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The glueball dark matter, in the pure SUðNÞ Yang-Mills theory, engenders dark SUðNÞ stars that
comprise self-gravitating compact configurations of scalar glueball fields. Corrections to the highest
frequency of gravitational wave radiation emitted by dark SUðNÞ star mergers on a fluid brane with variable
tension, implemented by the minimal geometric deformation, are derived, and their consequences are
analyzed. Hence, dark SUðNÞ star mergers on a fluid braneworld are shown to be better detectable by the
LIGO and the eLISA experiments.
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I. INTRODUCTION

Dark matter and dark energy comprise new directions in
gravity and high-energy physics, toward theories that are
beyond General Relativity (GR) and that can explain two
such puzzling phenomena. Among successful attempts to
propose theories beyond GR, the method of geometrical
deformation (MGD) consists of a suitable approach to derive
new solutions of the effective Einstein field equations [1–3],
encoding compact stellar distributions. These new solutions
are complementary to other successful paradigms [4–6]. The
MGD comprises the brane tension (σ) as a free parameter,
controlling the high-energy regime of an inflationary brane-
world scenario that has the GR as the low-energy limit.
In fact, during the cosmological evolution, the brane temper-
ature has been severelymodified. It varied from, for instance,
T ∼ 104 K—when the matter density equaled the radiation
density, around 5.6 × 103 yr after the big bang—to the
current value of T ∼ 2.73 K, in the cosmic microwave
background (CMB). An underlying setup can thus be
implemented by a variable tension fluid brane [7], whereon
compact self-gravitating systems can undergo the MGD [8].
The MGD was developed using Randall-Sundrum–like

models [4,9]. It has the bulk dark pressure and radiation as
leading constituents of the stress-energy tensor, in the brane
effective Einstein field equations [10]. Explicit solutions
are compact stellar structures with a bulkWeyl fluid imprint
[1–3,11]. The MGD is a strong and robust procedure that
has been recently endowed with observational and exper-
imental precise bounds, from gravitational lensing effects
[12] to the classical tests of GR [13].
On the other hand, gauge fields that are further away

from the Standard Model of elementary particles were
proposed as pure Yang-Mills dark fields [14,15]. In fact, the
Standard Model can be coupled to hidden sectors, governed
by a pure Yang-Mills setup, in the low-energy regime. The
scalar glueball dark matter model implements such a

SUðNÞ Yang-Mills sector [14,16,17], as a self-interacting
field with a large cross section. When Standard Model
particles and fields are forbidden to interact with the SUðNÞ
scalar glueball, gravity can induce a self-gravitating system,
manifesting Bose-Einstein condensation of glueballs into
compact stellar objects. Reference [16] discusses relevant
elastic scatterings among glueballs, manifesting their fea-
sibility as a self-interacting dark matter candidate. A refined
and detailed analysis can be checked in Ref. [14], together
with other general aspects [18].
Although dark SUðNÞ compact systems were studied

[16], any realistic approach that provides observational and
experimental signatures of dark SUðNÞ stars on inflationary
scenarios is still lacking. Here, the MGD is proposed as a
procedure to implement dark SUðNÞ braneworld stars, in
the context of the evolution of the Universe, as well as to
refine the analysis of gravitational waves produced by dark
SUðNÞ glueball star mergers, enhancing the window for
current experiments to detect them.
This paper is organized as follows. Section II is devoted

to a brief review, regarding the MGD of stellar distributions
on a fluid brane, ruled by a variable tension that encodes the
cosmological evolution. In Sec. III, corrections to the
highest frequency of gravitational wave radiation, emitted
by dark SUðNÞ star mergers due to the finite brane tension,
are derived for both the ϕ4 self-interacting glueball poten-
tial and the glueball potential in the large N limit. These
corrections make the gravitational wave radiation, emitted
by dark SUðNÞ MGD star mergers, easier to detect than in
the GR limit setup. Hence, a larger spectrum of gravita-
tional waves on fluid branes is expected, enhancing the
window to be probed by the LIGO and the eLISA experi-
ments. Section IV is dedicated to drawing the conclusions
and final comments.

II. MGD SETUP AND FLUID BRANES

The MGD procedure is able to derive high-energy co-
rrections to GR, when the vacuum in the outer region of a*roldao.rocha@ufabc.edu.br
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compact distribution is permeated by a five-dimensional
(5D) bulk Weyl fluid [1,3,19]. The codimension-1 brane
that designates our Universe has tension (self-gravity) as a
leading parameter, which varies as the temperature
decreases, across the Universe inflation [7,20]. The most
useful and applicable braneworld scenarios in this context
are implemented by fluid branes, evincing the Eötvös law
that provides the dependence of the brane tension with the
temperature [7,20].
The MGD setup has recently imposed the brane (var-

iable) tension bounds σ ≳ 5.19 × 106 MeV4 (in the context
of the classical tests of GR) [13] and σ ≳ 3.18 × 106 MeV4

(regarding the Bose-Einstein condensation of weakly
interacting gravitons into MGD black holes) [21]. The
MGD represents a deformation of the Schwarzschild
metric, implemented by bulk effects in the braneworld
paradigm, the low energy regime σ → ∞ of which recovers
the Schwarzschild standard solution.
The four-dimensional (4D) Einstein effective equations

can be derived when the 5D bulk Einstein equations are
projected onto the 4D brane, by the Gauss-Codazzi method
(the convention 8πG ¼ c ¼ 1 ¼ ℏ is going to be fixed,1

where G ¼ ℏc=M2
pl and Mpl denotes the Planck scale, and

μ; ν ¼ 0, 1, 2, 3), yielding [10]

Rμν þ
�
Λ −

1

2
R

�
gμν − Tμν ¼ 0; ð1Þ

where Rμν, R, and Λ are, respectively, the Ricci tensor, the
Ricci scalar, and the 4D cosmological constant. The effective
stress tensor in Eq. (1) can be split into a sum, Tμν ¼
Tμν þ Eμν þ σ−1Sμν, where the first component Tμν denotes
the branematter stress tensor andEμν inscribes high-energetic
corrections from the 5DWeyl fluid. The tensor Sμν encrypts
Kaluza-Klein imprints from the bulk onto the brane [4,10].
Compact stellar structures that are solutions of the

Einstein brane field equations (1) are usually obtained
for static, spherically symmetric, metrics (2),

ds2¼−AðrÞdt2þðBðrÞÞ−1dr2þ r2ðdϑ2þ sin2ϑdφ2Þ: ð2Þ

The MGD procedure fixes the gtt metric component in (2)
and deforms the outer g−1rr ≡ BðrÞ metric component
[2,3,11],

BðrÞ ¼ 1 −
2M
r

þ ς exp

�Z
r

R

fðAðrÞÞ
gðAðrÞÞ dr

�
; ð3Þ

where fðAðrÞÞ ≡ AA00
A02 þ ðlnðAÞÞ02 þ 2

r lnðAÞ0 − 1 þ 1
r2

and g−1ðAðrÞÞ ¼ 1
2
lnðAÞ0 þ 2

r [2], ð Þ0 ≡ dðÞ
dr , and R≡R

r3ρðrÞdr=R r2ρðrÞdr, where ρ is the energy density of

the stellar matter distribution [1]. The parameter ς in Eq. (3)
encodes a bulk-induced deformation of the vacuum, at the
compact distribution surface, comprising the necessary 5D
(bulk) Weyl fluid data onto the brane [13]. It is significant
to observe that the outer metric is defined in the region
r > R [1], the deformation of which yields [2]

AðrÞ ¼ 1 −
2M
r

; ð4aÞ

BðrÞ ¼
�
1þ

�
1 −

3M
2r

�
−1
ς
l
r

��
1 −

2M
r

�
; ð4bÞ

where

l≡
�
1 −

2M
R

�
−1
�
1 −

3M
2R

�
R: ð5Þ

The MGD black hole event horizons are r1 ¼ 2M and
r2¼−ςlþ 3M

2
. The infinitely rigid brane limit ς−1∼σ→∞,

which characterizes the GR limit, yields r1 > r2. Besides, ς
is a parameter that relies on the inherent compact star
configuration. References [1,8] show that the metric radial
component (4a) can be written as

BðrÞ ¼ 1 −
2M
r

−
�
1 −

2M0

r

��
1 −

3M0

2r

�
−1 l0ς

r
; ð6Þ

thus exhibiting a part that is beyond the Schwarzschild
solution, up to order Oðσ−2Þ, where M0 ¼ Mjσ→∞ is the
GR mass function and l0 ¼ lðM0Þ, concerning Eq. (5).
Bulk imprints are highest at the star surface r ¼ R. This
shall be a prominent information in the analysis of dark
SUðNÞ stars on fluid branes, in the next section.
The less compact the star, the smaller the jςj parameter is

[1,2]. Moreover, the current experimental and observational
data were used in Ref. [13] to impose the strongest bound
jςj≲ 6.1 × 10−11 on the MGD parameter, using the
classical tests of GR. This result, together with the most
recent and strict bound on the variable brane tension
σ ≳ 3.18 × 106 MeV4 [21], justifies high-order Oðσ−2Þ
terms to be dismissed, yielding

ςðσ;RÞ ¼ −
b0
R2

σ−1; ð7Þ

where b0 ∼ 1.35 [13]. The negativeness of ς compels the
MGD star gravitational field to be weakened, as an effect
of a finite brane tension, when compared to the GR regime
σ → ∞.
Heretofore, no condition on the variable brane tension

has been imposed, although cosmological evidence drives
the brane tension to fluctuate across the Universe inflation
[7,22]. On Eötvös fluid branes, the brane tension varies
with respect to the Universe temperature T. One associates

1Obviously, the precise values of all involved parameters shall
be suitably taken into account, in the calculations in Sec. III.
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the regime σ ≈ T − τ [7], where τ is some critical value that
makes σ to assume only non-negative values after the big
bang [7,20]. This varying brane tension can eliminate any
initial singularity at the early Universe. In fact, the brane
Universe was created at a τ temperature, corresponding to
the scale factor value a0 that is defined by the coupling
constants [7,22]. Reference [7] derived the relationship
between temperature and the scale factor, TðtÞ ≈ 1

aðtÞ [7].
This result yields a time-dependent brane tension,

σðtÞ
σ0

¼ 1 −
a0
aðtÞ : ð8Þ

At the extremely hot early Universe, the brane tension was
negligible (σ ≊ 0). Subsequently, both the variable brane
tension and the 4D coupling parameter grew, as the scale
factor asymptotically increased, in the inflationary brane-
world scenario [23]. The time-dependent brane tension
expression yields Λ4D

Λ0
¼ 1 − a0

aðtÞ ð1 − a0
aðtÞÞ. This (dynamical)

cosmological “constant” had attained a huge negative value
and achieved small positive values [20]. It also engendered
supplementary attraction (repulsion) at small (large) values
of the scale factor, similarly to the dark matter (dark
energy). This inflationary cosmology scenario emulates
the (cosmological) standard model at late times, wherein
the energy that is absorbed by the brane thrusts the 5D bulk
toward an anti-de Sitter bulk, as a mere consequence of the
highest symmetry [22,24].
In the next section, the dark SUðNÞ stellar system,

constituted by self-interacting scalar glueballs, is studied
on a fluid brane, the tension of which obeys the Eötvös law.
Corrections to the gravitational waves frequency, emitted
by dark SUðNÞ star mergers on the fluid brane, are then
derived as a consequence of the dark SUðNÞ star mass and
radii variation on a fluid brane. Moreover, dark SUðNÞ stars
features can be, in this context, analyzed along the infla-
tionary braneworld era.

III. FLUID BRANE CORRECTIONS
TO DARK SUðNÞ STARS

Hidden SUðNÞ Yang-Mills sectors, which are farther
away than the Standard Model of elementary particles, can
be realized by the (scalar) glueball dark matter model
[14,16]. The gravitational interactions among glueballs
engender a self-interacting system, having the glueball

mass (m) and the number (N) of colors as the main
underlying parameters. When 10 eV≲m≲ 10 KeV and
103 ≲ N ≲ 106, then the dark glueball field self-gravity
takes part, forming dark SUðNÞ compact stellar distribu-
tions [15,16]. To be compatible with the Bose-Einstein
condensation of the scalar glueballs into static, spherically,
symmetric solutions, the glueball fields are assumed to be
periodic, ϕðr; tÞ ¼ ΦðrÞ cosωt [16].
The action for the most general nonlinear interacting

scalar field theory reads

S ¼
Z

d4x

�
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
: ð9Þ

The Klein-Gordon equation, which is derived from this
action by the Euler-Lagrange equations, couples to the
Einstein field equations and shall be analyzed, for both the
large N glueball potential and for the ϕ4 self-interacting

glueball potential as well. Hereon, _ð Þ≡ dðÞ
dt .

In the next two subsections, corrections due to the
variable brane tension, to the highest frequency of the
gravitational wave radiation emitted by SUðNÞ MGD dark
star mergers, shall be analyzed. Such a highest frequency is
given, for the Schwarzschild case, by [16] fmax ¼
1
2π ðGMR3 Þ1=2, which can be probed by the LIGO experiment
[25]. SUðNÞ MGD dark stars mergers are, then, shown to
provide a better detection of gravitational waves, which is
compatible with the current bounds of the brane tension and
the CMB, in an inflationary braneworld scenario.

A. Self-interacting ϕ4 glueball potential

A self-interacting potential for the dark glueball,

VðϕÞ ¼ 1

2
m2ϕ2 þ λ

4!
ϕ4; ð10Þ

was shown to rule both the glueball dark matter self-
interaction strength and the properties of dark SUðNÞ stars
as well. For λ > 0, stable dark SUðNÞ star configurations
can be derived, when the repulsive λϕ4 self-interaction
compensates gravity [16,26].
The coupled system of Einstein equations and Klein-

Gordon ones was derived in Ref. [16]. Imposing time
averaging over the oscillation period 2π

ω of the ϕ field, such a
system yields

M0ðxÞ −
�
Λ
6
Φ4ðxÞ þ

�
1þ Ω2

AðxÞ
�
Φ2ðxÞ þΦ02ðxÞ

BðxÞ
�
x2

8
¼ 0; ð11aÞ

ðlnAðxÞÞ0
BðxÞ þ Λ

48
xΦ4ðxÞ þ x

4

�
1 −

Ω2

AðxÞ
�
Φ2ðxÞ − x

8

Φ02ðxÞ
BðxÞ þ 1

x

�
1

BðxÞ − 1

�
¼ 0; ð11bÞ

Φ00ðxÞ þ
�
1

2

�
ln
A
B

�0
þ 2

x

�
Φ0ðxÞ −

�
Λ
2
Φ2ðxÞ þ

�
1 −

Ω2

AðxÞ
��

BðxÞΦðxÞ ¼ 0; ð11cÞ
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where [16,26]

x ¼ mr; ð12aÞ

Λ ¼ 12λ

m2
; ð12bÞ

Ω ¼ ω

m
: ð12cÞ

The regime Λ ≫ 1 holds for the glueball dark matter model
[27], yielding Eq. (11c) to imply

Λ−1
�
ϕ00ðxÞ þ

�
2

x
þ 1

2
ln

�
A
B

�0�
ϕ0ðxÞ

�

− BðxÞϕðxÞ
��

1 −
Ω2

AðxÞ
�
−
1

2
ϕ2ðxÞ

�
¼ 0; ð13Þ

where

x ¼ xffiffiffiffi
Λ

p ; ϕ ¼
ffiffiffiffiffiffi
2Λ

p
Φ; M ¼ Mffiffiffiffi

Λ
p : ð14Þ

The Λ ≫ 1 limit can induce the first term in Eq. (13) to be
dismissed, yielding

lim
Λ≫1

�
ϕðxÞ −

ffiffiffi
2

p �
Ω2

AðxÞ − 1

�
1=2

�
¼ 0; ð15Þ

implying that

M0ðxÞ − x2
�
1

4

�
Ω2

BðxÞ þ 1

�
ϕ2ðxÞ þ 3

32
ϕ4ðxÞ

�
¼ 0; ð16Þ

BðlnAÞ0x2 − 2Mþ
��

1 −
Ω2

A

�
ϕ2

2
þ 3

16
ϕ4

�
x3 ¼ 0; ð17Þ

where x is the argument of all functions in Eqs. (16) and
(17). Similarly to Refs. [16,26], these equations can be
solved by numerical methods, withMð0Þ ¼ 0, for 0≤x≤xR.
The results obtained from using the self-interacting ϕ4

glueball potential (10) are depicted in Figs. 1–3. In what
follows, σ ∼ 106 MeV4 shall denote the current brane
tension bound σ ≳ 3.18 × 106 MeV4 [21]. The same nota-
tion shall be used for the values σ ∼ 109 and 1012 ∼ MeV4,
but these exact values shall be adopted in what follows,
unless otherwise explicitly stated.
The gravitational balance of self-interacting scalar

fields was studied [27], also in the context of stability
bounds on compact objects [21,28], represented by spheri-
cally symmetric boson star solutions. According to the g−1rr
metric component in Eq. (4b), the boundary condition
Mðx¼ 0Þ¼ 0 implies that limM→0BðrÞ ¼ 1þ ς l

r.
In Fig. 1, the mass spectrum (y axis) between the

point Að0Þ
Ω2 ¼ 0 up to the critical (maximum) point in the

FIG. 1. Dark SUðNÞ MGD star mass MðxRÞ, in the ϕ4 scalar

glueball potential setup, normalized by
ffiffiffiffi
2λ

p
M3

pl

m2 , with respect to Að0Þ
Ω2 ,

for different values of the fluid brane tension σ ¼ 1012 MeV4

(dashed line), σ ¼ 109 MeV4 (black line), and σ ∼ 106 MeV4

(gray line).

FIG. 2. Dark SUðNÞ MGD star radius xR in the ϕ4 scalar

glueball potential setup, normalized by
ffiffiffiffi
2λ

p
Mpl

m2 , with respect to Að0Þ
Ω2 ,

for different values of the fluid brane tension σ ¼ 1012 MeV4

(dashed line), σ ¼ 109 MeV4 (black line), and σ ¼ 106 MeV4

(gray line).

FIG. 3. Dark SUðNÞ MGD star ratio MðxRÞ
x3R

in the ϕ4 scalar

glueball potential setup, normalized by
ffiffiffiffi
2λ

p
Mpl

m2 , with respect to Að0Þ
Ω2 ,

for different values of the fluid brane tension σ ¼ 1012 MeV4

(dashed line), σ ¼ 109 MeV4 (black line), and σ ∼ 106 MeV4

(gray line).
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plots cannot be attained. In fact, Ref. [26] showed that a
dark SUðNÞ star accretes by seizing the surrounding dark
matter. Thereafter, the dark SUðNÞ MGD star mass
increases by accretion, up to a maximum, represented in
the third column in Table I. The results are presented
for different values of the brane tension. Now, the glueball
SUðNÞ dark star has radius and mass that read, respectively
[16,26],

R ¼
ffiffiffiffiffi
2λ

p

m2
MplxR; ð18Þ

M ¼
ffiffiffiffiffi
2λ

p

m2
M3

plMðxRÞ: ð19Þ

Based on the third and fourth columns in Table I, the
glueball dark SUðNÞ MGD star has highest radius and
mass, respectively, given by

R ¼

8>>>>><
>>>>>:

902.5m2
ffiffiffi
λ

p
; for σ → ∞ ðGR limitÞ

929.8m2
ffiffiffi
λ

p
; for σ ¼ 1012 MeV4

949.2m2
ffiffiffi
λ

p
; for σ ¼ 109 MeV4

922.5m2
ffiffiffi
λ

p
; for σ ∼ 106 MeV4

ð20Þ

M ¼

8>>>>>><
>>>>>>:

9
ffiffi
λ

p
m2 10

−2 M⊙; for σ → ∞ ðGR limitÞ
9.04

ffiffi
λ

p
m2 10−2 M⊙; for σ ¼ 1012 MeV4

9.72
ffiffi
λ

p
m2 10−2 M⊙; for σ ¼ 109 MeV4

10.94
ffiffi
λ

p
m2 10−2 M⊙; for σ ∼ 106 MeV4;

ð21Þ

where M⊙ denotes, as usual, the Solar mass.
Equations (20) and (21), together with the last column of

Table I, yield the highest gravitational wave radiation
frequency,

fmax ¼
m2

ffiffiffi
λ

p
ffiffiffi
2

p
πMpl

supp1=2
�
MðxRÞ
x3R

�
≊ β1ðσÞð50 HzÞ; ð22Þ

where the function

β1ðσÞ ¼ a
ffiffiffi
λ

p
ð2mÞ2104 GeV−2 ð23Þ

has an adjusting factor a, which is a function of the variable
brane tension, according to Eq. (22) when the last column
of Table I is taken into account. Such a factor is given by

a ¼

8>>><
>>>:

1; for σ → ∞ ðGR limitÞ;
1.010; for σ ¼ 1012 MeV4;

1.111; for σ ¼ 109 MeV4;

1.262; for σ ∼ 106 MeV4:

ð24Þ

The parameter a indicates the corrections to the unit (that
corresponds to the σ → ∞GR limit), for different values of
the brane tension.
The parameter a in (24) shows corrections to the highest

gravitationalwave radiation frequencyemittedbydarkSUðNÞ
MGD star mergers, due to the brane tension. The current
lower bound for the brane tensionσ ≳ 3.18 × 106 MeV4 [21],
in the last line of Eq. (24), provides a realistic fluid brane
scenario, wherein the highest gravitational wave radiation
frequency is up to ∼26.2% higher than the predictions in the
GR limit.
Now, we can see that the highest gravitational wave

frequency that is emitted by dark SUðNÞ MGD star
mergers, in Eqs. (22), for the self-interacting ϕ4 glueball
potential, can be better detected by the LIGO and the
eLISA experiments [25], having a wider range than the
spectrum of frequencies provided by Schwarzschild sol-
utions [16]. This shall be clear in what follows, by
analyzing the N—m parameter space.
Reference [16] argued that the dark SUðNÞ stars have

parameters in the ranges 100 eV≲m≲ 10 KeV and
103 ≲ N ≲ 106, yielding a maximum 106 M⊙ ≲M ≲
109 M⊙ for the dark SUðNÞ MGD star mass, whereas
the lowest dark SUðNÞMGD star radius varies in the range
102 ≲ R≲ 105, in unit of the Solar radius R⊙. Hence, the
highest gravitational wave frequency that is emitted by dark
SUðNÞ MGD stars mergers, given by Eqs. (22), for the ϕ4

glueball potential (10), can be better detectable by the
LIGO and the eLISA experiments [25]. Moreover, dark
SUðNÞ MGD star mergers have specific signatures that are
quite different than Schwarzschild black hole mergers, due
to the subsequent analysis of Table I, as well as Eqs. (24). In
fact, since dark SUðNÞ MGD stars do not necessarily
collapse to form a black hole, their gravitational wave
frequency of emission has a distinct signature of the ones
emitted by black hole mergers.
The highest frequency of gravitational wave radiation

fmax, emitted from dark SUðNÞ MGD stellar mergers, can
be allocated in the range 30 μHz≲ fmax ≲ 100 mHz,
which can be further detected by the eLISA mission
[29]. In addition, the LIGO experiment can probe the

TABLE I. Highest values of the dark SUðNÞ MGD stars radius

(normalized by
ffiffiffiffi
2λ

p
m2 Mpl) and mass (normalized by

ffiffiffiffi
2λ

p
m2 M3

pl), by

accretion, for different values of the fluid brane tension, for a λϕ4

scalar glueball potential.

Brane tension σ
Að0Þ
Ω2 Mass MðxRÞ Radius xR

MðxRÞ
x3R

∞ (GR limit) 0.533 0.222 1.351 0.090
1012 (MeV4) 0.530 0.223 1.392 0.091
109 (MeV4) 0.517 0.240 1.421 0.110
106 (MeV4) 0.509 0.249 1.381 0.142
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range of gravitational waves frequency 50 Hz≲ fmax≲
1 KHz, nowadays. Both these ranges are, respectively,
represented by the light-gray and the gray bands in Figs. 4
and 5 below, which represent theN-m parameter space. The
black band represents the self-interacting ϕ4 glueball dark
matter. Figure 4 is based on the σ → ∞GR limit, whereas
Fig. 5 takes into account the brane tension bound
σ ≳ 3.18 × 106 MeV4. The differences between Figs. 4
and 5, both for the ϕ4 glueball potential, reside on the
distinction between the GR limit and the MGD setup,
respectively. Although the spectrum of frequencies detected
by the LIGO and the eLISA experiments are slightly
modified by the 5D Weyl fluid in the MGD setup, when
one goes from Fig. 4 to Fig. 5, the self-interacting glueball
dark matter (black band) in the N-m parameter space is
considerably thickened.
In the next subsection, the glueball potential in the large-

N regime shall be employed, to derive similar corrections,
due to a fluid brane variable tension.

B. Large number of SUðNÞ colors
Regarding the large-N limit regime, the scalar glueball

potential associated with the SUðNÞYang-Mills dark sector
has power counting λiþ2 ∼ 1=Ni, where i ∈ N for the cubic
and higher-order terms in Eq. (10) [14–16]. Considering all
higher-order terms, the dark glueball potential (10) in this
regime reads [14–16]

VðϕÞ ¼
�
m2N
4π

�
2 X∞

i¼2

1

j!

�
4πϕ

Nm

�
j
; ð25Þ

which is the Taylor expansion of the exponential function
of the argument 4πϕ

Nm, when its two first terms are not taken
into account [16]. Similarly to Eqs. (15)–(17), the coupled
equations can be acquired [16,26],

AðxÞ
Ω2

¼ 2F
−1
1 ð0.5; f1; 1.5g; 4πϕ2ðxÞÞ; ð26aÞ

M0ðxÞ − x2
�

Ω2

4AðxÞϕ
2ðxÞ þ I0

16π2

�
¼ 0; ð26bÞ

ðlnAðxÞÞ0
BðxÞ −

2MðxÞ
x2

−
Ω2x
2AðxÞϕ

2ðxÞ þ xI0

8π2
¼ 0; ð26cÞ

where I0 ¼ I0ðϕðxÞ − 1Þ, and the Λ ≫ 1 regime is adopted
[16,26]. The symbol 2F1 is the usual generalized hyper-
geometric function, and I0 denotes the (modified) Bessel
function. These two functions are derived when the time
averaging of the potential (25) is computed [16].
The results obtained from using the large-N limit

glueball potential in Eq. (25) are plotted in Figs. 6–8.
Figures 6–8 take into account finite brane tensions, being
smoother than their respective σ → ∞ counterparts [16].
Comparing Figs. 1, 2, and 3 (the ϕ4 dark glueball potential)

FIG. 4. The parameter space of m (GeV) vs N for the self-
interacting glueball dark matter, using the ϕ4 potential, in the
σ → ∞GR limit. The gray (light gray) band indicates the highest
frequency of gravitational wave radiation that can be detected by
the LIGO (eLISA) experiment. The black band regards the ϕ4

self-interacting glueball dark matter.

FIG. 5. The parameter space of m (GeV) vs N for the self-
interacting glueball dark matter, using the ϕ4 potential, in the
current brane tension bound σ ≳ 3.18 × 106 MeV4 [21]. The gray
(light gray) band indicates the highest frequency of gravitational
wave radiation that can be detected by the LIGO (eLISA)
experiment. The black band regards the ϕ4 self-interacting
glueball dark matter.
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to, respectively, Figs. 4, 5, and 6 (the large-N limit dark
glueball potential), one realizes that the dark SUðNÞ MGD
stars have bigger radii and are more massive that their GR
limit counterparts.
Analogously to the self-interacting ϕ4 glueball potential,

in Fig. 6, the mass spectrum (y axis) between the point
Að0Þ
Ω2 ¼ 0 up to the critical (maximum) point in the plots
cannot be attained, and a dark SUðNÞ star accretes and
increases its mass up to a maximum, represented in the
third column in Table II. The results are presented for
different values of the brane tension.
Table II shows that the ratio xR

MðxRÞ is always greater than 2
(in normalized units), irrespectively of the brane tension
values, whatever the glueball potential is considered. It
means that the radius of a dark SUðNÞ MGD star is
always larger than a Schwarzschild black hole event
horizon of same mass, a result similar to the one in
Ref. [16] that considers the σ → ∞GR limit. Hence, there
is no collapse process of a dark SUðNÞ MGD star that
originates a black hole. The highest frequency of the
gravitational wave radiation is again obtained for the
maximum value of the dark SUðNÞ MGD star mass.
Both the MGD star highest effective radius and mass,

respectively, R ¼ 1
2
ffiffi
π

p Mpl

Nm2 xR and M ¼ 1
2
ffiffi
π

p M3
pl

Nm2 MðxRÞ, are
presented:

R ¼

8>>>>>><
>>>>>>:

3.57
Nm2 ; for σ → ∞ ðGR limitÞ
3.72
Nm2 ; for σ ¼ 1012 MeV4

3.72
Nm2 ; for σ ¼ 109 MeV4

3.79
Nm2 ; for σ ∼ 106 MeV4

ð27Þ

M ¼

8>>>>>><
>>>>>>:

0.36
Nm2 M⊙; for σ → ∞ ðGR limitÞ
0.36
Nm2 M⊙; for σ ¼ 1012 MeV4

0.35
Nm2 M⊙; for σ ¼ 109 MeV4

0.34
Nm2 M⊙; for σ ∼ 106 MeV4

: ð28Þ

One then gets a highest gravitational wave frequency,
which reads

FIG. 6. Dark SUðNÞ MGD star mass MðxRÞ, in the scalar

glueball potential (25), normalized by
ffiffiffiffi
2λ

p
M3

pl

m2 , with respect to Að0Þ
Ω2 ,

for different values of the fluid brane tension σ ¼ 1012 MeV4

(dashed line), σ ¼ 109 MeV4 (black line), and σ ∼ 106 MeV4

(gray line).

FIG. 7. Dark SUðNÞ MGD star radius xR, in the scalar glueball

potential (25), normalized by
ffiffiffiffi
2λ

p
Mpl

m2 , with respect to Að0Þ
Ω2 , for

different values of the fluid brane tension σ ¼ 1012 MeV4

(dashed line), σ ¼ 109 MeV4 (black line), and σ ∼ 106 MeV4

(gray line).

FIG. 8. Dark SUðNÞ MGD star ration MðxRÞ
x3R

, in the scalar

glueball potential (25), normalized by
ffiffiffiffi
2λ

p
Mpl

m2 , with respect to Að0Þ
Ω2 ,

for different values of the fluid brane tension σ ¼ 1012 MeV4

(dashed line), σ ¼ 109 MeV4 (black line), and σ ∼ 106 MeV4

(gray line).

TABLE II. Highest values of the dark SUðNÞ MGD star radius

(normalized by
ffiffiffiffi
2λ

p
m2 Mpl) and mass (normalized by

ffiffiffiffi
2λ

p
m2 M3

pl), by
accretion, for different values of the fluid brane tension, for a the
scalar glueball potential (25).

Brane tension σ
Að0Þ
Ω2 Mass MðxRÞ Radius xR

MðxRÞ
x3R

∞ (GR limit) 0.319 0.74 4.7 0.0070
1012 (MeV4) 0.322 0.74 4.9 0.0073
109 (MeV4) 0.327 0.73 4.9 0.0083
106 (MeV4) 0.372 0.72 5.0 0.0084
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fmax ¼
m2Nffiffiffi
π

p
Mpl

supp
1
2

�
MðxRÞ
x3R

�
≃ β2ðσÞ ð50 HzÞ; ð29Þ

where the function

β2ðσÞ ≊ 123.4c ðm2NÞ GeV−2 ð30Þ

has a tuning factor c, which is a function of the variable
brane tension, according to Eq. (29) and to the last column
of Table II, given by

c ¼

8>>><
>>>:

1; for σ → ∞ ðGR limitÞ
1.020; for σ ¼ 1012 MeV4;

1.088; for σ ¼ 109 MeV4;

1.114; for σ ∼ 106 MeV4:

ð31Þ

The parameter c indicates the corrections to the unit (that
corresponds to the σ → ∞GR limit), for different values
for the brane tension.
Similarly to what was accomplished in the Sec. III.A,

dark SUðNÞ stars have parameters in the ranges 100 eV≲
m≲ 10 KeV and 103 ≲ N ≲ 106, yielding a maximum
106 M⊙ ≲M ≲ 109 M⊙ for the dark SUðNÞ MGD star
mass,whereas the lowest darkSUðNÞMGDstar radius lies in
the range 102 ≲ R≲ 105. Hence, the highest frequency of
the gravitational wave by dark SUðNÞMGD star mergers is
ruled by Eqs. (29) for the large-N limit glueball potential.

The highest frequency of gravitational wave radiation fmax,
from dark SUðNÞ MGD stellar mergers, can be allocated in
the range 30 μHz≲ fmax ≲ 100 mHz, which can be further
detected by the eLISA mission [29]. Also, the LIGO
experiment can probe the spectrum 50Hz≲fmax≲1KHz.
Both these spectra are, respectively, represented by the light
gray and the gray bands in Figs. 9 and 10 below, respectively,
in the σ → ∞GR limit and in the brane tension bound
σ ≳ 3.18 × 106 MeV4, for the large-N glueball potential.
Similarly to the case analyzed in Sec. III. A, the

σ → ∞GR limit has a tiny intersection between the
possibility of detection at the LIGO experiment and
the black band that represents the self-interacting glueball
dark matter, in Fig. 9. However, the finite brane tension
makes this black band larger in Fig. 10. It represents
increased spectra to be probed by the LIGO and eLISA
experiments, which are themselves also slightly thickened
by braneworld effects. It can be realized by comparing the
gray and the light gray bands in Figs. 9 and 10.

IV. CONCLUDING REMARKS AND OUTLOOK

The pure SUðNÞ Yang-Mills glueball dark matter model
was proposed to condense into dark SUðNÞ MGD stars on
fluid branes, representing compact configurations of scalar
glueball fields. The scalar glueball dark matter model may,
eventually, decay into Standard Model elementary particles
[14]. Figures 5 and 10 show that a fluid braneworld

FIG. 9. The parameter space of m (GeV) vs N for the self-
interacting glueball dark matter, using the large-N potential, in
the σ → ∞GR limit. The gray (light gray) band indicates the
highest frequency of gravitational wave radiation that can be
detected by the LIGO (eLISA) experiment. The black band
regards the large-N self-interacting glueball dark matter.

FIG. 10. The parameter space of m (GeV) vs N for the self-
interacting glueball dark matter, using the large-N potential, in
the current brane tension bound σ ≳ 3.18 × 106 MeV4 [21]. The
gray (light gray) band indicates the highest frequency of
gravitational wave radiation that can be detected by the LIGO
(eLISA) experiment. The black band regards the large-N self-
interacting glueball dark matter.
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scenario, wherein the brane tension varies according to
Eq. (8), provides a thickened band that represents the self-
interacting glueball dark matter, for, respectively, both ϕ4

and the large-N potentials that describe the glueball self-
interaction. Since by self-interaction the glueballs can
agglutinate and condense into dark SUðNÞ MGD stars,
this band has a larger intersection with the LIGO (and the
eLISA) experiment to detect gravitational waves.
Taking into account a finite brane tension makes the

signature of dark SUðNÞ star mergers more susceptible to
be detected by the LIGO experiment and by the future
LISA/eLISA project. In fact, with the most recent and
precise brane tension bound [21], Fig. 5 shows a bigger
area of intersection, between the self-interacting ϕ4 glueball
dark matter and both the experimental windows for
detection, than its GR σ → ∞ limit depicted in Fig. 4.
Analogously, for the large-N potential, Fig. 10 also
presents a larger range of intersection, between the
large-N self-interacting potential glueball dark matter
and both the LIGO and the eLISA detectable spectra. To
summarize, Figs. 4 and 9 represent the GR σ → ∞ limit for
the ϕ4 and the large-N potentials that describe the glueball
self-interaction, representing a more improbable scenario to
detect gravitational waves. Hence, dark SUðNÞMGD stars,
that have mass and radius corrected by the bulk 5D Weyl
fluid, should be better detectable by the current LIGO
experiment [25] and by the eLISA project [29].

Finally, the search for TeV-scale gravity signatures in the
ATLAS detector at s ¼ 13 TeV is being currently
approached [30]. Black holes produced with a mass above
the formation threshold evaporate in Higgs particles,
leptons, particle jets, and photons and are currently
searched for at the LHC. Moreover, signatures of TeV
extra-dimensional models are encoded in the partners of the
Z and W bosons that might be permitted to access the 5D
bulk. These partners can be manifested as resonances in
dilepton spectra and are more difficult to be detected at the
LHC. Kaluza-Klein partners of the Standard Model par-
ticles have still not been observed, pushing the lower mass
limits beyond 13 TeV. To summarize, collider data indicate
string theory magnitude extra dimensions, the searches of
which continue at the LHC, and confirmation could happen
in the next generation of colliders [31]. The search for
evidences of extra dimensions can be, then, dislocated also
to observational aspects, as accomplished in Sec. III, by
investigating models of which the signatures increase the
spectrum of the highest frequency of gravitational wave
radiation by the LIGO and eLISA experiments.
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