
Signature change in loop quantum gravity: Two-dimensional
midisuperspace models and dilaton gravity

Martin Bojowald1 and Suddhasattwa Brahma1,2
1Institute for Gravitation and the Cosmos, Pennsylvania State University, 104 Davey Lab,

University Park, Pennsylvania 16802
2Center for Field Theory and Particle Physics, Fudan University, 200433 Shanghai, China

(Received 3 April 2017; published 7 June 2017)

Models of loop quantum gravity based on real connections have a deformed notion of general
covariance, which leads to the phenomenon of signature change. This result is confirmed here in a general
analysis of all midisuperspace models without local degrees of freedom. As a subclass of models, two-
dimensional theories of dilaton gravity appear, but a larger set of examples is possible based only on the
condition of anomaly freedom. While the classical dilaton gravity models are the only such systems
without deformed covariance, they do give rise to signature change when holonomy modifications are
included.
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I. INTRODUCTION

In canonical formulations of gravitational theories,
covariance is ensured by gauge transformations generated
by the constraints rather than by coordinate transforma-
tions. Poisson brackets of the constraint functions on phase
space must then obey a certain form that reduces to the
hypersurface deformations of general relativity in the
classical (or low-curvature) limit. Anomaly freedom, or
the fact that the constraints in modified or quantized gravity
models must remain first class, imposes strong conditions
on the possible forms of constraints and on structure
functions in their brackets. Signature change is the most
characteristic and apparently generic consequence of these
conditions.
Conditions that ensure covariance of a canonical quan-

tum theory of gravity have been formulated in [1]. It has
been shown that not only (i) the classical Hamiltonian and
diffeomorphism constraints, on quantization, must still
satisfy a first-class system and have a closed algebra;
but also (ii) that this algebra must have a classical limit
whereby it reduces to the familiar hypersurface-deforma-
tion brackets [2,3] of general relativity. This statement
holds also for effective or modified theories in which
certain quantum corrections are included while working in
a semiclassical approximation. Covariance therefore poses
an important consistency question for canonical quantum-
gravity theories, which goes beyond the requirement that
constraints be anomaly free. Brackets (or commutators) of
the constraints not only have to lead to a closed system,
they must also close in such a way that a specific classical
limit is obtained.
The examples discussed in detail in [1] show that

anomaly freedom of gravitational models does not neces-
sarily imply covariance. In particular, constraint brackets in
midisuperpace models can often be simplified by

redefining the classical constrained system, sometimes
eliminating structure functions. The resulting Lie algebras
are then easier to quantize in an anomaly free way.
However, after quantization, it is not guaranteed that the
redefinitions can still be inverted such that a closed set of
hypersurface-deformation generators is obtained. The main
example given in [1] is a partially Abelianized redefinition
along the lines of [4], which can be made covariant in the
presence of holonomy modifications but only if there is no
matter coupled to the system. Moreover, signature change
is realized also in the partially Abelianized system if
holonomy modifications are present.
Recently, several other models have been analyzed by

partial Abelianization, together with proposed quantiza-
tions. In [5], a locally rotationally symmetric Gowdy model
has been introduced and quantized in this way. In [6], the
class of two-dimensional dilaton gravity models has been
studied, with a special discussion of the vacuum CGHS
model [7] given in [8]. These models do not have local
degrees of freedom and therefore do not encounter the
obstructions found in [1,9] for covariant holonomy-modi-
fied models with local degrees of freedom. Nevertheless,
the question of covariance has not been addressed in
[5,6,8]. In the present paper, we will fill in this lacuna.
At the same time, we construct the most general covariant
1þ 1-dimensional midisuperspace model without local
degrees of freedom with spatial derivatives of the metric
(or dyad and dilaton) up to second order. We compute the
modified structure functions of all these models and
conclude that the class of all classical two-dimensional
dilaton gravity models, with an arbitrary dilaton potential
but the same form of extrinsic-curvature type components
as in general relativity, is the only set with undeformed
covariance. However, a large class of covariant models
exists with deformed covariance, which includes quantum
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versions of these dilaton models with effects from loop
quantum gravity.
In a specific application of these new constructions,

we are particularly interested in the phenomenon of
signature change in models of loop quantum gravity.
Such models are based on modified Hamiltonian con-
straints in which the quadratic dependence on the con-
nection or extrinsic curvature has been replaced by a
bounded function, motivated by the use of holonomies
taking values in compact groups instead of connection
components in the kinematical Hilbert space of the full
theory. This replacement implies, rather directly, that
curvature or the energy density remains bounded during
gravitational collapse in simple cosmological or black hole
models. Curvature singularities may therefore be avoided,
but a less direct implication of holonomy modifications in
these models, given by signature change [10,11], implies
that high-curvature regions remain limits of causal space-
time because they do not allow deterministic evolution.
Whenever we comment on signature change in this
paper, we will assume that the specific constraints of
the theory arise from holonomy modifications in the
specified sense: replacements of the quadratic dependence
of the Hamiltonian constraint on connection or extrinsic-
curvature components by bounded functions. With this
understanding, most of the new models we find here have
signature change if modification functions are such that
they mimic holonomy modifications of loop quantum
gravity. In this context, the classical limit of our models
will be a low-curvature limit in which holonomy modifi-
cations become small.

II. SIGNATURE CHANGE IN THE
POLARIZED GOWDY MODEL WITH
LOCAL ROTATIONAL SYMMETRY

We first look at the specific model studied in [5]: the
polarized Gowdy model on a three-torus with local rota-
tional symmetry (LRS). The last condition eliminates local
degrees of freedom. As usual, we identify the two homo-
geneous directions, x and y, with each other while keeping
the inhomogeneous direction θ unchanged. We have
an inhomogeneous midisuperspace model without local
physical degrees of freedom.
In keeping with the conventions of [5], we work with the

two triad components ðEx; εÞ and the extrinsic-curvature
components conjugate to them, ðKx;AÞ. In the reduced
one-dimensional manifold with coordinate θ, Ex and A
have density weight one. The Poisson brackets between the
canonical variables are fKxðθ1Þ; Exðθ2Þg ¼ Gδðθ1; θ2Þ ¼
fAðθ1Þ; εðθ2Þg. We will assume ε > 0. Derivatives with
respect to the inhomogeneous coordinate are labeled by
primes in the following.
As in the well-known case of spherical symmetry, there

is only one global degree of freedom. However, the form of
the Hamiltonian constraint in the Gowdy LRS case is

distinct from that of spherical symmetry due to a different
internal curvature term. For the latter model, the constraint
is given by

H½N� ¼ −
1

2G

Z
dθNðθÞ

�
ε−1=2K2

xEx þ 4ε1=2AKx

−
1

4
ε−1=2ðExÞ−1ðε0Þ2

− ε1=2ε00ðExÞ−1 þ ðExÞ−2ε1=2ε0ðExÞ0
�
; ð1Þ

while the diffeomorphism constraint

D½Nx� ¼ 1

G

Z
dθNxðθÞ½K0

xEx − ε0A� ð2Þ

takes the same form as in spherically symmetric models.
The classical constraint brackets are

fD½Nθ
1�; D½Nθ

1�g ¼ D½LNθ
1
Nθ

2� ð3Þ

fH½N�; D½Nθ�g ¼ −H½LNθN� ð4Þ

fH½N1�; H½N1�g ¼ D½qθθðN1N0
2 − N2N0

1Þ�: ð5Þ

The inverse-metric component qθθ ¼ ε=ðExÞ2 appears in
the classical brackets as the only nonconstant structure
function, while the other nonzero components of the
inverse spatial metric are qxx ¼ qyy ¼ ε−1. [It follows from
the results of [12] that the Hamiltonian constraint (1) is the
same as what is obtained for a 1þ 1-dimensional dilaton
gravity model with zero dilaton potential, when expressed
in connection variables after a canonical transformation.
The LRS Gowdy model of [5] is therefore nothing but a
CGHS model with zero cosmological constant.]
We introduce holonomy modifications in the

Hamiltonian constraint

H½N� ¼ −
1

2G

Z
dθNðθÞ

�
ε−1=2f1ðKxÞEx þ 4ε1=2Af2ðKxÞ

−
1

4
ε−1=2ðExÞ−1ðε0Þ2

− ε1=2ε00ðExÞ−1 þ ðExÞ−2ε1=2ε0ðExÞ0
�
; ð6Þ

while keeping the diffeomorphism constraint unmodified.
In the classical case, f1ðKxÞ ¼ K2

x and f2ðKxÞ ¼ Kx. Here,
we assume pointwise holonomy corrections along the
homogeneous directions while working in an effective
formalism. However, as shown in [13], adding additional
quantummoment terms does not change the structure of the
constraint brackets (while the constraints themselves usu-
ally do have moment corrections). By keeping these
modification functions general, we are able to examine
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the restrictions imposed on them such that the modified
constraints still have closed brackets.
It is straightforward to see that the brackets between two

diffeomorphism constraints and between a Hamiltonian
and a diffeomorphism constraint have the same form as in
the classical case. The only complicated Poisson bracket is
thus the one between two Hamiltonian constraints, which
gives

fH½N1�; H½N2�g ¼ 1

2G

Z
dθðN1N0

2 − N2N0
1Þ

×

�
2

ε

ðExÞ2
�
df2
dKx

�
½KxðExÞ0 − ε0A�

×
ε0

Ex

��
df1
dKx

�
− 2f2

��
; ð7Þ

where we have integrated by parts several times. On
analyzing this result, we note two features:
(1) The closure of the algebra is ensured only if we have

df1=dKx − 2f2 ¼ 0, implying restrictions on the
modification functions which have been kept free
in the discussion so far. The coefficient of this term
is neither the Hamiltonian nor the diffeomorphism
constraint and thus would give rise to an anomaly
unless the whole term vanishes.

(2) Although closure can be ensured in this model by
making the above restriction on the form of the
holonomy modification functions, we obtain a
structure function in the modified theory which
is deformed by a factor of df2=dKx as compared
with the classical case. Using the consistency con-
dition between f1 and f2, the factor takes the
form df2=dKx ¼ 1

2
d2f1=d2Kx.

We thus have a modification in the bracket

fH½N1�; H½N1�g ¼ 1

G

Z
dθðN1N0

2 − N2N0
1Þ

ε

ðExÞ2
1

2

×

�
d2f1
dK2

x

�
½KxðExÞ0 − ε0A�

¼ D

�
1

2
qθθ

d2f
dK2

x
ðN1N0

2 − N2N0
1Þ
�
: ð8Þ

Signature change can be understood from this relation as
follows: In models of loop quantum gravity, holonomy
modifications replace quadratic appearances of extrinsic-
curvature components in the Hamiltonian constraint by
some bounded functions which reach their maximum value
near the Planck scale. The bounded nature of these
modification functions is a crucial ingredient in claims
of singularity resolution in these models. Near a local
maximum of a function such as f1, the second derivative is
negative, making the coefficient on the right-hand side of
(8) change its sign. The same change of sign happens if one

switches the signature of the theory to Euclidean, and
indeed the form of the brackets has a close relationship
with the hyperbolic or elliptic nature of equations of
motion consistent with the brackets [10,11]. A negative
correction factor in structure functions of (8) can therefore
be interpreted as indicating signature change. For
f1ðKxÞ ¼ K2

x, on the other hand, we recover the classical
result where the modification in the structure function goes
to one. Thus, in addition to having a closed algebra for the
modified constraints, we also recover the hypersurface-
deformation brackets in the classical (low-curvature) limit.
The model is covariant provided our conditions are
fulfilled. Only one free function, f1ðKxÞ, then remains,
which is unrestricted by anomaly freedom and covariance.
In [5], a loop quantization of the LRS Gowdy model has

been proposed. To this end, the authors first Abelianize the
classical bracket of two normal deformations while leaving
the other two relations unchanged. Following [4], the new,
Abelianized constraint is defined as a linear combination of
the old Hamiltonian constraint and the diffeomorphism
constraints, while the diffeomorphism constraint remains
unchanged. (This partial Abelinization can also be applied
to the full polarized Gowdy model [9] without local
rotational symmetry.) The new constraint used in this
context, Eq. (1) of [5], is

Hnew½N� ¼ −
1

2G

Z
dθ

N
ε0

�
2

ffiffiffi
ε

p
K2

x −
ffiffiffi
ε

p
ε0

2ðExÞ2
�0
; ð9Þ

while D½Nx� follows from (2), as before.
The authors then adopt the holonomy modification

scheme for models of loop quantum gravity and substitute
Kx → sin ðγKxÞ=γ in (9). The K2

x term in (9) is therefore
replaced by ðsin ðγKxÞÞ2=γ2. The new constraint commutes
with itself, which is easy to see if we integrate by parts in
(9) (after absorbing the denominator ε0 in the lapse
function) and notice that there are no spatial derivatives
of Ex anymore. Although the resulting theory is consistent
in the sense of being anomaly free, it is not guaranteed to be
covariant. In order to show covariance, one must be able to
recover suitable generators of gauge transformations such
that their brackets lead to the hypersurface-deformation
brackets in the classical (low-curvature) limit. (That is,
there must be such generators for any phase-space point in
the modified theory, which usually take nonclassical forms
but reduce to the classical versions in a certain subset of the
phase space. This condition of covariance is therefore
nontrivial, in contrast to a simple requirement that the
classical limit of the modified theory have suitable gauge
generators. In a noncovariant theory, such as some of the
Abelianized holonomy-modified models, there may be the
right number of gauge generators for the entire theory, but
they would not be continuously connected with the usual
hypersurface-deformation generators in the classical or
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low-curvature limit [1,9].) This important conceptual step is
missing in [5], but will be completed here.
We can start from (6), having incorporated the holonomy

modification functions, and try to partially Abelianize
this bracket. Thus, we first holonomy-modify and then
Abelianize. It is important to emphasize that we do not
impose any restrictions on either of the functions f1 or f2 at
this point. Proceeding as in the classical case, the new
constraint is defined as

Hnew ¼ Hold −
df1
dKx

ε0ffiffiffi
ε

p D; ð10Þ

where H, D stand for the unsmeared versions of the
constraints. With this step, we arrive at the same form of
the new, holonomy-modified constraint as proposed in [5],
provided the two modification functions obey the condition
df1=dKx ¼ 2f2. [This condition ensures that theA-term in
(6) cancels out if combined with (2) as in (10).] We have the
same restriction on the modification functions as found
before by an analysis of anomaly freedom of hypersurface-
deformation brackets. Thus, requiring the new system of
constraints to be (partially) Abelian is equivalent to
imposing that the old system of constraints form a closed
system. The closed hypersurface-deformation brackets
with modified structure functions then again indicate
signature change.
We can arrive at this result from another perspective as

well. Starting with the newly defined classical constraint
(9), one can introduce a quantum theory as in [5]. However,
to ensure covariance we must be able to define constraints
which have hypersurface-deformation brackets with the
correct classical limit. This condition translates to recov-
ering a Hamiltonian constraint from the Abelianized con-
straint by inverting the linear transformation used above,
which can be equivalently thought of as transforming the
lapse function and the shift vector as

N ¼
~N
Ex ð11Þ

Nθ ¼ ~Nθ − ~N
ffiffiffi
ε

p
df1=dKx

ε0
: ð12Þ

This step puts the system of constraints in the form of
our ansatz (6) and (2), with the specific choice of
f1ðKxÞ ¼ ðsin ðγKxÞÞ2=γ2. As expected, for the holon-
omy-modified LRS Gowdy system in [5], signature change
occurs in high curvature regions: The second derivative of
f1 in this case is proportional to 2 cosð2γKxÞ, which has a
negative sign near a local maximum of f1.
It is remarkable that our result and signature change are

robust even when different equivalent systems of classical
constraints are used as the starting point of a loop
quantization. As demonstrated earlier with spherical

symmetry [1], the restrictions on holonomy modification
functions are the same, no matter whether they are derived
by requiring closure of the algebra or by requiring that it be
possible to define new constraints which have partially
Abelian brackets. The present section shows that this
conclusion is also true for another model of loop quantum
gravity, namely the LRS Gowdy model. We have shown
that signature change is an unavoidable consequence of
holonomy modifications in this model, irrespective of how
one defines the system of constraints as long as one forces
the resulting quantum theory to be covariant. This result
may be taken as an indication that these conclusions hold
more generally in midisuperspace models of loop quantum
gravity without local physical degrees of freedom. The
remainder of this paper confirms this expectation.

III. GENERAL CASE

A theory without local degrees of freedom should have
as many pairs of canonical variables as there are first-class
constraints. For hypersurface-deformation covariant sys-
tems in two space-time dimensions, there should therefore
be two pairs of canonical fields, which we continue to
denote as in the LRS Gowdy model of the preceding
section. A generic form of a Hamiltonian constraint is

H½N� ¼ −
1

2G

Z
dθNðθÞ

�
fðA; Kx; Ex; εÞ

þ g1ðεÞ
ðε0Þ2
Ex þ g2ðεÞ

ε00

Ex

þ g3ðεÞ
ε0ðExÞ0
ðExÞ2 þ g4ðεÞEx

�
; ð13Þ

whereas the diffeomorphism constraint again has the usual
form

D½Nθ� ¼ 1

G

Z
dθNθðθÞfK0

xEx − ε0Ag ð14Þ

if the spatial structure remains unchanged. The Poisson
brackets between the canonical variables remain the
standard ones fKxðxÞ;ExðyÞg¼Gδðx;yÞ¼ fAðxÞ;εðyÞg.
One might expect quantum corrections in the Poisson
structure, but by Darboux’ theorem one can always trans-
form back to canonical variables. All such corrections are
then contained in the modification functions already
introduced. (The structure of the diffeomorphism constraint
is strongly restricted for canonical variables and would not
change by such a transformation.)
The assumptions for our general form are
(1) The diffeomorphism constraint does not have mod-

ifications. For models of loop quantum gravity, this
assumption is made because one usually quantizes
the diffeomorphism constraint, or rather the finite
action it generates, without taking recourse to
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holonomies around loops. (For an exception
see [14].)

(2) All curvature dependence is contained in a generic
function f, while spatial derivatives of the triad
components have separate correction functions. One
could include the last term g4ðϵÞEx in the function f,
but it is more convenient to keep it separate.

(3) Every term in (13) has the correct density weight as
required. (See [15] for a discussion of density
weights in midisuperspace models.) In particular,
this condition implies that the modification functions
gi can depend only on ε (but not on Ex), and that any
spatial derivative has to be accompanied by a factor
of 1=Ex. We do not consider terms with spatial
derivatives (or extrinsic curvature) in the denomi-
nator because they would not be guaranteed to be
finite everywhere.

(4) There are no terms of higher than second spatial
derivatives to the order considered here. Such terms
would require a derivative expansion as in [16].

(5) There are no terms linear in spatial derivatives in
order to ensure local parity invariance (transforming
θ ↦ −θ in a local chart).

(6) In midisuperspace models of general relativity, terms
proportional to the second order derivatives of Ex are
absent due to the fact that spatial derivatives come
from the curvature tensor which cannot have two
radial derivatives of the radial components owing to
its antisymmetry properties. Thus we do not have
terms proportional to ðExÞ00 or ðEx0Þ2. In Sec. III C,
we will show that such terms are, in fact, impossible
in an anomaly free system extending (1) and (2).

If these conditions hold, the system (13) with (2) is
generic. Our goal is to start with this ansatz and try to
impose conditions on the arbitrary functions by requiring
closure of the constraint algebra. We will also impose that
the Hamiltonian constraint has the correct classical (low-
curvature) limit for small curvature components and large ε.
Both conditions taken together then ensure covariance.

A. Brackets

Looking at the fH;Hg bracket, we know that the only
nonzero contributions come from the first term with the rest
of the terms in the Hamiltonian constraint. We write each of
these contributions from fH½N1�; H½N2�g individually.
From now on, we are going to suppress the functional
dependence of each of these arbitrary functions on the
canonical variables. Referring to the sum in (13), the
Poisson bracket of term 1 with term 5 gives a vanishing
contribution. Term 1 with term 2 gives

−
1

2G

Z
dθðN1N0

2 − N0
1N2Þ

�∂f
∂A g1

ε0

Ex

�
: ð15Þ

Term 1 with term 4 gives

−
1

4G

Z
dθðN1N0

2 − N0
1N2Þ

� ∂f
∂Kx

g3
ε0

ðExÞ2 þ
∂f
∂A g3

ðExÞ0
ðExÞ2

�
:

ð16Þ

Finally, term 1 with term 3 gives

1

4G

Z
dθðN1N0

2 − N0
1N2Þ

�∂f
∂A _g2

ε0

Ex −
∂f
∂A g2

ðExÞ0
ðExÞ2

−
∂2f

∂A∂Kx
g2

K0
x

Ex −
∂2f
∂A2

g2
A0

Ex

−
∂2f

∂A∂Ex g2
ðExÞ0
Ex −

∂2f
∂A∂ε g2

ε0

Ex

�
: ð17Þ

Here, a dot above any function dependent on a single
variable refers to its derivative with respect to its variable.
The requirement for the algebra to be closed implies that

any bracket between two constraints must be another
constraint. This means that the right-hand side of fH;Hg
can, in addition to the diffeomorphism constraint, also
include a Hamiltonian constraint, provided its coefficient
goes to zero in the classical (low-curvature) limit.
Since there is no A0-term which can appear on the right-

hand side, we infer ∂2f=∂A2 ¼ 0 from (17). Thus f is
linear in A and can be written as

fðA; Kx; Ex; εÞ ¼ f2ðKx; Ex; εÞAþ f3ðKx; Ex; εÞ: ð18Þ

Similarly, there is no ðExÞ0-term (without a factor of ε0) on
the right-hand side, implying

f2g3ðExÞ−2 þ f2g2ðExÞ−2 þ
�∂f2
∂Ex

�
g2ðExÞ−1 ¼ 0 ð19Þ

or, equivalently,

g2 þ g3 þ
g2
f2

�∂f2
∂Ex E

x

�
¼ 0: ð20Þ

This expression can be rearranged to bring it to the form

−
g2 þ g3

g2
¼ Ex

f2

�∂f2
∂Ex

�
; ð21Þ

where now the left-hand side depends only on ε whereas
the right-hand side depends on ε, Ex and Kx. Therefore
both sides must each be equal to the same function of ε,
which we call g5ðεÞ. We have

1þ g3=g2 ¼ −g5 ð22Þ

and

Ex

f2

�∂f2
∂Ex

�
¼ g5: ð23Þ
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We conclude that

f2ðKx; Ex; εÞ ¼ ~f2ðKx; εÞðExÞ−ð1þg3=g2Þ; ð24Þ

where we restore the explicit definition of g5 in the
final line.
Going back to the expressions (15), (17) and (16), we

notice that any term proportional to just ε0 (without a
multiplicative factor of A) must also be set equal to zero
since there is no such term in the diffeomorphism con-
straint, and any ε0 in the Hamiltonian constraint would be
multiplied with another ε0 or an Ex0:

2f2g1ðExÞ−1 þ g3
∂f3
∂Kx

ðExÞ−2 − f2 _g2ðExÞ−1

þ g2
∂f2
∂ε ðExÞ−1 ¼ 0 ð25Þ

or

�
2f2g1 − f2 _g2 þ g2

∂f2
∂ε

�
Ex ¼ −g3

∂f3
∂Kx

: ð26Þ

On the left-hand side, we can use (24) to write out the
dependence of the expression on Ex. Since the right-hand
side involves g3, which is a function of ε alone, and the
derivative of f3 with respect to Kx, we can then deduce that
the dependence of f3 on Ex is

f3ðKx; Ex; εÞ ¼ ~f3ðKx; εÞðExÞ−g3=g2 : ð27Þ

Inserting (24) and (27) in (26),

2~f2g1 − ~f2 _g2 þ g2
∂ ~f2
∂ε ¼ −g3

∂ ~f3
∂Kx

: ð28Þ

Looking at the remaining two terms left, one of which is
proportional to Aε0 and the other to K0

xEx, we have

∂f2
∂Kx

½g2ðExÞ−2K0
xEx þ g3ðExÞ−2ε0A�: ð29Þ

For this to be proportional to the diffeomorphism con-
straint, we require that the prefactor of both the K0

xEx and
the Aε0 be the same. This implies

g2 ¼ −g3: ð30Þ

We can use this relation in (24) and (27),

f2ðKx; Ex; εÞ ¼ ~f2ðKx; εÞ; ð31Þ

f3ðKx; Ex; εÞ ¼ ~f3ðKx; εÞEx: ð32Þ

From (28) and (30),

2~f2g1 − ~f2 _g2 þ g2

�∂ ~f2
∂ε

�
¼ g2

�∂ ~f3
∂Kx

�
: ð33Þ

B. Implications and special cases

Some of our new relations have interesting interpreta-
tions, which we collect in this subsection.
Equation (30) implies that the two terms

g2ðεÞ
ε00

Ex þ g3ðεÞ
ε0ðExÞ0
ðExÞ2 ¼ g2ðεÞ

�
ε00

Ex −
ε0ðExÞ0
ðExÞ2

�

¼ −2g2ðεÞΓ0 ð34Þ

can always be written in terms of the function

Γ ¼ −
ε0

2Ex ð35Þ

which has the same form as the only nontrivial spin-
connection component in dilaton models obtained by
symmetry reduction from classical general relativity [15].
Equation (29) shows that the structure function of the

modified system is equal to

∂f2
∂Kx

g2
ðExÞ2 ¼ β

ε

ðExÞ2 ¼ βqθθ ð36Þ

with the modification function

β ¼ ∂f2
∂Kx

g2
ε
; ð37Þ

comparing with (3). Using (33), ∂f2=∂Kx is proportional to
∂2f3=∂K2

x if the dependence of f2 on ε is weak. Around a
local maximum of f3 in Kx, the modification function β is
therefore negative, and we obtain signature change.
The modification function β does not introduce a

dependence of structure functions on g4, and there is no
restriction on g4 from anomaly freedom. There should
therefore be classical gravity models for any choice of
g4ðεÞ. Indeed, as the canonical transformation derived in
[12] shows, if g4 is the only modification function that
differs from the LRS Gowdy model, (13) is nothing but a
two-dimensional dilaton model with potential VðεÞ¼g4ðεÞ,
expressed in connection variables as used in models of loop
quantum gravity. [The function g1 does not appear explic-
itly in the expression of β, but unlike g4 it cannot be chosen
independently because it is related to f2, f3 and g2 by (33).]
It is not easy to analyze Eq. (33) in general form, but a

few special cases are of interest. First, we can see that it is
not compatible with power-law lattice refinement [17,18]
which would require a dependence of modification func-
tions on extrinsic curvature via the combination ϵqKx with
some real number q. If we assume two different such
dependences in ~f2ðϵpKxÞ and ~f3ðϵqKxÞ, (33) implies
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2~f2g1 − ~f2 _g2 þ pϵp−1g2Kx
_~f2 ¼ g2ϵq

_~f3: ð38Þ

The third term, with a factor of Kx, is incompatible with
almost-periodic functions ~f2 and ~f3 as assumed in models
of loop quantum gravity.
Another special case is given by a factorizable ansatz for

the modification functions

~f2ðKx; εÞ ¼ f4ðKxÞg6ðεÞ ð39Þ

~f3ðKx; εÞ ¼ f5ðKxÞg7ðεÞ: ð40Þ

Inserting this form in (33), we find

2
g6g1
g7g2

−
g6 _g2
g7g2

þ _g6
g7

¼
_f5
f4

: ð41Þ

The left-hand side depends only on ε while the right-hand
side depends solely onKx. Thus, each of the two sides must
be equal to a constant.

df5
dKx

¼ cf4; ð42Þ

and

2
g6g1
g7g2

−
g6 _g2
g7g2

þ _g6
g7

¼ c: ð43Þ

The form of our generalized Hamiltonian constraint is
now restricted to be

H½N� ¼ −
1

2G

Z
dθNðθÞ

�
g7f5ðKxÞEx þ g6f4ðKxÞA

þ g1
ðε0Þ2
Ex þ g2

ε00

Ex − g2
ε0ðExÞ0
ðExÞ2 þ g4Ex

�
: ð44Þ

All of the gi are functions of ε, with their functional
dependence suppressed. However, not all of the remaining
functions are unconstrained. We have the additional con-
ditions given in (42) and (43). We can also absorb g7 in the
lapse function and rescale the rest of the g-functions

accordingly. In other words, we can set g7 ¼ 1 without
any loss of generality. We call the new lapse function ~N.
For our generalized midisuperspace model, closure of

two Hamiltonian constraints, including modifications,
implies the condition (42) for the modification functions.
Given this condition, the deformed structure function takes
the form

1

c
d2f5
dK2

x
g2g6ðExÞ−2; ð45Þ

while the final form of the Hamiltonian constraint is

H½N� ¼ −
1

2G

Z
dθ ~NðθÞ

�
f5ðKxÞEx þ g6

c
df5
dKx

A

þg1
ðε0Þ2
Ex þ g2

ε00

Ex − g2
ε0ðExÞ0
ðExÞ2 þ g4Ex

�
: ð46Þ

The classical (low-curvature) limit is given by
g2ðεÞg6ðεÞ ¼ ε, while f5ðKxÞ ¼ K2

x, with c ¼ 2. The
function g4 then labels different classical models with
undeformed covariance, including all two-dimensional
dilaton gravity models, or the spherically symmetric model
as well as Gowdy LRS.

C. Second-order spatial derivatives
beyond general relativity

In our analysis so far, we did not consider two possible
terms proportional to second-order spatial derivatives of
triad components, namely ðExÞ00 and ðEx0Þ2. These terms
are not present in midisuperspace models of general
relativity due to antisymmetry properties of the Riemann
curvature tensor since derivatives with respect to the radial
coordinate cannot appear on the radial component of the
triads. However, such terms could conceivably arise if there
is some modification to general relativity. Here, we show
that the presence of such terms is incompatible with
anomaly free constraints.
Taking into account density weights, the general form of

the Hamiltonian constraint with the additional terms is
given by

H½N� ¼ −
1

2G

Z
dθNðθÞ

�
fðA; Kx; Ex; εÞ þ g1ðεÞ

ðε0Þ2
Ex þ g2ðεÞ

ε00

Ex

þg3ðεÞ
ε0ðExÞ0
ðExÞ2 þ g4ðεÞEx þ h1ðεÞ

ðExÞ00
ðExÞ2 þ h2ðεÞ

ðEx0Þ2
ðExÞ3

�
ð47Þ

with two new functions h1ðεÞ and h2ðεÞ. The new terms arising from the Poisson bracket of two such Hamiltonian
constraints are
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−
1

2G

Z
dθðN1N0

2 − N0
1N2Þ

∂f
∂Kx

h2Ex0ðExÞ−3 ð48Þ

and

−
1

4G

Z
dθðN1N0

2 − N0
1N2Þ

�
2
∂f
∂Kx

h1Ex0ðExÞ−3 − ∂f
∂Kx

_h1ε0ðExÞ−2

þ ∂2f
∂K2

x
h1K0

xðExÞ−2 þ ∂2f
∂Kx∂A h1A0ðExÞ−2

þ ∂2f
∂Kx∂Ex h1E

x0ðExÞ−2 þ ∂2f
∂Kx∂ε h1ε

0ðExÞ−2
�
: ð49Þ

They contribute to all the conditions we had before.
Starting with the requirement that there be no terms
proportional to A0 on the right-hand side, we now have

g2Ex ∂2f
∂A2

þ h1
∂2f

∂A∂Kx
¼ 0: ð50Þ

Defining f1ðA; Kx; ε; ExÞ ≔ ∂f=∂A,

g2Ex ∂f1
∂A ¼ −h1

∂f1
∂Kx

: ð51Þ

This equation has the general solution

f1ðA; Kx; Ex; εÞ ¼ FðKx −Ah1=ðg2ExÞ; Ex; εÞ ð52Þ

with an arbitrary function F of three variables. Since
f1 ¼ ∂f=∂A, we have

fðA; Kx; Ex; εÞ ¼ GðKx −Ah1=ðg2ExÞ; Ex; εÞ
þHðKx; Ex; εÞ ð53Þ

with ∂G=∂A ¼ F and another free function H of three
arguments.
We can already see that the new terms are likely to lead

to problematic conditions on the modification functions:
The component A can only appear in the specific combi-
nationKx −Ah1=ðg2ExÞ with Kx, but finding anomaly free
modifications of the A-dependence has proven difficult
[16]. (Holonomy modifications of the A-dependence
would result from holonomies along curves in the θ-
direction which remains inhomogeneous in the midisuper-
space models considered here. Such modifications would
therefore be nonlocal or, in a derivative expansion of an
effective theory, include higher spatial derivatives of A
which we are not considering here. The Kx-dependence, by
contrast, remains local even if holonomy modifications are
used in a midisuperspace model.) The function G could
then only be a linear function in its first argument.
In fact, the new terms are ruled out if we use (53) and

evaluate all contributions to the bracket that could give rise

to the term Aε0 in the diffeomorphism constraint. In
particular, we have to make sure that we have a factor
of A but no factor of Kx multiplying ε0. Two such terms,

∂2f
∂A∂ε

g2
Ex þ

∂2f
∂Kx∂ε

h1
ðExÞ2 ¼

∂2H
∂Kx∂ε

h1
ðExÞ2 ð54Þ

do not contribute a factor of A as coefficients of ε0. The
remaining terms are

−
∂f
∂Kx

g3
ðExÞ2 þ

∂f
∂A

_g2
Ex þ

∂f
∂Kx

_h1
ðExÞ2

¼ −
g3 þ h1 _g2=g2 − _h1

ðExÞ2 G1 ð55Þ

plus terms (partial derivatives of H) that do not depend on
A, where G1 is the partial derivative of G by its first
argument. We obtain a coefficient with linear dependence
onA only ifG is quadratic inKx −Ah1=ðg2ExÞ, but even if
this is the case, there will be additional terms depending on
Kx which do not all cancel out. It is therefore impossible to
gather all the new terms in coefficients of the diffeo-
morphism constraint, and no anomaly free formulation is
possible unless h1 ¼ 0.
With this result, we can follow the previous steps up to

Eq. (20). There is now a new term h2ðExÞ−3∂f=∂Kx in the
resulting equation

∂f
∂A g3ðExÞ−2 þ ∂f

∂A g2ðExÞ−2 þ ∂2f
∂A∂Ex g2ðExÞ−1

þ 2
∂f
∂Kx

h2ðExÞ−3 ¼ 0 ð56Þ

which, for f of the form (18), contains a factor of A.
However, all other terms in (56) are independent of A,
which is compatible with the new term only if
∂f2=∂Kx ¼ 0. But in this case there is no term of the
form KxA in the Hamiltonian, and the model is not
compatible with the classical (low-curvature) limit.
Therefore, h2 ¼ 0 and both new terms are ruled out.
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IV. CONCLUSIONS

We have analyzed a general canonical form of 1þ 1-
dimensional covariant models without local physical
degrees of freedom. A large subclass of such models has
been recognized as classical two-dimensional dilaton
gravity models with an arbitrary potential. Another large
class of models, most of which have not been encountered
before, has a deformed notion of covariance and includes
models of loop quantum gravity. Holonomy-modified
versions of the two-dimensional dilaton gravity models,
as studied for instance in [6,8], fall within the latter group.
In this class, signature change is a generic consequence of
modifications that introduce a bounded dependence of the
Hamiltonian constraint on extrinsic curvature.
Our results unify several recent investigations of mid-

isuperspace models of loop quantum gravity, including
[5,6,8]. They also provide further support for the generic-
ness of signature change in models of loop quantum
gravity. So far, signature change has been avoided only
by following three distinct procedures: (i) Using classical
assumptions on the structure of space-time and foregoing
an analysis of anomaly freedom. (ii) Implementing mod-
ifications via canonical transformations [19]. (iii) Using
complex connections [20,21]. The first option is problem-
atic because it does not guarantee anomaly freedom. The
second option is problematic as well, as discussed in the
Appendix. The third option needs to be explored further, in
particular regarding the implementation of reality condi-
tions. Furthermore, for complex variables, the quantization
scheme becomes rather important since depending on how
one implements holonomy corrections, one can still get
signature change [22].
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APPENDIX: AN ALTERNATIVE
MODIFICATION SCHEME

A new “modification” schemewith bounded functions of
curvature has been proposed in [19], using spherically
symmetric models. Instead of modifying the Hamiltonian
constraint, the authors use a canonical transformationKx →
fðKxÞ and Ex → Ex= _fðKxÞ, where the dot again represents
the derivative of the function with respect to its argument,
here Kx. (We have translated the relations of [19] to the
notation used in the main body of the present paper. Instead
of Kφ in [19], we therefore write Kx.) In the specific case of
[19], the function is chosen as the usual sine function of
models of loop quantum gravity, but we choose to keep the
analysis more general. The Poisson brackets indeed remain
unchanged,

�
fðKxðxÞÞ;

Ex

_fðKxÞ
ðyÞ

�
¼ fKxðxÞ; ExðyÞg ¼ Gδðx; yÞ:

ðA1Þ

1. Constraints

Starting with the classical Hamiltonian and diffeomor-
phism constraints, (1) and (2), the canonical transformation
takes us to

H½N� ¼ −
1

2G

Z
dxN

�
ðεÞ−1=2 Ex

_fðKxÞ
fðKxÞ2

þ 4ðεÞ1=2AfðKxÞ

−
1

4
ðεÞ−1=2ðε0Þ2

�
Ex

_fðKxÞ

�
−1

− ðεÞ1=2ε00
�

Ex

_fðKxÞ

�
−1

þ ðεÞ1=2ε0
�

Ex

_fðKxÞ

�
−2
�

Ex0

_fðKxÞ
−
Ex ̈fðKxÞK0

x

ð _fðKxÞÞ2
��

:

ðA2Þ

D½Nx� ¼ 1

2G

Z
dxNx½2ExK0

x −Aε0�: ðA3Þ

[A dilaton potential could be included in (A2) but would
not change the following arguments.] Viewed as a modified
expression, this H½N� has not been included in our main
analysis because it would require modification functions
giðKφÞ that do not just depend on ε.
Following the procedure outlined in the previous sec-

tions, we can calculate the Poisson bracket between these
constraints and find that the constraint algebra takes the
form

fD½Nx�; D½Mx�g ¼ D½LNxMx�; ðA4Þ

fH½N�; D½Nx�g ¼ −H½LNxN�; ðA5Þ

fH½N�; H½M�g ¼ D

�
ðNM0 −MN0Þε

�
Ex

_fðKxÞ

�
−2
�
: ðA6Þ

(More details of the derivation are given in the following
subsection.) As expected, the new structure function agrees
with the usual one after applying the canonical trans-
formation. One could interpret the last bracket as a hyper-
surface-deformation bracket with structure function
modified by a factor of 1= _f2. This function is positive
and therefore does not lead to signature change. According
to the general results of [23], it can therefore be absorbed by
a field redefinition, which would just be the inverse of the
canonical transformation.
Once one (partially) Abelianizes the system of (modi-

fied) constraints, following [4], the Abelianized constraints
remain Abelianized in spite of the modifications [19]. In
fact, even in the presence of matter, the total constraints
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(gravitational plus the matter parts) form a (partially)
Abelianized algebra. However, if we go back to the original
hypersurface-deformation generators, the structure func-
tions are deformed, as shown here.
This “modification” procedure suffers from several

drawbacks. By applying a canonical transformation to
the classical constraints, one cannot arrive at modified
dynamics. (There is then no actual modification at all.) It is
surprising how [19] can nevertheless make claims about
singularity resolution. In fact, the canonical transformation
is one-to-one only in a range of Kx where fðKxÞ is
monotonic. For the common functions used in models of
loop quantum gravity, this excludes all values of Kx greater
than a certain finite threshold. The classical singularity
(infinite Kx) is eliminated from these models only because
the canonical transformation is valid in a limited part of
phase space.
Moreover, the form of the modification is in contra-

diction with the usual guiding principles followed in
models of loop quantum gravity, which suggest modifica-
tions of curvature terms in the Hamiltonian constraint, but
no inverses of _fðKxÞ in triad terms.

2. Derivation of the structure function

The modification procedure introduced in [19] is of the
form Kx → fðKxÞ, Ex → Ex= _fðKxÞ. Instead of showing

the entire derivation of the constraint brackets after this
transformation, we give a brief sketch. There are three types
of terms which we shall be confronting during this
calculation. Of course, the brackets of the modified
variables are the same as for the classical ones, by
construction. But one can also see this by an explicit
calculation not based on the fact that a canonical trans-
formation has been performed.
In particular, we have terms of the form

�
g

Ex

_fðKxÞ
; h
�

Ex

_fðKxÞ

�0�
; ðA7Þ

which would be trivially zero in the original variables
(where no Kx-terms are present in the corresponding
bracket) but could be expected to be nonzero here if the
nature of the transformation were not known. However, an
explicit calculation, first writing

�
Ex

_fðKxÞ

�0
¼ Ex0

_fðKxÞ
−
Exf̈
_f2

K0
x ðA8Þ

and then using the full dependence on Ex0 and Kx,
results in

�
g

Ex

_fðKxÞ
; h

�
Ex

_fðKxÞ

�0�
¼ gh

��
Ex

_f
;
Ex0

_f

�
−
�
Ex

_f
;
Exf̈
_f2

K0
x

��

¼ gh

�
Exf _f−1; Ex0g 1

_f
−
1

_f
fEx;K0

xg
Exf̈
_f2

�
þ � � �

¼ gh

�
Ex

_f

�
−

f̈
_f2

�
−
1

_f

�
−
Exf̈
_f2

�� ∂δðx; yÞ
∂y þ � � �

¼ 0þ � � �

where dots indicate additional terms proportional to delta
functions but not their derivatives. Only derivatives of delta
functions contribute to the antisymmetric bracket of
smeared Hamiltonian constraints, but the only coefficient
of such a term in (A9) is identically zero. A similar
treatment of all other terms reveals that only brackets
which are nonzero in the original variables are nonzero
after the transformation, and those nonzero terms differ

only by a factor of _f2. In the specific case of Gowdy LRS,
just as in spherical symmetry, this implies ε=ðExÞ2 →
εð _fðKxÞÞ2=ðExÞ2. Similar arguments work even when a
matter contribution (say, in the form of a minimally coupled
scalar field) is taken into account. Once again, the structure
functions appearing in the brackets of the total constraints
(gravitational plus the matter contributions) have the same
deformation as above.
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