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We solve for all Szekeres metrics that have a single Killing vector. For quasihyperboloidal (ϵ ¼ −1)
metrics, we find that translational symmetries are possible, but only in metrics that have shell crossings
somewhere, while metrics that can be made free of shell crossings only permit rotations. The quasiplanar
metrics (ϵ ¼ 0) either have no Killing vectors, or they admit full planar symmetry. Single symmetries in
quasispherical metrics (ϵ ¼ þ1) are all rotations. The rotations correspond to a known family of axially
symmetric metrics, which for each ϵ value, are equivalent to each other. We consider Szekeres metrics in
which the line of dipole extrema is required to be geodesic in the 3-space and show the same set of families
emerges. We investigate when two Szekeres metrics are physically equivalent and complete a previous list
of transformations of the arbitrary functions.
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I. INTRODUCTION

The concordance model has successfully explained
many important features of our Universe using the homo-
geneous Friedmann-Lemaıtre-Robertson-Walker (FLRW)
metric. However, the matter distribution around us is not
homogeneous, with stars and galaxies and galaxy clusters
being next to voids and underdensities. The most popular
methods which are used to describe the deviation from
homogeneity are N-body simulations and linear perturba-
tion theory. However, neither approach is able to deal with
nonlinear effects, and thus fall short, especially in simulat-
ing light propagation (see for example [1,2]). The use of
inhomogeneous metrics for the study of cosmological
problems has become more and more important with
respect to applications, but also with respect to theoretical
cosmology: do observations really demand the introduction
of dark energy, an exotic substance that constitute about
70% of our observable Universe, or are we seeing an
artifact coming from an overidealized description of the
Universe? Among the most favored inhomogenous exact
solutions of the Einstein field equations are the spherically
symmetric Lemaître-Tolman (LT) model and its generali-
zation the Szekeres family of exact inhomogeneous sol-
utions ([3,4]), for which the matter source is a comoving,
zero pressure fluid (dust).
In the Szekeres metric we have six arbitrary functions

that depend on the “radial” coordinate. The “radial”
coordinate is the one that becomes a true coordinate radius
in the spherically symmetric special case. Although one of
these functions can be used to remove the rescaling
freedom in the “radial” coordinate, there is no canonical
choice that does not restrict the physical possibilities [5].

There are actually two classes of Szekeres model, the
more commonly used one is a generalization of the
Lemaître-Tolman (LT) [6,7] and Ellis [8] metrics, and
the other is a generalization of the Datt-Kantowski-Sachs
[9,10] metrics. Since the latter can be viewed as a limit of
the former [11], we focus on the Lemaître-Tolman-Ellis-
like metric. Three of the Szekeres arbitrary functions are
identical to those of the “underlying” LTor Ellis metric, and
the other three control the deviation from spherical, planar,
or hyperboloidal (pseudospherical) symmetry.
A key result for this metric was the proof by Bonnor,

Suleiman and Tomimura (BST) that it has no Killing
vectors [12]. This is despite the constant time 3-surfaces
being conformally flat [13], and the lack of gravitational
radiation [14]. In fact the BST paper only considered the
quasispherical case, though one would expect it to general-
ize; a task which we complete here along the way.
Nolan and Debnath [15], in investigating shell focusing

singularities, have shown that if a quasispherical Szekeres
spacetime has a “radial” null geodesic, then the spacetime
is axisymmetric, and the ray lies along the axis; if there is
more than one radial null geodesic, it is spherically
symmetric. Further, they showed that all axisymmetric
Szekeres models are equivalent.
Krasiński and Bolejko [16] considered light paths and

redshifts in Szekeres models. In general, light rays emitted
from the same matter point at different times and received
by the same observer, do not follow the same comoving
spatial path. The authors asked under what conditions the
spatial paths of two such light rays might be repeated. They
showed that if all light paths between every emitter-
observer pair are repeated the spacetime must be a (dust)
FLRW model, and if there exists a repeated ray along a
single direction then the model is axisymmetric about that
direction. They also generalized the Nolan and Debnath
result to quasihyperbolic and quasiplanar models. For the
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LT and Ellis models, only the “radial” rays have repeat-
able paths.
Neither of the above papers claimed they had found all

the axisymmetric Szekeres models, and the possibility, in
the quasihyperbolic and quasiplanar models, of other,
nonrotational single symmetries was not considered.
Sussman and Gaspar [17] studied the location of extrema

of density, expansion and spatial curvature, and they pro-
duced some very nice numerical examples and plots of
Szekeres models with complex structure. They also men-
tioned cases where one or two of the nonspherical arbitrary
functions are constant, and suggest some are axisymmetric.
More complex Szekeres matter distributions—networks of
matter structure—were investigated by Sussman et al. [18].
Though there is a significant body of work on the

Szekeres models, [1,3,4,11–65], and there has been a
renewal of interest recently, the lack of Killing vectors
makes this metric relatively hard to work with. The
quasiplanar and quasihyperboloidal cases have been espe-
cially neglected. Therefore the symmetric special cases
with a single Killing vector would be useful as stepping
stones between full spherical, planar or hyperboloidal
symmetry and the general Szekeres case.
A fuller description of the Szekeres metric and its

properties can be found in [5,66,67].

II. THE SZEKERES METRIC

The line element is

ds2 ¼ −dt2 þ ðR0 − RE0=EÞ2
ðϵþ fÞ dr2 þ R2

E2
ðdp2 þ dq2Þ; ð1Þ

where ϵ ¼ −1, 0, þ1, f ¼ fðrÞ, E ¼ Eðr; p; qÞ,
R ¼ Rðt; rÞ, and we write

W ¼
ffiffiffiffiffiffiffiffiffiffiffi
ϵþ f

p
: ð2Þ

The evolution function R obeys a Friedmann equation

_R2 ¼ 2M
R

þ f þ ΛR2

3
; ð3Þ

where M ¼ MðrÞ and solving this differential equation
introduces the bang-time function tB ¼ tBðrÞ. The matter is
comoving, ua ¼ δat , and has a dust equation of state
(p ¼ 0), the density being given by

κρ ¼ 2ðM0 − 3ME0=EÞ
R2ðR0 − RE0=EÞ : ð4Þ

Each 2-surface of constant r, t,

dl2 ¼ ðdp2 þ dq2Þ
E2

; ð5Þ

is a unit 2-sphere if ϵ ¼ þ1, a unit 2-pseudosphere (or
hyperboloid) if ϵ ¼ −1, and a 2-plane if ϵ ¼ 0. The shape
function E can be written as

E ¼ S
2

�ðp − PÞ2
S2

þ ðq −QÞ2
S2

þ ϵ

�
; ð6Þ

where S ¼ SðrÞ, P ¼ PðrÞ, Q ¼ QðrÞ, and ðp; qÞ are
stereographic coordinates on each 2-surface. The trans-
formation between stereographic coordinates ðp; qÞ and the
more regular “polar” type coordinates can be found in [42]
for each of the three ϵ values.
Rðt; rÞ gives the evolving scale area of the constant r

shell, since its square multiplies the unit-scale surface, (5).
We will refer to r as a “coordinate radius” and R as an
“areal radius”, for all ϵ values, it being understood that
the pseudospherical or planar equivalents are intended if
ϵ ≠ þ1.
The function fðrÞ determines the curvature of the

constant t 3-spaces, and it also gives the expansion energy
per unit mass, E ¼ f=2, of the particles at “radius” r. For
ϵ ¼ þ1, MðrÞ is the total gravitational mass interior to the
comoving shell r; for other ϵ values, it is a masslike factor
in the gravitational potential energy. The functions SðrÞ,
PðrÞ andQðrÞ determine the strength and orientation of the
dipole on each comoving shell.
The function S cannot be zero [41,42], so it is convenient

to keep it positive, S > 0. If ϵ ¼ 0 globally, then S may be
absorbed into the other arbitrary functions, so one is free to
set S ¼ 1. In order to avoid shell crossing singularities [41],
the arbitrary functions must obey a set of conditions that
limit their ranges relative to each other; these are not very
restrictive.
Both grr in (1) and ρ in (4) depend on E0=E, which varies

over each 2-surface of constant ðt; rÞ, and has extreme
values

E0

E

����
e
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S02 þ ϵðP02 þQ02Þ

p
S

; ð7Þ

located at

pe ¼ Pþ P0

ðS0=SÞ þ ðE0=EÞe
; ð8Þ

qe ¼ Qþ Q0

ðS0=SÞ þ ðE0=EÞe
: ð9Þ

The quasispherical Szekeres metric, with ϵ ¼ þ1, is
commonly described as an assembly of evolving spheres
which are nonconcentric, and which display a dipole dis-
tribution in the density variation around each sphere. The
dipole is due to the factorE0=E; on each ðp; qÞ 2-sphere, it is
zero on an “equator”, maximum at one “pole”, and mini-
mum at the opposite “pole”, with E0=Ejmin ¼ −E0=Ejmax.
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The strength and orientation of the dipole depend on
coordinate radius r through (7)–(9).
The quasihyperboloidal Szekeres metric, with ϵ ¼ −1,

has been much less studied. As shown in [42], it may be
thought of as an assembly of evolving right-hyperboloids
that are stacked nonsymmetrically or “nonconcentrically”.
The two sheets of the hyperboloid map to separate regions
of the ðp; qÞ plane, one inside the boundary circle

ðp − PÞ2 þ ðq −QÞ2 ¼ S2; ð10Þ

and one outside it. The boundary circle is the locus of
infinity for each sheet. Only one of the two sheets can be
free of shell crossings and only if

S02 > P02 þQ02: ð11Þ

In this latter case too there is a kind of hyperboloidal (or
pseudospherical) dipole with strength (7) and orientation
defined by (8) and (9). If (11) is not satisfied, (7) is not real,
and extrema with respect to p and q do not exist.
The quasiplanar Szekeres metric, given by ϵ ¼ 0, does

not have an extremum of E0=E, so one cannot talk about a
“dipole”.
It should be noted that a single spacetime can have both

ϵ ¼ þ1 and ϵ ¼ −1 regions, joined by an ϵ ¼ 0 region
which may be thin (a 3-surface) or may have finite width.

III. SZEKERES MODELS WITH
A SINGLE SYMMETRY

The Szekeres metric—in its fully general form—has no
Killing vectors [12]. However, it contains the spherically

symmetric special case, the LT model [6,7]. For example, if
we choose the functions S, P and Q to be constant

ϵ ¼ þ1; 0 ¼ S0 ¼ P0 ¼ Q0; ð12Þ

we will find a LT model. Therefore we expect that
axisymmetric special cases exist, and indeed examples
such as ϵ ¼ þ1, P0 ¼ 0, Q0 ¼ 0 are known.
The spherical symmetry of LT models results from the

fact that every constant r, t submanifold is spherically
symmetric with respect to a common center. Although a
more general quasispherical (ϵ ¼ 1) Szekeres model also
has spherically symmetric r, t constant submanifolds their
centers do not coincide. (For short we say “spheres” if
ϵ ¼ 1, “hyperboloids” if ϵ ¼ −1, simply “planes” if ϵ ¼ 0,
or “shells” if ϵ is not specified, instead of “r, t ¼ const
submanifolds”.) When we consider an axisymmetric
arrangement of nonconcentric spheres, then there is only
one possibility: the centers of the spheres ought to be
in a “straight line”, a geodesic, that forms the symmetry
axis.
In quasispherical models, the dipole function E0=E

encodes the distance between two neighboring spheres
with respect to the mean distance at the equator, see
Fig. 1(a). If the dipole function is dependent on the
coordinates on the sphere p, q, then the distance to the
next sphere (with label rþ dr) is different for different p,
q. The two neighboring spheres are nonconcentric and
because of the spherical symmetry of the two shells, E0=E
must show a dipole structure [see Fig. 1(b)], i.e. E0=E is
axisymmetric (for constant r), the points of extrema are
antipodal, and the extremal values are equal with opposite

FIG. 1. Form of E0=E on the sphere (a) and on the p, q plane (b).
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signs. If E0=E is constant on all spheres, the model is
necessarily spherically symmetric. E0=E can be considered
as the deviation function from global spherical symmetry.
We expect an axial symmetry to occur if the centers of

the r, t ¼ const submanifolds are displaced only along a
“straight line”, i.e. if the extrema of E0=E form a geodesic.
Similarly, for the quasiplanar and quasihyperboloidal cases,
we expect submodels that are symmetric, if the dipole
functions of different shells align.
In the following we will represent shells of constant

r, t as p, q-planes in a Cartesian-like plot and thus unify
the representation of the three different types of models
(ϵ ¼ 1, 0, −1). Below we solve for the general case,
rigorously deriving the conditions for an axial or other
single symmetry from the Killing equations.

A. The Killing equations

We now want to formalize the above and assume
that there is one Killing vector field ξμ, i.e. that the metric
is invariant under the infinitesimal transformation xμ →
xμ þ κξμ (κ is an infinitesimal quantity). Then ξμ satisfies

0 ¼ ξν;μ þ ξμ;ν: ð13Þ

Demanding the existence of one Killing vector field will
lead to conditions on three of the free functions. We are
only interested in the three free functions S, P, Q, because
the other two are already studied in the LT literature. In
order to follow BST generalized to all ϵ (see Appendix A),
we assume that1

f;M and
f

M2=3 are not constant; ð14Þ

and also S, P, Q do not depend on M, f, tB.
We follow the calculation given in Bonnor et al. (BST)

[12] with two exceptions. First, we want to keep ϵ general,
whereas they specified ϵ ¼ þ1. Second, we insist that
exactly one Killing vector field exists, whereas [12] show
that for general S, P, Q there is no Killing vector and thus
no symmetry. Adopting the notation of BST, let us write the
Szekeres metric (1) in the general form

ds2 ¼ −dt2 þ eλdr2 þ eωðdp2 þ dq2Þ; ð15Þ

where λ ¼ λðt; r; p; qÞ, ω ¼ ωðt; r; p; qÞ. More explicit
forms of the metric functions will be used after the
equations have been simplified.
Let us now assume a nonvanishing Killing vector field of

the form

ξa ¼ ðδ; α; β; γÞ; ð16Þ

where each component is an unspecified function of all four
coordinates. In Appendix Awe collect relevant parts of the
argumentation in [12], generalizing it to all ϵ, and here we
just note the key results. If we assume the LT functions M
and f are arbitrary according to (14), we are left with a
Killing vector of the form

ξa ¼ ð0; 0; βðp; qÞ; γðp; qÞÞ: ð17Þ

It is remarkable that a Killing vector field in a Szekeres
model can have no r-component, and its two nonvanishing
components must be independent of r. In these coordinates
the Killing vector field looks the same for all r, t. Now, let
us find the Killing vector field and thus the restriction on
the functions S, P, Q.
In BST’s derivation of (17), four of the Killing equations

were not fully used and still have information that we can
further exploit. Let us rewrite the remaining Killing
equations

rr-component βλ;2 þ γλ;3 ¼ 0; ð18Þ

pp-component β;2 þ
1

2
ðβω;2 þ γω;3Þ ¼ 0; ð19Þ

qq-component γ;3 þ
1

2
ðβω;2 þ γω;3Þ ¼ 0; ð20Þ

pq-component β;3 þ γ;2 ¼ 0; ð21Þ

where λ;2 ¼ ∂λ=∂p, ω;3 ¼ ∂ω=∂q, etc. It can be seen from
(21) and the result of subtracting (20) from (19),

β;2 − γ;3 ¼ 0; ð22Þ

that β and γ are conjugate harmonic functions.
We know that if λ;2 ¼ 0 and λ;3 ¼ 0 we have a global

spherical (ϵ ¼ 1), planar (ϵ ¼ 0) or pseudospherical
(ϵ ¼ −1) symmetry, since the rr component of the metric
loses its dependency on the coordinates p, q. The geometry
of the two dimensional submanifolds is passed on to the
three dimensional space. We cannot have only one of the
two λ2, λ3 vanishing everywhere, because it would result in
0 ¼ ϵS0 ¼ P0 ¼ Q0, hence E0=E ¼ 0, and so the other of
the two would also vanish.
We now assume that both λ2 and λ3 are nonzero.

2 Then
Eq. (18) gives us a way to obtain γ from β, and convert (19)
into an exponential differential equation in β alone,

1BST assumed W and M are linearly independent, which
suffices for ϵ ¼ þ1, but not in general. The relation f ∝ M3=2

plus tB ¼ constant is the FLRW case.

2When we say that a function is nonzero, we mean that it does
not vanish everywhere, although there might be a submanifold
where this function vanishes.
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0 ¼ β;2 þ
1

2

�
ω;2 þ

λ;2
λ;3

ω;3

�
β: ð23Þ

In order to derive the Killing vector explicitly, we use the
abbreviations

Y ¼ p − P; A ¼ 2SE ¼ Y2 þ Z2 þ ϵS2; ð24Þ

Z ¼ q −Q; β ¼ eH; ð25Þ

and write the solution as

H ¼
Z ∂2β

β
dp ¼ −

1

2

Z �
ω;2 þ

λ;2
λ;3

ω;3

�
dp ð26Þ

¼
Z ∂2ðZA0 − Z0AÞ

ðZA0 − Z0AÞ dp ð27Þ

⇒ β ¼ hðZA0 − Z0AÞ; ð28Þ

where hðr; qÞ is a function of integration independent of p.
Similarly (18) in (20) gives

0 ¼ γ;3 þ
1

2

�
λ;3
λ;2

ω;2 þ ω;3

�
γ ð29Þ

⇒ γ ¼ gðYA0 − Y 0AÞ; ð30Þ

where gðr; pÞ is a function of integration independent of q.
Putting (28) and (30) in (18) we find

−1 ¼ β

γ

λ;2
λ;3

¼ hðr; qÞ
gðr; pÞ ð31Þ

so clearly

h ¼ hðrÞ ¼ −gðrÞ: ð32Þ

We find the Killing vector components to be

β ¼ h½2Zð−YP0 − ZQ0 þ ϵSS0Þ þQ0ðY2 þ Z2 þ ϵS2Þ�
ð33Þ

¼ h½Q0ðp2 − q2Þ − 2P0pqþ 2ðQP0 − PQ0Þp
þ 2ðPP0 þQQ0 þ ϵSS0Þq − 2PQP0

þ ðP2 −Q2 þ ϵS2ÞQ0 − 2QϵSS0� ð34Þ

γ ¼ −h½2Yð−ZQ0 − YP0 þ ϵSS0Þ þ P0ðY2 þ Z2 þ ϵS2Þ�
ð35Þ

¼ −h½P0ðq2 − p2Þ − 2Q0pqþ 2ðPQ0 −QP0Þq
þ 2ðPP0 þQQ0 þ ϵSS0Þp − 2PQQ0

þ ðQ2 − P2 þ ϵS2ÞP0 − 2PϵSS0�: ð36Þ

The function h is constrained by the fact that the Killing
vector components are independent of r as required by
(17): β0 ¼ 0 ¼ γ0. Therefore we must have the coefficients
of the different powers of p and q in β0 and γ0 vanish. A
short calculation gives us the following three conditions:

h0P0 þ hP00 ¼ 0; ð37Þ

h0Q0 þ hQ00 ¼ 0; ð38Þ

2h0ϵSS0 þ 2hϵSS00 þ 2hðP02 þQ02 þ ϵS02Þ ¼ 0: ð39Þ

After integrating, we find

hP0 ¼ cp; ð40Þ

hQ0 ¼ cq; ð41Þ

hðϵSS0 þ PP0 þQQ0Þ ¼ cs; ð42Þ

where cp, cq, cs are constants of integration. Also note that
h ≠ 0 or we would have vanishing Killing vector compo-
nents (33) and (35).
From these we get

P ¼ cp

Z
dr
h
þ cp0; Q ¼ cq

Z
dr
h
þ cq0; ð43Þ

ϵS2 ¼ −P2 −Q2 þ 2cs

Z
dr
h
þ cs0; ð44Þ

which shows there is only one free function between S, P
and Q.
So far we have found the Killing vector field for a

Szekeres model, Eqs. (28) and (30), and three conditions
that constrain h, S, P, and Q, (40)–(42). Let us be more
explicit and consider three different cases:

Case 1: P0 ¼ 0 ¼ Q0. The first two conditions, (40) and
(41), are trivial. The third, (42), can be inserted in β, γ
for ϵ ¼ �1. There is no further constraint on S. If
ϵ ¼ 0, P0 ¼ Q0 ¼ 0 leads to λ;2 ¼ λ;3 ¼ 0, which we
excluded as the full symmetric model.

Case 2: Let one of P0, Q0 be zero and the other one
nonzero, say P0 ≠ 0, Q0 ¼ 0. Then we can use the
first condition and find h ¼ cp=P0. The third con-
dition then gives ϵSS0 ¼ −PP0 þ ðcs=cpÞP0 and after
integrating

ϵS2 ¼ −P2 þ 2c2Pþ c3: ð45Þ

If ϵ ¼ 0 we find 0 ¼ P0ðc − PÞ, and we must have
P0 ¼ 0 contrary to the assumption of case 2. There is
no case 2 Killing vector for ϵ ¼ 0.

Equivalently if Q0 ≠ 0, P0 ¼ 0 we find ϵS2 ¼
−Q2 þ 2c2Qþ c3 and no Killing vector for ϵ ¼ 0.
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Case 3: Let both P0, Q0 ≠ 0. Then the first two
conditions give us h ¼ cq

Q0 ¼ cp
P0 and therefore Q0 ¼

cP0 with c ¼ cq
cp
. The second and third conditions then

become, after renaming the constants,

Q ¼ cPþ cQ; ð46Þ

ϵS2 ¼ −ð1þ c2ÞP2 þ 2c2Pþ c3: ð47Þ

If ϵ ¼ 0 we find from the first two conditions Q0 ¼
cq
cp
P0 and the third leads to Q0 ¼ − cp

cq
P0 and thus

cp ¼ cq ¼ 0. There is no case 3 Killing vector
for ϵ ¼ 0.

If ϵ ¼ �1 we can choose S, P, and Q as described in cases
1, 2, or 3, and find a Szekeres model with one Killing
vector field. Examples of such a Killing vector field can be
found in Fig. 2. If ϵ ¼ 0 we can only have full symmetry or
no symmetry. In particular there is no globally axisym-
metric model for ϵ ¼ 0 apart from full symmetry.
References [15,16] showed these cases can be trans-

formed into each other. Conditions (47) are the same as
Eqs. (B8) and (B11) of [16].

B. Fixed points

We now show that the fixed points coincide with the
dipole extrema. The extrema of the dipole function E0=E
are given by (7)–(9) which hold generally, even if no
symmetry exists. The fixed points of a Killing vector field
are the loci ðpf; qfÞ where

ξa ¼ 0 ⇒ β ¼ 0 ¼ γ: ð48Þ

The existence of a Killing vector field demands that
conditions (40)–(42) hold, so we consider the above list
of cases.

Case 1: P0 ¼ 0, Q0 ¼ 0. We find

ðpe; qeÞ ¼ ðP;QÞ ¼ ðpf; qfÞ: ð49Þ

Case 2: P0 ≠ 0, Q0 ¼ 0. Expressions for ðpf; qfÞ result
from case 3 by setting c ¼ 0. Then P0 ¼ 0, Q0 ≠ 0
results from interchanging P with Q, i.e. a rotation of
the p, q plane by 90°.

Case 3: Both P0, Q0 ≠ 0. In this case

Q ¼ cPþ cQ and

S2 ¼ 1

ϵ
ð−ð1þ c2ÞP2 þ 2c2Pþ c3Þ: ð50Þ

Then we find the curves qðpÞ that have β ¼ 0 and
γ ¼ 0 as follows:

qβ ¼
1

c

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2Þp2 − 2c2pþ c2c3 þ c22

q

− pþ ccQ þ c2
	

ð51Þ

qγ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2Þp2 − 2c2p − c3

q
þ cpþ cQ: ð52Þ

There are two pairs of intersection points for these two
curves,

pf ¼
c2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2Þc3 þ c22

p
c2 þ 1

and

qf ¼ cQ þ cðc2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2Þc3 þ c22

p
Þ

c2 þ 1
; ð53Þ

pf ¼
c2 � c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1þ c2Þc3 − c22

p
c2 þ 1

and

qf ¼ cQ þ cc2 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1þ c2Þc3 − c22

p
c2 þ 1

: ð54Þ

Depending on the choice of constants, one of the two
pairs is complex, and the other is the pair of fixed
points. Using the case 3 conditions (50) we find with

E0=Eje ¼ � P0

ϵS2
ffiffiffi
d

p
;

d ≔ c22 þ ð1þ c2Þc3 ≥ 0 ð55Þ

FIG. 2. Examples of Killing vector fields for ϵ ¼ �1. The plots show the stream lines in the ðp; qÞ plane. The Killing vector field is the
same for every constant ðt; rÞ surface in a given symmetric model. It is clear that cases 2 and 3 are equivalent; they can be transformed to
one another by a simple rotation of the p, q plane.
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⇒ ðpe; qeÞ ¼
�
P −

ϵS2

−ð1þ c2ÞPþ c2 �
ffiffiffi
d

p ;

cPþ cQ −
cϵS2

−ð1þ c2ÞPþ c2 �
ffiffiffi
d

p
�

¼
�ðc2 ∓ ffiffiffi

d
p Þ

ð1þ c2Þ ; c
ðc2 ∓

ffiffiffi
d

p Þ
ð1þ c2Þ þ cQ

�

¼ ðpf; qfÞ: ð56Þ

The points of extrema coincide with the fixed points if
d ≥ 0 (E0=Eje does not exist for d ≤ 0). It follows that
the contours of E0=E give the congruence of an axial
Killing vector field, and we can say that E0=E is the
symmetry of an axisymmetric Szekeres model.

C. Discussion

The aim of this section is firstly to determine whether a
model with a single symmetry is axisymmetric or otherwise
and secondly to derive the restrictions on the ranges of the
functions S, P and Q.
The three cases that we found in Sec. III A depend on the

choice of the sole free function in E for a model with a
single symmetry. Case 1 uses S as the free function, the
other cases use either P orQ as the free function. The latter
two cases are equivalent in the sense that a rotation of the p,
q plane will bring us from one to another. The really
interesting difference between Killing vector fields arises
from the choice of the constants c, c2, c3, cQ. c is a rotation
of the coordinate system and choosing c ¼ 0 results in the
Killing vector field aligning with the grid ðp; qÞ. cQ is a
simple translation of the coordinate system. We can set
c ¼ cQ ¼ 0 without loss of generality. However, d as
defined in (55) plays a crucial role. As shown in Fig. 3,
d determines the type of the Killing vector field. Case 1 can
be interpreted as having d ¼ ∞.
Now we go back and consider the different ϵ models

separately. The Killing vector fields are blind to ϵ, as can be

seen in the explicit equations for the Killing vector
components in Appendix B. But for every ϵ we have to
read the Killing vector field differently. As we will see now,
the four types of Killing vector fields are not all realized for
each ϵ, with the exception of case 1, d ¼ ∞, which
represents the simplest kind of rotation.
In order to keep the equations simple we will assume

case 2 (Q0 ¼ 0). Then the fixed points of the Killing vector
field become

ðpf; qfÞ ¼ ðc2 �
ffiffiffi
d

p
; cQÞ for d ≥ 0; ð57Þ

ðpf; qfÞ ¼ ðc2; cQ �
ffiffiffiffiffiffi
−d

p
Þ for d ≤ 0: ð58Þ

The line p ¼ c2 corresponds to a circle with infinite radius.
If d ≥ 0 the two fixed points are symmetric with respect to
this line [see Fig. 3(b)]. If d ≤ 0 the two fixed points lie on
this line. Equations (57) and (58) show that the distance
between the fixed points is 2

ffiffiffi
d

p
. The three different types

of Killing vector fields in Figs. 3(b), 3(c), and 3(d) are due
to d > 0, d ¼ 0 and d < 0 respectively. The condition (45)
can be written as

ϵS2 ¼ −ðP − c2Þ2 þ c22 þ c3: ð59Þ

Since S > 0, this leads to range restrictions on P and S.
ϵ ¼ 1: We can only have Killing vector fields like

Figs. (3a) and (3b).The reason is simply that we
would find a S2 < 0, if d ¼ 0 or if d < 0. The two
types of Killing vector fields are equivalent in the
sense that a conformal coordinate transformation of
the p, q plane can transform one into the other. They
are axisymmetric models, because any Killing vector
field on a sphere with two fixed points is axisym-
metric. [In Fig. 3(a) the second fixed point is at
infinity, i.e. at the north pole of the sphere.] The
ranges of the functions P, S are bounded by

FIG. 3. Examples of four possible types of Killing vector fields. The plots show the flow in the ðp; qÞ plane. The d refers to the
distance between the rotational fixed points and is defined in (55). The four pictures show a Killing vector field for different choices of
constants c, c2, c3, cQ.
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c2 −
ffiffiffi
d

p
< P < c2 þ

ffiffiffi
d

p
; S2 ≤ d: ð60Þ

If we think of p, q as coordinates on the sphere, the
point ðP;QÞ corresponds to the south pole of the
sphere. It can only be between the fixed points on
the line joining them. Intuitively we would have
guessed that, since the fixed points must be antipodal
on the sphere.

ϵ ¼ −1: The quasihyperboloidal models can have all
four types of Killing vector fields. Figures 3(a) and 3
(b) are hyperbolic rotations, Fig. 3(d) is a hyperbolic
translation, and 3(c) is a limit-rotation or horolation.
A hyperbolic 2-surface can be represented by the

Poincaré disk on the p, q plane (or equivalently by the
upper of a two-sheeted hyperboloid). The center of
the Poincaré disk (or the “south pole” of the hyper-
boloid sheet) is ðP;QÞ, the radius of the Poincaré disk
is proportional to S (the projection height). If d > 0
we find ðP;QÞ on the line of the two fixed points but
outside them, not in between. There is one fixed point
on each sheet of the hyperboloid. If d ≤ 0 the fixed
points are at infinity, which is represented by the edge
of the Poincaré disk.

d > 0
P < c2 −

ffiffiffi
d

p

P > c2 þ
ffiffiffi
d

p ; S2 > 0; ð61Þ

d ¼ 0 P ≠ c2; S2 > 0; ð62Þ

d < 0 P unbounded; S2 ≥ −d: ð63Þ

Thus we can only speak of axial symmetry if the
conditions (61) hold. Conditions (62) and (63) violate
(11) and only apply in models that necessarily have
shell crossings somewhere. We note that in order to
avoid shell crossings in the axisymmetric models
obeying (61), the conditions of [41,42] must still be
applied.

ϵ ¼ 0: For purely ϵ ¼ 0 models, there is either no
symmetry or full planar symmetry. We cannot con-
struct such a model with a single symmetry.

We have seen that the Killing vector types of Figs. 3(d) and
3(c) can only occur for ϵ ¼ −1, while those of 3(a) and 3(b)
can occur for either ϵ ¼ þ1 or −1. It therefore seems
possible that the latter two types can occur for a single
ϵ ¼ 0 world sheet with ϵ flipping across it.

D. Radial null geodesics

Nolan and Debnath [15] found that the existence of a
radial null geodesic in an ϵ ¼ þ1 model demands the
existence of a Killing vector field. Their work was
generalized to all ϵ by Krasińsky and Bolejko [16], who
also found that only this family of symmetric Szekeres
models has repeatable light rays.

The equation following (31) in [15] shows that along a
radial geodesic

λ;2jg ¼ λ;3jg ¼ 0; ð64Þ

which is true for all ϵ as they use the most general form of
the geodesic equations. From our perspective this result is
not surprising because

λ;3 ∝ ðZA0 − Z0AÞ ¼ β

h
ð65Þ

λ;2 ∝ ðYA0 − Y 0AÞ ¼ γ

h
: ð66Þ

Thus λ;2, λ;3 must vanish at points ðp; qÞ where β, γ vanish.
Furthermore, [15] show that their Q1 ¼ 0 and Q2 ¼ 0 is
equivalent to (64). Comparing with (33) and (35) shows
that Q1 ¼ γ and Q2 ¼ β.
ϵ ¼ 0 is special in this regard. We can find a radial

geodesic but not a single Killing vector field. The reason is,
that if a radial geodesic exists then, according to [15], we
can find a coordinate transformation so that P, Q ¼ 0. And
that, for ϵ ¼ 0, leads to λ2, λ3 ¼ 0 everywhere. We find the
full planar symmetry and not just a single symmetry.
To sum up, a radial null geodesic exists if and only if β

and γ are not globally vanishing, i.e. there exists a Killing
vector. The locus of fixed points coincides with the path of
the radial geodesic.
In fact, it is a general theorem that the locus of fixed

points of a symmetric space(time) is a totally geodesic
subspace; see p. 224 of [68]. In our case, the geodesics in
the subspace are, the symmetry axis on each time slice, the
timelike worldlines, and the null geodesics along the axis.

IV. LOCUS OF DIPOLE EXTREMA
AS GEODESICS

In the case of axial symmetry, we expect that the
symmetry axis should be “straight” in the 3D space; that
is, its tangent vector should obey the 3D geodesic equation.
Obviously it can’t obey the 4D geodesic equation, since it is
well-known that even for the RW metric the spacelike
geodesics do not lie in constant t 3-surfaces. We now want
to ask a slightly different question than before. We do not
assume that a symmetry exists but ask what models have a
locus of extrema [peðrÞ, qeðrÞ] that is a spatial geodesic.
Along the locus of extrema, pe and qe as defined in (8)

and (9) ensure that

ðEE0
p − E0EpÞje ¼ 0 ¼ ðEE0

q − E0EqÞje: ð67Þ

Writing the geodesic tangent vector as Va ¼
½kðvÞ;lðvÞ; mðvÞ; nðvÞ�, where v is a parameter, the 4D
geodesic equations in the Szekeres metric and the spacelike
condition are
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0 ¼ dk
dv

þ l2

W2

�
R0 −

RE0

E

��
_R0 −

_RE0

E

�
þ ðm2 þ n2ÞR _R

E2
;

ð68Þ

0 ¼ dl
dv

þ 2lk
ð _R0 − _RE0=EÞ
ðR0 − RE0=EÞ

þ l2

�ðR00 − RE00=EÞ
ðR0 − RE0=EÞ −

E0

E
−
W0

W

�

þ 2lR
�
mðE0Ep − EE0

pÞ þ nðE0Eq − EE0
qÞ

E2ðR0 − RE0=EÞ
�

−
ðm2 þ n2ÞRW2

E2ðR0 − RE0=EÞ ; ð69Þ

0 ¼ dm
dv

þ 2km _R
R

þ l2

RW2

�
R0 −

RE0

E

�
ðEE0

p − E0EpÞ

þ 2lm
R

�
R0 −

RE0

E

�
−
ðm2 − n2ÞEp þ 2mnEq

E
; ð70Þ

0¼ dn
dv

þ2kn _R
R

þ l2

RW2

�
R0−

RE0

E

�
ðEE0

q−E0EqÞ

þ2ln
R

�
R0−

RE0

E

�
−
ðn2−m2ÞEqþ2mnEp

E
; ð71Þ

þ1 ¼ −k2 þ l2

W2

�
R0 −

RE0

E

�
2

þ ðm2 þ n2ÞR2

E2
: ð72Þ

The 3D geodesics equations are obtained by setting

k ¼ 0 ¼ _R ¼ _R0: ð73Þ
Wewill now show that, provided the nonspherical arbitrary

functions S, P and Q have no dependence on the spherical
arbitrary functions f, M and tB, then the locus of dipole
extrema is only geodesic if it is along constant ðp; qÞ.
Since pe and qe are functions of r only, we write the

tangent vector to this locus as

Vb ¼ ½0; 1; p0
eðrÞ; q0eðrÞ�lðrÞ: ð74Þ

Along the pole locus, (67) and (74) reduce the 3D geodesic
equations, (69)–(72) with (73), to

0¼l2

�
l0

l
þðR00=R−E00=EÞ

ðR0=R−E0=EÞ −
E0

E
−
W0

W
−

ðp02
e þq02e ÞW2

E2ðR0=R−E0=EÞ
�
;

ð75Þ

0 ¼ l2

�
p00
e þ p0

e



l0

l
þ 2

�
R0

R
−
E0

E

��

−
ðp02

e − q02e ÞEp þ 2p0
eq0eEq

E

�
; ð76Þ

0 ¼ l2

�
q00e þ q0e



l0

l
þ 2

�
R0

R
−
E0

E

��

−
ðq02e − p02

e ÞEq þ 2p0
eq0eEp

E

�
; ð77Þ

þ1 ¼ l2R2

�ðR0=R − E0=EÞ2
W2

þ ðp02
e þ q02e Þ
E2

�
: ð78Þ

Now E and its derivatives depend on r through S, P and Q,
as do pe and qe, while R0=R depends on r through f,M and
tB. But, both (75) and (78) show l0=l ≠ −2ðR0=R − E0=EÞ,
even if pe ¼ 0 ¼ qe. Consequently, Eqs. (76) and (77)
show that for ðpe; qeÞ to be geodesic, either E0=E depends
on R0=R, which we have excluded, or

p0
ejgeodesic ¼ 0 ¼ q0ejgeodesic: ð79Þ

Therefore the only way that the locus of dipole extrema can
be made geodesic without putting restrictions on the
spherical arbitrary functions, is if pe and qe are constant.
Setting (8) and (9) constant results in the same set of cases
and restrictions on S, P and Q as in Sec. III A.

V. EQUIVALENCES BETWEEN
SZEKERES METRICS

The set of axisymmetric Szekeres models found in
Sec. III A are known to be equivalent [15,16]. Do there
exist equivalences between general Szekeres models?
The nonsphericity or non-pseudo-sphericity of a

Szekeres model could be characterized by the variation
of its dipole strength E0=Eje and the path of its dipole
extrema, pe and qe, all of which are functions of r only. We
conjecture that two Szekeres models, with distinct sets of
nonspherical functions (S, P, Q), are equivalent if one can
be “rotated” (in the spherical or hyperboloidal sense) into
the other. Any coordinate transformation of a given metric
is necessarily the same physical spacetime. Therefore we
are looking for the most general coordinate transformation
that preserves the Szekeres form. We already know there is
a rescaling freedom in the r coordinate. Since we must
retain the forms of (5), (6) and E0=E, we are looking for
transformations of the ðp; qÞ coordinates only which are
r-independent. Indirectly, this will result in a transforma-
tion of S, P, Q.
The symmetries of constant curvature surfaces have been

well studied. The general transformation is often written in
the form of a Möbius transformation,

ð ~pþ i ~qÞ ¼ kðpþ iqÞ þ l
mðpþ iqÞ þ n

; ð80Þ

where k, l, m and n are complex constants obeying
kn − lm ¼ 1. The transformations that preserve the
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two-dimensional metric form (5) and (6) are composed of
equatorial rotations (Haantjes transformations)

T ¼ 1þ 2D1pþ 2D2qþ ðD2
1 þD2

2Þðp2 þ q2Þ;

~p ¼ pþD1ðp2 þ q2Þ
T

; ~q ¼ qþD2ðp2 þ q2Þ
T

; ð81Þ

polar rotations

~p ¼ F1p − F2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
1 þ F2

2

p ; ~q ¼ F2pþ F1qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
1 þ F2

2

p ; ð82Þ

inversions

~p ¼ −p; ~q ¼ q; ð83Þ

magnifications

~p ¼ μp; ~q ¼ μq; ð84Þ

and displacements

~p ¼ p0 þ p; ~q ¼ q0 þ q; ð85Þ

in any combination.

In order for any of these transformations to preserve the
form of the full Szekeres metric (1), we require that each of
ðdp2 þ dq2Þ=E2 and E0=E are invariant under

p→ ~p; q→ ~q; S→ ~S; P→ ~P; Q→ ~Q: ð86Þ

This will result in an associated transformation of S, P,
and Q.
As an example, we consider an equatorial rotation, and

apply (86) plus (81) to ðdp2 þ dq2Þ=E2 with general E.
Simplifying, we get

ðd ~p2 þ d ~q2Þ
~E2

→
4~S2ðdp2 þ dq2Þ

F
¼ ðdp2 þ dq2Þ

E2
; ð87Þ

where

F ¼ ½ðp2 þ q2Þ − 2½p ~Pþ q ~Qþ ðp2 þ q2ÞðD1
~PþD2

~QÞ�
þ ½1þ 2D1pþ 2D2qþ ðp2 þ q2ÞðD2

1 þD2
2Þ�

× ð ~P2 þ ~Q2 þ ϵ ~S2Þ�2: ð88Þ

Since we must have E2 ¼ F=ð4~S2Þ, we compare coeffi-
cients of powers of p and q to obtain

1

2~S
ð1− 2½D1

~PþD2
~Q�þ ðD2

1þD2
2Þ½ ~P2þ ~Q2þ ϵ ~S2�Þ ¼ 1

2S

− ~PþD1½ ~P2þ ~Q2þ ϵ ~S2�
~S

¼−P
S

− ~QþD2½ ~P2þ ~Q2þ ϵ ~S2�
~S

¼−Q
S

½ ~P2þ ~Q2þ ϵ ~S2�
2~S

¼ S
2

�
P2

S2
þQ2

S2
þ ϵ

�
; ð89Þ

which gives us the transformation of S, P and Q under an
equatorial rotation,

U ¼ 1þ 2D1Pþ 2D2Qþ ðD2
1 þD2

2ÞðP2 þQ2 þ ϵS2Þ;
~SER ¼ S

U
;

~PER ¼ PþD1ðP2 þQ2 þ ϵS2Þ
U

;

~QER ¼ QþD2ðP2 þQ2 þ ϵS2Þ
U

: ð90Þ

It may be confirmed that the form and value E0=E is
similarly preserved by the above.
Following a similar process for the other transforma-

tions, we find

~SPR ¼ S; ~PPR ¼
ðF1P−F2QÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
2þF2

2

p ; ~QPR ¼
ðF1QþF2PÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
2þF2

2

p ;

ð91Þ

~SI ¼ S; ~PI ¼ −P; ~QI ¼ Q; ð92Þ

~SM ¼ μS; ~PM ¼ μP; ~QM ¼ μQ; ð93Þ

~SD ¼ S; ~PD ¼ p0 þ P; ~QD ¼ q0 þQ: ð94Þ

One may also write down some discrete equivalences,
such as

ð ~p; ~q; ~P; ~QÞ ¼ ðq; p;Q; PÞ; ð95Þ
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ð ~p; ~q; ~P; ~QÞ ¼ ðp;−q; P;−QÞ; ð96Þ

but these are combinations of inversions (83)+(92) and
specific polar rotations (82)+(91). Since the sign of S does
not affect the metric (provided S is never zero), there is also
the trivial equivalence

S → −S: ð97Þ

Therefore equivalent Szekeres metrics, whether or not
they have symmetries, are related by (86), with (81) and (90)
or (82) and (91) or (83) and (92) or (84) and (93) or (85) and
(94), and these may be combined in the obvious way. A
similar list of ðp; qÞ transformations with their effects on S,
P, and Q, is given in [16] Eqs. (B12)–(B20), though
magnifications appear to be missing. The transformations
(80) and (81) with (85) were used in [15,16,69] to show that
certain axisymmetric models are equivalent. However, (80)
does not provide the relationships between the two sets of S,
P, and Q functions in equivalent models.

VI. CONCLUSION

We have considered the conditions under which sym-
metries do and do not exist in Szekeres metrics, by
attempting to solve the Killing equations and finding all
circumstances that make this possible.
The theorem of Bonnor, Suleiman and Tomimura, that

the Szekeres metric has no Killing vectors if the free
functions f, M, tB, S, P, Q are linearly independent, is
easily extended from ϵ ¼ þ1 to all ϵ values. Consequently,
it is immediately obvious that restrictions on the free
functions are needed for Killing vectors to exist.
By insisting a solution to the Killing equations exists, the

general solution forms (33)–(36) were found, which are
valid for all ϵ, if they can be made independent of the r
coordinate. However, the resulting restrictions (40)–(42) on
the functions S, P and Q, divide into three cases, which
restrict their possible ranges. In each nontrivial case, S, P
and Q depend on a single free function, as shown by (44),
and in the simplest case this is obvious. The exact nature of
the restrictions depends on the value of ϵ.
The ϵ ¼ þ1 Szekeres models are foliated by ðp; qÞ

2-surfaces that are spheres. All symmetries are rotations
about an axis that is common to every constant t, r shell.
Szekeres models with ϵ ¼ −1 [42] are foliated by ðp; qÞ

2-surfaces that can be thought of as hyperbolids of
revolution that have two possible sheets. The important
condition (11) separates models which have no “dipole”
from those which do. Similarly, shell crossings can only be
avoided in the models with a “dipole” and only in one of the
sheets. In such models, the Killing vectors may describe
rotations or translations, but interestingly the rotations only
exist in models that contain a “dipole”, and the translations
only exist in models that do not. The rotations have fixed

points that coincide with the poles of the “dipole”—the
extremes of E0=E on each ðp; qÞ 2-surface, while the fixed
points of the translations do not.
In the ϵ ¼ 0 Szekeres models, the foliating 2-surfaces

are planes. It turns out that the functional restrictions force
full planar symmetry, so these models cannot have just one
symmetry. Interestingly, they cannot be globally free of
shell crossings unless there is full planar symmetry.
While the set of axisymmetric solutions was already

known [15,16], as the answer to two other questions, the
full set of single-symmetry Szekeres models had not been
looked for, and it was not known if the set was complete, till
now.3 The same references also showed the three cases for
each ϵ ≠ 0 are equivalent since they can be transformed
into each other.
There is a theorem that in any spacetimewith a symmetry,

the locus of fixed points is a totally geodesic submanifold. In
particular, with axial symmetry, the locus of fixed points, that
is the axis, must be “straight”, i.e. geodesic in the constant t
3-spaces. For Szekeres models we found that the dipole
extrema also lie on this locus. In Sec. IV, we asked a slightly
different question and showed that if the locus of dipole
extrema is required to be geodesic, then we get the same
family of symmetric Szekeres models.
In Sec. V we have presented the full set of equivalences

between general Szekeres models. If two Szekeres metrics
have the same f, M and a, and their S, P and Q are related
by one of these equivalences, or a combination of them,
then they are physically equivalent, and can be transformed
into each other. The list in [16] was not quite complete.

APPENDIX A: BST REVISITED

We here review the salient part of [12] and comment on
generalizing to ϵ ≠ 1. Assuming a nonvanishing Killing
vector field of the form (16), we find the Killing vector
equations (13) for metric (15) to be

11 α;1 þ
1

2
ðλ;1αþ λ;2β þ λ;3γ þ λ;0δÞ ¼ 0 ðA1Þ

12 eλα;2 þ eωβ;1 ¼ 0 ðA2Þ

13 eλα;3 þ eωγ;1 ¼ 0 ðA3Þ

10 δ;1 − eλα;0 ¼ 0 ðA4Þ

22 β;2 þ
1

2
ðω;1αþ ω;2β þ ω;3γ þ ω;0δÞ ¼ 0 ðA5Þ

3According to [70], “Solutions with a maximal G1 are rare.
Most of them have been found as a by-product in the search for
other classes of solutions.” Although the Szekeres metric appears
in Sec. 33.3 on type D metrics, these axially symmetric special
cases are not covered in any other section of that book; many
sections deal with stationary axisymmetric solutions, and even
the metrics in Secs. 32.5.4 and 35.4.4 are not general enough.
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23 β;3 þ γ;2 ¼ 0 ðA6Þ

20 δ;2 − eωβ;0 ¼ 0 ðA7Þ

33 γ;3 þ
1

2
ðω;1αþ ω;2β þ ω;3γ þ ω;0δÞ ¼ 0 ðA8Þ

30 δ;3 − eωγ;0 ¼ 0 ðA9Þ

00 δ;0 ¼ 0: ðA10Þ

The comoving matter flow lines are geodesic, so their Lie
derivative with respect to ξa must vanish

ξi;kuk − ξkui;k ¼ 0 ¼ ξi;0; ðA11Þ

showing ξa is not dependent on the time coordinate. From
(A4), (A7), (A9) and (A10) we find that

0 ¼ δ;1 ¼ δ;2 ¼ δ;3 → δ is constant: ðA12Þ

For each of (A2) and (A3), multiplying by e−ω, taking the
derivative with respect to t, and applying (A2) gives

α;2ðω;0 − λ;0Þeλ−ω ¼ 0 ¼ α;3ðω;0 − λ;0Þeλ−ω; ðA13Þ

but eλ−ω ¼ 0 corresponds to a singularity in the metric and
the mass density (4). Furthermore,

ω;0 − λ;0 ¼
R

R0 − RE0=E
ω;01 ¼

2R
R0 − RE0=E

�
_R
R

�0
; ðA14Þ

and ω;01 ¼ 0 corresponds to a FLRW model, because it
results in Rðt; rÞ ¼ aðtÞ ·ΦðrÞ, which (14) disallows. Thus,
by (A13), (A2) and (A3) we have

α;2 ¼ 0 ¼ α;3; and β;1 ¼ 0 ¼ γ;1: ðA15Þ

We next take the r derivative of (A5), apply (A12) and
(A15),

0 ¼ 1

2
ðω;1α;1 þ ω;11αþ ω;21β þ ω;31γ þ ω;01δÞ; ðA16Þ

and substitute for α;1 from (A1)

α;1 ¼ −
1

2
ðλ;1αþ λ;2β þ λ;3γ þ λ;0δÞ; ðA17Þ

to get

0 ¼ α
�
ω;11 −

1

2
λ;1ω;1

	
þ β

�
ω;12 −

1

2
λ;2ω;1

	

þ γ
�
ω;13 −

1

2
λ;3ω;1

	
þ δ

�
ω;10 −

1

2
λ;0ω;1

	
: ðA18Þ

Noting that

�
ω;11 −

1

2
λ;1ω;1

	
¼ −2

�
R0

R
−
E0

E

��
R0

R
−
W0

W

�
ðA19Þ

�
ω;12 −

1

2
λ;2ω;1

	
¼ 0 ¼

�
ω;13 −

1

2
λ;3ω;1

	
ðA20Þ

�
ω;10 −

1

2
λ;0ω;1

	
¼ −

2 _R
R

�
R0

R
−
E0

E

�
; ðA21Þ

this reduces to

0 ¼ −2
�
R0

R
−
E0

E

�
1

R

�
α

�
R0 − R

W0

W

�
þ δ _R

�
: ðA22Þ

Again we do not allow eλ−ω ¼ ðR0
R − E0

EÞ2ðEWÞ2 to vanish, in
order to avoid singularities, and therefore

0 ¼ α

�
R0 − R

W0

W

�
þ δ _R: ðA23Þ

After a derivation with respect to t and multiplying with _R,
we can use the Friedman equation (3) and its t and r
derivatives to eliminate _R2, R̈, _R0. In addition we use
Eq. (A23) to eliminate δ. Then,

0 ¼ α

�
−ϵ

W0

W
−
M0

R
þ 3

W0

W
M
R

�
: ðA24Þ

Since R is time dependent and M, W are not, the bracket
term can only vanish if the following two equations are
satisfied simultaneously:

ϵ
W0

W
¼ 0; M0 − 3

MW0

W
¼ 0: ðA25Þ

At this point BST assumed ϵ ¼ þ1 in order to show that
α ¼ 0. However the result follows for all ϵ, if we alter the
assumption regardingM, f slightly. For ϵ ≠ 0 (A25) yields
W0 ¼ 0 and thus also M0 ¼ 0. Clearly this is not an
interesting model. If M0 ¼ 0 we have a vacuum model,
which forces spherical symmetry to avoid shell crossings
[41]. By assumption (14), we exclude this choice of special
LT-functions.
For ϵ ¼ 0 we only have

M0

M
¼ 3

W0

W
⇒ M ¼ const · f3=2; ðA26Þ

which we again exclude by (14).Therefore we must have
α ¼ 0, and from Eq. (A23) it follows that δ ¼ 0. The
Killing vector now has the form (17), which is used in
Sec. III A.
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BST go on to show that either there must be a linear
relation between the three functions 1=ð2SÞ, −P=ð2SÞ,
−Q=ð2SÞ, or the Killing vector must vanish everywhere.
This means a necessary condition for a nonvanishing
Killing vector field is

0 ¼ 1

ð2SÞ ðσ1 − σ2P − σ3QÞ ⇒ P ¼ cQþ cQ;

ðA27Þ

where σi, c, cQ are constants, not all zero. This condition
emerged in (44) and (47).
Remark: Strictly speaking, BST only proved their

theorem for ϵ ¼ 1, but they used general expressions for
most of their proof, so it is not difficult to generalize it.
They used the restriction ϵ ¼ 1 on only two occasions.
First, it is used to show that in their notation aðrÞ ≠ 0,
which is needed in deriving their Eq. (4.22). But this is true
for all ϵ models, because there exists a coordinate trans-
formation in the p, q surface so that a ≠ 0 even if a ¼ 0
initially. The proof can be found in Plebanski and Krasiński
[67]. Because of this, we are able to write a ¼ 1

2S and our
notation is well-defined. Second, as mentioned above, they
used ϵ ¼ 1 to show δ ¼ 0 ¼ α using (A25). A slight
correction in the assumption regarding M, f will result
in the theorem being true for all ϵ. The theorem statement
for all ϵ then is
Theorem 1 (generalized BST theorem) Consider a

Szekeres space-time (of class I) satisfying the following
conditions:

eλ−ω ≠ 0; ðA28Þ

R ≠ 0; E ≠ 0; W ¼ ϵþ f ≠ 0; ðA29Þ

ω;01 ≠ 0; ðA30Þ

for ϵ ¼ �1∶ M0 ≠ 0; W0 ¼ f0 ≠ 0; ðA31Þ

for ϵ ¼ 0∶
f

M2=3 ≠ constant: ðA32Þ

1

2S
; −

P
2S

; −
Q
2S

are linearly independent; ðA33Þ

then ξμ ¼ 0 except possibly on isolated submanifolds of the
space-time. In the first three lines above, zeros may occur at
restricted loci, but not in general.

APPENDIX B: DETAILS OF THE CASES

We here collect the results for the cases listed in Sec. III.
Case 1: P0 ¼ 0, Q0 ¼ 0.

Function conditions P;Q constant ðB1Þ

Killing field β ¼ 2csðq −QÞ ðB2Þ

γ ¼ −2csðp − PÞ ðB3Þ

Fixed points pf ¼ P; qf ¼ Q: ðB4Þ

There is only one fixed point in the ðp; qÞ plane, the
other is the circle at infinity. The Killing vector field
consists of concentric circular orbits, as in Fig. 3(a).

Case 2a: P0 ¼ 0, Q0 ≠ 0.

Function conditions ϵS2¼−Q2þ2c2Qþc3 ðB5Þ

Killing field β¼ cqððp−PÞ2−q2þ2c2qþc3Þ
ðB6Þ

γ ¼ 2cqðp − PÞðq − c2Þ ðB7Þ

Fixed points pf ¼ P;

qf ¼ c2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 þ c3

q
;

c3 ≥ −c22 ðB8Þ

or pf ¼ P�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c22 − c3

q
;

qf ¼ c2; c3 ≤ −c22;

ϵ ¼ −1: ðB9Þ
The first fixed point pair lies on the vertical line
p ¼ P, and the second pair lies on the circle
Y2 þ Z2 ¼ Q2 − 2c2Q − c3 ¼ S2.

Case 2b: P0 ≠ 0, Q0 ¼ 0.

Function conditions ϵS2¼−P2þ2c2Pþc3 ðB10Þ

Killing field β ¼ 2cpðq −QÞðc2 − pÞ ðB11Þ

γ¼ cpðp2− ðq−QÞ2−2c2p−c3Þ
ðB12Þ

Fixed points pf ¼ c2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 þ c3

q
;

qf ¼ Q; c3 ≥ −c22 ðB13Þ
or pf ¼ c2;

qf ¼ Q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c22 − c3

q
;

c3 ≤ −c22; ϵ ¼ −1: ðB14Þ
The Killing vector field is as above, but rotated by 90°
in the ðp; qÞ plot, as in Fig. 3(d).
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Case 3: P0 ≠ 0, Q0 ≠ 0.

Function conditions Q ¼ cPþ cQ; ϵS2 ¼ −ð1þ c2ÞP2 þ 2c2Pþ c3 ðB15Þ
Killing field β ¼ cp½ðp2 − q2Þc − 2pqþ 2qðccQ þ c2Þ þ 2pcQ þ ðcc3 − cc2Q − 2c2cQÞ� ðB16Þ

γ ¼ −cp½−p2 þ q2 − 2cpqþ 2pðcQ þ c2Þ þ 2qcQ þ c2Q þ c3� ðB17Þ

Fixed points β ¼ 0 ⇒ q ¼ ccQ þ c2 − p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2Þp2 − 2c2pþ c2c3 þ c22

p
c

γ ¼ 0 ⇒ q ¼ cpþ cQ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2Þp2 − 2c2p − c3

q
:

There are two pairs of intersection points for these two curves, but one pair is complex, depending on the choice of
constants,

pf ¼ c2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2Þc3 þ c22

p
c2 þ 1

and qf ¼ cQ þ cðc2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2Þc3 þ c22

p
Þ

c2 þ 1
; ðB18Þ

pf ¼ c2 � c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1þ c2Þc3 − c22

p
c2 þ 1

and qf ¼ cQ þ cc2 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1þ c2Þc3 − c22

p
c2 þ 1

: ðB19Þ

If ϵ ¼ −1 and c3 < c22=ð1þ c2Þ, the second pair is real, otherwise the first pair. The first pair of fixed points are on a
line of slope c that passes through ðp; qÞ ¼ ð0; 0Þ, and the Killing vector field is like that of case 2, but rotated through
angle tan−1 c. The second pair are on the circle Y2 þ Z2 ¼ ð1þ c2ÞP2 − 2c2P − c3 ¼ S2.
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