metry axis of the black hole, where sin θ ¼ 0 [41]. From
Eqs. (3) this requires zero angular momentum L ¼ 0. As a
consequence, as shown in Ref. [41], the associated orbits
have only r and θ motions with respect to ZAMOs (i.e.,
they corotate azimuthally with respect to the ZAMOs).
Spherical polar orbits are thus characterized by
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E ¼ Δ
�

r
ðr2 þ a2Þ½rΔ −Mðr2 − a2Þ�

�
1=2

;

K ¼ r
Mrðr2 − a2Þ þ a2Δ
rΔ −Mðr2 − a2Þ : ð11Þ

2. Orbits at constant θ= θ0
Orbits with constant θ ¼ θ0 requiring Θ ¼ 0 ¼ dΘ=dθ

are characterized by

E ¼ K þ a2ð1 − 2cos2θÞ
2a sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − a2cos2θ

p ;

L ¼ −
ðK − a2Þ sin θ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − a2cos2θ

p ; ð12Þ

with arbitrary K > a2cos2θ. The special value K ¼ a2

gives E ¼ 1 and L ¼ 0.

III. FUNDAMENTAL OBSERVER FAMILIES
AND ADAPTED FRAMES

Any test family of observers are characterized by a unit
timelike 4-velocity field u whose integral curves are the
world lines of those observers, and whose local rest spaces
will be designated by LRSu. A stationary axisymmetric
spacetime has several natural observer families associated
with its special geometry. In the Kerr case three families of
observers play a key role, and are easily described in terms
of the Boyer-Lindquist coordinates because they are
adapted to the Killing symmetries. The static observers
follow the integral curves of the (stationary) Killing vector
field ∂t, namely the Boyer-Lindquist time lines, while the
world lines of the zero angular momentum observers
(ZAMOs) are orthogonal to the time coordinate hyper-
surfaces. Finally the Carter observers are key to the
separability of the geodesic equations which allow their
exact solution, as well as being fundamentally important to
the algebraic properties of the curvature tensor. All three
families differ only by relative azimuthal motion, and hence
their natural adapted frames are all related by relative
boosts in the t − ϕ plane of the tangent space.
The static observers, which exist only in the spacetime

region outside the black hole ergosphere where gtt < 0,
form a congruence of accelerated, nonexpanding and
locally rotating world lines. They are, however, nonrotating
with respect to observers at rest at spatial infinity and have
4-velocity u ¼ m where

m ¼ 1ffiffiffiffiffiffiffiffi−gtt
p ∂t ¼

�
1 −

2Mr
Σ

�
−1=2∂t: ð13Þ

An orthonormal frame adapted to m is

eðmÞ1 ¼
1ffiffiffiffiffiffi
grr

p ∂r ¼
ffiffiffiffi
Δ
Σ

r
∂r ≡ er̂;

eðmÞ2 ¼
1ffiffiffiffiffiffi
gθθ

p ∂θ ¼
1ffiffiffi
Σ

p ∂θ ≡ eθ̂;

eðmÞ3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gϕϕ − gtϕ2=gtt
q

�
∂ϕ −

gtϕ
gtt

∂t

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ − a2sin2θ

p

sin θ
ffiffiffiffiffiffiffi
ΔΣ

p
�
∂ϕ −

2Marsin2θ
Δ − a2sin2θ

∂t

�
: ð14Þ

The relative decomposition of the geodesic 4-velocity U
with respect to the static observers is

U ¼ γðU;mÞ½mþ νðU;mÞaeaðmÞ�; ð15Þ

with

½γðU;mÞνðU;mÞa�

¼
� ffiffiffiffi

Σ
Δ

r
_r;

ffiffiffi
Σ

p
_θ;

1ffiffiffiffiffiffiffi
ΣΔ

p
�
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ − 2Mr

p

sin θ
þ 2aMrE sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σ − 2Mr
p

��

ð16Þ

and

γðU;mÞ ¼ E
ffiffiffi
Σ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ − 2Mr

p : ð17Þ

The ZAMOs are instead locally nonrotating (but globally
rotating in the azimuthal direction in the same sense as the
rotation of the black hole) and exist everywhere outside of
the outer horizon, They have 4-velocity u ¼ n where

n ¼
ffiffiffiffiffiffiffiffi
−gtt

p �
∂t þ

gtϕ

gtt
∂ϕ

�

¼
ffiffiffiffiffiffiffi
A
ΔΣ

r �
∂t þ

2aMr
A

∂ϕ

�
; ð18Þ

where

A ¼ ðr2 þ a2Þ2 − a2Δsin2θ: ð19Þ

The normalized spatial coordinate frame vectors

eðnÞ1 ¼ er̂;

eðnÞ2 ¼ eθ̂;

eðnÞ3 ¼
1ffiffiffiffiffiffiffigϕϕ

p ∂ϕ ¼
ffiffiffi
Σ

p

sin θ
ffiffiffiffi
A

p ∂ϕ ≡ eϕ̂ ð20Þ

together with n form an orthonormal adapted frame.
A boost along eϕ̂ maps n into m, i.e.,
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m ¼ γðm; nÞ½nþ νðm; nÞ�; ð21Þ

with relative velocity in the opposite azimuthal direction
as the rotation of the black hole associated with the sign
of a (resisting the “dragging of inertial frames”)

νðm; nÞ ¼ −
2Mr
Σ

�
a sin θffiffiffiffi

Δ
p

�
eϕ̂; ð22Þ

and associated Lorentz factor γðm; nÞ, so that ZAMOs
and static observers share the same r − θ 2-plane of their
local rest spaces. The relative decomposition of the
geodesic 4-velocity U with respect to the ZAMOs is

U ¼ γðU; nÞ½nþ νðU; nÞaeaðnÞ�; ð23Þ

with

½γðU; nÞνðU; nÞa� ¼
� ffiffiffiffi

Σ
Δ

r
_r;

ffiffiffi
Σ

p
_θ;

L
ffiffiffi
Σ

p

sin θ
ffiffiffiffi
A

p
�

ð24Þ

and

γðU; nÞ ¼ 1ffiffiffiffiffiffiffi
ΣΔ

p
� ffiffiffiffi

A
p

E −
2aMrLffiffiffiffi

A
p

�
: ð25Þ

The kinematical properties of both the static observers
and ZAMOs are briefly reviewed in Appendix A.
The third useful observer family in theKerr spacetime, the

Carter family of observersu ¼ uðcarÞ, is intimately connected
with its geometry (separability of the geodesic equations).
Their 4-velocity uðcarÞ lies in the intersection of two special
2-planes: the plane T2 spanned by the temporal and azimu-
thal Killing vectors spanf∂t; ∂ϕg ¼ spanfuðcarÞ; ∂ϕg and the
plane N2 spanned by the (two, repeated) principal null
directions of the spacetime spanfl; kg ¼ spanfuðcarÞ; ∂rg.
Its coordinate components may be read off from the
expressions

uðcarÞ ¼
r2 þ a2ffiffiffiffiffiffiffi

ΔΣ
p

�
∂t þ

a
r2 þ a2

∂ϕ

�
;

u♭ðcarÞ ¼ −
ffiffiffiffi
Δ
Σ

r
ðdt − asin2θdϕÞ: ð26Þ

Decomposing it with respect to the static observers

uðcarÞ ¼ γðuðcarÞ; mÞ½mþ νðuðcarÞ; mÞ�; ð27Þ

leads to the relative velocity

νðuðcarÞ; mÞ ¼ a sin θffiffiffiffi
Δ

p eðmÞ3: ð28Þ

Comparing (18) and (26) shows that uðcarÞ lies between n and
m as claimed above. Carter’s observers are actually boosted
in the opposite azimuthal direction from the static observers
compared to the ZAMOs in order to “comove”with the black
hole, their angular velocity at the outer horizon being defined
as that of the black hole itself. In fact

νðuðcarÞ; nÞ ¼
ffiffiffiffi
Δ

p
Σ

A sin θ
eϕ̂; ð29Þ

so that the frame component along eϕ̂ is positive, while
νðm; nÞ is given by (22) and is negative.
The orthogonal (azimuthal) direction to uðcarÞ within the

2-plane T2 has coordinate components

ūðcarÞ ¼
a sin θffiffiffi

Σ
p

�
∂t þ

1

asin2θ
∂ϕ

�
;

ū♭ðcarÞ ¼ −
a sin θffiffiffi

Σ
p

�
dt −

r2 þ a2

a
dϕ

�
: ð30Þ

A spherical orthonormal frame adapted to uðcarÞ is obtained
by using the triad boosted from the either the ZAMO
or static observer spherical frame along the azimuthal
direction

E1ðuðcarÞÞ ¼ er̂;

E2ðuðcarÞÞ ¼ eθ̂;

E3ðuðcarÞÞ ¼ ūðcarÞ: ð31Þ

The relative decomposition of the geodesic 4-velocity U
with respect to the Carter observers is

U ¼ γðU; uðcarÞÞ½uðcarÞ þ νðU; uðcarÞÞaEaðuðcarÞÞ�; ð32Þ

with

½γðU; uðcarÞÞνðU; uðcarÞÞa� ¼
� ffiffiffiffi

Σ
Δ

r
_r;

ffiffiffi
Σ

p
_θ;

Bffiffiffi
Σ

p
sin θ

�
ð33Þ

and

γðU; uðcarÞÞ ¼
Pffiffiffiffiffiffiffi
ΔΣ

p : ð34Þ

IV. ADAPTED FRAMES AND
GYROSCOPE PRECESSION

Given a family of observers with 4-velocity u and
adapted orthonormal frame fu; eðuÞag one can form an
adapted frame along a general timelike geodesic with
4-velocity U by boosting the vectors eðuÞa onto the local
rest space of LRSU. Following the notation of [26], a
relative observer boost BðU; uÞ mapping LRSu to LRSU is
described by
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U ¼ γðU; uÞ½uþ νðU; uÞaeðuÞa�
EðU; uÞa ¼ eðuÞa þ

U þ u
1þ γðU; uÞ ðU · eðuÞaÞ

≡ BðlrsÞðU; uÞeðuÞa: ð35Þ

Letting u ¼ m and u ¼ n respectively one obtains
the triads EðU; mÞa ¼ BðlrsÞðU; mÞeðmÞa and EðU; nÞa ¼
BðlrsÞðU; nÞeðnÞa, the two being related by a spatial rotation
in LRSU due to the relative azimuthal rotation between
their two 4-velocities which leads to a Wigner rotation
Rðm; nÞ resulting from successive boosts along distinct
directions compared to a direct boost [42]

EðU;mÞa ¼ BðU;mÞeðmÞa ¼ BðU;mÞBðm; nÞeðnÞa
¼ BðU;mÞBðm; nÞBðU; nÞ−1EðU; nÞa
¼ Rðm; nÞEðU; nÞa: ð36Þ

Our goal is to study the evolution of the direction of the
parallel transported spin vector S ∈ LRSU compared to
axes which are fixed with respect to the “fixed stars”
modulo relative motion with respect to the static observers
which see these stars as fixed in their local sky, requiring
that stellar aberration must be removed. If EðUÞa denotes a
generic orthonormal frame in LRSU, then

S ¼ SaEðUÞa; ð37Þ

and

DS
dτ

¼ dSa

dτ
EðUÞa þ Sa

D
dτ

EðUÞa ¼ 0: ð38Þ

Defining the angular velocity of the frame with respect to
parallel transported axes

DEðUÞa
dτ

¼ ΩðUÞ ×U EðUÞa; ð39Þ

namely

ΩðUÞ1 ¼ EðUÞ3 ·
DEðUÞ2

dτ
;

ΩðUÞ2 ¼ −EðUÞ3 ·
DEðUÞ1

dτ
;

ΩðUÞ3 ¼ EðUÞ2 ·
DEðUÞ1

dτ
; ð40Þ

Eq. (38) becomes

dSa

dτ
EðUÞa þ ΩðUÞ ×U S ¼ 0: ð41Þ

Reversing the sign of the angular velocity ΩðUÞ thus gives
the angular velocity of the gyroscope spin vector with

respect to the frame fEðUÞag. For example, if EðUÞa is
parallely transported along U, i.e., DEðUÞa=dτ ¼ 0, then
the above relation implies that the spin components Sa are
constant along U.
Now let EðUÞa ¼ EðU; uÞa, for u ¼ m, n, and let

S ¼ SðU; uÞaEðU; uÞa, so that

dSðU; uÞa
dτ

þ ϵabcΩðU; uÞbSðU; uÞc ¼ 0; ð42Þ

with

D
dτ

EðU; uÞa ¼ ΩðU; uÞ ×U EðU; uÞa: ð43Þ

One may evaluate the angular velocity ΩðU; uÞ ¼
ΩðU; uÞaEðU; uÞa in terms of the relative motion of the
geodesic U and the observer family u as a sum of the
following three terms as given in Ref. [26]

ΩðU; uÞ ¼ −γðU; uÞ½ωðfw;uÞ þ ωðsc;U;uÞ þ ωðgeo;U;uÞ�: ð44Þ

The first two terms here involve the Fermi-Walker and the
spatial curvature angular rotation vectors ωðfw;uÞ and
ωðsc;U;uÞ arising respectively from the two terms in the
next equation splitting the covariant derivative of the spatial
orthonormal frame along the orbit

PðuÞ∇UeðuÞa
¼ −γðU; uÞ½PðuÞ∇ueðuÞa þ PðuÞ∇νðU;uÞeðuÞa�
¼ −γðU; uÞ½ωðfw;uÞ þ ωðsc;U;uÞ� ×u eðuÞa; ð45Þ

while the third angular velocity term is the geodetic
precession term in the gyroscope precession formula (see
Eq. (9.10) of Ref. [26])

ωðgeo;U;uÞ ¼
1

1þ γðU; uÞ νðU; uÞ ×u F
ðGÞ
ðfw;U;uÞ; ð46Þ

defined in terms of the spatial gravitational force

FðGÞ
ðfw;U;uÞ ¼ −∇Uu arising from the covariant derivative

of the remaining frame vector along the orbit. Here we
are sloppily identifying the symbols for the various angular
velocities which have the same orthonormal components
before and after the boost from the observer frame to the
geodesic frame.
Indeed this result for the angular velocity terms Eq. (44)

can be derived as follows. First differentiate along U the
relative boost BðlrsÞðU; uÞ relating EðU; uÞa to eðuÞa in (35)
to find
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∇UEðU;uÞa ¼∇UeðuÞa −
γðU;uÞνðU;uÞa
1þ γðU;uÞ FðGÞ

ðfw;U;uÞ

−
γ2ðU;uÞνðU;uÞa
ð1þ γðU;uÞÞ2 ðUþuÞνðU;uÞ ·FðGÞ

ðfw;U;uÞ

þ 1

1þ γðU;uÞ ðUþuÞU ·∇UeðuÞa

¼B ∟
�
∇UeðuÞa −

γðU;uÞνðU;uÞa
1þ γðU;uÞ FðGÞ

ðfw;U;uÞ

�
;

ð47Þ

where B is the following tensor which extends the action of
BðlrsÞðU; uÞ to vectors outside LRSu

B ¼ I þ ðU þ uÞ ⊗ U♭

1þ γðU; uÞ ; ð48Þ

by mappingU þ u to 0, namely B ∟ ðU þ uÞ ¼ 0. One can
then replace ∇UeðuÞa in the second line of Eq. (47) using

∇UeðuÞa ¼ PðuÞ∇UeðuÞa − ½u ·∇UeðuÞa�u
¼ −γðU; uÞ½ωðfw;uÞ þ ωðsc;U;uÞ�
×u eðuÞa − uFðGÞ

ðfw;U;uÞa ; ð49Þ

(the term in bracket simplifies using the definition of

FðGÞ
ðfw;U;uÞ together with orthogonality u · eðuÞ ¼ 0) so that

D
dτ

EðU; uÞa ¼ B ∟
�
−γðU; uÞ½ωðfw;uÞ þ ωðsc;U;uÞ� ×u eðuÞa − uFðGÞ

ðfw;U;uÞa −
γðU; uÞνðU; uÞa
1þ γðU; uÞ FðGÞ

ðfw;U;uÞ

�

¼ B ∟
�
−γðU; uÞ½ωðfw;uÞ þ ωðsc;U;uÞ þ ωðgeo;U;uÞ� ×u eðuÞa − uFðGÞ

ðfw;U;uÞa

−
γðU; uÞνðU; uÞa
1þ γðU; uÞ FðGÞ

ðfw;U;uÞ þ γðU; uÞωðgeo;U;uÞ ×u eðuÞa
�

¼ B ∟
�
ΩðU; uÞ ×u eðuÞa − uFðGÞ

ðfw;U;uÞa −
γðU; uÞνðU; uÞa
1þ γðU; uÞ FðGÞ

ðfw;U;uÞ þ γðU; uÞωðgeo;U;uÞ ×u eðuÞa
�
; ð50Þ

where in the second line we have added and subtracted the term [using the triple cross product identity on (46)]

γðU; uÞωðgeo;U;uÞ ×u eðuÞa ¼ −
γðU; uÞ

1þ γðU; uÞ ½νðU; uÞFðGÞ
ðfw;U;uÞa − FðGÞ

ðfw;U;uÞνðU; uÞa� ð51Þ

to form the combination ΩðU; uÞ ×u eðuÞa. Expanding the last term in Eq. (50) by using Eq. (51) leads to simplifications

(the term proportional to the vector FðGÞ
ðfw;U;uÞ disappears), so that combining the various pieces we find

D
dτ

EðU; uÞa ¼ B ∟
�
ΩðU; uÞ ×u eðuÞa −

U þ u
1þ γðU; uÞF

ðGÞ
ðfw;U;uÞa

�

¼ B ∟ ½ΩðU; uÞ ×u eðuÞa�
¼ ½BΩðU; uÞ� ×U EðU; uÞa; ð52Þ

since the final term proportional to U þ u is mapped onto 0
by B. This confirms the formula (44). Note that in the
second line of Eq. (52) we haveΩðU; uÞ ¼ ΩðU; uÞaeðuÞa,
whereas in the last line BΩðU; uÞ ¼ ΩðU; uÞaEðU; uÞa
denotes the boosted vector, which has the same compo-
nents, but referred to the boosted frame EðU; uÞa.
The following sections will consider explicitly the

orthonormal triads in LRSU associated with the static
observers (u ¼ m), ZAMOs (u ¼ n) and the Frenet-
Serret frame along U involved in Marck’s construction.
These triads are all related to each other by relative
rotations whose time derivatives along the geodesic

produce their relative angular velocities. Finally, a parallely
propagated triad along U can also be identified by Marck’s
additional planar rotation of the Frenet-Serret triad.
Studying each of these frames along a generic geodesic
requires rather involved computations which often hide
their geometrical content.

V. GYROSCOPE PRECESSION
AND STATIC OBSERVERS

Specializing the angular velocity (44) to the case u ¼ m,
a lengthy calculation leads to the explicit result
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ΩðU;mÞ1 ¼ γ2

ð1þ γÞE2Σ3=2Δ1=2

�
aM sin θðr2 − a2cos2θÞ_r _θþ cos θ

Σ2sin2θ
½Ex½Σ3 − 2MrðΣ2 − 2a4cos2θsin2θÞ�

þ aE2½Σ3 − 2MrðΣ2 − a4sin2θcos4θÞ� þ 2Mrasin2θða2x2 − ΣΔsinh2βÞ

þEΣ
γ

½xðΣ2 − 2MrðΣ − a2sin2θÞÞ þ aEðΣ2 − 2MrðΣ − a2sin2θcos2θÞÞ��
�
;

ΩðU;mÞ2 ¼ γ2

ð1þ γÞE2Σ3=2

�
2aMr cos θ_r _θþ 1

Σ2Δ sin θ
½Ex½ðr −MÞΣ2ðΣ − 2MrÞ − 2Mr2Δðr2 − a2cos2θÞ�

þ arE2½Σ3 −MrðΣ2ð1þ cos2θÞ þ cos2θΔðΣþ 2r2ÞÞ� þ aMΔðr2 − a2cos2θÞðx2 − Σsin2θcosh2βÞ

þEΣ
γ

½xððr −MÞΣ2 −MΣðr2 − a2Þ − 2Mr2ΔÞ þ arEðΣ2 −MrðΣð1þ cos2θÞ þ 2cos2θΔÞÞ��g;

ΩðU;mÞ3 ¼ a cos θ_r

EΣ2Δ1=2 sin θ

�
aEΣsin2θ þ 2Mrγ

1þ γ
ðxþ aEcos2θÞ

�
þ

_θ

Σ

�
rΔ1=2 þ Mγ

ð1þ γÞEΣΔ1=2 ðr2 − a2cos2θÞðax − r2EÞ
�
;

ð53Þ

with γ ¼ E=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mr=Σ

p
. On the equatorial plane we have ΩðU;mÞ1 ¼ 0 ¼ ΩðU;mÞ3 and

ΩðU;mÞ2jθ¼π=2 ¼ −
γ

E2r3Δ

�
MΔ
1þ γ

ðExþ aÞ þ Er3ðxþ aEÞ − aMðΔþ E2r2Þ −MExð2r2 − a2 þ 3ΔÞ
�
; ð54Þ

with γ ¼ E=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
. It is important to recall that this

represents the angular velocity of the axes EðU;mÞa with
respect to parallel transported axes along the world line,
while the angular velocity of the parallel transported spin
vector of a gyroscope with respect to these axes has the
opposite sign. The previous expressions simplify consid-
erably for special orbits, e.g., spherical orbits (_r ¼ 0) or
orbits with constant polar angle (_θ ¼ 0). These cases will
be studied below.

VI. GYROSCOPE PRECESSION AND ZAMOS

One may also express the angular velocity (42) of a
parallel transported gyroscopic spin vector S ¼
SðU; nÞaEðU; nÞa relative to the boosted ZAMO frame
in LRSU with a similar decomposition into geodetic,
Fermi-Walker and space curvature terms. These are given
explicitly in Appendix A.
The boosted ZAMO frame vectors fEðU; nÞag are then

related to the static observer frame vectors fEðU;mÞag by a
spatial rotation in LRSU, i.e.,

EðU;mÞa ¼ EðU; nÞbRb
a: ð55Þ

The spatial rotation R is just the Wigner rotation due to the
combination of initial azimuthal boost from the ZAMOs to
the static observers

eðmÞa ¼ BðlrsÞðm; nÞeâ ð56Þ

with the successive boost from LRSm to LRSU. Applying
BðlrsÞðU;mÞ to both sides then leads to

EðU;mÞa ¼ BðlrsÞðU;mÞeðmÞa
¼ BðlrsÞðU;mÞBðlrsÞðm; nÞeâ
¼ Rb

aBðlrsÞðU; nÞeb̂
¼ EðU; nÞbRb

a: ð57Þ

We conclude this section by noting that the above
ZAMO boosted frame is just the one underlying the
construction of the Hamiltonian of a spinning particle in
a curved spacetime to linear order in spin due to Barausse,
Racine and Buonanno [4]. Unfortunately, the Hamiltonian
formalism loses contact with the geometrical content of the
problem. Taking advantage of the relative observer point of
view as well as the associated spacetime splitting tech-
niques, it is easy to show that their explicit expressions
(5.35)–(5.37) for the spin precession angular velocity
components reduce to

H̄â ¼ N½ωðgeo;U;nÞ þ ωðfw;nÞ þ ωðsc;U;nÞ�â

¼ −
N

γðU; nÞΩðU; nÞâ; ð58Þ

with the replacements
ffiffiffiffi
Q

p ¼ γðU; nÞ and P̂a ¼
γðU; nÞνðU; nÞâ ffiffiffiffiffiffiffi

gaa
p

in their corresponding equations to
first order in spin (see Appendix C).
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VII. GYROSCOPE PRECESSION AND THE
DEGENERATE FRENET-SERRET FRAME

Another possible choice for a natural frame along U
involves the Frenet-Serret procedure, which is a degenerate
case, since U is geodesic. The construction of such a frame
is intimately linked to Marck’s construction of a parallely
propagated frame, which in the case of equatorial plane
motion gives a direct route to evaluating the gyro spin
precession. In the general case the geometric construction is
more involved and requires a rather involved treatment
consisting of the following main steps.

A. Step 1: Decomposing U in Carter’s frame

Consider a generic timelike geodesic with unit tangent
vector (6) decomposed relative to the Carter observers as in
Eq. (32). To make the notation less cumbersome below we
introduce the abbreviations γðU; uðcarÞÞ ¼ γc, νðU; uðcarÞÞ ¼
νc. For later use let us introduce the angular part ν⊤ of the
Carter relative velocity and an orthogonal vector ν⊥ ¼
EðuðcarÞÞ ×uðcarÞ ν

⊤ of the same magnitude in the angular
subspace

ν⊤ ¼ ν2cEðuðcarÞÞ2 þ ν3cEðuðcarÞÞ3 ≡ jjν⊤jjν̂⊤;
ν⊥ ¼ −ν3cEðuðcarÞÞ2 þ ν2cEðuðcarÞÞ3 ≡ jjν⊥jjν̂⊥; ð59Þ

with jjν⊤jj ¼ jjν⊥jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ν2c �2 þ ½ν3c �2

p
. The orthogonal

decomposition into radial and angular directions in the
Carter frame is the starting point for solving the equations
of parallel transport along a geodesic, as done by Marck and
explained geometrically for the simpler case of equatorial
plane geodesics in our previous articles [16,17].

B. Step 2: Boosting Carter’s frame along
the radial direction

Using the components of U with respect to the Carter
observers we define a frame fErad

α g in which we first boost
along the radial direction by the radial component of the
relative 4-velocity of the gyro to obtain a new radially
comoving radial direction in a new local rest space, and
then pick the next frame vector to be along the direction of
the remaining angular component of the Carter relative
velocity, and then the final angular axis orthogonal to the
first one forming a right-handed spatial frame within
LRSErad

0

Erad
0 ¼ γ∥½uðcarÞ þ ν1cEðuðcarÞÞ1�;

Erad
1 ¼ γ∥½ν1cuðcarÞ þ EðuðcarÞÞ1�≡ BðαÞEðuðcarÞÞ1;

Erad
2 ¼ ν̂⊤; Erad

3 ¼ ν̂⊥; ð60Þ

where the boost rapidity α and gamma factor are
defined by

ν1c ¼ tanh α; γ∥ ¼ cosh α ¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðr2 þ KÞ

p : ð61Þ

Introducing spherical coordinates to parametrize the direc-
tion of the relative velocity in LRSuðcarÞ with pole along the
radial velocity direction

hν̂1c; ν̂2c; ν̂3ci ¼ hcosΘ; sinΘ cosΦ; sinΘ sinΦi; ð62Þ

then the rotation to the intermediate frame adapted to the
Carter relative velocity decomposition is

ðErad
1 Erad

2 Erad
3 Þ¼ðBðαÞEðuðcarÞÞ1 EðuðcarÞÞ2 EðuðcarÞÞ3 Þ

×

0
B@
1 0 0

0 cosΦ −sinΦ
0 sinΦ cosΦ

1
CA: ð63Þ

The geodesic 4-velocity in this frame then has the
explicit form (boosting along the Carter angular relative
velocity)

U ¼ cosh βErad
0 þ sinh βErad

2 ; ð64Þ

where

cosh β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ r2

Σ

r
; sinh β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − a2cos2θ

Σ

r
: ð65Þ

From this relation one easily identify the orthogonal
(spatial) direction in this plane

e3 ¼ sinh βErad
0 þ cosh βErad

2 : ð66Þ

C. Step 3: The successive boost in the angular direction
to a degenerate Frenet-Serret frame along U

The final frame adapted to U (i.e., to the gyro world line)
is then obtained by boosting this intermediate frame fErad

a g
into LRSU by a boost along the direction of the angular
relative motion, namely extending the relation (64) to the
full corresponding relative observer boost, which leaves the
remaining two frame vectors fErad

1 ; Erad
3 g invariant

ðU e3 Þ ¼ ðErad
0 Erad

2 Þ
�
cosh β sinh β

sinh β cosh β

�
: ð67Þ

Thus e3 is aligned with the direction of the angular relative
motion between the Carter and gyro local rest spaces,
reducing to the azimuthal direction in the equatorial
plane case.
Marck showed that a unit vector e2 orthogonal to both U

and e3 which is also parallel propagated along U arises
naturally by normalizing the contraction of U with the
Killing-Yano 2-form of the Kerr spacetime. Because this
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2-form is so simply expressed in both the Carter and
intermediate frames (see Appendix A of Ref. [16]), the
resulting vector frame components are obtained by a simple
anisotropic rescaling of the two vector components of U
expressed in the form (64)

e2 ¼
a cos θffiffiffiffi

K
p cosh βErad

1 −
rffiffiffiffi
K

p sinh βErad
3

≡ −ð− sinΞErad
1 þ cosΞErad

3 Þ; ð68Þ

where

cosΞ ¼ rffiffiffiffi
K

p sinh β; sinΞ ¼ a cos θffiffiffiffi
K

p cosh β: ð69Þ

The last frame vector e1 ¼ e2 ×U e3 is then determined by
orthogonality to be

e1 ¼
rffiffiffiffi
K

p sinh βErad
1 þ a cos θffiffiffiffi

K
p cosh βErad

3

≡ cosΞErad
1 þ sinΞErad

3 : ð70Þ

Together the two new frame vectors are obtained by a
rotation in the plane orthogonal to the Carter angular
relative velocity (modulo the time direction and a spatial
reflection) to align the frame with the parallel transported
vector e2.
Note that in the equatorial plane where θ ¼ π=2 and

K ¼ x2, then Ξ ¼ 0 and

cosh β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2

p

r
; sinh β ¼ jxj

r
; ð71Þ

implying that e2 ¼ sgnðxÞeθ̂ and

e1 ¼
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ x2
p

�
r2 þ a2

Δ
_r∂t þ

P
r2
∂r þ

a
Δ
_r∂ϕ

�
;

e3 ¼
jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ x2
p

�
1

r2

�
a
x
ðr2 þ x2Þ þ P

Δ
ðr2 þ a2Þ

�
∂t

þ_r∂r þ
1

r2

�
1

x
ðr2 þ x2Þ þ a

P
Δ

�
∂ϕ

�
: ð72Þ

For simplicity in what follows, we will assume sgnðxÞ ¼ 1
when taking the equatorial plane limit of general expres-
sions, although one can easily take into account the case of
negative x.
This frame fU; e1; e2; e3g is a degenerate Frenet-Serret

frame along U, such that

DU
dτ

¼ 0;
De1
dτ

¼ T e3;

De2
dτ

¼ 0;
De3
dτ

¼ −T e1; ð73Þ

with

T ¼
ffiffiffiffi
K

p

Σ

�
P

r2þK
þ aB
K−a2cos2θ

�

¼
ffiffiffiffi
K

p

Σ2

�
P

cosh2β
þ aB
sinh2β

�

¼−
ffiffiffiffiffiffiffi
KΣ

p � ffiffiffiffi
Δ

p

r2þK
uðcarÞ−

asinθ
K−a2cos2θ

ūðcarÞ

�
·U; ð74Þ

the only surviving (spacetime) torsion of the world line.
Note that by normalizing the timelike vector in square

brackets in the final line of Eq. (74) we can identify a new
timelike vector u0 in the time-azimuthal plane of the tangent
space such that T ¼ −Tu0 ·U ¼ TγðU; u0Þ, namely

u0 ¼ γðu0; uðcarÞÞ½uðcarÞ þ νðu0; uðcarÞÞūðcarÞ�; ð75Þ

where

νðu0; uðcarÞÞ ¼ −
K þ r2

K − a2cos2θ
a sin θffiffiffiffi

Δ
p ; ð76Þ

and

T ¼
ffiffiffiffiffiffiffiffiffiffiffi
KΣΔ

p

ðr2 þ KÞγðu0; uðcarÞÞ
: ð77Þ

The corresponding angular velocity vector is ΩðFSÞ ¼
−T e2, so that

Dea
dτ

¼ ΩðFSÞ ×U ea: ð78Þ

We then find for S ¼ SaðFSÞea

dSaðFSÞ
dτ

ea þ ΩðFSÞ ×U S ¼ 0: ð79Þ

VIII. GYROSCOPE PRECESSION AND PARALLEL
PROPAGATED FRAME

The vectors e1 and e3 were found by Marck “by
inspection” of generic conditions determining vectors in
the plane orthogonal toU and e2, and in contrast with e2 are
not parallel propagated along U. To get a frame fEig (with
E2 ¼ e2) that is parallel propagated, it is enough to rotate
them by an appropriate angle Ψ,

E1 ¼ e1 cosΨ − e3 sinΨ;

E3 ¼ e1 sinΨþ e3 cosΨ; ð80Þ
such that [35,36]

dΨ
dτ

¼ T : ð81Þ
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Equation (81) must be then integrated along the orbit to
determine Ψ modulo an arbitrary initial value.
The components of the spin vector with respect to that

frame S ¼ SaðparÞEa are constant, namely

dSaðparÞ
dτ

¼ 0: ð82Þ

IX. GYROSCOPE PRECESSION WITH RESPECT
TO CARTESIAN AXES AT SPATIAL INFINITY

In the previous sections the precession of a gyroscope
has been computed with respect a triad of axes defined all
along its world line through comparison with the boost of a
spherical coordinate triad associated with either the static
observers or the ZAMOs, or by using the Frenet-Serret
frame feag, all of which are adapted to the local rest space
of the gyro along its orbit and related to each other by time-
dependent rotations whose time derivatives determine their
relative angular velocities. In the first two cases as the gyro
moves in the spherical coordinate grid in a nonradial
direction, the directions of these triads with respect to
spatial infinity rotate. The same is true for the Frenet-Serret
frame since its construction relies on the spherical decom-
position of the relative velocity.
To measure rotation with respect to local directions

which are fixed with respect to spatial infinity, we need
local static Cartesian-like axes whose directions with
respect to spatial infinity along the world line do not
change. Motion relative to the static observers thus leads to
an orbital angular velocity contribution to the precession of
the gyro spin with respect to these latter axes due to its
motion relative to those observers. The boost from LRSm to
LRSU removes the aberration of those directions. An
additional Wigner rotation contributes for comparison with
boosted ZAMO axes due to the additional relative boost,
while the Frenet-Serret frame has an additional rotation
explicitly given below. Thus a crucial rotation from
Cartesian to spherical directions must be taken into
account, leading to an “orbital” contribution to the angular
velocity of a parallel transported spin vector.
Consider the family of static observers which exist only in

the spacetime region outside the black hole ergospherewhere
gtt < 0. The static observer spherical frame of (14) is locked
onto the spatial coordinate grid dragged along by the static
observers, but one can instead lock a triad onto the distant
Cartesian coordinates associated with the Boyer-Lindquist
coordinates by locally rotating the spherical axes to align
themwith axes pointing to fixed directions at spatial infinity.
This Cartesian-like orthonormal frame feAg; A ¼ x, y, z

in the local rest space LRSm is defined by the same rotation
as in flat space spherical coordinates

ð eðmÞ1 eðmÞ2 eðmÞ3 Þ ¼ ð ex ey ez ÞRðθ;ϕÞ ð83Þ
or

eðmÞa ¼ eARðθ;ϕÞAa; ð84Þ

where

Rðθ;ϕÞ ¼

0
B@

sin θ cosϕ cos θ cosϕ − sinϕ

sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0

1
CA ð85Þ

is the usual flat space rotation matrix relating the Cartesian
and spherical coordinate orthonormal frames. To show 3d
plots of numerical geodesic paths in space, it is convenient
to introduce the corresponding Cartesian coordinates

x¼ rsinθcosϕ; y¼ rsinθsinϕ; z¼ rcosθ; ð86Þ

and for polar geodesics described below it is convenient to
allow all real values for θ along them through this
representation.
The frame feAg has its orientation fixed with respect to

the “distant stars.” Then the following derivative defines
proper time rate of change of the relative rotation

R−1 _R¼

0
B@

0 −_θ −sinθ _ϕ
_θ 0 −cosθ _ϕ

sinθ _ϕ cosθ _ϕ 0

1
CA≡Ωi

ðorbÞLi; ð87Þ

where the three antisymmetric matrix generators of the
active action of the rotation group are defined by ½Li�jk ¼
ϵjik in terms of the Levi-Civita symbol and

ΩðorbÞ ¼ Ωr̂
ðorbÞeðmÞ1 þΩθ̂

ðorbÞeðmÞ2 þΩϕ̂
ðorbÞeðmÞ3

¼ cos θ _ϕeðmÞ1 − sin θ _ϕeðmÞ2 þ _θeðmÞ3: ð88Þ

Then the proper time derivative of components with respect
to the spherical frame of any vector defined along the
gyroscope world line are related to those with respect to the
Cartesian-like frame feAg by the following “orbital”
angular velocity

_SA ¼ ðRA
iSiÞ· ¼ RA

ið _Si þ ϵijkΩ
j
ðorbÞS

kÞ: ð89Þ

This describes the orbital angular velocity along a geodesic
of the static observer spherical frame relative to the
distantly nonrotating celestial sphere, locally represented
by the static observer Cartesian-like frame.
Boosting both the spherical frame to fBðU;mÞeðmÞag

and the Cartesian-like frame to fBðU;mÞeAg, the same
rotation applies either before or after the boost, so the angular
velocity has the same components in the boosted frame

ΩðorbÞðU;mÞ ¼ cos θ _ϕEðU;mÞ1 − sin θ _ϕEðU;mÞ2
þ _θEðU;mÞ3: ð90Þ

Agyroscopemoving along its world line then precesses with
respect to these latter axes in LRSU by the angular velocity
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ΩðprecÞ ¼ ΩðorbÞðU;mÞ −ΩðU;mÞ; ð91Þ
since the angular velocity of the spin vector with respect to
the boosted spherical axes is −ΩðU;mÞ.
Typical examples of precession along general bound

and unbound geodesic orbits are shown in Figs. 1 and 2,
respectively. It is important to keep in mind for

interpretational purposes that modulo a boost, the angular
velocity component indices 1,2,3 are aligned with the
r; θ;ϕ directions. Special orbits are considered too (see
Figs. 3–5). The Cartesian axes shown in the plots are
associated with the naive Cartesian coordinates related to
the Boyer-Lindquist spherical coordinates by the same
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FIG. 1. An example of a general bound geodesic is shown in panel (a). The black hole parameters are chosen so that M ¼ 1 and
a=M ¼ 0.5. The orbital parameters following initial values are given by E ¼ 0.95, L=M ¼ 3, K=M2 ¼ 8 with motion starting at τ ¼ 0

from the point (r0=M ¼ 8, θ0 ¼ π=2, ϕ0 ¼ 0) radially ingoing (ϵr ¼ −1, _rð0Þ ≈ −0.1314) and θ increasing (ϵθ ¼ 1, _θð0Þ ≈ 0.01991).
The r-motion is confined between rmin=M ≈ 4.7451 and rmax=M ≈ 13.1587, whereas the θ-motion between θmin ≈ 1.1695 and
θmax ¼ π − θmin ≈ 1.9721. The corresponding evolution of the three components (with respect to the frame fEðU;mÞig) of the
gyroscope precession angular velocity ΩðprecÞ along the orbit are shown in panel (b) for about five revolutions.
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FIG. 2. An example of general unbound geodesic is shown in panel (a). The black hole parameters are chosen so that M ¼ 1 and
a=M ¼ 0.5. The orbital parameters following initial values are given by E ¼ 0.9, L=M ¼ 3, K=M2 ¼ 10.5 with motion starting at τ ¼ 0

from the point (r0=M ¼ 8, θ0 ¼ π=2,ϕ0 ¼ 0) radially ingoing (ϵr ¼ −1, _rð0Þ ≈ −0.3210) and θ increasing (ϵθ ¼ 1, _θð0Þ ≈ 0.03124). The
numerical integration of the geodesic equations is completed forward and backward in proper time in order to cover the whole scattering
process. The corresponding evolution of the components of the gyroscope precession frequency along the orbit are shown in panel (b).

BINI, GERALICO, and JANTZEN PHYSICAL REVIEW D 95, 124022 (2017)

124022-12



definitions as in flat space, namely (86). The black hole
outer horizon is shown as a gray sphere at the origin. As a
general feature we see that the frame components of the
precession angular velocity have oscillating behavior with
varying amplitude (Figs. 1–2), except for the case of
spherical orbits (Figs. 3–4), where the amplitude is mainly
constant. At the ergosphere where the static observers have
their horizon the jΩi

ðprecÞj increase due to the diverging of
the overall γ factor in Eqs. (53) (see Fig. 5).

If instead of EðU;mÞa one uses the Frenet-Serret frame
feag related by

ea ¼ EðU;mÞRb
a; ð92Þ

the following relation holds

DEðU;mÞa
dτ

¼ Deb
dτ

½R−1�ba þ EðU;mÞb½R _R−1�ba; ð93Þ
so that introducing
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FIG. 3. An example of a spherical orbit at r ¼ r0 is shown in panel (a) for the choice of parametersM ¼ 1, a=M ¼ 0.5, r0=M ¼ 8 and
K=M2 ¼ 9, implying that E ≈ 0.9446, L=M ≈ 2.6880 and θ− ≈ 0.9266. The inclination angle is ι ≈ 36.9583 degrees. Initial conditions
are chosen to be θð0Þ ¼ π=2 and ϕð0Þ ¼ 0 with ϵθ ¼ −1, so that _θð0Þ ≈ −0.03160. The corresponding evolution of the components of
the gyroscope precession frequency along the orbit are shown in panel (b).
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FIG. 4. An example of a polar orbit at r ¼ r0 is shown in panel (a) for the choice of parameters M ¼ 1, a=M ¼ 0.5 and r0=M ¼ 8,
implying that E ≈ 0.9484 and K=M2 ≈ 12.9604. Initial conditions are chosen to be θð0Þ ¼ π=2 and ϕð0Þ ¼ 0 with ϵθ ¼ −1, so that
_θð0Þ ≈ −0.05576. The polar angle θ is allowed to decrease here without limit along the orbit since _θ never changes its sign, identifying
values outside the usual range ½0; π� in the obvious way. The corresponding evolution of the components of the gyroscope precession
angular velocity along the orbit are shown in panel (b).

GYROSCOPE PRECESSION ALONG GENERAL TIMELIKE … PHYSICAL REVIEW D 95, 124022 (2017)

124022-13



½R _R−1�ba ¼ ϵbcaΩR
c; ΩR ¼ ΩR

aEðU;mÞa ð94Þ
and using Eq. (78) for the first term in (93), one has

ΩðU;mÞ ×U EðU;mÞa ¼ ½ΩðFSÞ þ ΩR� ×U EðU;mÞa: ð95Þ

Tedious direct evaluation of this rotation matrix following the sequence of boosts and rotations described above in the
construction of the Frenet-Serret frame yields the result

R1
1 ¼ −

γΣ1=2

ð1þ γÞEðKΔÞ1=2
�
a2 cos θ sin θ coth β_r _θ−

r tanh β
Σ2

�
ΔΣcosh2β þ P

�
aBþ EΣ

γ

���
;

R2
1 ¼ −

γΣ1=2

ð1þ γÞEK1=2

�
r tanh β_r _θþ a cot θ coth β

Σ2

�
aΣsin2θsinh2β þ B

�
Pþ EΣ

γ

���
;

R3
1 ¼

γ

ð1þ γÞEðΔKÞ1=2
�
r tanh β
sin θ

_r

�
asin2θ −

EB
γ

�
þ a cos θ coth β _θ

�
Δþ EP

γ

��
;

R1
2 ¼

aγΣ1=2

ð1þ γÞEðKΔÞ1=2
�
r sin θ_r _θþ cos θ

Σ2

�
ΔΣcosh2β þ P

�
aBþ EΣ

γ

���
;

R2
2 ¼ −

γΣ1=2

ð1þ γÞEK1=2

�
a cos θ_r _θ−

r
Σ2 sin θ

�
aΣsin2θsinh2β þ B

�
Pþ EΣ

γ

���
;

R3
2 ¼

γ

ð1þ γÞEðΔKÞ1=2
�
a cot θ_r

�
asin2θ −

EB
γ

�
− r_θ

�
Δþ EP

γ

��
;

R1
3 ¼ −

γ_r

ð1þ γÞEðΔΣÞ1=2 cosh β sinh β
�
aB −

EΣ
γ

sinh2β

�
;

R2
3 ¼

γ _θ

ð1þ γÞEΣ1=2 cosh β sinh β

�
Pþ EΣ

γ
cosh2β

�
;

R3
3 ¼

γ

ð1þ γÞEΣΔ1=2 sin θ cosh β sinh β

��
Δþ EP

γ

�
B − sinh2βð2MrB − ΣLÞ

�
: ð96Þ

The components of ΩR can then be evaluated using the geodesic equations to replace second proper time derivatives in _R−1

in terms of first time derivatives and constants of the motion.
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FIG. 5. An example of an orbit with fixed θ ¼ θ0 is shown in panel (a) for the choice of parametersM ¼ 1, a=M ¼ 0.5, θ0 ¼ π=6 and
K=M2 ¼ 1, implying that E ≈ 1.9415 and L=M ≈ −0.2080. Initial conditions are chosen to be rð0Þ=M ¼ 20 and ϕð0Þ ¼ 0 with
ϵr ¼ −1, so that _rð0Þ ≈ −1.6939. The integration stops at the ergosphere. The corresponding evolution of the components of the
gyroscope precession angular velocity along the orbit is shown in panel (b).
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For motion confined to the equatorial plane, this rotation
matrix reduces to a rotation in the r − ϕ plane of the tangent
space

ðRb
aÞ ¼

0
B@

cosΛ 0 sinΛ
0 1 0

− sinΛ 0 cosΛ

1
CA; ð97Þ

with1

cosΛ ¼ γ

ð1þ γÞEr2Δ1=2ðr2 þ x2Þ1=2

×

�
Δðr2 þ x2Þ − ðax − r2EÞ

�
axþ Er2

γ

��

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðr2 þ x2Þ

p
�
r2N þ axþ ða − NxÞ2

Eþ N

�
;

sinΛ ¼ γr_r

ð1þ γÞEΔ1=2ðr2 þ x2Þ1=2
�
a −

Ex
γ

�
; ð98Þ

where N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
.

In this special case, the only nonvanishing component
(54) of the associated angular velocity can then be written
as

ΩðU;mÞ2jθ¼π=2 ¼
dΛ
dτ

− T ; ð99Þ

with T ¼ ðaþ ExÞ=ðr2 þ x2Þ. Finally, the precession
angular velocity is given by Eq. (91), which in the case
of equatorial plane motion (where EðU;mÞ2 ¼ e2 ¼ eθ̂)
reduces to

ΩðprecÞjθ¼π=2¼−
�
L−2Mx=r

Δ
−
aþEx
r2þx2

þdΛ
dτ

�
e2: ð100Þ

The last term in this expression corresponds to the angular
velocity of the Wigner rotation discussed in Appendix C of
Ref. [16]. Note the opposite sign when comparing
Eq. (100) with the analogous equations in Ref. [16]]
Eqs. (41) and (44)] and in Ref. [17] [Eqs. (48) and
(50)], which refer to the counterclockwise angular velocity
in the plane, corresponding to the component of this vector
along the upward direction orthogonal to the equatorial
plane ez ¼ −eθ̂ ¼ −e2.

X. CONCLUDING REMARKS

Generalizing our understanding of the simpler case of
planar geodesic motion, we have evaluated the precession

angular velocity of the parallel transported spin vector of a
gyroscope which moves along a general timelike geodesic
in the Kerr spacetime. The precession is measured with
respect to the celestial sky at spatial infinity represented
locally by the static observer Boyer-Lindquist coordi-
nate grid.
We have defined various frames in the local rest

space along the gyro world line by boosting natural frames
adapted to special families of observers linked to the
symmetries of the Kerr spacetime. In particular, we have
considered the usual static (distantly nonrotating) observers
and the ZAMOs (locally nonrotating observers), and the
boosts of their natural spherical frames, as well as the Frenet-
Serret frame used in the construction of Marck’s parallely
transported frame along a general timelike geodesic world
line.
We have explicitly computed the components of the

gyroscope precession with respect a frame in the local
rest space of the gyro world line which represents axes
locked to the distant fixed Cartesian directions, removing
the aberration of those directions due to the relative
motion of the gyro and the static grid. We then illustrated
these general results by discussing several examples of both
general bound and unbound nonequatorial plane orbits as
well as special cases of orbits at constant radius (spherical
and polar) and those with constant polar angle θ.
By allowing the initial observer family to be unspeci-

fied in our discussion in the genuine spirit of relativity,
we were able to perform an equivalent evaluation of the
spin-precession angular velocity for the ZAMO frame.
This leads to a geometrical interpretation of the various
contributions to the spin-orbit Hamiltonian derived in
Ref. [4]. We have also clarified the construction of
Marck’s parallely transported frame along a timelike
geodesic in terms of the Frenet-Serret frame obtained
by two successive boosts of the natural spherical frame
from the local rest space of the Carter observers, which
are key to the separation of the geodesic equations of
motion. This Frenet-Serret frame played a simplifying
role in the analysis of the special case of bound and
unbound timelike geodesic orbits confined to the equa-
torial plane, the natural extension of which is the present
article. General timelike geodesic motion significantly
complicates matters, and only an approach which uses
well defined geometrical objects (transport laws, projec-
tions, boosts, etc.) can bring a clearer understanding of
the physical properties underlying spin precession.
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APPENDIX A: STATIC AND ZAMO
OBSERVER FAMILIES

1. Kinematical properties of static observers

The static observers are accelerated, with 4-acceleration

aðmÞ ¼ M
ffiffiffiffi
Δ

p ðr2 − a2cos2θÞ
Σ3=2ðΔ − a2sin2θÞ er̂ −

2Mra2 sin θ cos θ

Σ3=2ðΔ − a2sin2θÞ eθ̂;

ðA1Þ
and are locally rotating, with vorticity vector

ωðmÞ¼−
2aMr

ffiffiffiffi
Δ

p
cosθ

Σ3=2ðΔ−a2sin2θÞer̂−
Maðr2−a2cos2θÞsinθ
Σ3=2ðΔ−a2sin2θÞ eθ̂;

ðA2Þ

but the congruence of their world lines is not
expanding, i.e., has vanishing expansion θðmÞ ¼ 0,
due to the alignment of their 4-velocity with the time-
like Killing direction (see, e.g., Ref. [26] for a detailed
description of the kinematical properties of a congru-
ence of world lines, including acceleration, vorticity and
expansion).
For completeness we review properties of the static

observer adapted frame including the transport laws
along the geodesic congruence U decomposed as in
Eqs. (15)–(16). The components of the spatial gravita-
tional force, the Fermi-Walker and spatial curvature
rotation vectors [see Eqs. (43)–(46) with u ¼ m] are
given by

FðGÞ
ðfw;U;mÞ

1 ¼ γðU;mÞMðr2 − a2cos2θÞ
Σ3=2ðΣ − 2MrÞ ½a sin θνðU;mÞ3 −

ffiffiffiffi
Δ

p
�;

FðGÞ
ðfw;U;mÞ

2 ¼ γðU;mÞ 2aMr cos θ

Σ3=2ðΣ − 2MrÞ ½a sin θ −
ffiffiffiffi
Δ

p
νðU;mÞ3�;

FðGÞ
ðfw;U;mÞ

3 ¼ γðU;mÞ aM

Σ3=2ðΣ − 2MrÞ ½−ðr
2 − a2cos2θÞ sin θνðU;mÞ1 þ 2r

ffiffiffiffi
Δ

p
cos θνðU;mÞ2�: ðA3Þ

Moreover

ωðfw;mÞ1 ¼
2aMr cos θ

ffiffiffiffi
Δ

p

Σ3=2ðΣ − 2MrÞ ; ωðfw;mÞ2 ¼
aM sin θðr2 − a2cos2θÞ

Σ3=2ðΣ − 2MrÞ ; ðA4Þ

and

ωðsc;U;mÞ1 ¼ −
cos θνðU;mÞ3

Σ3=2ðΣ − 2MrÞ sin θ ½Σ
2 − 4MrΣþ 2Mrðr2 þ a2Þ� þ 4aMr cos θ

ffiffiffiffi
Δ

p

Σ3=2ðΣ − 2MrÞ ;

ωðsc;U;mÞ2 ¼
νðU;mÞ3ffiffiffiffi

Δ
p

Σ3=2ðΣ − 2MrÞ ½ðr −MÞΣ2 −Mðr2 − a2ÞΣ − 2Mr2Δ�;

ωðsc;U;mÞ3 ¼ −
1

Σ3=2 ½a2 sin θ cos θνðU;mÞ1 þ r
ffiffiffiffi
Δ

p
νðU;mÞ2�: ðA5Þ

2. Kinematical properties of ZAMOs

We record the key properties of ZAMOs whose
4-velocity is orthogonal to the Boyer-Lindquist time
coordinate hypersurfaces

n≡ et̂ ¼ N−1ð∂t − Nϕ∂ϕÞ; ðA6Þ

with corresponding 1-form

n♭ ¼ −ωt̂ ¼ −Ndt; ðA7Þ

where N ¼ ð−gttÞ−1=2 and Nϕ ¼ gtϕ=gϕϕ are the lapse and
shift functions, respectively.

The accelerated ZAMOs are locally nonrotating in the
sense that their vorticity vector ωðnÞ vanishes, but they
have a nonzero expansion tensor θðnÞ with vanishing
expansion scalar θðnÞαα so that it agrees with the shear
tensor. Its nonzero components can be described by a shear
vector θϕ̂ðnÞα

θðnÞ ¼ eϕ̂ ⊗ θϕ̂ðnÞ þ θϕ̂ðnÞ ⊗ eϕ̂

θϕ̂ðnÞα ¼ θðnÞβ̂ ϕ̂eβ̂α: ðA8Þ

The nonzero ZAMO kinematical quantities (acceleration
aðnÞ ¼ ∇nn and shear tensor) as well as the curvature
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vectors associated with the diagonal metric coefficients
[26,28,29,43] only have nonzero components in the r − θ2-
plane of the tangent space, i.e.,

aðnÞ ¼ aðnÞr̂er̂ þ aðnÞθ̂eθ̂
¼ ∂ r̂ðlnNÞer̂ þ ∂ θ̂ðlnNÞeθ̂;

θϕ̂ðnÞ ¼ θðnÞr̂ϕ̂er̂ þ θðnÞθ̂ ϕ̂eθ̂
¼ −

ffiffiffiffiffiffiffigϕϕ
p
2N

ð∂ r̂Nϕer̂ þ ∂ θ̂N
ϕeθ̂Þ;

κðxi; nÞ ¼ κðxi; nÞr̂er̂ þ κðxi; nÞθ̂eθ̂
¼ −½∂ r̂ðln

ffiffiffiffiffi
gii

p Þer̂ þ ∂ θ̂ðln
ffiffiffiffiffi
gii

p Þeθ̂�: ðA9Þ

We have then three κðxi; nÞ “coordinate” curvature vectors:
κðr; nÞi, κðθ; nÞi and κðϕ; nÞi, all belonging to the r̂ − θ̂
plane. In the static limit (as it is the case of a Schwarzschild
black hole) Nϕ → 0 and the expansion vector θϕ̂ðnÞ
vanishes. We list below the nonvanishing components of
the kinematical fields: acceleration

aðnÞr̂ ¼ −
Mffiffiffiffi

Δ
p

Σ3=2A
fa2cos2θ½ðr2 þ a2Þ2 − 4Mr3�

−r2½ðr2 þ a2Þ2 − 4a2Mr�g;

aðnÞθ̂ ¼ −
2 sin θ cos θMra2ðr2 þ a2Þ

Σ3=2A
; ðA10Þ

with A ¼ ðr2 þ a2Þ2 − a2Δsin2θ, shear tensor

θðnÞr̂ ϕ̂ ¼ −
aM sin θ

Σ3=2A
½r2ð3r2 þ a2Þ

þ a2ðr2 − a2Þcos2θÞ�;

θðnÞθ̂ ϕ̂ ¼ 2ra3Msin2θ cos θ
ffiffiffiffi
Δ

p

Σ3=2A
; ðA11Þ

and curvature vectors

κðr; nÞr̂ ¼ −
rΔ − ðr −MÞΣ

Σ3=2
ffiffiffiffi
Δ

p ;

κðr; nÞθ̂ ¼ a2 sin θ cos θ

Σ3=2 ;

κðθ; nÞr̂ ¼ −
r

ffiffiffiffi
Δ

p

Σ3=2 ;

κðθ; nÞθ̂ ¼ κðr; nÞθ̂;

κðϕ; nÞr̂ ¼ −
rΣ2 −Ma2sin2θðr2 − a2cos2θÞ

Σ3=2A

ffiffiffiffi
Δ

p
;

κðϕ; nÞθ̂ ¼ −
ðr2 þ a2ÞA − a2sin2θΔΣ

Σ3=2A sin θ
cos θ: ðA12Þ

The nonvanishing components of the shear vector
enter the transport law for the spatial triad eâ along the
world line of n, i.e.,

PðnÞ∇ner̂ ¼ ωðfw;nÞθ̂eϕ̂;

PðnÞ∇neθ̂ ¼ −ωðfw;nÞ r̂eϕ̂;

PðnÞ∇neϕ̂ ¼ −ωðfw;nÞθ̂er̂ þ ωðfw;nÞ r̂eθ̂; ðA13Þ

where ωðfw;nÞ is the Fermi-Walker angular velocity with
components

ωðfw;nÞ r̂ ¼ θðnÞθ̂ ϕ̂; ωðfw;nÞθ̂ ¼ −θðnÞr̂ ϕ̂: ðA14Þ

In terms of the cross product, we have

PðnÞ∇neâ ¼ −ωðfw;nÞ ×n eâ: ðA15Þ

A timelike test particle’s 4-velocity U can be
decomposed with respect to the ZAMOs as in
Eq. (23), i.e., U ¼ γðU; nÞðnþ νðU; nÞÞ. Evaluating
the derivative along U of the ZAMO adapted frame (20)
leads to

PðnÞ∇Ueâ ¼ −γðU; nÞ½ωðfw;nÞ þ ωðsc;U;nÞ� ×n eâ;

ðA16Þ

with

ωðsc;U;nÞ r̂ ¼ νðU; nÞϕ̂κðϕ; nÞθ̂;
ωðsc;U;nÞθ̂ ¼ −νðU; nÞϕ̂κðϕ; nÞr̂;
ωðsc;U;nÞϕ̂ ¼ −½νðU; nÞr̂κðr; nÞθ̂ − νðU; nÞθ̂κðθ; nÞr̂�:

ðA17Þ

Finally, the Fermi-Walker spatial gravitational force
defining the geodesic precession angular velocity [see
Eqs. (43)–(46) with u ¼ n] is given by

FðGÞ
ðfw;U;nÞ ¼ −∇Un ¼ −γðU; nÞ½aðnÞ þ θðnÞ ∟ νðU; nÞ�:

ðA18Þ

APPENDIX B: MARCK’S FRAME, TIDAL
MATRICES AND DIAGONALIZATION

PROPERTIES

The nonvanishing components of the electric part of the
Riemann tensor EðUÞαβ ¼ RαμβνUμUν in the parallel
propagated frame fEig computed explicitly in Ref. [44]
are given by
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EðUÞ11 ¼ −
3Mr
Σ3K

J3sinh2βcosh2βcos2ΨþMr
Σ3

J5;

EðUÞ12 ¼ −
3Ma cos θ

Σ3K
sinh β cosh βðJ1cosh2β − 4r2J4Þ cosΨ;

EðUÞ13 ¼ −
3Mr
Σ3K

J3sinh2βcosh2β cosΨ sinΨ;

EðUÞ22 ¼
Mr
Σ3K

½3J3cosh4β − cosh2βðJ1 − 8a2cos2θJ2Þ þ 2r2J5�;

EðUÞ23 ¼ −
3Ma cos θ

Σ3K
sinh β cosh βðJ1cosh2β − 4r2J4Þ sinΨ;

EðUÞ33 ¼
3Mr
Σ3K

J3sinh2βcosh2βcos2Ψ −
Mr
Σ3K

½3J3cosh4β − 4cosh2βðJ3 þ 2a2cos2θJ4Þ þ r2J5�; ðB1Þ

where

J1 ¼ 5r4 − 10r2a2cos2θ þ a4cos4θ;

J2 ¼ 3r2 − a2cos2θ;

J3 ¼ r4 − 10r2a2cos2θ þ 5a4cos4θ ¼ J1 − 4J4;

J4 ¼ r2 − a2cos2θ;

J5 ¼ r2 − 3a2cos2θ: ðB2Þ
The nonvanishing components of the magnetic part of the Riemann tensor HðUÞαβ ¼ �RαμβνUμUν in the parallel

propagated frame are

HðUÞ11 ¼
aM cos θ

Σ3

�
J2 −

3J1
K

sinh2βcosh2βcos2Ψ
�
;

HðUÞ12 ¼
3Mr
Σ4

sinh β cosh β cosΨ
�
J3 −

a2cos2θ
K

J1

�
;

HðUÞ13 ¼ −
3aM cos θ

Σ3K
sinh2βcosh2β sinΨ cosΨJ1;

HðUÞ22 ¼
3aM cos θ

Σ5K

�
ðK2 − r2a2cos2θÞJ1 þ

K
3
½J1J2 − r2ðJ1 − 3J3 þ 4ΣJ4Þ�

�
;

HðUÞ23 ¼
3Mr
Σ4

sinh β cosh β sinΨ
�
J3 −

a2cos2θ
K

J1

�
;

HðUÞ33 ¼
3aM cos θ

Σ3K

��
sinh2βcosh2βcos2Ψ −

K2 − r2a2cos2θ
Σ2

�
J1

−
2K
3Σ2

½J1J2 − r2ðJ1 þ 4ΣJ4Þ�
�
: ðB3Þ

Note that the sign of the magnetic part of the
Riemann tensor depends on the sign convention chosen
for the unit volume 4-form used to define the duality �
operation.
The components in the Frenet-Serret frame feig

correspond to setting Ψ ¼ 0, for which both of these
symmetric tensors reduce to block diagonal form with e3
as an eigenvector. In that case the only off-diagonal
component is

EðUÞ12jΨ¼0

¼ −
3Ma cos θ

Σ3K
sinh β cosh βðJ1cosh2β − 4r2J4Þ: ðB4Þ

This vanishes on the equatorial planewhere cos θ ¼ 0, where
the Marck frame diagonalizes the electric part of the
curvature, while the magnetic part has the single nonvanish-
ing component HðUÞ12 there. The eigenvector e3 ¼ e1 ×U
e2 is just the cross product of the direction of the angular part
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of the Carter frame relative velocity with the parallel trans-
ported direction associated with the Killing form.

APPENDIX C: REVISITING THE
CONSTRUCTION OF THE HAMILTONIAN

OF REF. [4]

We reexamine here the construction of the Hamiltonian
of a spinning particle in a curved spacetime to linear order
in the spin given in Ref. [4], taking advantage of the ZAMO
relative observer point of view and its associated spacetime
splitting techniques.
Let fxμg ¼ ft; xig be the Boyer-Lindquist coordinates

and let ωα̂ be the dual of the ZAMO frame eα̂ given
explicitly in Eqs. (18), (20) but using the abbreviated
notation of Appendix B, namely

ωt̂ ¼ −n♭ ¼ Ndt; ωr̂ ¼ ffiffiffiffiffiffi
grr

p
dr;

ωθ̂ ¼ ffiffiffiffiffiffi
gθθ

p
dθ; ωϕ̂ ¼ ffiffiffiffiffiffiffi

gϕϕ
p ðdϕþ NϕdtÞ; ðC1Þ

The connection components of this orthonormal frame are
defined by

Γγ̂
α̂ β̂ ¼ ηγ̂ δ̂Γγ̂ α̂ β̂ ¼ ωγ̂ð∇eα̂eβ̂Þ ¼ −ð∇eα̂ω

γ̂Þðeβ̂Þ ðC2Þ

and introduce the coordinate component object

Eλμν ¼ −
1

2
Γγ̂ α̂ β̂ω

α̂
μω

γ̂
λω

β̂
ν ¼

1

2
ηα̂ β̂ðωα̂Þμðωβ̂Þν;λ; ðC3Þ

which is antisymmetric in its last two indices.
The unconstrained Hamiltonian H and the momenta

Pi conjugate to xi are defined in terms of the spatial
coordinate components pi of the particle’s 4-momentum
by

H ¼ −pt − EtμνSμν; Pi ¼ pi þ EiμνSμν; ðC4Þ

respectively. The coordinate component pt of the
4-momentum can be expressed in terms of the mass
and pi by using the normalization condition p ·p¼−m2

(where m is the particle’s rest mass) as

pt ¼ Nϕpϕ − N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð3Þgijpipj

q
; ðC5Þ

where ð3Þgij is the inverse ZAMO spatial 3-metric
related to the inverse of the full metric by
ð4Þgij ¼ ð3Þgij − N−2NiNj, so that the unconstrained
Hamiltonian becomes

H ¼ −Nϕpϕ þ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð3Þgijpipj

q
− EtμνSμν: ðC6Þ

The spin tensor is assumed to satisfy the generalized
Newton-Wigner supplementary conditions

Sμνϖν ¼ 0; ðC7Þ

where the timelike Newton-Wigner vector ϖ is given by

ϖ ¼ pþmn: ðC8Þ

The conditions (C7) have been shown in Ref. [4] to yield
canonical variables to first order in spin. Recalling that
p ¼ mU, the vector ϖ can be also written as

ϖ ¼ mðU þ nÞ ¼ jjϖjjϖ̂; ðC9Þ

where

ϖ̂ ¼ γϖ̂ðnþ νϖ̂Þ

νϖ̂ ¼ γðU; nÞ
1þ γðU; nÞ νðU; nÞ

γϖ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðU; nÞ þ 1

2

r
; ðC10Þ

is a unit timelike vector and jjϖjj ¼ 2mγϖ̂.
The spin tensor can then be fully represented by a spatial

vector (with respect to ϖ̂)

Sðϖ̂Þλ ¼ 1

2
ηðϖ̂ÞλμνSμν ¼ ½�ðϖ̂ÞS�λ; ðC11Þ

where ηðϖ̂Þμνλ ¼ ησμνλϖ̂
σ is the spatial unit volume 3-form

(with respect to ϖ̂). Expressing this spin vector in the
ZAMO frame, namely

Sðϖ̂Þ ¼ St̂nþ Sr̂er̂ þ Sθ̂eθ̂ þ Sϕ̂eϕ̂; ðC12Þ

with

St̂ ¼ νr̂ϖ̂S
r̂ þ νθ̂ϖ̂S

θ̂ þ νϕ̂ϖ̂S
ϕ̂; ðC13Þ

then the ZAMO frame components of the spin tensor are
found to be

Sâ b̂ ¼ ϵâ b̂ ĉS
ĉðϖ̂Þ; St̂ â ¼ 1

ϖ · n
Sâ b̂ϖb̂: ðC14Þ

Here

ϖ · n ¼ −
	
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð3Þgijpipj

q 


¼ −mð1þ
ffiffiffiffi
Q

p
Þ þ 1ffiffiffiffi

Q
p ð3ÞgijP̂iEjμνSμν; ðC15Þ

to first order in spin, with
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Q ¼ 1þ ð3ÞgijP̂iP̂j ¼ 1þ P̂2
r̂ þ P̂2

θ̂
þ P̂2

ϕ̂
;

P̂i ¼
Pi

m
; ðC16Þ

so that ϖ̂ · n ∼ −mð1þ γðU; nÞÞ in Eq. (C14).
The constrained Hamiltonian H̄ is then obtained by

inserting the generalized Newton-Wigner supplementary
conditions (C7) into the unconstrained Hamiltonian (C6),
and replacing the coordinate components of the particle’s
4-momentum by the corresponding canonical momenta.
The latter are related to each other by (C4), which
implies

Pâ ¼ mγðU; nÞνðU; nÞâ − θðnÞâ b̂½νϖ̂ ×n Sðϖ̂Þ�b̂
þ ½κðxa; nÞ ×n Sðϖ̂Þ�â; ðC17Þ

which can be easily inverted to first order in the spin to
express νðU; nÞâ in terms of Pâ. Finally, the constrained

Hamiltonian (with canonical variables fxi; Pj; Sk̂g) to
first order in the spin turns out to be

H̄ ¼ H̄NS þ H̄S; H̄S ¼ −WλEλμνSμν; ðC18Þ
where

H̄NS ¼ mð−NϕP̂ϕ þ N
ffiffiffiffi
Q

p
Þ ðC19Þ

is the Hamiltonian for a nonspinning particle and

W ¼ N

�
nþ P̂âffiffiffiffi

Q
p eâ

�
; W ·W ¼ −

N2

Q
: ðC20Þ

Note that both U and W ¼ ðN=γðU; nÞÞU are tangent to
the spinning particle world line, but with a different para-
metrization: Uα ¼ dxα=dτ uses proper time, whereas
Wα ¼ dxα=dt the coordinate time. Finally, a straightforward
calculation shows that the spin-dependent Hamiltonian can
be written as H̄S ¼ H̄âSâ, with H̄â given by Eq. (58).
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