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Gyroscope precession along general timelike geodesics
in a Kerr black hole spacetime
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The precession angular velocity of a gyroscope moving along a general geodesic in the Kerr spacetime is
analyzed using the geometric properties of the spacetime. Natural frames along the gyroscope world line
are explicitly constructed by boosting frames adapted to fundamental observers. A novel geometrical
description is given to Marck’s construction of a parallel propagated orthonormal frame along a general
geodesic, identifying and clarifying the special role played by the Carter family of observers in this general
context, thus extending previous discussion for the equatorial plane case.
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I. INTRODUCTION

The recent discovery of gravitational waves by LIGO [1,2]
has emphasized that the most promising sources of gravi-
tational radiation are coalescing binary systems made of
spinning compact objects during the whole process (inspiral,
merger, and ringdown). As a consequence, the relativistic
community has experienced a renewed interest in all those
rotational effects associated with the gravitational interaction
between two such bodies, namely orbital, spin-orbital, and
spin-spin effects, in order to build more and more accurate
templates for gravitational wave emission profiles. Spin
couplings have been computed (only) by using standard
approximation schemes, like post-Newtonian (PN) theory
through a certain PN order both in the framework of
Hamiltonian dynamics [3,4], perturbation theory [5—8] (only
for motion along circular and eccentric equatorial orbits
around a nonspinning black hole), and by using effective
field theory techniques [9-11]. In all cases a key role is
played by the spin precession angular velocity ) of one
spinning body with spin vector S in the gravitational field of
its companion. For instance, in the Hamiltonian description
this coupling is taken into account by the spin-orbit
Hamiltonian Hgp = Q(prec) - S. The problem of determining
H g as afunction of the coordinates, conjugate momenta and
spin has been successfully addressed for ADM coordinates in
Ref. [3], followed by Ref. [4], where the constrained
Hamiltonian of a spinning test particle was derived to linear
order in the particle’s spin by using standard Boyer-Lindquist
coordinates. The latter work has been recently extended in
Ref. [12] to include also quadratic in spin interactions.

A general relativistic model describing the interaction of a
small (test) spinning body with a spinning black hole is
provided by the Mathisson-Papapetrou-Dixon (MPD) model
[13—15], which in the pole-dipole approximation accounts
for spin couplings only at linear order in the particle’s spin.
An iterative prescription, implicit in the MPD construction,
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then allows the incorporation of the quadrupole moment (and
higher multipole moments) as well as taking into account
affects which are higher order in spin. According to such a
model, in the pole-dipole approximation the orbit of a
spinning object deviates from geodesic motion due to
acceleration effects arising from spin-curvature couplings,
the spin vector being parallel transported along the path.
Therefore, the evolution of the spin vector to first order in
spin s that of a test gyroscope moving along a geodesic of the
background spacetime, and Q) is the precession angular
velocity measured with respect to a Cartesian-like frame
(defined all along its orbit) whose axes are aligned with the
“fixed stars” at spatial infinity. In this work we will study the
precession of a test gyroscope orbiting a Kerr black hole in
generic geodesic motion, completing a program developed in
a series of previous papers [16,17].

To make a long story short and give a more precise
context to our research we recall that gyroscope precession
has attracted attention since the pioneering works of Lense
and Thirring [18-20] and Schiff [21], leading to the Gravity
Probe B mission [22,23] which launched a “test gyroscope”
moving along a geodesic with its spin vector parallely
propagated along it. Most theoretical investigations of this
phenomenon have been limited to gyroscopes moving
along circular equatorial plane orbits [24-30] due to their
extremely simple geometrical properties. More recently, the
generalization of previous results to both bound and
unbound equatorial plane eccentric geodesic orbits in a
Kerr spacetime has been analyzed in Refs. [16,17]. For
gyroscopes in generic orbits around a Kerr black hole, very
little work has been done but Ref. [31] deserves mention.
This (mostly numerical) study is performed in the fre-
quency domain using functional techniques developed in
Ref. [32] for bound geodesics, which are characterized by
three fundamental frequencies [33,34].

The main difficulty in extending the results for planar
motion is that one must deal with generic rotations instead
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of the simpler planar rotations, complicating all the calcu-
lations. For equatorial plane orbits where the spin precession
reduces to an azimuthal rotation characterized by a single
scalar angular velocity directly interpretable as a frequency,
this was accomplished simply by using the readily available
frame found by Marck [35,36], which in that case is rigidly
attached to the natural static spherical frame modulo a pair of
boosts in the radial and azimuthal directions, taking advan-
tage of a parallel transported direction associated with the
Killing-Yano 2-form which exists for the Kerr spacetime.
Instead, for the general nonequatorial plane orbits considered
in the present paper, the angular velocity vector describing
the spin precession has three nontrivial components, describ-
ing the time rate of change of the composition of the rotations
needed to map from “body-fixed”” axes in the gyroscope local
rest frame to the axes in the rest frame of the “fixed stars,”
modulo the unique boost between these two frames. One has
the choice of continuing to use Marck’s frame as an
intermediary in evaluating the angular velocity of a parallel
transported spin vector relative to boosted static spherical
axes, or of simply directly evaluating the angular velocity of
those boosted axes. We take both approaches and compare
their relationship.

As with many questions in general relativity, where
everything is “relative,” the definition of spin precession is
a relative notion—one must compare the direction of the
parallel transported spin vector of a gyroscope in geodesic
motion in the Kerr spacetime in its local rest frame with a set
of axes which are locked onto the “distant stars” by the
stationary symmetry, in a different local rest frame associated
with static observers in relative motion. By boosting the static
observer axes to the gyroscope local rest frame by the unique
boost associated with the relative motion, one removes the
effects of stellar aberration due to that motion, but one must
also take into account the rotation of the static spherical axes
which occurs as the gyroscope moves in the angular direction
with respect to the static grid associated with Boyer-
Lindquist spherical-like coordinates. This is accomplished
by introducing the naive Cartesian frame associated with the
spherical frame as in flat space in order to lock the static axes
to the distant sky at spatial infinity as one moves around in the
spacetime. Combining these two effects leads to a way to
quantify the precession of the gyroscope axes with respect to
the distant sky in its local motion.

After reviewing the description of timelike geodesics in
Boyer-Lindquist coordinates, we introduce three funda-
mental observer families in the Kerr spacetime and their
associated adapted frames: static observers, zero angular
momentum observers (ZAMOs) and Carter observers.
These are all related to each other by boosts in the
azimuthal angular direction associated with the rotational
Killing vector field. Modulo these boosts, they all share the
same orthonormal spatial frame obtained by normalizing
the Boyer-Lindquist spherical-like coordinate frame vec-
tors. This frame has its axes locked to the distant sky at
spatial infinity, but only the static observers following the
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timelike Killing vector world lines see an unchanging
distant sky from the null geodesics arriving from spatial
infinity. Using the Cartesian-like frame corrects this orbital
contribution to the rotation of the spherical axes due to
motion in the coordinate grid.

Next, we compute the gyroscope precession angular
velocity as measured by each family of observers in their
natural frames, and determine their relationships. The static
observers are locked to the “fixed stars” and as such are key
to measuring precession with respect to them, so they are
the preferred family of “fiducial observers,” but for motion
relative to those observers, one needs a Cartesian-like frame
rather than a spherical frame in order to lock the reference
directions with respect to those fixed stars as the angular
location changes.

We then discuss several examples of both general bound
and unbound off-equatorial geodesic orbits as well as the
special cases of orbits at constant radius (spherical and polar)
and those constant polar angle 6. Subsequently, we will
explicitly find the relation between the boosted static frame
and Marck’s parallely propagated frame. The latter reduces
the equations of parallel transport to a single ordinary
differential equation involving a scalar angular velocity
which may be expressed in terms of the constants of the
motion characterizing the geodesic. Finally, Appendix A
shows how the kinematical properties of both static observers
and ZAMGOs affect precession, while Appendix B demon-
strates that for general motion Marck’s frame loses its special
property of diagonalizing the curvature tidal matrices which
holds in the equatorial plane orbit case. The relation with
existing results using Hamiltonian approaches is shortly
addressed in Appendix C.

We use standard notation with G = 1 = ¢, Greek indices
running from O to 3, while Latin indices run from 1 to 3.
The signature of the spacetime metric is — + +4. We will
denote by S” the totally covariant form of an arbitrary
tensor field S, and by S L T the right contraction with
another tensor 7, i.e., their tensor product with a contrac-
tion between the leftmost contravariant index of 7" with the
rightmost covariant index of S.

II. GENERAL GEODESIC MOTION

Following the notation of Misner, Thorne and Wheeler
[37], the Kerr metric written in Boyer-Lindquist coordi-
nates (t,r,0,¢) is given by

ds* = gpdx*dx’
z
= —di* + Kdr2 + Zd6* + (1 4 a*)sin*0d¢p?

oM
+ ?r (dt — asin®0de)?, (1)

where M and a are the mass and the specific angular
momentum of the source, respectively, and
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% = r? + a*cos?0, A=r*-2Mr+a* (2
Rotational properties of this spacetime are associated with
the azimuthal coordinate ¢ associated with the axisym-
metric Killing vector field ;. The outer horizon occurs at

the zero r, = M + VM?* — a® of A, while the ergosphere
occurs at the zero rp = M + VM? — a’cos®d of g,,.

A. Timelike geodesics

A geodesic timelike world line has a 4-velocity unit
tangent vector U = U%0, with coordinate components
U® = dx”/dzr which can be expressed using the Killing
symmetries [38,39] as a system of first order differential
equations

dt 1 (r* +a*)
A_ a4 p
dc X [a - '

A
= VR
@ —egve,
Z_f:%[siiejﬁp}’ G)

where 7 is a proper time parameter along the geodesic, €,
and €y are sign indicators, and
P =E(r* +a*) - La,
B = L — aEsin?0,
R=P>-A(r? +K),
BZ

sinZ0°

® = K — a*cos*6 — (4)
Here E and L denote the conserved Killing energy and
angular momentum per unit mass and K is a separation
constant, usually called the Carter constant. In place of K
one often uses

Q:K_(L_aE>2EK—x2, (5)

which vanishes for equatorial plane orbits. Corresponding
to the 4-velocity vector field U is the index-lowered 1-form

> .
U’ = —Edt + A idr + 20d6 + Ldé. (6)

In what follows we will use the overdot notation f =
df/dr for the proper time derivative along the geodesic.

In addition to the generic case of nonequatorial plane
motion, we will also consider some special classes of such
orbits which have interesting behavior, namely orbits at
constant radius » = ry, = 0 (spherical orbits, generalizing
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the circular orbits in the equatorial plane) and orbits at

constant polar angle 8 = 6, & = 0. The former include the
interesting physical case of precessing polar orbits which
model the GPB experiment.

1. Spherical orbits

Examining the geodesic Egs. (3), spherical geodesics are
characterized by constant r = ry and R = 0 = dR/dr, so
that [40]

(r—M)(r2 +K)+rA

E =
2r\/A(r* + K)
1 2, 2
L= m{r(r +a*)A
+ (PP + K)[M(r* = a®) — rA]}, (7)

with arbitrary K > x? (or Q > 0), the equality correspond-
ing to circular equatorial orbits, i.e., K_ < K < K, with

Mr*(r —3M) + ra*(r + M) + 2aAv/Mr

K. —
+=7 r(r—=3M)?> —4Ma?

(8)

The motion thus oscillates between the (supplementary)
values of 6 which satisfy the equation ® = 0, crossing
repeatedly the equatorial plane. In terms of the variable
7 = cos? @ the previous condition can be rewritten as

a?(1-E)? = [a*(1-E) + ]z +0 =0, (9)
with solutions

_a*(1-E*)+J*+VD
ST -

(10)

where D = [a®(1 — E?) + J?)* —4a*(1 - E*)*Q, J=
/L? + Q denotes the total angular momentum per unit
mass of the particle, such that L = J coszand /O = J sin1
in terms of the “inclination” angle :. The range of allowed
values for z is then between zero and the smaller root z_,
implying that 0_ <0 <z —6_.

Polar orbits are the subclass which intersect the sym-
metry axis of the black hole, where sin@ = 0 [41]. From
Eqgs. (3) this requires zero angular momentum L = 0. As a
consequence, as shown in Ref. [41], the associated orbits
have only r and € motions with respect to ZAMOs (i.e.,
they corotate azimuthally with respect to the ZAMOs).
Spherical polar orbits are thus characterized by
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’ 1/2
E=A|l— 2 2 2 ’
(r*+a*)[rA = M(r* — a?)]
Mr(r* —a?) + a*A
=r .
rA —M(r* — a?)

(11)

2. Orbits at constant =6,

Orbits with constant 8 = 0, requiring ® = 0 = d®/df
are characterized by

K + a*(1 — 2cos?0)

E = ,
2asin OV K — a*cos?6
K —a?)siné
L — (K — a*) sin ’ (12)
2V K — a*cos?d

with arbitrary K > a*cos’d. The special value K = a?
gives E=1and L = 0.

III. FUNDAMENTAL OBSERVER FAMILIES
AND ADAPTED FRAMES

Any test family of observers are characterized by a unit
timelike 4-velocity field # whose integral curves are the
world lines of those observers, and whose local rest spaces
will be designated by LRS,. A stationary axisymmetric
spacetime has several natural observer families associated
with its special geometry. In the Kerr case three families of
observers play a key role, and are easily described in terms
of the Boyer-Lindquist coordinates because they are
adapted to the Killing symmetries. The static observers
follow the integral curves of the (stationary) Killing vector
field 9,, namely the Boyer-Lindquist time lines, while the
world lines of the zero angular momentum observers
(ZAMOs) are orthogonal to the time coordinate hyper-
surfaces. Finally the Carter observers are key to the
separability of the geodesic equations which allow their
exact solution, as well as being fundamentally important to
the algebraic properties of the curvature tensor. All three
families differ only by relative azimuthal motion, and hence
their natural adapted frames are all related by relative
boosts in the ¢ — ¢ plane of the tangent space.

The static observers, which exist only in the spacetime
region outside the black hole ergosphere where g, < O,
form a congruence of accelerated, nonexpanding and
locally rotating world lines. They are, however, nonrotating
with respect to observers at rest at spatial infinity and have
4-velocity u = m where

1 2Mr\~1/2
m=———379=11-— 0,. 13
=0 < S > ; (13)

An orthonormal frame adapted to m is
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e(m)l = _/lg—ar = \/—éar = €5,
1

\/_ f

1 g
elm)y =t (04 - %20,
9opp — Gip /9u Guu

e(m), = Dy = ey,

_ A.—azsinze - 2Marzsi.nzz€ 2). (4
sin 0v AX A — a“sin-0

The relative decomposition of the geodesic 4-velocity U
with respect to the static observers is

U=y(U,m)m+uv(U,m)e,(m), (15)

with
v(U, m)?]
1 [LVE-2Mr 2aMrEsin6
[\/7 VD, ( sin @ + \/2—2Mr)]

(16)

and
B
(U, m) = o (17)

The ZAMOs are instead locally nonrotating (but globally
rotating in the azimuthal direction in the same sense as the
rotation of the black hole) and exist everywhere outside of
the outer horizon, They have 4-velocity u = n where

T g?
n=+/—g"\ 0, + g 81/7
A 2aMr
=4/— —_— , 18
AT (a, T 8"’) (18)
where
A = (? + a®)* — a®>Asin?0. (19)

The normalized spatial coordinate frame vectors

E(n)] = €5,
e(n), = e,
! vE
e(n); = 0y = — 9y =e, (20)
Ny sin 9v/A

together with n form an orthonormal adapted frame.
A boost along e;, maps n into m, 1.e.,
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(21)

with relative velocity in the opposite azimuthal direction
as the rotation of the black hole associated with the sign
of a (resisting the “dragging of inertial frames”)

2Mr (asin@
- ki Y
= \va)?
and associated Lorentz factor y(m,n), so that ZAMOs
and static observers share the same r — 6 2-plane of their

local rest spaces. The relative decomposition of the
geodesic 4-velocity U with respect to the ZAMOs is

m = y(m,n)[n +v(m,n),

v(m,n) =

(22)

U=y(U.n)[n+v(U.n)%,(n)], (23)
with
[y(U,n)v(U, n)* Nﬁ V6, — \/_] (24)
and
2aMrL
y(U,n):\/—_[\/—E— 7 ] (25)

The kinematical properties of both the static observers
and ZAMOs are briefly reviewed in Appendix A.

The third useful observer family in the Kerr spacetime, the
Carter family of observers u = uc,y), is intimately connected
with its geometry (separability of the geodesic equations).
Their 4-velocity u(c,) lies in the intersection of two special
2-planes: the plane T, spanned by the temporal and azimu-
thal Killing vectors span{0,,d, } = span{ucy). 0, } and the
plane N, spanned by the (two, repeated) principal null
directions of the spacetime span{l, k} = span{u ), 0, }.
Its coordinate components may be read off from the
expressions

r#+a a
“en ="as \ Ot Era®)

A .
u'(’car> = —\/;(dt — asin’0ddg). (26)
Decomposing it with respect to the static observers
U(car) = y(”(car)# m)[m + ’/(u(car)’ m)]’ (27)
leads to the relative velocity
asinf
V(U(car), M e 28
(i m) = 7 e(m): (
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Comparing (18) and (26) shows that u ., lies between n and
m as claimed above. Carter’s observers are actually boosted
in the opposite azimuthal direction from the static observers
compared to the ZAMOs in order to “comove” with the black
hole, their angular velocity at the outer horizon being defined
as that of the black hole itself. In fact

VAY

Asin@ €

V(u(car)’ ) (29)
so that the frame component along ej is positive, while
v(m, n) is given by (22) and is negative.

The orthogonal (azimuthal) direction to u ) within the
2-plane T, has coordinate components

asin@ 1
i = 0 ad, |,
 (car) N> ( 't asin?6 4’)

ind
)]

A spherical orthonormal frame adapted to ) is obtained
by using the triad boosted from the either the ZAMO
or static observer spherical frame along the azimuthal
direction

(30)

(31)

The relative decomposition of the geodesic 4-velocity U
with respect to the Carter observers is

E3<u(car)) = u(car)-

U= j/(U, u(car))[u(car) + D<U’ u(car))aEa(u(caI))]7 (32)

{\[ VIO, e 0} (33)

with

[V(Uv Ucar) )V ) (U U car)

and

P
U, o)) = ——. 34
IV. ADAPTED FRAMES AND
GYROSCOPE PRECESSION

Given a family of observers with 4-velocity u# and
adapted orthonormal frame {u,e(u),} one can form an
adapted frame along a general timelike geodesic with
4-velocity U by boosting the vectors e(u), onto the local
rest space of LRSy. Following the notation of [26], a
relative observer boost B(U, u) mapping LRS, to LRSy is
described by
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U=y(U.u)u+uv(U u)e(u),
U+u
e(u),)

E(U, = —F (U
(.0, = elwly 7 gy

= B(lrs)(U’ u)e(u)a' (35)
Letting u=m and u =n respectively one obtains
the triads E(U, m), = By (U, m)e(m), and E(U, n), =
B (U, n)e(n),, the two being related by a spatial rotation
in LRSy due to the relative azimuthal rotation between
their two 4-velocities which leads to a Wigner rotation
R(m,n) resulting from successive boosts along distinct
directions compared to a direct boost [42]

E(U,m),

B(U,m)e(m), = B(U,m)B(m,n)e(n)
B(U,m)B(m,n)B(U,n)"'E(U,n),
R(m,n)E(U,n),. (36)

a

Our goal is to study the evolution of the direction of the
parallel transported spin vector S € LRS; compared to
axes which are fixed with respect to the “fixed stars”
modulo relative motion with respect to the static observers
which see these stars as fixed in their local sky, requiring
that stellar aberration must be removed. If E(U), denotes a
generic orthonormal frame in LRSy,, then

S = SE(U),. (37)

and

DS ds¢ D
— = E(U §S*—EU),=0. 38
dT dT ( )a + dT ( )a ( )

Defining the angular velocity of the frame with respect to
parallel transported axes

PR — o)y B W), (39
namely

o) = 5w, 2L,

oy = -&(w), 220

a(wy = £w), 229 (40)
Eq. (38) becomes

CZaE(U)a—kQ(U) Xy S =0, (41)

Reversing the sign of the angular velocity Q(U) thus gives
the angular velocity of the gyroscope spin vector with
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respect to the frame {E(U),}. For example, if E(U), is
parallely transported along U, i.e., DE(U),/dr = 0, then
the above relation implies that the spin components S¢ are
constant along U.

Now let E(U), = E(U,u)
S=S8(U,u)E(U,u),, so that

g for u=m, n, and let

dS(U, u)
%—i—e“bCQ(U, u),S(U,u), =0, (42)
T
with
D
d—E(U,u)a:Q(U,u) xy E(U,u),. (43)
T

One may evaluate the angular velocity Q(U,u) =
Q(U,u)*E(U,u), in terms of the relative motion of the
geodesic U and the observer family u as a sum of the
following three terms as given in Ref. [26]

Q(U’ M) = _7(Uv u)[a)(fw,u) + WD (sc,U.u) + a)(geo,U,u)]' (44)

The first two terms here involve the Fermi-Walker and the
spatial curvature angular rotation vectors sy, and

W(se,u) arising respectively from the two terms in the

next equation splitting the covariant derivative of the spatial
orthonormal frame along the orbit

P(u)Vye(u),
= —]/(U, u) [P(u)vue<u)a + P(”)VD(U,u)e(u)a]
= _7(U7 u) [w(fw.u) + w(sc,U,u)] Xy e(u)a’ (45)

while the third angular velocity term is the geodetic
precession term in the gyroscope precession formula (see
Eq. (9.10) of Ref. [26])

G
v(U.u) x, FEfvg,U.u)’

(46)

@D(geo,.Uu) = m

defined in terms of the spatial gravitational force

(G)
F(fw,U,u

of the remaining frame vector along the orbit. Here we
are sloppily identifying the symbols for the various angular
velocities which have the same orthonormal components
before and after the boost from the observer frame to the
geodesic frame.

Indeed this result for the angular velocity terms Eq. (44)
can be derived as follows. First differentiate along U the
relative boost By (U, u) relating E(U, u),, to e(u),, in (35)
to find

)= —Vyu arising from the covariant derivative
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y(U,u)v(U,u), (c)
- Ff U
1+]/(U,M) (fw,U,u)
r*(U,u)v(U,u)

a (G)
Ty YT

VUE(U’u>u = vUe(u)a

1
+W(U+M)UVU€<M)(I
y(U,u)v(U,u),
:BL.Vwau—l——li——LF@ﬂm,

14+y(U,u)
(47)

where B is the following tensor which extends the action of
Birs)(U, u) to vectors outside LRS,,

D
—FE =b5L
o (U,u), =B

_Y(Uv u) [a)(fw.u) + a)(sc,U.u)] Xy €(M)a -
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(U+u) U

B=1+
1+y(U,u)

. (48)

by mapping U + u to 0, namely B L (U + u) = 0. One can
then replace Vye(u), in the second line of Eq. (47) using

Vye(u), = P(u)Vye(u), — [u- Vye(u),Ju
= _7<U7 u)[w(fw,u) + a)(sc,U,u)]

G
Xy e(1), = uF (G ) oo (49)

(the term in bracket simplifies using the definition of

F EfG\JVU’”) together with orthogonality u - e(u) = 0) so that
G) (U uv(U.u), (6
uF(fw.U,u)“ 1+ ]/(U, Lt) F(fw,U,u)

(G)

=BL |:_7(U7 u) [w(fw,u) =+ WD (sc,U.u) + w(geo.U,u)] Xy e(u)a - uF(fw’U’u)d

y(U,u)v(U,u), (c)

- F(fw,U.u) + ]/(U, u)a)(geo,U,u) Xu e(u)a

1+y(U, u)

G
=BL |:Q(U7 M) Xu e(”)a - MFEng,Uvu)H -

y(U, u)v(U, u)
1+y(U,u)

a G
FEfW),U,u) + }/(U7 u)a)(gco,U.u) Xy e(”)a:| ’ (50)

where in the second line we have added and subtracted the term [using the triple cross product identity on (46)]

)/(U, M)a)(geo,U,u) Xu e(u)a =

_ r(U.u)
1+y(U,u)

_ plo

G
(U, u)F') ot

(fw,U.u)" )I/(U’ u)a] (51)

to form the combination Q(U, u) x,, e(u),. Expanding the last term in Eq. (50) by using Eq. (51) leads to simplifications

(G)

(the term proportional to the vector F (fw,U.10)

dr

D e, uy, = BL QU 1) x, e(u)

disappears), so that combining the various pieces we find

__Utu po
a 1+}/(U, I/t) (fw,U,u)*

=BL QU u) >, e(u),]
= [BQ(U, u)] xy E(U,u),. (52)

since the final term proportional to U + u is mapped onto 0
by B. This confirms the formula (44). Note that in the
second line of Eq. (52) we have Q(U, u) = Q(U, u)%(u),.
whereas in the last line BQ(U,u) = Q(U,u)*E(U,u),
denotes the boosted vector, which has the same compo-
nents, but referred to the boosted frame E(U, u),.

The following sections will consider explicitly the
orthonormal triads in LRS; associated with the static
observers (u = m), ZAMOs (u =n) and the Frenet-
Serret frame along U involved in Marck’s construction.
These triads are all related to each other by relative
rotations whose time derivatives along the geodesic

|

produce their relative angular velocities. Finally, a parallely
propagated triad along U can also be identified by Marck’s
additional planar rotation of the Frenet-Serret triad.
Studying each of these frames along a generic geodesic
requires rather involved computations which often hide
their geometrical content.

V. GYROSCOPE PRECESSION
AND STATIC OBSERVERS

Specializing the angular velocity (44) to the case u = m,
a lengthy calculation leads to the explicit result

124022-7
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2
9
QU.m)! = i y)E};Z3 TN {aM sin 072 - a*c0s0)i-0 + 5 cos 5 [EX[Z = 2Mr(? — 2a*cos®dsin’0)]
+ aE*[Z? — 2Mr(Z? — a*sin®Ocos*0)] + 2Mras1n29(a x? — TAsinh?f)
EX
+—[x(2* = 2Mr(Z — a’sin’0)) + aE(X?* — 2Mr(Z — a’sin’0cos®0))]] }
4
2 & o, 1 2 2A (12 — A2enc2
QU,m)* = W {2aMrCOS€r6+22AsinH [Ex][(r = M)Z*(Z —2Mr) = 2Mr*A(r* — a*cos0)]
+arE?[Z? — Mr(Z2(1 + cos?0) + cos?0A(Z + 2r?))] + aM A(r* — a*>cos*0)(x* — Zsin’Ocosh?3)
EY
+——[x((r = M)Z* = MZ(r* — a®) = 2M7r*A) + arE(Z* — Mr(Z(1 + cos?0) + 2cos?0A))]]},
14
5 acosOr 5, 2Mry ) 0 12 My I )
Q(U,m) = TS g {aEZsm 0+ 1 +y(x+aEcos 0) ts rAl/ +W(r — a*cos’0)(ax — r’E) |,

with y = E/y/1 —2Mr/%. On the equatorial plane we have Q(U,m)! = 0 =

y MA
QU m)|gpyp = — {

E*PA [1+y

with y = E//1 —2M/r. It is important to recall that this
represents the angular velocity of the axes E(U, m), with
respect to parallel transported axes along the world line,
while the angular velocity of the parallel transported spin
vector of a gyroscope with respect to these axes has the
opposite sign. The previous expressions simplify consid-
erably for special orbits, e.g., spherical orbits (¥ = 0) or
orbits with constant polar angle (9 = 0). These cases will
be studied below.

VI. GYROSCOPE PRECESSION AND ZAMOS

One may also express the angular velocity (42) of a
parallel transported gyroscopic spin vector S =
S(U,n)*E(U,n), relative to the boosted ZAMO frame
in LRSy; with a similar decomposition into geodetic,
Fermi-Walker and space curvature terms. These are given
explicitly in Appendix A.

The boosted ZAMO frame vectors {E(U, n),} are then
related to the static observer frame vectors {E(U, m),} by a
spatial rotation in LRS, i.e.,

E(U.m), = E(U,n),R",. (55)
The spatial rotation R is just the Wigner rotation due to the

combination of initial azimuthal boost from the ZAMOs to
the static observers

e(m), = B(s)(m.n)e, (56)

(53)

Q(U,m)? and

(Ex+a)+ Er¥(x + aE) — aM(A + E*r*) — MEx(2r* — a® + 3A)} (54)

with the successive boost from LRS,, to LRSy. Applying
B(irs)(U, m) to both sides then leads to

E(U,m), = B (U, m)e(m),
= B(is)(U, m)B 15 (m, n)e,
=R, B (U.n)e;,
=E(U,n),R?,. (57)

We conclude this section by noting that the above
ZAMO boosted frame is just the one underlying the
construction of the Hamiltonian of a spinning particle in
a curved spacetime to linear order in spin due to Barausse,
Racine and Buonanno [4]. Unfortunately, the Hamiltonian
formalism loses contact with the geometrical content of the
problem. Taking advantage of the relative observer point of
view as well as the associated spacetime splitting tech-
niques, it is easy to show that their explicit expressions
(5.35)-(5.37) for the spin precession angular velocity
components reduce to

H* = N[a)(geo,U,n) + @ (fw.n) + a)(sc,U,n)]a

N N
= — Q U’ n a’ (58
YU (U.n) )
with the replacements /Q =y(U,n) and P, =

y(U,n)v(U,n)%, /g, in their corresponding equations to
first order in spin (see Appendix C).
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VII. GYROSCOPE PRECESSION AND THE
DEGENERATE FRENET-SERRET FRAME

Another possible choice for a natural frame along U
involves the Frenet-Serret procedure, which is a degenerate
case, since U is geodesic. The construction of such a frame
is intimately linked to Marck’s construction of a parallely
propagated frame, which in the case of equatorial plane
motion gives a direct route to evaluating the gyro spin
precession. In the general case the geometric construction is
more involved and requires a rather involved treatment
consisting of the following main steps.

A. Step 1: Decomposing U in Carter’s frame

Consider a generic timelike geodesic with unit tangent
vector (6) decomposed relative to the Carter observers as in
Eq. (32). To make the notation less cumbersome below we
introduce the abbreviations y (U, #(car)) = Ve» (U, U(car)) =
v.. For later use let us introduce the angular part v7 of the
Carter relative velocity and an orthogonal vector v =

E(u(car)) Xt v’ of the same magnitude in the angular
subspace

vl = V(Z:E(u(car))Z + VgE(”(car))3 = ||I/T||’3T1

vt = _I/gE(”(car))z + ’/gE(u(car))3 = ||I/l||i)L’ (59)

with [[vT]| = |[vt]] = V[V + [3]*. The orthogonal
decomposition into radial and angular directions in the
Carter frame is the starting point for solving the equations
of parallel transport along a geodesic, as done by Marck and
explained geometrically for the simpler case of equatorial
plane geodesics in our previous articles [16,17].

B. Step 2: Boosting Carter’s frame along
the radial direction

Using the components of U with respect to the Carter
observers we define a frame { E%4} in which we first boost
along the radial direction by the radial component of the
relative 4-velocity of the gyro to obtain a new radially
comoving radial direction in a new local rest space, and
then pick the next frame vector to be along the direction of
the remaining angular component of the Carter relative
velocity, and then the final angular axis orthogonal to the
first one forming a right-handed spatial frame within
LRS g

ER =y ucar) + VEE (uean)) 1),
EP =yl vettean + E(uear))1] = B(a) Etcar))1
BT, B pl, (60)

where the boost rapidity o and gamma factor are
defined by

PHYSICAL REVIEW D 95, 124022 (2017)
P

Introducing spherical coordinates to parametrize the direc-
tion of the relative velocity in LRS,, ) with pole along the

ar,

vl = tanha, yII = cosha = (61)

radial velocity direction
(DL, 02,03) = (cos ®,sin O cos @, sinOsin®),  (62)

then the rotation to the intermediate frame adapted to the
Carter relative velocity decomposition is

(Eliad Eaad Egad>:<B(a)E(u(car))l E(”(car))Z E(”(car))S)

1 0 0
x| 0 cos® —sin® (63)
0 sin® cos®

The geodesic 4-velocity in this frame then has the
explicit form (boosting along the Carter angular relative
velocity)

U= Cosh[)’ES"‘d + SinhﬁErzad, (64)
where
K b} K — 2 29
coshff = —; - sinh ff = % (65)

From this relation one easily identify the orthogonal
(spatial) direction in this plane

e3 = sinh ERY + cosh SEF. (66)

C. Step 3: The successive boost in the angular direction
to a degenerate Frenet-Serret frame along U

The final frame adapted to U (i.e., to the gyro world line)
is then obtained by boosting this intermediate frame { E24}
into LRSy by a boost along the direction of the angular
relative motion, namely extending the relation (64) to the
full corresponding relative observer boost, which leaves the
remaining two frame vectors {E™, E%9} invariant

sinh § ) (67
cosh

cosh

— ad ad
W e)=e (s
Thus e5 is aligned with the direction of the angular relative
motion between the Carter and gyro local rest spaces,
reducing to the azimuthal direction in the equatorial
plane case.

Marck showed that a unit vector e, orthogonal to both U
and e; which is also parallel propagated along U arises
naturally by normalizing the contraction of U with the
Killing-Yano 2-form of the Kerr spacetime. Because this
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2-form is so simply expressed in both the Carter and
intermediate frames (see Appendix A of Ref. [16]), the
resulting vector frame components are obtained by a simple
anisotropic rescaling of the two vector components of U
expressed in the form (64)

acos@
or — cosh AE™ — " _sinh Ed
2= COPE = s
= —(—sinZE™ 4 cos BEM), (68)
where
COSE = — sinh 8 sin= = aCOSQCOShﬂ (69)
- VK ’ VK ‘

The last frame vector ¢; = e, Xy e3 is then determined by
orthogonality to be

0
— —_sinh BER 4 cosh SER

acos
VK VK

= cos BEP + sin ZE}. (70)

€]

Together the two new frame vectors are obtained by a
rotation in the plane orthogonal to the Carter angular
relative velocity (modulo the time direction and a spatial
reflection) to align the frame with the parallel transported
vector e,.

Note that in the equatorial plane where € = z/2 and
K = x%, then E = 0 and

PR
coshp= VST g M (71)
r r
implying that e, = sgn(x)e, and
s era 0, + Do+ 8}
e = e e
el a ¢
| x| 1 [a P
e3:—r —|—x 2 x(r +x )+Z(r2+a2) 0,
. P
—i—r@,—i—p |:;(r2+x2)+aK:|8¢} (72)

For simplicity in what follows, we will assume sgn(x) = 1
when taking the equatorial plane limit of general expres-
sions, although one can easily take into account the case of
negative x.

This frame {U, ey, e,, €3} is a degenerate Frenet-Serret
frame along U, such that

DU Del

_— e — T

dr 0, dr ¢3
D€2 - D€3 _

d‘[ ES O, d’f = Tel, (73)

PHYSICAL REVIEW D 95, 124022 (2017)

T:\/_E{ P aB 29}

_|_
P+K K-—ad?cos

z
VK[ P aB
X2 [cosh’  sinh’

:_\/—[ VA -

asinf ‘ }U, (74)
rr+K

K — a?cos? ")

the only surviving (spacetime) torsion of the world line.
Note that by normalizing the timelike vector in square
brackets in the final line of Eq. (74) we can identify a new
timelike vector #’ in the time-azimuthal plane of the tangent
space such that 7 = —Tu' - U = Ty(U, u’), namely

/

u = y(u/, u(car))[u(car) + y(u’, u(car))ﬁ(car)}’ (75)

where
K+7r* asind
I/(l/t/, u(car)) = - K — a2cos20 \/K s (76)
and
vVKZA
(77)

B (rZ + K))/(l/t/, u(car)) .

The corresponding angular velocity vector is Qgs) =
—T e,, so that

De,
dT - Q(FS) XU ea. (78)
We then find for § = S?Fs)ea
dS{es
;T Ley + Qps) Xy S = 0. (79)

VIII. GYROSCOPE PRECESSION AND PARALLEL
PROPAGATED FRAME

The vectors e; and e; were found by Marck “by
inspection” of generic conditions determining vectors in
the plane orthogonal to U and e,, and in contrast with e, are
not parallel propagated along U. To get a frame {E;} (with
E, = e,) that is parallel propagated, it is enough to rotate
them by an appropriate angle P,

E, =e;cos¥ —ezsinV,

Ey=e¢;sin¥ +e3cos P, (80)

such that [35,36]

“_T (81)
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Equation (81) must be then integrated along the orbit to
determine ¥ modulo an arbitrary initial value.
The components of the spin vector with respect to that

frame S = S?par)Ea are constant, namely

das¢
(par)

————==0. 82
R (82)

IX. GYROSCOPE PRECESSION WITH RESPECT
TO CARTESIAN AXES AT SPATIAL INFINITY

In the previous sections the precession of a gyroscope
has been computed with respect a triad of axes defined all
along its world line through comparison with the boost of a
spherical coordinate triad associated with either the static
observers or the ZAMOs, or by using the Frenet-Serret
frame {e,}, all of which are adapted to the local rest space
of the gyro along its orbit and related to each other by time-
dependent rotations whose time derivatives determine their
relative angular velocities. In the first two cases as the gyro
moves in the spherical coordinate grid in a nonradial
direction, the directions of these triads with respect to
spatial infinity rotate. The same is true for the Frenet-Serret
frame since its construction relies on the spherical decom-
position of the relative velocity.

To measure rotation with respect to local directions
which are fixed with respect to spatial infinity, we need
local static Cartesian-like axes whose directions with
respect to spatial infinity along the world line do not
change. Motion relative to the static observers thus leads to
an orbital angular velocity contribution to the precession of
the gyro spin with respect to these latter axes due to its
motion relative to those observers. The boost from LRS,, to
LRSy removes the aberration of those directions. An
additional Wigner rotation contributes for comparison with
boosted ZAMO axes due to the additional relative boost,
while the Frenet-Serret frame has an additional rotation
explicitly given below. Thus a crucial rotation from
Cartesian to spherical directions must be taken into
account, leading to an “orbital” contribution to the angular
velocity of a parallel transported spin vector.

Consider the family of static observers which exist only in
the spacetime region outside the black hole ergosphere where
g, < 0. The static observer spherical frame of (14) is locked
onto the spatial coordinate grid dragged along by the static
observers, but one can instead lock a triad onto the distant
Cartesian coordinates associated with the Boyer-Lindquist
coordinates by locally rotating the spherical axes to align
them with axes pointing to fixed directions at spatial infinity.

This Cartesian-like orthonormal frame {e,},A = x, y, z
in the local rest space LRS,, is defined by the same rotation
as in flat space spherical coordinates

(e(m), e(m)y) = (ex ey

or

e(m), e: )R(0.¢) (83)

e(m), = e,R(0.4)",. (84)

PHYSICAL REVIEW D 95, 124022 (2017)

where
sinfcos¢ cosfcos¢p —sing
RO, p) = sinfsing cos@sing cos¢ (85)
cosf —sinf 0

is the usual flat space rotation matrix relating the Cartesian
and spherical coordinate orthonormal frames. To show 3d
plots of numerical geodesic paths in space, it is convenient
to introduce the corresponding Cartesian coordinates

x=rsinfcos¢, y=rsinfsing, z=rcosd, (86)
and for polar geodesics described below it is convenient to
allow all real values for @ along them through this
representation.

The frame {e,} has its orientation fixed with respect to
the “distant stars.” Then the following derivative defines
proper time rate of change of the relative rotation

0 -0 —sin(%
RIR= 0 0 —cosbg Eﬂforb)Li, (87)
sin@qb cosﬁgb 0

where the three antisymmetric matrix generators of the
active action of the rotation group are defined by [L,]/, =
€jix in terms of the Levi-Civita symbol and

Q(Orb) = QErorb)e(m)l + Q?orb)e(m)z + Q{&borb)e(mh
= cos Oe(m), — sinOpe(m), + Oe(m);. (83)

Then the proper time derivative of components with respect
to the spherical frame of any vector defined along the
gyroscope world line are related to those with respect to the
Cartesian-like frame {e,} by the following “orbital”
angular velocity

SA — (RA,'Si)A — RAi(Sl + eijkgforb)sk)' (89)
This describes the orbital angular velocity along a geodesic
of the static observer spherical frame relative to the
distantly nonrotating celestial sphere, locally represented
by the static observer Cartesian-like frame.

Boosting both the spherical frame to {B(U, m)e(m),}
and the Cartesian-like frame to {B(U,m)e,}, the same
rotation applies either before or after the boost, so the angular
velocity has the same components in the boosted frame

Qo) (U. m) = cos OpE(U.,m), — sin OpE(U, m),
+OE(U, m)5. (90)

A gyroscope moving along its world line then precesses with
respect to these latter axes in LRS;; by the angular velocity
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An example of a general bound geodesic is shown in panel (a). The black hole parameters are chosen so that M = 1 and

a/M = 0.5. The orbital parameters following initial values are given by E = 0.95, L/M = 3, K/M?* = 8 with motion starting at 7 = 0
from the point (rq/M = 8, 6, = /2, ¢y = 0) radially ingoing (¢, = —1, #(0) = —0.1314) and 6 increasing (e5 = 1, 9(0) ~0.01991).
The r-motion is confined between ry;,/M ~4.7451 and r,/M ~ 13.1587, whereas the @-motion between @, ~ 1.1695 and
Omax = T — Opin & 1.9721. The corresponding evolution of the three components (with respect to the frame {E(U,m),}) of the
gyroscope precession angular velocity €2(p.) along the orbit are shown in panel (b) for about five revolutions.

Qprec) = Q(Orb)(U’ m) —Q(U, m), (O1) interpretational purposes that modulo a boost, the angular

since the angular velocity of the spin vector with respect to
the boosted spherical axes is —Q(U, m).

Typical examples of precession along general bound
and unbound geodesic orbits are shown in Figs. 1 and 2,

velocity component indices 1,2,3 are aligned with the
r,0, ¢ directions. Special orbits are considered too (see
Figs. 3-5). The Cartesian axes shown in the plots are
associated with the naive Cartesian coordinates related to

respectively. It is important to keep in mind for  the Boyer-Lindquist spherical coordinates by the same
3
0.1 Qprec)

i Q(pret:)

37
] — :

7 0] 20 9 80
.

—_
(=1

-0.14

(=2

2
Q(prec)

-0.21
(@) (b)

FIG. 2. An example of general unbound geodesic is shown in panel (a). The black hole parameters are chosen so that M = 1 and
a/M = 0.5. The orbital parameters following initial values are given by E = 0.9, L/M = 3, K/M?* = 10.5 with motion starting at 7 = 0
from the point (ro/M = 8,0y = /2, ¢y = 0) radially ingoing (¢, = —1, 7(0) ~ —0.3210) and 0 increasing (¢y = 1, 9(0) ~ 0.03124). The
numerical integration of the geodesic equations is completed forward and backward in proper time in order to cover the whole scattering
process. The corresponding evolution of the components of the gyroscope precession frequency along the orbit are shown in panel (b).
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An example of a spherical orbit at r = r, is shown in panel (a) for the choice of parameters M = 1, a/M = 0.5, ry/M = 8 and

K/M? = 9, implying that E ~ 0.9446, L /M = 2.6880 and 0_ ~ 0.9266. The inclination angle is : ~ 36.9583 degrees. Initial conditions

are chosen to be 6(0) = 7/2 and ¢(0) = 0 with ¢y = —1, so that 8(0) ~ —0.03160. The corresponding evolution of the components of
the gyroscope precession frequency along the orbit are shown in panel (b).

definitions as in flat space, namely (86). The black hole
outer horizon is shown as a gray sphere at the origin. As a
general feature we see that the frame components of the
precession angular velocity have oscillating behavior with
varying amplitude (Figs. 1-2), except for the case of
spherical orbits (Figs. 3—4), where the amplitude is mainly
constant. At the ergosphere where the static observers have
their horizon the |Q€prec)| increase due to the diverging of

the overall y factor in Egs. (53) (see Fig. 5).

o
Loaeadlaaialiey

—_
(=1

(a)

If instead of E(U, m), one uses the Frenet-Serret frame
{e,} related by

e, = E(U,mR?,, (92)
the following relation holds
DE(U, D o
DEU. M _ Dl igorp, 1 B m),[RE7),. (99)

dr dr
so that introducing

0.002 1
0 , : . % ,
50 100 ) 200 250
-0.0021 Q?prcc) !
-0.004 sz’“)
-0.006
-0.008
-0.0104 Qﬁpm)
(b)

FIG. 4. An example of a polar orbit at r = r; is shown in panel (a) for the choice of parameters M = 1, a/M = 0.5 and ry/M =8,
implying that E ~ 0.9484 and K/M? ~ 12.9604. Initial conditions are chosen to be §(0) = z/2 and ¢(0) = 0 with ¢, = —1, so that
0(0) ~ —0.05576. The polar angle 6 is allowed to decrease here without limit along the orbit since 6 never changes its sign, identifying
values outside the usual range [0, z] in the obvious way. The corresponding evolution of the components of the gyroscope precession

angular velocity along the orbit are shown in panel (b).
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FIG.5. Anexample of an orbit with fixed & = €, is shown in panel (a) for the choice of parameters M = 1, a/M = 0.5, 6, = z/6 and
K/M? = 1, implying that E ~ 1.9415 and L/M = —0.2080. Initial conditions are chosen to be r(0)/M = 20 and ¢(0) = 0 with
€, = —1, so that 7(0) » —1.6939. The integration stops at the ergosphere. The corresponding evolution of the components of the
gyroscope precession angular velocity along the orbit is shown in panel (b).

[RR_I]I)“ = €bcaQ[Rcv QR = QRQE<U, m)a (94)
and using Eq. (78) for the first term in (93), one has
Q(U.m) xy E(U,m), = [Qs) + Q] xy E(U.m),. (95)

Tedious direct evaluation of this rotation matrix following the sequence of boosts and rotations described above in the
construction of the Frenet-Serret frame yields the result

21/2 . tanh ES
R!, = - i )/)E(KA)W {a%os&siné’cothﬁi@—r aznz 4 {AZcoshzﬂ—l— P(aB —|——)] }
14 14
x1/2 » cot @ coth _ , EY
Rzl = _(I_L/W {rtanhﬁr9+az‘72ﬂ [aZSlnzﬂsmhzﬂ + B(P + 7):| },
tanh EB . EP
R% = ! T T P i asino - E8 +acos@cothpO| A+— ||,
(1+y)E(AK)Y? | sin6 Y v
ayz!/? ... cosO EX
R!, = ST 070+ 5~ | AZcosh’fi + P aB )
1/2
2 _ rx y r AT EX
Rz——(l_H/)E‘K]/z{acosere—zzsine [aZSln @sinh ﬁ+B<P+y s

EB . EP
R3, = ! 73 [acot@if(asinze ——) — rG(A +_>]
(1+7y)E(AK)Y v v

Ry = — ” : aB — = ginn2p ).
(14 y)E(AZ)"? cosh Bsinh 8 Y
0 ES

R2; = ] J; , P +—cosh?p |,

(14 y)EZ'? cosh Bsinh 8 v

EP

R, = ! : A+==)B - sini?p(2MrB — IL)|. (96)

(14 y)EZA'/?sin @ cosh fsinh 8 Y

The components of Qp can then be evaluated using the geodesic equations to replace second proper time derivatives in R~
in terms of first time derivatives and constants of the motion.
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For motion confined to the equatorial plane, this rotation
matrix reduces to a rotation in the » — ¢ plane of the tangent
space

cosA 0 sinA
(Rba) = 0 1 0 , (97)
—sinA O cosA
with'
14
cosA =
(1 +J/)Er2Al/2(r2—|—x2)l/2
E 2
x [A(r2 +x?) — (ax — r?E) (ax + rﬂ
14
1 — Nx)?
S PRSI |
A(r? 4 x%) E+N
. yrr Ex
A= -—, 98
S (1 +}/)EA1/2(r2+x2)1/2 (a },> ( )
where N = /1 —=2M/r.

In this special case, the only nonvanishing component
(54) of the associated angular velocity can then be written
as

dA

QU m)|g_pyy = e

-7, (99)
with 7 = (a + Ex)/(r* + x*). Finally, the precession
angular velocity is given by Eq. (91), which in the case
of equatorial plane motion (where E(U,m), = e, = ¢p)
reduces to

L—-2Mx/r a+Ex dA
Qprec)lo=r/2 = — A AR +E

>e2. (100)

The last term in this expression corresponds to the angular
velocity of the Wigner rotation discussed in Appendix C of
Ref. [16]. Note the opposite sign when comparing
Eq. (100) with the analogous equations in Ref. [16]]
Egs. (41) and (44)] and in Ref. [17] [Egs. (48) and
(50)], which refer to the counterclockwise angular velocity
in the plane, corresponding to the component of this vector
along the upward direction orthogonal to the equatorial
plane e, = —¢) = —e,.

X. CONCLUDING REMARKS

Generalizing our understanding of the simpler case of
planar geodesic motion, we have evaluated the precession

'Note that the expression for cos A in Eq. (98) should reduce
to the corresponding equation (C16) of Ref. [16], but the
latter is misprinted with the term —(a — Nx?)? instead of
(a — Nx)>.
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angular velocity of the parallel transported spin vector of a
gyroscope which moves along a general timelike geodesic
in the Kerr spacetime. The precession is measured with
respect to the celestial sky at spatial infinity represented
locally by the static observer Boyer-Lindquist coordi-
nate grid.

We have defined various frames in the local rest
space along the gyro world line by boosting natural frames
adapted to special families of observers linked to the
symmetries of the Kerr spacetime. In particular, we have
considered the usual static (distantly nonrotating) observers
and the ZAMOs (locally nonrotating observers), and the
boosts of their natural spherical frames, as well as the Frenet-
Serret frame used in the construction of Marck’s parallely
transported frame along a general timelike geodesic world
line.

We have explicitly computed the components of the
gyroscope precession with respect a frame in the local
rest space of the gyro world line which represents axes
locked to the distant fixed Cartesian directions, removing
the aberration of those directions due to the relative
motion of the gyro and the static grid. We then illustrated
these general results by discussing several examples of both
general bound and unbound nonequatorial plane orbits as
well as special cases of orbits at constant radius (spherical
and polar) and those with constant polar angle 6.

By allowing the initial observer family to be unspeci-
fied in our discussion in the genuine spirit of relativity,
we were able to perform an equivalent evaluation of the
spin-precession angular velocity for the ZAMO frame.
This leads to a geometrical interpretation of the various
contributions to the spin-orbit Hamiltonian derived in
Ref. [4]. We have also clarified the construction of
Marck’s parallely transported frame along a timelike
geodesic in terms of the Frenet-Serret frame obtained
by two successive boosts of the natural spherical frame
from the local rest space of the Carter observers, which
are key to the separation of the geodesic equations of
motion. This Frenet-Serret frame played a simplifying
role in the analysis of the special case of bound and
unbound timelike geodesic orbits confined to the equa-
torial plane, the natural extension of which is the present
article. General timelike geodesic motion significantly
complicates matters, and only an approach which uses
well defined geometrical objects (transport laws, projec-
tions, boosts, etc.) can bring a clearer understanding of
the physical properties underlying spin precession.
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APPENDIX A: STATIC AND ZAMO
OBSERVER FAMILIES

1. Kinematical properties of static observers
The static observers are accelerated, with 4-acceleration
M~/A(r? — a’cos’8) 2Mra? sin 6 cos 0
alm) = 23/2(A - a*sin®0) T 3/2(A - a*sin®9) “
(A1)

and are locally rotating, with vorticity vector

2aMrv/Acosd

Ma(r? — a*cos*0) sinf
(m) ==537 22 67T 0
3/2(A - a*sin0)

€p,

¥3/2(A—a’sin?0) ¢
(A2)

|

[0

M(r? — a*cos?0)
32(Z - 2Mr)
70 2aMrcos 6

FO)

(fw,U,m) = }’(U, m)
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but the congruence of their world lines is not
expanding, i.e., has vanishing expansion 6(m) =0,
due to the alignment of their 4-velocity with the time-
like Killing direction (see, e.g., Ref. [26] for a detailed
description of the kinematical properties of a congru-
ence of world lines, including acceleration, vorticity and
expansion).

For completeness we review properties of the static
observer adapted frame including the transport laws
along the geodesic congruence U decomposed as in
Egs. (15)—(16). The components of the spatial gravita-
tional force, the Fermi-Walker and spatial curvature
rotation vectors [see Eqs. (43)—(46) with u = m] are
given by

[asinOu(U, m)* = VA,

2 . 3
(fwUm) = y(U,m) 23/2(2 ~oMr) [asin@ — \/EIJ(U, m)’],
G aM .
FEf‘J’U’m) 3 =y(U,m) Sz~ 2u) [—(r2 — a2cos26) sin Ou(U, m)" + 2rv/A cos Ou(U, m)?]. (A3)
Moreover
W . 2aMr cos 9\/Z’ o m>2 _ aM sin 0(r* — a*cos*0) ’ (Ad)
: 32( - 2Mr) : 32(E - 2Mr)
and
. cos Ou(U, m)3 5 s, daMr cos O/ A
= — X —AMrE +2M Ao >
Vot = =S5 2Mr) sind | PR IM @Ol S s o)
2 v(U,m)’ 2 ) 2
O(seUm)” = r—M)Z"—M(r-—a” )X —-2Mr-A|,
O (se.m)° = ~537 [a%sin @ cos Ou(U, m)' + rV/Av(U,m)?). (A5)

2. Kinematical properties of ZAMOs

We record the key properties of ZAMOs whose
4-velocity is orthogonal to the Boyer-Lindquist time
coordinate hypersurfaces

n=e; =N, - NI,). (A6)
with corresponding 1-form
n’ = —w' = —Ndt, (A7)

where N = (—¢"")~!/? and N? = g,,,/ g4 are the lapse and
shift functions, respectively.

The accelerated ZAMOs are locally nonrotating in the
sense that their vorticity vector w(n) vanishes, but they
have a nonzero expansion tensor €(n) with vanishing
expansion scalar 6(n)?, so that it agrees with the shear
tensor. Its nonzero components can be described by a shear
vector 0(n)”

O(n) = e; ® 0,(n) +0;(n) ® e,

0(n)* = 0(n) e,

) (A8)

The nonzero ZAMO kinematical quantities (acceleration
a(n) = V,n and shear tensor) as well as the curvature
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vectors associated with the diagonal metric coefficients
[26,28,29,43] only have nonzero components in the r — 62-
plane of the tangent space, i.e.,

a(n) = a(n)e; + a(n)’e;

= 0;(InN)e; + 0y(InN)ey,
0;(n) = 0(n)’ ye; +6(n )
Yy

=N (0:N?e; + 0yN?e;),
k(x,n) = k(x', n)e; + k(x', n)?e,

= —-[0;(In\/g;;)e; + 0y(In \/g;;) €. (A9)
We have then three x(x’, n) “coordinate” curvature vectors:
k(r,n)’, k(0,n) and k(¢p,n)’, all belonging to the 7 — 6
plane. In the static limit (as it is the case of a Schwarzschild

black hole) N¥ — 0 and the expansion vector 0;(n)

vanishes. We list below the nonvanishing components of
the kinematical fields: acceleration

a(n) = - TZ; o o0l + @) - 4y

r[(r* + a?)* — 4a’Mr]},
a(n) = — 2sin 6 cos ggzrj%rz +a?) ’ (A10)
with A = (r* + a*)? — a®Asin®6, shear tensor

oyt =~ PR + @)

+ a*(r* — a?)cos?0)],

0(n)?? = 2m3MS;2/§XOS e (Al1)
and curvature vectors
k(r,n)" = _ra 23(/2\/—1.‘/02,
K(r,n)é _a s1;36/’5059’
k(0,n)" = —;3@,
k(6,n)? = «(r,n)?,
(o) = r? — Ma 51;?2(1: — a’cos0) VA,

k(¢ n)? = (P + a;i;sclznsemzeAZ cosd. (A12)
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The nonvanishing components of the shear vector
enter the transport law for the spatial triad e, along the
world line of n, i.e.,

P(n)V,e; =
P(n)V,,eé = —w(fwy,l);ea],

P(n)V,e; = -o

w(fw,n)geg?)’

(fw,n)ge? + a)(fw,n)?eé’ (Al3)

where @y, ) is the Fermi-Walker angular velocity with
components

w(fw,n);. = 9(”)9(/)7 w(fw,n)e = _e(n)}(/)' (A14)
In terms of the cross product, we have
P(n)V,e, = —®(fy.n) Xp €4 (A15)

A timelike test particle’s 4-velocity U can be
decomposed with respect to the ZAMOs as in
Eq. (23), ie., U=y(U,n)(n+v(U,n)). Evaluating
the derivative along U of the ZAMO adapted frame (20)
leads to

P(n)vUe& = _},(U7 n)[w(fw,n) + w(sc,U,n)} Xn €as
(A16)
with
Co(sc,U,n);« = U(U’ n)$K(¢7 n)?)’
CU(sc,U,n)‘9 = _V(U’ I’l)qAbK'(gb, l’l)?,
Co(chn)tlb = [V(U7 n)?K(r,n)g—y( ) (9,1’1)?].
(A17)

Finally, the Fermi-Walker spatial gravitational force
defining the geodesic precession angular velocity [see
Egs. (43)—(46) with u = n] is given by

(G) _
F(fWVU,n) -

-Vyn = —y(U,n)la(n) + 6(n) L v(U,n)).

(A18)

APPENDIX B: MARCK’S FRAME, TIDAL
MATRICES AND DIAGONALIZATION
PROPERTIES

The nonvanishing components of the electric part of the
Riemann tensor E(U),; = Ry, U*U” in the parallel
propagated frame {E;} computed explicitly in Ref. [44]
are given by
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3M M
EWU), = - 23—1;J3sinh2ﬂcosh2ﬁcos2‘l’ + Z—;JS,

3M 0

E(U), = —%smhﬂcoshﬁ(]lcoshzﬂ —4r%J,) cos P,
3M

EWU); = —23—I;J3sinh2ﬂcosh2/)’cos‘l‘sin v,

M
E(U),, = ﬁr{ [3J5cosh*B — cosh?B(J, — 8a*cos’0J,) + 2r*Js),

E(U)y); = — % sinh # cosh 3(J cosh?f — 4r2J ) sin P,
E(U)y = %hsinhzﬁcoshzﬁcosz‘l‘ - z]:lf_lr( [3J5cosh*B — dcosh?B(J5 + 2a*cos?0J,) + r*Js), (B1)
where
Jy, = 5r* — 10r%a*cos?0 + a*cos*o,
J, = 3r? — a*cos?0,
J3 = r* —10r?a’cos?0 + 5a*cos*d = J, — 4J,,
Jy = r? — a*cos?0,
Js = r? — 3a*cos®0. (B2)

The nonvanishing components of the magnetic part of the Riemann tensor H(U),; = *R
propagated frame are

aupU* U in the parallel

B aM cos 6

3J
HU), = =3 <J2 - 71 sinhzﬂcoshzﬂcosz‘l’> .

3M 2c05%0
H(U),, = ZTrsinhﬂcoshﬁcosq’<J3 _4 CI‘;S Jl),

3aM cos @

H(U)13: 3K

sinh?fcosh? sin ¥ cos WJ 4,

3aM cos @ K
H(U)22 = T{(Kz - r202C0S29)J1 +§[J1J2 - }’2(]1 - 3.]3 +42J4)]},

3M 2cos?0
H(U)y :Tfsinhﬁcosh[)’sin‘l‘<]3—a CI(;S Jl),
3aM cos 0 K? — r*a’cos’0
H(U)y; = % { <sinh2ﬂcosh2ﬁcosz‘l‘ - rZ—ZCOS> Ji
2K
—E[JIJZ—FZ(J1+4ZJ4)]} (B3)
|
Note that the sign of the magnetic part of the  E(U)jly—g
Riemann tensor depends on the sign convention chosen 3Macosf
for the unit volume 4-form used to define the duality = —Wsmhﬂcoshﬂu jcosh’f —4r2J,).  (B4)

operation.

The components in the Frenet-Serret frame {e;}
correspond to setting W = 0, for which both of these
symmetric tensors reduce to block diagonal form with e;
as an eigenvector. In that case the only off-diagonal
component is

This vanishes on the equatorial plane where cos 6 = 0, where
the Marck frame diagonalizes the electric part of the
curvature, while the magnetic part has the single nonvanish-
ing component H(U),, there. The eigenvector e3 = ¢ Xy
e, 1s just the cross product of the direction of the angular part
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of the Carter frame relative velocity with the parallel trans-
ported direction associated with the Killing form.

APPENDIX C: REVISITING THE
CONSTRUCTION OF THE HAMILTONIAN
OF REF. [4]

We reexamine here the construction of the Hamiltonian
of a spinning particle in a curved spacetime to linear order
in the spin given in Ref. [4], taking advantage of the ZAMO
relative observer point of view and its associated spacetime
splitting techniques.

Let {x*} = {t,x'} be the Boyer-Lindquist coordinates
and let o* be the dual of the ZAMO frame e, given
explicitly in Eqgs. (18), (20) but using the abbreviated
notation of Appendix B, namely

Cl)? = vgrrdr7
60{7) = ,/g(/”/,(d¢ +N¢dt),

o =—n’ = Ndt,
o = V90040,

The connection components of this orthonormal frame are
defined by

(C1)

7oy =0Ty 05 = @ (Vo,e5) = =(Vo,00)(e)  (C2)
and introduce the coordinate component object
1 o o af 1 &) (of
E/l/w _EF?&ﬁw u0' 0"y, = zl/laﬁ(a) )y( )1/;/17 <C3)

which is antisymmetric in its last two indices.

The unconstrained Hamiltonian H and the momenta
P; conjugate to x' are defined in terms of the spatial
coordinate components p; of the particle’s 4-momentum
by

H= —Pr— EtbeIw’ Pi = Pi =+ EiﬂyS’w’ (C4)
respectively. The coordinate component p, of the
4-momentum can be expressed in terms of the mass
and p; by using the normalization condition p- p = —m?
(where m is the particle’s rest mass) as

pe=Nlpy—NyJm* + O gp;p;.

where (g is the inverse ZAMO spatial 3-metric
related to the inverse of the full metric by
@ gl = B)lgli -~ N2NINJ, so that the unconstrained
Hamiltonian becomes

H=-N?py+N\/m*+®gipp, —E,S".

The spin tensor is assumed to satisfy the generalized
Newton-Wigner supplementary conditions

(C5)

(Co)
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S, =0, (C7)

where the timelike Newton-Wigner vector @ is given by
w = p+ mn. (C8)

The conditions (C7) have been shown in Ref. [4] to yield

canonical variables to first order in spin. Recalling that
p = mU, the vector w can be also written as

@ =m(U +n) = [[w||&. (C9)
where

W= 7e(n+vg)

Vg = %U(U,n)

Vo = \/%, (C10)

is a unit timelike vector and ||@|| = 2mys,.
The spin tensor can then be fully represented by a spatial
vector (with respect to @)

A 1 N v *(tr
S(@)t =S n(@)", s = 7S],

5 (C11)

where 1(%),,; = N5, @° is the spatial unit volume 3-form

(with respect to @). Expressing this spin vector in the
ZAMO frame, namely

S(tr) = S'n+ Se; + %, + SPe;.  (C12)
with
St =1l 5"+ 1880 + 10 50, (C13)

then the ZAMO frame components of the spin tensor are
found to be

Sab = €apeS (@), st = p nSabwé- (C14)
Here
w-n= —(m + 4/ m* + <3>gijpipj)
1 A
= -—m(1++/0) + \/—§<3>g‘fP,-E,»WSW, (C15)

to first order in spin, with
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— 3) ijD D D2 D2 D2
0=1+04ipp, =1 +P+ P+ P

(C16)

so that @ - n~—m(1 +y(U,n)) in Eq. (C14).

The constrained Hamiltonian A is then obtained by
inserting the generalized Newton-Wigner supplementary
conditions (C7) into the unconstrained Hamiltonian (C6),
and replacing the coordinate components of the particle’s
4-momentum by the corresponding canonical momenta.
The latter are related to each other by (C4), which
implies
P, =my(U,n)v(U,n), —0(n),;lve %, S(@)]°

+ [K(xa7 I’l) X S({UH&’ (C17)

which can be easily inverted to first order in the spin to
express v(U,n)? in terms of P,. Finally, the constrained

PHYSICAL REVIEW D 95, 124022 (2017)

Hamiltonian (with canonical variables {x",Pj,S’A‘}) to
first order in the spin turns out to be

H:I:IN5+H5, I:IS = —WAE}LIMDS'MD, (CIS)
where
Hys = m(=N?P, + N+/Q)

is the Hamiltonian for a nonspinning particle and

(C19)

P[l N2
—e; |, W-W=-—.
Y ) 0
Note that both U and W = (N/y(U,n))U are tangent to
the spinning particle world line, but with a different para-
metrization: U* = dx*/dr uses proper time, whereas
W% = dx*/dt the coordinate time. Finally, a straightforward
calculation shows that the spin-dependent Hamiltonian can
be written as Hg = H,S%, with H? given by Eq. (58).
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