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Gravitational radiation is an excellent field for testing theories of gravity in strong gravitational fields.
The current observations on the gravitational-wave (GW) bursts by LIGO have already placed various
constraints on the alternative theories of gravity. In this paper, we investigate the possible bounds which
could be placed on the Brans-Dicke gravity using GW detection from inspiraling compact binaries with the
proposed Einstein Telescope, a third-generation GW detector. We first calculate in detail the waveforms of
gravitational radiation in the lowest post-Newtonian approximation, including the tensor and scalar fields,
which can be divided into the three polarization modes, i.e., “plus mode,” “cross mode,” and “breathing
mode.” Applying the stationary phase approximation, we obtain their Fourier transforms, and derive the
correction terms in amplitude, phase, and polarization of GWs, relative to the corresponding results in
general relativity. Imposing the noise level of the Einstein Telescope, we find that the GW detection from
inspiraling compact binaries, composed of a neutron star and a black hole, can place stringent constraints
on the Brans-Dicke gravity. The bound on the coupling constant ωBD depends on the mass, sky position,
inclination angle, polarization angle, luminosity distance, redshift distribution, and total observed number
NGW of the binary systems. Taking into account all the burst events up to redshift z ¼ 5, we find that the
bound could be ωBD ≳ 106 × ðNGW=104Þ1=2. Even for the conservative estimation with 104 observed
events, the bound is still more than one order tighter than the current limit from Solar System experiments.
So, we conclude that the Einstein Telescope will provide a powerful platform to test alternative theories of
gravity.
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I. INTRODUCTION

Since Einstein’s general relativity (GR) was proposed
more than 100 years ago, a large number of exper-
imental tests have been performed on various scales,
from submillimeter-scale tests in the laboratory to the
tests at Solar System and cosmological scales [1–5].
Even so, most of these efforts have focused on the
gravitational effects in weak fields. Different from them,
gravitational radiation provides an excellent opportunity
to experimentally test gravitational theories in the
strong-field regime. Since the observed gravitational
waves (GWs) are always produced in strong gravita-
tional fields, extremely high energy scales, or the very
early Universe and are nearly freely propagating in the
spacetime once generated, they encode the clean infor-
mation of these extreme conditions. Thus, a great deal
of attention has been devoted to the detection of GWs.
On September 14, 2015, the first direct GW signal,
GW150914, was observed by LIGO, which marks the
beginning of the era of GW astronomy [6]. Since then,
various investigations on testing GR, including those

from LIGO collaborations, have been carried out by
utilizing the observed GW data [6–9].
Karl Popper argued that scientists can never truly

“prove” that a theory, including GR, is correct, but rather
all we can do is to disprove, or more accurately to constrain,
a hypothesis. The theory that remains and cannot be
disproved by observations becomes the status quo [10].
According to this argument, in order to test GR we must
compare its predictions with alternative theories of gravity.
So, the theoretical studies on gravitational radiations in
various theories are highly desirable. For instance, in the
previous work [11], the authors developed the parametrized
post-Einsteinian (ppE) framework to describe the modifi-
cations of GWs in a wide class of gravitational theories.
In this paper, we will focus on Brans-Dicke (BD) gravity.

As the simplest scalar-tensor gravity, BD gravity has been
well studied and constrained in various tests (see, for
instance, [12,13]). For the gravitational radiation of
inspiraling compact binaries in BD gravity, Will et al.
calculated the gravitational waveforms by including the
lowest order effects [1,14,15].1 Similar calculations have
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1These calculations have been extended to the higher post-
Newtonian (PN) orders in recent works [16–19].
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also applied to some extended versions of BD gravity
[20–24]. However, for the gravitational waveforms, in these
works the authors have only considered the phase correc-
tion terms in the “plus mode” and “cross mode” of GWs.
As is well known, for compact systems, the predictions of
gravitational radiation in BD gravity are different from
those in GR in several aspects [1]: First, modifications of
the effective masses of the bodies, parametrized by the
sensitivities si, alter the motion of two-body orbits, which
induces the modification on the time dependence of the
orbital frequency and GW frequency of the system. Second,
in addition to the quadrupole gravitational radiation, in BD
gravity the scalar field also emits scalar radiations, includ-
ing the monopole, dipole, and quadrupole components.
These radiations also modify the orbital evolution of the
system and thence the GW frequency and amplitude. In this
paper, we extend the previous calculations on the gravita-
tional radiation of compact binary systems in BD gravity
and derive the full waveforms of GWs by including the plus
mode and cross mode, as well as the “breathing mode.”
Employing the stationary phase approximation, we obtain
the Fourier transforms of these components, and find that
the contribution of scalar monopole radiation is negligible,
and the dipole and quadrupole scalar radiations are sup-
pressed by the BD parameter ωBD and/or the difference in
sensitivities of the two objects. The tensor quadrupole
radiations are modified in both GW phases and amplitudes,
which are significant in the low frequency range.
It is well known that BD gravity reduces to GR in the

limit ωBD →∞. Many effects have been devoted to con-
strain the parameter ωBD in various systems [1,12,13]. Until
now, the most stringent constraint is ωBD > 4 × 104, which
comes from the Cassini-Huygens experiment [25]. In the
previous work [14], the authors showed that observations of
inspiral binary systems from ground-based detectors of the
type of advanced LIGO could place a bound of
ωBD ≳ 2000. If considering the LISA space interferometer,
for a neutron star inspiraling into a 103 M⊙ black hole in
the Virgo Cluster, a possible bound of ωBD ≳ 3 × 105 could
be placed in a two-year integration [26,27]. Similar results
are also derived in the previous works [28,29]. In addition,
if considering the observations of potential space-based
DICEGO/BBO projects, the bound ωBD ≳ 4 × 108 could
be placed in the far future [30]. In this paper, we shall apply
similar analyses to the potential observations of the
Einstein Telescope (ET). Currently, the ET is undergoing
a design study as a third-generation ground-based GW
observatory [31], which would be able to observe binary
neutron star systems up to redshift z ∼ 2 and the neutron
star/black hole events up to z ∼ 8. Comparing with the
generation of the advanced LIGO, which is often referred to
as the second generation, the ET has the following
advantages: The noise power spectral density (PSD) of
the ET will be more than two orders smaller, while the
lower cutoff frequency of the ETwill extend to 1 Hz. Both

factors will greatly improve the total number of inspiraling
compact binaries, as well as the signal-to-noise ratio for
the given target. So, we anticipate that BD gravity can be
well constrained by the potential observations of the ET. In
the previous works [32,33], the authors found that, if
considering the ET, one GW event could place a bound
of ωBD ≳ ð104 ∼ 105). In this paper, we shall extend these
analyses by combining multiple events and considering all
the modifications of GW waveforms.
The outline of this paper is as follows. In Sec. II we

calculate the gravitational waveforms of compact binary
systems in BD gravity, derive their Fourier transforms by
applying the stationary phase approximation, and then
extend them to include high PN terms. In Sec. III, we
discuss the capabilities of the ET on constraining BD
gravity by taking into account a large number of GWevents
in a wide redshift range. In Sec. IV we conclude the paper
with a summary of our main results.
Throughout this paper, the signatures of the metric are

chosen as ð−;þ;þ;þÞ, and the Greek indices (μ; ν; � � �) run
over 0,1,2,3. We choose the units in which G ¼ c ¼ 1,
where G is the Newtonian gravitational constant, and c is
the speed of light in vacuum.

II. GRAVITATIONAL RADIATIONS
IN SCALAR-TENSOR GRAVITY

A. BD gravity

In the Jordan frame, the action of the general scalar-
tensor gravity is given by [1]

I ¼ 1

16π

Z �
ϕR −

ωðϕÞ
ϕ

gμνϕ;μϕ;ν þ 2ϕλðϕÞ
� ffiffiffiffiffiffi

−g
p

d4x

þ Imðgμν; qAÞ; ð1Þ

where gμν is the spacetime metric, g is its determinant, R is
the Ricci scalar derived from this metric, ϕ is the scalar
field, ωðϕÞ is the scalar-tensor coupling function, and λðϕÞ
is the cosmological function. Im represents the matter
action, which depends only on the matter fields qA and
the metric gμν; i.e., there is no direct interaction with the
scalar field. In this paper, we restrict our attention to the
massless BD theory, in which ωðϕÞ ¼ ωBD is a constant,
and λðϕÞ ¼ 0.
The field equations derived from the action of BD

gravity are given by

Rμν −
1

2
gμνR ¼ 8π

ϕ
Tμν þ

ωBD

ϕ2

�
ϕ;μϕ;ν −

1

2
gμνϕ;ρϕ

;ρ

�

þ 1

ϕ
ðϕ;μν − gμν□gϕÞ; ð2Þ

□gϕ ¼ 1

3þ 2ωBD

�
8πT − 16πϕ

∂T
∂ϕ

�
; ð3Þ
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where Tμν is the stress-energy tensor of matter and non-
gravitational fields, and T ≡ gαβTαβ is its trace. Throughout
this paper, we use commas to denote ordinary derivatives,
semicolons to denote covariant derivatives, and □g ≡
gαβ∇α∇β to represent the d’Alembertian with indices raised
by the metric gμν. Here, we should mention that in the
general Jordan frame, the quantity ∂T=∂ϕ is not present.
But for the gravitationally bound bodies, as to be shown
below, it will be present in the field equations.
In order to discuss the gravitational radiation, we assume

that far away from the sources, the metric gμν reduces to the
Minkowski metric ημν, and the scalar field ϕ tends to its
cosmological value ϕ0. Thus, we can define the perturba-
tions in the far zone as follows:

hμν ¼ gμν − ημν; φ ¼ ϕ − ϕ0; ð4Þ

θμν ¼ hμν −
1

2
hημν − ðφ=ϕ0Þημν; ð5Þ

where φ is the perturbation of the scalar field ϕ about its
asymptotic cosmological value ϕ0. Note that in another
version of the field equations [16,34], an auxiliary metric
~gμν is introduced, which relates to the physical metric gμν
by the conformal transformation ~gμν ≡ ðϕ=ϕ0Þgμν, and a
“gothic” version of this metric, ~gμν ≡ ffiffiffiffiffiffi

−~g
p

~gμν. In the weak-
field approximations, it can be proved that θμν ¼ ημν − ~gμν.
Following the previous works [1,14,15], in this paper we
shall use the quantities θμν and φ. Choosing the harmonic
gauge in which θμν;ν ¼ 0, we can rewrite the field equations
for BD theory in the form

□ηθ
μν ¼ −16πτμν; □ηφ ¼ −8πτs; ð6Þ

where the sources terms τμν and τs are explicitly given in
[15,16,34], and τμν satisfies the conservation laws τμν;ν ¼ 0
because of the Bianchi identity. Note that the indices of θμν

and φ;μ will be lowered and raised by ημν and ημν.

B. Evolution of binary systems in BD gravity

Now, let us turn to consider a realistic source, which
is made up of two compact objects. Since the compact
system is gravitationally bound, its total mass depends on
its internal gravitational energy, which in turn depends on
the effective local value of the scalar field ϕ in the vicinity
of the body. Eardley found that these effects could be
accounted for by simply replacing the constant inertial
mass of the object in the distributional stress-energy tensor
of the “crude” approach by a function of the scalar field ϕ,
namely, miðϕÞ (i ¼ 1, 2) [35]. Thus, the matter action in
Eq. (1) becomes

Im ¼ −
X
i¼1;2

Z
miðϕÞdτi; ð7Þ

where τi denotes the proper time along the trajectory of the
object i. These modifications depend on the internal
structure of the bodies and the theory of gravity. We
expand miðϕÞ about the asymptotic value ϕ0 as follows:

miðϕÞ

¼ mi

�
1þ si

�
ϕ

ϕ0

�
þ 1

2
ðs2i þ s0i − siÞ

�
ϕ

ϕ0

�
2

þO

�
ϕ

ϕ0

�
3
�
;

ð8Þ

where mi ≡miðϕ0Þ, and the sensitivity si and its derivative
s0i are defined as

si ≡
�
d lnmiðϕÞ
d lnϕ

�
ϕ¼ϕ0

; s0i ≡
�
d2 lnmiðϕÞ
dðlnϕÞ2

�
ϕ¼ϕ0

:

ð9Þ

The sensitivities si roughly measure the gravitational
binding energy per unit mass. This effect violates the
strong equivalence principle, in the sense that the motion of
such bodies now depends on their internal structure (apart
from tidal interactions). In BD gravity, for white dwarfs we
have s≃ 0, for neutron stars s ≈ 0.1–0.2 [15], and for black
holes s ¼ 0.5 [36].
The stress-energy tensor in this system is given by

Tμν ¼ ð−gÞ−1=2
X
i¼1;2

miðϕÞuμi uνi ðu0i Þ−1δ3ðx − xiÞ; ð10Þ

∂T
∂ϕ ¼ −ð−gÞ−1=2

X
i¼1;2

∂miðϕÞ
∂ϕ ðu0i Þ−1δ3ðx − xiÞ; ð11Þ

where uμi is the four-velocity of the object i.
In this system, we treat the objects as pointlike, with

masses m1 and m2, and positions x1 and x2, respectively.
From the post-Newtonian equations of motion [1], in the
center-of-mass frame, it was shown that the dynamics in the
Newtonian limit reduces to a one-body system with a mass
equal to the reduced mass μ ¼ m1m2=ðm1 þm2Þ, and the
equation of motion [15]

d2x=dt2 ¼ −Gmx=r3; ð12Þ

where m ¼ m1 þm2 is the total mass and x ¼ x2 − x1 the
relative coordinate. The parameter G is defined as

G ¼ 1 − ξðs1 þ s2 − 2s1s2Þ; ξ ¼ ð2þ ωBDÞ−1: ð13Þ

In this paper, we consider only the case of quasicircular
orbits (that is, circular, apart from an adiabatic inspiral).
Then the orbital frequency ωs is related to the orbital radius
r by v2 ¼ Gm=r with the orbital velocity v ¼ ωsr. So, we
have Kepler’s third law
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ωs ¼ ðGm=r3Þ1=2; ð14Þ

and the orbit period Ps is given by Ps ¼ 2π=ωs. The energy
of the system is given by

E ¼ −ð1=2ÞGμm=r: ð15Þ

For a compact binary system, the dissipation of its total
energy is caused by the emission of gravitational radiations.
In BD gravity, the rate of energy loss for a quasicircular
two-body orbit is given by [1,15]

dE
dt

¼ −
�
8

15

μ2m2

r4

�
12κv2 þ 5

8
κDS2

��
; ð16Þ

where the angular brackets denote an orbital average, and
the coefficients are given by

κ ¼ G2

�
1 −

1

2
ξþ 1

12
ξΓ2

�
; κD ¼ 2G2ξ; S ¼ s1 − s2;

Γ ¼ 1 − 2ðm1s2 þm2s1Þ=m: ð17Þ

The first term in Eq. (16) represents the combined effects of
the quadrupole and monopole radiations, and the second
term is the contribution of the dipole radiation. If κ → 1 and
κD → 0, it reduces to that of GR.

C. Gravitational waveforms in BD gravity

The gravitational radiations can be derived by solving
the wave equations of Eq. (6). For a binary orbit, to leading
order of v2 ∼m=r, the solutions of the spatial components
of the perturbations are given by [1,15]

θij ¼ 2ð1 − ξ=2ÞdL−1ðd2=dt2Þ
X
k¼1;2

mkðϕÞxikxjk

¼ ð4μ=dLÞð1 − ξ=2Þðvivj − Gmxixj=r3Þ; ð18Þ

φ=ϕ0 ¼ ξðμ=dLÞfΓ½ðN̂ · vÞ2 − GmðN̂ · xÞ2=r3�
− ðGΓþ 2ΛÞm=r − 2SðN̂ · vÞg; ð19Þ

where the parameter Λ is given by Λ ¼ 1 − s1 − s2, dL is
the luminosity distance of the observer, and N̂ is the
direction unit vector of dL. In the flat Friedmann-
Lemaître-Robertson-Walker universe, the luminosity dis-
tance is calculated by [37]

dLðzÞ ¼ ð1þ zÞ
Z

z

0

dz0

Hðz0Þ ; ð20Þ

where z is the redshift andHðzÞ is the Hubble parameter. In
the spatial flat ΛCDM model, it is given by

HðzÞ ¼ H0½Ωmð1þ zÞ3 þΩΛ�1=2: ð21Þ

Throughout this paper, we adopt a fiducial cosmological
model with the following values of the parameters [38]:

Ωm ¼ 0.314; ΩΛ ¼ 0.686; Ωk ¼ 0;

H0 ¼ 67.3 km s−1 Mpc−1: ð22Þ

The perturbation of the metric is obtained by utilizing the
relation2

hμν ¼ θμν − ημνθ=2 − ðφ=ϕ0Þημν: ð23Þ

A gravitational-wave detector measures the separation ξi

between the two test masses. If the distance between them
is small compared to the wavelength of GWs, and the test
masses move slowly, the separation obeys the equation
d2ξi=dt2 ¼ −R0i0jξj [39]. The components of the Riemann
tensor R0i0j measured by a detector can be shown to be
given by [39,40]

R0i0j ¼ 1

2
ð∂i∂0h0j þ ∂j∂0h0i − ∂0∂0hij − ∂i∂jh00Þ

≡ −
1

2

d2

dt2
hij; ð24Þ

where we have defined the effective gravitational wave-
form hij. Using Eq. (23) and the relation ∂iðφ=ϕ0Þ ¼
−∂0ðφ=ϕ0ÞN̂i, we derive that

hij ¼ θijTT − ðφ=ϕ0Þðδij − N̂iN̂jÞ; ð25Þ

where TT denotes the transverse-traceless projection. Note
that the full gravitational waveform is transverse but not
traceless because of the presence of the scalar contribution
in Eq. (25). For quasicircular orbits, by employing the
relation v2 ¼ Gm=r, the waveform of Eq. (25) becomes
[14,16]3

hij ¼ 2μ

dL
½Qij

TT þ Sðδij − N̂iN̂jÞ�; ð26Þ

Qij ¼ 2

�
1 −

1

2
ξ

�
Gm
r

ðλ̂iλ̂j − n̂in̂jÞ; ð27Þ

S ¼ −
1

2
ξ

	
ΓGm
r

½ðN̂ · λ̂Þ2 − ðN̂ · n̂Þ2� − ðGΓþ 2ΛÞm
r

− 2S
�
Gm
r

�
1=2

N̂ · λ̂



; ð28Þ

2There is a typo in the formulas (2.7) of Ref. [14], where h̄ij

should be replaced by hij.
3There is a typo in the formulas (2.9) and (2.10c) of Ref. [14],

and a similar typo also appears in Eq. (41) of Ref. [41].
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where we have defined the unit vectors n̂≡ x=r and
λ̂≡ v=v.
In metric theories of gravity, up to six degrees of freedom

are allowed [1]. In addition to the plus mode (denoted asþ,
the real part of the Weyl tensor component Ψ4) and cross
mode (denoted as ×, the imaginary part of the Weyl tensor
component Ψ4), they include a scalar breathing mode
(denoted as b, the traceless part of the Ricci tensor,
Φ22); a scalar longitudinal mode (denoted as L, the
Weyl tensor component Ψ2); and two vectorial modes
(denoted as x and y, the real and imaginary parts of the
Weyl tensor component Ψ3, respectively). So, in general,
the full (effective) metric perturbations take the form

hij ¼ hþeþij þ h×e×ij þ hbebij þ hLeLij þ hxexij þ hye
y
ij;

ð29Þ

where the polarization tensors are defined as

eþij ¼ êx ⊗ êx − êy ⊗ êy; e×ij ¼ êx ⊗ êy þ êy ⊗ êx;

ð30Þ

ebij ¼ êx ⊗ êx þ êy ⊗ êy; eLij ¼ êz ⊗ êz; ð31Þ

exij ¼ êx ⊗ êz þ êz ⊗ êx; eyij ¼ êy ⊗ êz þ êz ⊗ êy:

ð32Þ

In the E(2) classification for GWs, the massless scalar-
tensor theories (including BD gravity) are of Class N3; i.e.,
the nonzero components are hþ, h×, and hb [1]. In
Appendix A, we proved that the first term of hij in
Eq. (26) corresponds to the “plus” and “cross” polarization
modes of the GWs. From Eq. (26), we observe that these
two terms are given by

hþðtÞ ¼ −
4Gμm
dLr

�
1 −

1

2
ξ

�
1þ cos2ι

2
cos 2ΦðtÞ; ð33Þ

h×ðtÞ ¼ −
4Gμm
dLr

�
1 −

1

2
ξ

�
cos ι sin 2ΦðtÞ; ð34Þ

where ι is the inclination angle of the binary orbital angular
momentum along the line of sight. The polarization angle is
calculated by ΦðtÞ ¼ R

t
t0
ωsðt0Þdt0 þΦ0, where Φ0 is the

initial phase at t ¼ t0. In BD gravity, from the relation of
(14), we have

μm
r

¼ M5=3
c ð2πfsÞ2=3G−1=3; ð35Þ

where Mc ¼ μ3=5m2=5 is the chirp mass. Thus, these two
components can be rewritten as

hþðtÞ ¼ −
4β

dL
M5=3

c ð2πfsÞ2=3
1þ cos2ι

2
cos 2ΦðtÞ; ð36Þ

h×ðtÞ ¼ −
4β

dL
M5=3

c ð2πfsÞ2=3 cos ι sin 2ΦðtÞ; ð37Þ

where β≡ ð1 − 1
2
ξÞG2=3 is the correction factor in BD

gravity. In the case β ¼ 1, these results reduce to those of
GR [40].
The second term in Eq. (26) exactly corresponds to the

breathing mode of GWs, which can be written as the sum of
three terms,

hbðtÞ ¼
2μ

dL
S≡ hb1 þ hb2 þ hb3; ð38Þ

where

hb1ðtÞ ¼ −
μm
dLr

ðξΓGÞsin2ι cos 2ΦðtÞ;

hb2ðtÞ ¼
μm
dLr

ðGΓþ 2ΛÞ;

hb3ðtÞ ¼
2μ

dL
ðξSÞðGm=rÞ1=2 sin ι cosΦðtÞ: ð39Þ

Using the relation (14), they can be rewritten as

hb1ðtÞ ¼ −
ξΓG
dL

M5=3
c ð2πfsÞ2=3G−1=3sin2ι cos 2ΦðtÞ; ð40Þ

hb2ðtÞ ¼
GΓþ 2Λ

dL
M5=3

c ð2πfsÞ2=3G−1=3; ð41Þ

hb3ðtÞ ¼
2ξS
dL

M5=3
c ð2πfs=mÞ1=3 sin ι cosΦðtÞ: ð42Þ

D. Waveforms in the stationary phase approximation

To compute the Fisher information matrix we would
need the Fourier transform ~hðfÞ of the signal hðtÞ. During
the inspiral, the change in orbital frequency over a single
period is negligible, and it is possible to apply a stationary
phase approximation (SPA) to compute the Fourier trans-
formation. Given a function BðtÞ ¼ 2AðtÞ cosϕðtÞ, where
d lnA=dt ≪ dϕðtÞ=dt and jd2ϕ=dt2j ≪ ðdϕ=dtÞ2, the SPA
provides the following estimate of the Fourier transform
~BðfÞ (see, for instance, [40]):

~BðfÞ≃ AðtfÞffiffiffiffiffiffiffiffiffiffiffi
_FðtfÞ

q ei½ΨfðtfÞ−π=4�; f ≥ 0; ð43Þ

whereΨfðtÞ≡ 2πft − ϕðtÞ, 2πFðtÞ≡ dϕ=dt. In this equa-
tion tf is defined as the time at which FðtfÞ ¼ f andΨfðtfÞ
is the value of ΨfðtÞ at t ¼ tf. We first calculate the
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evolution of the frequency fs ≡ ws=2π in BD gravity. From
the evolution Eqs. (12), (14), and (16), we derive that

_fs ¼
48μG1=2

5πm3

�
m
r

�
11=2

�
κ þ 5

96

κD
G

r
m
S2

�
; ð44Þ

from which we find that

ð2πMcfsÞ−8=3½1 − ð4=5Þbη2=5ð2πMcfsÞ−2=3�
¼ ð256=5Þðtc − tÞ=Mc; ð45Þ

where η≡ μ=m is the symmetric mass ratio and tc is the
time at which fs → ∞. We have defined the quantities,

Mc ≡ ðκ3=5=G4=5Þη3=5m; b≡ ð5=96Þðκ−3=5G−6=5ÞκDS2:

ð46Þ

In the case κ → 1 and G → 1, we find that Mc reduces to
the chirp mass Mc. In BD gravity with ξ ≪ 1 (i.e.,
ωBD ≫ 1) and S ≲ 1, we always have b ≪ 1. Taking into
account the fact that [14]

z≡ bη2=5ð2πMcfsÞ−2=3

≤ 5 × 10−3
�
500

ωBD

��
S
0.5

�
2
�
M⊙
Mc

��
30 Hz
fs

�
2=3

; ð47Þ

up to the first order of z, we obtain the relation between fs
and t,

ωs ¼ 2πfs ¼
1

Mc

�
256ðtc − tÞ

5Mc

�
−3=8

×

�
1 −

3

10
bη2=5

�
256ðtc − tÞ

5Mc

�
1=4

�
: ð48Þ

Now, let us focus on the Fourier transformation of the
plus mode by utilizing the result (36). Since the amplitude
varies slowly in comparison with the phase 2ΦðtÞ, the
stationary point t�ðfÞ is determined by the condition 2πf ¼
2 _Φðt�Þ ¼ 4πfsðt�Þ, i.e., f ¼ 2fsðt�Þ, which expresses the
fact that the largest contribution to the Fourier component
~hþðfÞ with a given f is obtained for the value of t such that
the chirping frequency f is equal to 2fs. Using the relations
given in (43) and (48), and from (36), we derive that

~hþðfÞ ¼
ffiffiffiffiffi
5

24

r
1

π2=3
1

dL
M5=6

c f−7=6
1þ cos2ι

2
ð−βÞ

×

�
1 −

1

2
bη2=5ðπMcfÞ−2=3

�
κ−1=2G2=3eiΨþðfÞ;

ð49Þ

where the phase is given by

ΨþðfÞ ¼ −2ψc þ 2πftc −
π

4
þ 3

128
ðπMcfÞ−5=3

×

�
1 −

4

7
bη2=5ðπMcfÞ−2=3

�
; ð50Þ

where ψc is the phase of the binary system at time tc. The
expression of the phase is consistent with that given in [14].
Following a similar procedure, we can derive the Fourier

components for the cross and breathing modes, which are
given by

~h×ðfÞ ¼
ffiffiffiffiffi
5

24

r
1

π2=3
1

dL
M5=6

c f−7=6 cos ιð−βÞ
�
1 −

1

2
bη2=5ðπMcfÞ−2=3

�
κ−1=2G2=3eiΨ×ðfÞ; ð51Þ

~hb1ðfÞ ¼
ffiffiffiffiffi
5

24

r
1

π2=3
1

dL
M5=6

c f−7=6sin2ιð−ξΓ=4Þ
�
1 −

1

2
bη2=5ðπMcfÞ−2=3

�
κ−1=2G4=3eiΨþðfÞ; ð52Þ

~hb3ðfÞ ¼
ffiffiffiffiffi
5

48

r
1

π2=3
1

dL
M5=6

c ð2fÞ−7=6 sin ιð2πmfÞ−1=3κ−1=2GξS
�
1 −

1

2
bη2=5ð2πMcfÞ−2=3

�
eiΨb3ðfÞ; ð53Þ

where the phases are

Ψ×ðfÞ ¼ ΨþðfÞ þ
π

2
; ð54Þ

Ψb3ðfÞ ¼ −ψc þ 2πftc −
π

4
þ 3

256
ð2πMcfÞ−5=3

�
1 −

4

7
bη2=5ð2πMcfÞ−2=3

�
: ð55Þ
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Let us turn to the hb2 component. From Eq. (41), we know
that the phase is zero, and the value of hb2ðtÞ depending on
time t is only through the slowly varying function fsðtÞ. So,
the Fourier component ~hb2ðfÞ is negligible in comparison
with the other terms.
In order to extend these results easily to high post-

Newtonian orders, we rewrite the expressions of hþ and h×
in the forms,

hþðtÞ ¼
2βηmx
dL

Hð0Þ
þ ; h×ðtÞ ¼

2βηmx
dL

Hð0Þ
× ; ð56Þ

where

x ¼ ð2πmfsÞ2=3; Hð0Þ
þ ¼ −ð1þ cos2ιÞ cos 2ΦðtÞ;

Hð0Þ
× ¼ −2 cos ι sin 2ΦðtÞ: ð57Þ

A detector measures only a certain linear combination of
the GW components, called the response hðtÞ. For BD
gravity, it is given by

hðtÞ ¼ Fþðθ;ϕ;ψÞhþðtÞ þ F×ðθ;ϕ;ψÞh×ðtÞ
þ Fbðθ;ϕ;ψÞhbðtÞ; ð58Þ

where Fþ, F×, and Fb are the detector antenna pattern
functions, ψ is the polarization angle as mentioned above,
and ðθ;ϕÞ are angles describing the location of source on
the sky, relative to the detector. In general these angles are
time dependent. In the case of the Einstein Telescope,
considered in this paper, compact binary systems can be in
the band for hours, but almost all of the signal-to-noise ratio
will be accumulated only in the final minutes of the inspiral
process. In the sequel, ðθ;ϕ;ψÞ will be considered as
constants.4

The Fourier component of hðtÞ becomes

~hðfÞ ¼ Fþ ~hþðfÞ þ F×
~h×ðfÞ þ Fb½ ~hb1ðfÞ þ ~hb3ðfÞ�

≡ ~hð1ÞðfÞ þ ~hð2ÞðfÞ; ð59Þ

where

~hð1ÞðfÞ ¼ M5=6
c

dL

ffiffiffiffiffi
5

48

r
π−2=3ð2fÞ−7=6fEð2πmfÞ−1=3 þ ES−1ð2πmfÞ−1g

× ΘðfLSO − fÞ exp½ið2πftc − π=4þ ψðfÞÞ�; ð60Þ

~hð2ÞðfÞ ¼ 2−1=2
M5=6

c

dL

ffiffiffiffiffi
5

48

r
π−2=3f−7=6f½Qe−iφð2;0ÞPð2;0Þ þ A�S−1ðπmfÞ−2=3 þ ½Qe−iφð2;0ÞPð2;0Þ þ A�g

× Θð2fLSO − fÞ exp½ið2πftc − π=4þ 2ψðf=2ÞÞ�; ð61Þ

in which ΘðxÞ is the usual Heaviside function and Pð2;0Þ and φð2;0Þ are defined in Appendix B. The upper cutoff frequency
is dictated by the last stable orbit of the binary system, which marks the end of the inspiral regime and the onset of the
finial merge. We assume that this occurs when the radiation frequency reaches f ¼ kfLSO for the kth harmonic, with
fLSO ¼ 1=ð63=22πmÞ being the orbital frequency of the last stable orbit.5 Note that, for the sources at cosmological
distances, what enters the waveform is the observed mass, which differs from the physical mass by a factor (1þ z):
mobs ¼ ð1þ zÞmphys [40]. Throughout this paper, all the masses refer to the observed quantity if there is no special
instruction. In these expressions, we have defined the following coefficients to characterize the modifications of BD
gravity,

E ¼ κ−1=2G sin ιFbξS; A ¼ −
1

2
ξΓsin2ιFbκ

−1=2G4=3; Q ¼
�
1 −

1

2
ξ

�
κ−1=2G4=3; S−1 ¼ −

1

2
bκ−2=5G8=15: ð62Þ

The uniform phase function ψðfÞ is given by

ψðfÞ ¼ −ψc þ
3

256ð2πMcfÞ5=3
X0
i¼−2

ψ ið2πmfÞi=3; ð63Þ

5Note that there is a small mistake in Eq. (41) in Ref. [41], where the coefficient of − 1
4
ξ should be replaced by − 1

2
ξ. If we take this

mistake into account, the formulas in (60) and (61) are consistent with the expressions of Eqs. (55) and (54) in Ref. [41].

4Note that with LISA, Doppler modulation due to the orbital motion, as well as spin precession, will allow for accurate determination
of the angular parameters (see, for instance, [42] and references therein), but this is unlikely to happen for neutron star/neutron star
binary (or neutron star/black hole binary) signals in the ET with Doppler modulation due to the Earth’s rotation. Nevertheless, some
improvement in parameter estimation can be expected, which for simplicity we do not take into account here.
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with

ψ−2 ¼ −
4

7
bκ−2=5G8=15; ψ−1 ¼ 0; ψ0 ¼ 1: ð64Þ

The quantity Q describes the modifications on the
amplitudes of the plus and cross modes. In addition, A,
E, S−1 and Q together describe the extra breathing mode,
which is absent in GR. The modification of the phase
is described by ψ−2. In the case with E → 0, A → 0,
S−1 → 0, ψ−2 → 0,Q → 1, andMc → Mc, the expression
of ~hðfÞ reduces to that of GR. Expressions of Eqs. (60),
(61), and (63) show that, in comparison with the wave-
form given in GR, the corrections of BD gravity are
mainly in the low frequency range. Since the coefficients
E, S−1, and ψ−2 all directly depend on the difference in
sensitivities S, the corrections caused by the related terms
vanish for the binary neutron star systems (if we assume
that the sensitivities of neutron stars are the same), as well
as for binary black hole systems. In addition, for the
binary black hole systems with si ¼ 0.5, we have Γ ¼ 0,
and the coefficient A and its related terms also vanish. So,
in comparison with GR, the difference of the gravitational
waveforms from BD gravity is very small. For these
reasons, in this paper, we shall only use the compact
binary systems that are composed of a neutron star and a
black hole, in order to constrain BD gravity.

E. Extension to high post-Newtonian orders

In GR and alternative theories of gravity, the gravitational
waveforms should include high order PN terms to construct
the real templates for the GW detectors. In the PN approx-
imations of GR, the waveforms are expressed as expansions
in terms of the orbital velocity v, and have been developed by
many authors (see [43] and references therein). For the
nonspinning compact objects, the best waveforms currently

available are of 2.5 PN order in amplitude [44] and 3.5 PN
order in phase [45]. In the scalar-tensor gravity, the equations
of motion for nonspinning compact objects have been
developed to 2.5 PN order [18], and the tensor and scalar
gravitational waveforms have also been calculated up to 2
and 1.5 PN order, respectively [16,17].
In this subsection, we shall extend the waveforms and

their Fourier components in BD gravity derived above to
high order PN approximations, in which the waveforms are
linear combinations of harmonics in the orbital phase, and
the kth harmonics is cut off at kfLSO in the frequency
domain. Including the higher PN orders in waveforms, in
particular in terms of the orbital phase, the corrections
could significantly alter the signal-to-noise ratio of the GW
sources [46]. Different from the previous works [16,17], we
consider only the leading order corrections of waveforms
(including polarization mode, amplitude, and phase) caused
by BD gravity in comparison with GR, and add these
correction terms to the high PN waveforms of GR. Since
the BD parameter ωBD has been tightly constrained by
various experiments, the correction terms of the gravita-
tional waveforms in BD gravity are expected to be very
small. The corrections from higher PN orders are expected
to be even smaller than the leading order ones.
In the stationary phase approximation, the amplitude-

corrected waveforms in GR are explicitly presented in [46],
in which the total Fourier component ~hðfÞ is the sum of
seven harmonics, i.e.,

~hðfÞ ¼
X7
k¼1

~hðkÞðfÞ: ð65Þ

Taking into account the corrections caused by BD gravity
in comparison with GR, the expressions of harmonics
~hðkÞðfÞ are revised to the following forms:

~hð1ÞðfÞ ¼ M5=6
c

dL

ffiffiffiffiffi
5

48

r
π−2=3ð2fÞ−7=6fES−1ð2πmfÞ−1 þ Eð2πmfÞ−1=3 þ e−iφð1;1=2ÞPð1;1=2Þð2πmfÞ1=3

þ ½e−iφð1;3=2ÞPð1;3=2Þ þ e−iφð1;1=2ÞPð1;1=2ÞS1�ð2πmfÞ þ ½e−iφð1;2ÞPð1;2Þ þ e−iφð1;1=2ÞPð1;1=2ÞS3=2�ð2πmfÞ4=3
þ½e−iφð1;5=2ÞPð1;5=2Þ þ e−iφð1;3=2ÞPð1;3=2ÞS1 þ e−iφð1;1=2ÞPð1;1=2ÞS2�ð2πmfÞ5=3g
× ΘðfLSO − fÞ exp½ið2πftc − π=4þ ψðfÞÞ�;

~hð2ÞðfÞ ¼ 2−1=2
M5=6

c

dL

ffiffiffiffiffi
5

48

r
π−2=3f−7=6f½AþQe−iφð2;0Þ �S−1ðπmfÞ−2=3 þ ½AþQe−iφð2;0ÞPð2;0Þ�

þ ½e−iφð2;1ÞPð2;1Þ þ e−iφð2;0ÞPð2;0ÞS1�ðπmfÞ2=3 þ ½e−iφð2;3=2ÞPð2;3=2Þ þ e−iφð2;0ÞPð2;0ÞS3=2�ðπmfÞ
þ ½e−iφð2;2ÞPð2;2Þ þ e−iφð2;1ÞPð2;1ÞS1 þ e−φð2;0ÞPð2;0ÞS2 �ðπmfÞ4=3
þ½e−iφð2;5=2ÞPð2;5=2Þ þ e−iφð2;3=2ÞPð2;3=2ÞS1 þ e−iφð2;1ÞPð2;1ÞS3=2 þ e−iφð2;0ÞPð2;0ÞS5=2�ðπmfÞ5=3g
× Θð2fLSO − fÞ exp½ið2πftc − π=4þ 2ψðf=2ÞÞ�;
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~hð3ÞðfÞ ¼ 3−1=2
M5=6

c

dL

ffiffiffiffiffi
5

48

r
π−2=3ð2f=3Þ−7=6fe−iφð3;1=2ÞPð3;1=2Þð2πmf=3Þ1=3

þ ½e−iφð3;3=2ÞPð3;3=2Þ þ e−iφð3;1=2ÞPð3;1=2ÞS1�ð2πmf=3Þ
þ ½e−iφð3;2ÞPð3;2Þ þ e−iφð3;1=2ÞPð3;1=2ÞS3=2�ð2πmf=3Þ4=3
þ½e−iφð3;3=2ÞPð3;3=2ÞS1 þ e−iφð3;1=2ÞPð3;1=2ÞS2�ð2πmf=3Þ5=3g
× Θð3fLSO − fÞ exp½ið2πftc − π=4þ 3ψðf=3ÞÞ�;

~hð4ÞðfÞ ¼ 4−1=2
M5=6

c

dL

ffiffiffiffiffi
5

48

r
π−2=3ðf=2Þ−7=6fe−iφð4;1ÞPð4;1Þðπmf=2Þ2=3

þ ½e−iφð4;2ÞPð4;2Þ þ e−iφð4;1ÞPð4;1ÞS1�ðπmf=2Þ4=3
þ½e−iφð4;5=2ÞPð4;5=2Þ þ e−iφð4;1ÞPð4;1ÞS3=2�ðπmf=2Þ5=3g
× Θð4fLSO − fÞ exp½ið2πftc − π=4þ 4ψðf=4ÞÞ�;

~hð5ÞðfÞ ¼ 5−1=2
M5=6

c

dL

ffiffiffiffiffi
5

48

r
π−2=3ð2f=5Þ−7=6fe−iφð5;3=2ÞPð5;3=2Þð2πmf=5Þ

þ½e−iφð5;5=2ÞPð5;5=2Þ þ e−iφð5;3=2ÞPð5;3=2ÞS1�ð2πmf=5Þ5=3g
× Θð5fLSO − fÞ exp½ið2πftc − π=4þ 5ψðf=5ÞÞ�;

~hð6ÞðfÞ ¼ 6−1=2
M5=6

c

dL

ffiffiffiffiffi
5

48

r
π−2=3ðf=3Þ−7=6e−iφð6;2ÞPð6;2Þðπmf=3Þ4=3

× Θð6fLSO − fÞ exp½ið2πftc − π=4þ 6ψðf=6ÞÞ�;

~hð7ÞðfÞ ¼ 7−1=2
M5=6

c

dL

ffiffiffiffiffi
5

48

r
π−2=3ð2f=7Þ−7=6e−iφð7;5=2ÞPð7;5=2Þð2πmf=7Þ5=3

× Θð7fLSO − fÞ exp½ið2πftc − π=4þ 7ψðf=7ÞÞ�;

where Pðm;nÞ, φðm;nÞ, and Siði ≥ 1Þ are all given in
Appendix B. The other parameters, including E, A, Q,
and S−1, are defined by Eq. (62). In these expressions, the
phase function ψðfÞ is given by

ψðfÞ ¼ −ψc þ
3

256ð2πMcfÞ5=3
X7
i¼−2

ψ ið2πmfÞi=3; ð66Þ

where ψ−2 and ψ−1 are given by Eq. (64), and ψ iði ≥ 0Þ
are given in Appendix B.
From the expression of ~hðfÞ we find that the corrections

caused by BD gravity exist both in the amplitudes
~hiðfÞði ¼ 1; 2Þ and the phase ψðfÞ. In order to investigate
which effect is dominant for a typical binary system, we
plot the waveforms ~hiðfÞði ¼ 1; 2; 3Þ and the difference
between GR and BD gravity in Fig. 1. In this system, we
choose the mass of the black hole as m1 ¼ 10 M⊙ with the
sensitivity s1 ¼ 0.5, the mass of the neutron star as m2 ¼
1.4 M⊙ with the sensitivity s2 ¼ 0.2, and the BD parameter
as ξ ¼ 0.001. Note that this number of ξ has already been
ruled out by the Cassini experiment [25], which was used
here only for an illustrative purpose. The left panels show

that the second harmonic is much larger than the other ones,
which dominates the signal-to-noise ratio of the event. The

middle panels show that the values of j ~hðiÞBD − ~hðiÞGRj are

comparable to those of ~hðiÞBD or ~hðiÞGR for any given frequency
f, which indicates that the correction effects are significant
in the BD gravity with ξ ¼ 0.001. However, if we ignore
the correction effects in the phase terms and consider only
the amplitudes of the waveforms, we find that the values of

jj ~hðiÞBDj − j ~hðiÞGRjj become much smaller than those of j ~hðiÞBDj or
j ~hðiÞGRj. So, we conclude that the dominant effects of BD
gravity are caused by the modification in the phase terms,
rather than in the amplitude terms, which is consistent with
the arguments given in [14,27]. From the expression of
ψðfÞ in Eq. (66), we observe that the modification on the
phase terms has two effects. The chirp mass Mc in the
denominator is replaced by Mc, and an extra term
ψ−2ð2πmfÞ−2=3. Compared with the phase given in GR,
the first effect increases the value of ψðfÞ, and the latter
decreases it. From the right panel of Fig. 1, we find that, in
the low frequency range f < 1.5 Hz, the first effect is
dominant, and in the high frequency range f > 1.5 Hz, the
latter is dominant.
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III. TESTING BD GRAVITY USING
THE EINSTEIN TELESCOPE

A. Einstein Telescope and the estimation
of GW parameters

The gravitational waveforms depend not only on the
parameters of the binary system, but also on the param-
eters of the theory concerned. (For example, in BD
gravity, it is ωBD.) By the matched-filter analysis of
GW observations, one can determine all the parameters
together. In this paper, we shall focus on the observation
of GW sources by the ET, a third-generation ground-based

GW detector. Although the basic design of the ET is still
under discussion, one possibility is to have three inter-
ferometers with 60° opening angles and 10 km arm
lengths, arranged in an equilateral triangle [31]. The
corresponding antenna pattern functions of the ET for
different polarization modes of GWs are given in
Appendix C. The scientific potential of the ET has been
studied by many authors [47–59].
The performance of a GW detector is characterized by

the one-side noise power spectral density ShðfÞ (PSD),
which plays an important role in the signal analysis. We
take the noise PSD of the ET to be [47,60]

ShðfÞ ¼ S0

�
xp1 þ a1xp2 þ a2

1þ b1xþ b2x2 þ b3x3 þ b4x4 þ b5x5 þ b6x6

1þ c1xþ c2x2 þ c3x3 þ c4x4

�
; ð67Þ

where x≡ f=f0 with f0 ¼ 200 Hz, and S0 ¼ 1.449 × 10−52 Hz−1. The other parameters are as follows:

FIG. 1. Upper panels: Amplitudes and phase of the Fourier components ~hðiÞðfÞ in BD gravity. Lower panels: j ~hðiÞBD − ~hðiÞGRj (left),
jj ~hðiÞBDj − j ~hðiÞGRjj (middle), and ðψBD − ψGRÞ (right). In the left and middle panels, the black lines denote the results of the first harmonic
with i ¼ 1, the red lines are those with i ¼ 2, and the blue lines are those with i ¼ 3. In the right panels, the negative values of the
function are depicted by the broken line. In this figure we have adopted the model with the parameters chosen as, m1 ¼ 10 M⊙,
m2 ¼ 1.4 M⊙, θ ¼ ϕ ¼ ψ ¼ ι ¼ 0, ξ ¼ 0.001, and dL ¼ 103 Mpc. Note that the units of the vertical axis in the left and middle panels
are all rescaled by a factor 10−20 Hz−1.
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p1 ¼ −4.05; p2 ¼ −0.69; a1 ¼ 185.62; a2 ¼ 232.56;

b1 ¼ 31.18; b2 ¼ −64.72; b3 ¼ 52.24; b4 ¼ −42.16; b5 ¼ 10.17; b6 ¼ 11.53;

c1 ¼ 13.58; c2 ¼ −36.46; c3 ¼ 18.56; c4 ¼ 27.43: ð68Þ

For the purpose of data analysis, the noise PSD is assumed
to be essentially infinite below a certain low cutoff
frequency flower (see the review [61]). For the ET we take
this to be flower ¼ 1 Hz.
For any given binary system, the waveforms in Eq. (65)

depend on nine system parameters ðMc; η; tc;ψc; ι; θ;
ϕ;ψ ; dLÞ and one gravity parameter ξ (or ωBD). By
maximizing the correlation between a template waveform
that depends on a set of parameters pi (i ¼ 1; 2; 3;…) and a
measured signal, the matched filtering provides a natural
way to estimate the parameters of the signal and their
errors. With a given detector noise ShðfÞ, we employ the
Fisher matrix approach [62]. Compared with the Markov
chain Monte Carlo (MCMC) analysis, the Fisher informa-
tion matrix analysis is simple and accurate enough to
estimate the detection abilities of future experiments. In the
case of a single interferometer A (A ¼ 1, 2, 3 for the ET),
the Fisher matrix is given by [14]

ΛA
ij ¼ h ~hAi ðfÞ; ~hAj ðfÞi; ~hAi ðfÞ ¼ ∂ ~hAðfÞ=∂pi; ð69Þ

where ~hAðfÞ is the output of the interferometer A, and pi
denote the free parameters to be estimated, which are

ðMc; η; tc;ψc; cos ι; cos θ;ϕ;ψ ; ln dL; ξÞ: ð70Þ

Note that, in this paper, we fix the sensitivities as follows:
for neutron stars s2 ¼ 0.2, and for black holes s1 ¼ 0.5.
The angular brackets denote the scalar product, which, for
any two given functions aðtÞ and bðtÞ, is defined as

ha; bi ¼ 4

Z
fupper

flower

~aðfÞ ~b�ðfÞ þ ~a�ðfÞ ~bðfÞ
2

df
ShðfÞ

; ð71Þ

where ~a and ~b are the Fourier transforms of the functions
aðtÞ and bðtÞ. The Fisher matrix for the combination of the
three independent interferometers is then

Λij ¼
X3
A¼1

ΛA
ij: ð72Þ

Once the total Fisher matrix Λij is derived, an estimate of
rms error, Δpi, in measuring the parameter pi can then be
calculated in the limit of large signal-to-noise ratio, by
taking the square root of the diagonal elements of the
inverse of the Fisher matrix,

Δpi ¼ ðΣiiÞ1=2; Σ ¼ Λ−1: ð73Þ

The correlation coefficients between parameters pi and pj

are given by

cij ¼ Σij=ðΣiiΣjjÞ1=2: ð74Þ

Note that, in the limit case cij ¼ 0 for any i ≠ j, the error
becomes Δpi → ðΛiiÞ−1=2, which is also equivalent to the
case in which all the other parameters, but pi, are fixed at
the parameter estimation.
The inner product also allows us to write the signal-to-

noise ratios ρAðA ¼ 1; 2; 3Þ in a compact way:

ρA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ~hAðfÞ; ~hAðfÞi

q
: ð75Þ

The combined signal-to-noise ratio for the network of the
three independent interferometers is then

ρ ¼
�X3
A¼1

ðρAÞ2
�1=2

: ð76Þ

In Fig. 2, we plot the signal-to-noise ratio ρ for different
compact binary systems at different positions, in which we
find that the value of ρ strongly depends on the mass, the
redshift, and their positions in the sky. For the given
position, orbital, and polarization angles, the higher
redshift and/or the larger mass of the black hole follow
the lower signal-to-noise ratio. If the sources are at the
optimum position, θ ¼ ψ ¼ ι ¼ 0, and the mass of the
black hole is m1;phys ¼ 2 M⊙, we have ρ > 8 for z < 3.82.
If m1;phys ¼ 10 M⊙, it becomes ρ > 8 so long as z < 4.93.
In both cases, we find that the ET could detect the binary
systems at very high redshifts. On the contrary, if the
sources are at the position θ ¼ ψ ¼ ι ¼ π=2, we have ρ >
8 for z < 0.43 andm1;phys ¼ 2 M⊙, and ρ > 8 for z < 0.70
and m1;phys ¼ 10 M⊙. In addition, from numerical calcu-
lations, we find that the signal-to-noise ratio ρ is indepen-
dent of the position angle ϕ, which is determined by the
equilateral triangle structure of the ET.
In order to study the contribution of the signal at each

frequency band to the total signal-to-noise ratio ρ, we
define the following quantity,

XðfÞ≡X3
A¼1

4fðΔ ln fÞj ~hAðfÞj2
SnðfÞ

; ð77Þ

where we bin the frequency band withΔ lnðf=HzÞ ¼ 0.001
in this paper. It is obvious that XðfÞ at each frequency
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describes the relative contribution of the signal-to-noise
ratio at this single frequency band f, and the total signal-to-
noise ratio ρ2 defined in Eq. (76) is the cumulative function
of XðfÞ from f ¼ flower to f ¼ fupper. In Fig. 3 we plot the

function XðfÞ and its cumulative function from flower to f
for different objects. All the plots clearly show that the
major contribution to the total ρ comes from the signal at
the frequency range f ∈ ð30; 300Þ Hz, which is caused by
the fact that the noise PSD of the ET is minimized
about f ∼ 200 Hz.

B. Potential constraint on the parameter
ωBD by the ET

1. Dependence on the mass of black hole

As mentioned above, the corrections of the gravitational
waveforms in BD gravity strongly depend on the differ-
ence in sensitivities S, so we expect that only the compact
binary systems including a neutron star and a black hole
can well constrain the parameter ωBD. So, in this paper, we
shall only focus on these kinds of systems. For the neutron
star, we assume its physical mass is m2;phys ¼ 1.4 M⊙ and
the sensitivity parameter is s2 ¼ 0.2. For the black hole,
we assume that its physical mass is in the range
m2;phys ∈ ð2 M⊙; 100 M⊙Þ, the sensitivity parameter is
s1 ¼ 0.5, and the spin is zero.
Let us investigate what kinds of systems can give a better

constraint on the BD parameter. Let us first fix the following
model parameters as θ ¼ ϕ ¼ ψ ¼ ι ¼ 0, tc ¼ ψc ¼ 0,
dL ¼ 103 Mpc, m2 ¼ 1.4 M⊙, and ξ ¼ 0 in the fiducial
model. Then, we study the effect of m1 on the value of Δξ.
Here, since z ≪ 1, we ignore the difference between the
observed masses mi and the physical masses mi;phys.

FIG. 3. The function XðfÞ for different frequencies f (upper panel), and its cumulative function from flower to f (lower panel). The
black solid line shows the results with m1;phys ¼ 2 M⊙ and z ¼ 0.1, and the red solid line shows the results with m1;phys ¼ 10 M⊙ and
z ¼ 0.1. The black dashed line shows the results with m1;phys ¼ 2 M⊙ and z ¼ 1, and the red dashed line shows the results with
m1;phys ¼ 10 M⊙ and z ¼ 1. For the other parameters, in both cases we have set θ ¼ ϕ ¼ ψ ¼ ι ¼ 0, tc ¼ 0, ψc ¼ 0, ξ ¼ 0.001, and
m2;phys ¼ 1.4 M⊙.

FIG. 2. Signal-to-noise ratio for the sources at different red-
shifts. The black solid line shows the results with the parameters
m1;phys ¼ 2 M⊙, θ ¼ ϕ ¼ ψ ¼ ι ¼ 0; the blue solid line shows
the results withm1;phys ¼ 10 M⊙, θ ¼ ϕ ¼ ψ ¼ ι ¼ 0. The black
dashed line shows the results with the parameters
m1;phys ¼ 2 M⊙, θ ¼ ϕ ¼ ψ ¼ ι ¼ π=2, and the blue dashed
line shows that with m1;phys ¼ 10 M⊙, θ ¼ ϕ ¼ ψ ¼ ι ¼ π=2.
For the other parameters, in all cases we have adopted the same
values: tc ¼ 0, ψc ¼ 0, ξ ¼ 0.001, and m2;phys ¼ 1.4 M⊙.
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For each case, we solve the Fisher information matrix Λij

with ten free parameters and derive the quantity Δξ by using
the relation given in Eq. (73), which is plotted in Fig. 4,
denoted by the black solid line. This figure clearly shows that
a smaller mass m1 of the black hole gives a lower value Δξ;
i.e., the more stringent constraint on the parameter ωBD is
obtained. For the binary system with m1 ¼ 2 M⊙, we have
Δξ ¼ 1.76 × 10−6, which is equivalent to the constraint
ωBD > 0.57 × 106. However, if m1 ¼ 100 M⊙, the error of
ξ becomes Δξ ¼ 1.27 × 10−4, i.e., ωBD > 0.79 × 104. As
mentioned above, in this calculation, we have taken into
account the correlation between ξ and the other parameters
in the analysis. If we consider the limit case, in which only
the parameter ξ is set free, while all the other parameters
are fixed, then we calculate the errors Δξ ¼ Λ−1=2

ξξ for
different m1, which is also plotted in Fig. 4, denoted by
the black dashed line. Comparing it with the black solid
line, we find that the results in these two cases are quite
different, which shows that the cross-correlations between
ξ and other parameters can significantly weaken the
constraints on ξ. However, in both cases, the tendencies
between Δξ and m1 are the same, which are different from
the results of the signal-to-noise ratio ρ plotted in Fig. 2.
The Fisher matrix component Λξξ describes the sensitivity

of the ET on the parameter ξ (which is equivalent to ωBD).

In order to quantify the contribution of each frequency band
to the total Λξξ, we define the following quantity,

YðfÞ≡X3
A¼1

4fðΔ ln fÞj∂ ~hAðfÞ=∂ξj2
SnðfÞ

; ð78Þ

where we bin the frequency band with Δ lnðf=HzÞ ¼ 0.001
in this paper. The Fisher matrix component Λξξ defined in
Eq. (72) is the cumulative function of YðfÞ from f ¼ flower
to f ¼ fupper. In Fig. 5 we plot the function YðfÞ and its
cumulative function from flower to f for various objects.
Different from the results given in Fig. 3, the plots clearly
show that the main contribution to the total Λξξ comes from
the signal at the lowest frequency range f ∼ flower, which is
understandable since the waveform difference between BD
gravity and GR is mainly at the low frequency range. If
increasing the mass of the black hole m1, the frequency, in
which the waveform difference is significant, will become
lower. Thus, in the sensitive frequency band f > 1 Hz of the
ET, the effect of BD gravity becomes weaker, which explains
why a large m1 gives rise to a weaker constraint on the
parameter ξ.
In Sec. II, we know that the waveform correction caused

by BD gravity can be divided into two parts: One is the
correction in the phase term ψðfÞ, and the other is in the
amplitudes of ~hð1ÞðfÞ and ~hð2ÞðfÞ. In the previous works
[14,27], the authors have only considered the correction in
the phase term. Here, we will investigate how the correc-
tions of the amplitudes can influence the value of Δξ. In
Fig. 4, we plot the rms error Δξ (the magenta line) in which
only phase corrections are considered. We find that the
values of Δξ in this case are quite similar to those in the
case including both phase and amplitude corrections. So,
we conclude that the amplitude correction in the gravita-
tional waveforms can only slightly influence the value Δξ
at m1 ∼ 12 M⊙.

2. Dependence on the confirmation of
electromagnetic counterparts

The coalescing binaries composed of a neutron star and a
black hole could also cause the short hard γ-ray bursts [63].
Many groups and telescopes tried to detect the electro-
magnetic counterparts of the GW bursts, by which one can
determine the redshift of the burst. Combined with the GW
observation, which can determine the luminosity distance
of the bursts independently, these kinds of GW bursts can
be treated as the standard sirens to study the expansion
history of the Universe [64]. Here, we should mention that
once the electromagnetic counterparts of the bursts are
identified, their sky positions are also confirmed. So, the
uncertainties of the position parameters (θ;ϕ) should be
excluded in the determination of the parameter ξ. In order
to investigate whether or not the value of Δξ can be
significantly reduced for the sources with confirmed sky

FIG. 4. The dependence of the rms error Δξ on the black hole
mass m1. The other parameters in the fiducial model are set to
m2 ¼ 1.4 M⊙, tc ¼ 0, ψc ¼ 0, θ ¼ ϕ ¼ ψ ¼ ι ¼ 0, ξ ¼ 0, and
dL ¼ 103 Mpc. The black solid line shows the result in the case
where all ten parameters are set free. The black dashed line
shows the result in the case where only ξ is set free. The
yellow dashed line (which is overlapped with the black solid line)
shows the result in the case where only the parameters
ðMc; η; tc;ψc;ψ ; ι; ξ; ln dLÞ are set free. In the magenta dashed-
dotted line, we consider ten free parameters, but include only the
phase correction in the gravitational waveforms. For comparison,
we also plot the Cassini bound with red solid line.
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positions, we repeat the calculation with different black
hole masses, considering only eight free parameters
(Mc; η;ψ ; ι; tc;ψc; dL; ξ), and plot the results of Δξ in
Fig. 4 (the yellow dotted line). We are surprised to find
that the values of Δξ in this case are nearly the same as
those in the case with ten free parameters, which indices
that cross-correlation between sky-position parameters and
ξ is weak. So, we conclude that the identification of
electromagnetic counterparts of GW bursts cannot signifi-
cantly improve the constraint on the parameter ξ.

3. Dependence on the sky position, inclination, and
polarization angles of the sources

Since the gravitational waveform ~hðfÞ depends on various
angles, including the sky-position angles (θ;ϕ), the incli-
nation angle ι, and the polarization angle ψ , by numerical
calculations, we find that the value of Δξ is independent of
ϕ, which is caused by the equilateral triangle structure of the
ET. However, the dependence of Δξ on the other angle
parameters is quite significant. In Fig. 6, we consider the

case with various angles, which shows that the value ofΔξ is
minimized at (θ ¼ ι ¼ ψ ¼ 0). The dependence on θ and ι is
similar, and the value of Δξ is maximized at θ ¼ π=2 and/or
ι ¼ π=2. On the other hand, the dependence on ψ is
quite different. In general, this dependence is very weak.
However, in the case θ ¼ ι ¼ π=2, i.e., when the orbital
plane of the binary system is coincident with the detector
plane, the dependence on ψ becomes very strong. In parti-
cular, when ψ ¼ ð1þ 2kÞπ=4 (k ¼ 0, 1, 2, 3), it becomes
very large, which is caused by the following reason: In the
case with θ ¼ ι ¼ π=2 and ψ ¼ ð1þ 2kÞπ=4, the pattern
functions of the ET in Eq. (C6) are iFþðθ;ϕ;ψÞ ¼ 0 (i ¼ 1,
2, 3), and the cross mode in Eq. (56) is h×ðtÞ ¼ 0. Thus, the
leading order terms of ~hðfÞ in Eq. (65) become zero, and the
parameter constraints are quite loose in this case.
Now, let us consider the angle-averaged Δξ for the GW

bursts. If we consider the restricted PN approximation of
the waveform, where all the amplitude corrections of high
PN orders are discarded and only PN contributions to the
phase are taken into account [65], i.e.,

~hðfÞ≃ 2−1=2
M5=6

c

dL

ffiffiffiffiffi
5

48

r
π−2=3f−7=6Qe−iφð2;0ÞPð2;0ÞΘð2fLSO − fÞ exp½ið2πftc − π=4þ 2ψðf=2ÞÞ�; ð79Þ

analytical calculations show that the mean value Δξ
obtained by averaging the angles (θ, ψ , ι) is reduced by
a factor 5=2, compared with the minimal value of Δξmin

(which is achieved at θ ¼ ψ ¼ ι ¼ 0). However, in the

terms of high PN orders in amplitude, which have not
been included in the restricted PN approximation, the
dependence of ~hðfÞ on the angles (θ, ψ , ι) are quite
complicated through the functions Pðm;nÞ and φðm;nÞ [see

FIG. 5. The function YðfÞ for different frequency f (upper panel), and its cumulative function from flower to f (lower panel). The
black solid line shows the result with m1;phys ¼ 2 M⊙ and z ¼ 0.1, and the red solid line shows the result with m1;phys ¼ 10 M⊙ and
z ¼ 0.1. The black dashed line shows the result with m1;phys ¼ 2 M⊙ and z ¼ 1, and the red dashed line shows the result with
m1;phys ¼ 10 M⊙ and z ¼ 1. For the other parameters, in all cases we have set θ ¼ ϕ ¼ ψ ¼ ι ¼ 0 and m2;phys ¼ 1.4 M⊙.
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the expressions of ~hðkÞðfÞ in Eq. (65) and the one below].
So, if taking into account the contributions of these
terms, the ratio Δξ=Δξmin deviates from 5=2 in general.
For a given GW detector, the effects of these high PN
terms become more significant for the binary system with
a larger black hole mass [46], which could induce the
more significant deviation of the ratio from 5=2. In order
to investigate these kinds of derivations, for the binary

systems with different masses, we simulate the random
samples to compute the values of Δ̄ξ and compare with
the corresponding Δξmin. The results are presented in
Table I. As anticipated, we find that if m1 becomes
larger, the ratio Δ̄ξ=Δξmin becomes more and more
deviating from 5=2. However, this table shows that the
value of the ratio only slightly deviates from 5=2. This is
in particular the case for m1 < 10 M⊙. So, in general, we

FIG. 6. Upper left panel: The magenta line shows the value of Δξ in the case with the fiducial model θ ¼ ψ ¼ ι ¼ 0, and the blue line
shows the result with θ ¼ ψ ¼ ι ¼ π=2. In both cases, we have chosen m2 ¼ 1.4 M⊙, ξ ¼ 0, and dL ¼ 103 Mpc. Upper right panel:
The black, green, and magenta lines show the values of Δξ in the cases with the fiducial model ι ¼ 0, ι ¼ π=4, ι ¼ π=2, respectively. In
all cases, we have chosenm1 ¼ 10 M⊙,m2 ¼ 1.4 M⊙, ξ ¼ 0, dL ¼ 103 Mpc, and ψ ¼ 0. Lower left panel: The black, green, magenta,
and blue lines show the values ofΔξ in the cases with the fiducial model ðθ ¼ π=4; ι ¼ 0Þ; ðθ ¼ π=4; ι ¼ π=4Þ; ðθ ¼ π=4; ι ¼ π=2Þ; and
ðθ ¼ π=2; ι ¼ π=2Þ, respectively. In all cases, we have chosen m1 ¼ 10 M⊙, m2 ¼ 1.4 M⊙, ξ ¼ 0, and dL ¼ 103 Mpc. Lower right
panel: The black, green, and magenta lines show the values of Δξ in the cases with the fiducial model θ ¼ 0, θ ¼ π=4, and θ ¼ π=2,
respectively. In all cases, we have chosen m1 ¼ 10 M⊙, m2 ¼ 1.4 M⊙, ξ ¼ 0, dL ¼ 103 Mpc, and ψ ¼ 0.

TABLE I. The numerical ratio Δξ=Δξmin for different cases. The angle-averaged value Δξ is calculated based on
106 random samples for each case. In each sample, we fix the parameters in the fiducial model as dL ¼ 103 Mpc,
tc ¼ 0, ψc ¼ 0, ξ ¼ 0.001 m2 ¼ 1.4 M⊙, and m1, and randomly choose the angle parameters ðθ; cosϕ; cos ι;ψÞ in
the full parameter space.

m1 ¼ 2 M⊙ m1 ¼ 5 M⊙ m1 ¼ 10 M⊙ m1 ¼ 20 M⊙ m1 ¼ 50 M⊙
Δξ=Δξmin 2.498 2.482 2.450 2.325 2.151
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can roughly estimate the angle-averaged Δξ by the
relation Δξ ∼ 2.5Δξmin.

4. Dependence on the redshifts of the sources

The redshift z affects the gravitational waveforms in two
ways: First, it changes the luminosity distance dL. A higher
redshift z follows a larger dL, which makes the constraint
on ξ weaker. Secondly, it changes the observed masses of
the binary system, i.e., mi ¼ ð1þ zÞmi;phys (i ¼ 1, 2). A
higher z follows a larger mi, which also makes the
constraint on ξ weaker. Combining these two effects, from
Fig. 7, we find that the values of Δξ increase about four
orders if the redshift of the GW burst changes from z ¼
0.05 to z ¼ 5. If the ET observes a burst event with
m1;phys¼2M⊙ and m2;phys ¼ 1.4M⊙ at redshift z ¼ 0.05,
we expect to obtain a constraint Δξ ∼ 10−6. If this source is
located at z ¼ 1, the constraint becomesΔξ ∼ 10−5, and the
corresponding constraint on ωBD is ωBD ≳ 105, which is
more stringent than the current upper limit. However, if the
event is at z ¼ 5, the constraint becomes quite loose, i.e.,
Δξ ∼ 10−2. So, we expect that the main contribution to the

constraint on ξ comes from the sources in the lowest
redshift band.
For a given redshift z, we can calculate the averaged value

hΔξi by taking into account the distribution of black hole
masses m1;phys and the angles ðθ;ϕ;ψ ; ιÞ. Assuming the
uniform distribution of m1;phys in the range from 2 M⊙ to
100 M⊙, we plot the results in Fig. 8, from which we find
that hΔξi¼ 1.6×10−5 for z¼ 0.05, and hΔξi ¼ 1.1 × 10−3

for z ¼ 1. Comparing with the results in Fig. 7, we find that
for any given redshift z, the value of hΔξi is much larger than
Δξ, which is caused by the contribution of higher mass black
holes when performing averaging in Fig. 8.

5. Dependence on the total number
and distribution of burst events

The expected rate of coalescences per year within the
horizon of the ET is very large for neutron star/neutron
star binaries and neutron star/black hole binaries [48]. In
comparison with the case with a single GW burst event,
combining all the events together can significantly improve
the constraint on the parameter ξ. In this subsection, we
shall focus on this issue.

FIG. 7. The value of Δξ is determined by the GW bursts at different redshifts z. Upper left panel: Binary system with
(m1;phys ¼ 2 M⊙; m2;phys ¼ 1.4 M⊙). Upper right panel: The system with (m1;phys ¼ 5 M⊙; m2;phys ¼ 1.4 M⊙). Lower left panel:
The system with (m1;phys ¼ 10 M⊙; m2;phys ¼ 1.4 M⊙). Lower right panel: The system with (m1;phys ¼ 20 M⊙; m2;phys ¼ 1.4 M⊙). In
each panel, the black line shows the results with ðθ ¼ ψ ¼ ι ¼ 0Þ, and the blue line shows the results with ðθ ¼ ψ ¼ ι ¼ π=2Þ.
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For a given cosmological model, the number distribution
fðzÞ of the GW burst events is given by

fðzÞ ¼ 4πN rðzÞd2CðzÞ
HðzÞð1þ zÞ ; ð80Þ

where dC is the comoving distance, which is defined as
dCðzÞ ¼

R
z
0 1=Hðz0Þdz0 [37]. The function rðzÞ describes the

time evolution of the burst rate, and the constant N (the
number of the sources per comoving volume at redshift z ¼
0 over the observation period) is fixed by requiring the total
number of the sources NGW ¼ R zmax

0 fðzÞdz. Actually, the
distribution of the events is quite unclear, since no GWburst
of this kind has been detected until now [66]. Even for the
stable orbiting neutron star/black hole systems, this has not
been confirmed from observation [67]. The theoretical
estimation shows that the number of neutron star/black hole
binary systems should be one or two orders smaller than the
neutron star/neutron star systems [68]. Since, the expected
total number of inspirals per year within the horizon of the
ET is about several ×105 for neutron star binaries [48], we
expect that the total number of inspiraling neutron star/black
hole binaries per year is ∼104. However, two factors may
increase this estimation: First, the discovery of GW bursts,
GW150914 and GW151226, may imply that the number of
stellar-mass black holes is larger than we expected above
[69]. Second, the neutron star/black hole binaries always
emit stronger GW signals, so the detectable distance of these
systems is larger than that of binary neutron stars. Taking
into account these factors, for the ET, the number of
detectable neutron star/black hole binary systems could
be similar to that of neutron star/neutron star [68].
In addition to the total number, the time evolution of the

source rate is also not clear. In this paper we shall consider

two different forms for the function rðzÞ. In the first case we
assume that the sources are distributed uniformly, i.e., with
constant comoving number density throughout the redshift
range 0 ≤ z ≤ 5 (hereafter we will refer to this as the
uniform distribution). In this case we have rðzÞ ¼ 1. In the
other case, we take rðzÞ to be the following function: rðzÞ¼
ð1þ2zÞ for z≤ 1, rðzÞ¼ ð15−3zÞ=4 for 1 < z < 5, and
z ¼ 0 for z ≥ 5. This approximate fit to the rate evolution is
suggested in [70]. Hereafter, we shall call this the nonuni-
form distribution. In the upper panel of Fig. 9, we plot the
normalized distribution function f as a function of redshift
z in the two cases. Note that in the case with the nonuniform
distribution, the sources are a little bit more concentrated at
z ¼ 1. In what follows we will find out how this affects the
uncertainties on the model parameters.
Considering multiple independent GW burst events, the

combined rms error of the parameter ξ can be calculated by

½Δξ�combined ¼
�XNGW

k¼1

1

½ΔξðkÞ�2
�−1=2

; ð81Þ

where ΔξðkÞ is the error of ξ derived from the kth source.
For the given normalized distribution of the sources, the
value of ½Δξ�combined depends on the total number NGW

through Δξ ∝ 1=
ffiffiffiffiffiffiffiffiffiffi
NGW

p
. In the lower panel of Fig. 9, we

plot the combined error of ξ by combining all the objects in
the range z ∈ ½0.05; zmax�, where we have assumed the total
number of events NGW ¼ 104 at zmax ¼ 5, and the uniform
distributions of the parameters m1;phys ∈ ½2; 100�M⊙,
cos θ ∈ ½−1; 1�, ψ ∈ ½0; 2π�, and cos ι ∈ ½−1; 1�. From this
panel, we find that

½Δξ�combined ¼ 1.23 × 10−6
�

104

NGW

�
1=2

;

i:e:;ωBD > 0.81 × 106
�
NGW

104

�
1=2

; ð82Þ

for the case with the uniform distribution. So, even in the
conservative case with NGW ¼ 104, the constraint on ωBD
will be 20 times more stringent than the current upper limit
derived from the Cassini experiment. If we consider the
case NGW ¼ 2 × 105 observed by the ET, the constraint of
ωBD will be improved by two orders compared with the
current upper limit. From the lower panel of Fig. 9, we also
find that the main contribution comes from the events in the
low frequency range, and the contribution of sources at
z > 1 is ignorable. For the case with the nonuniform
distribution, the constraint becomes

½Δξ�combined ¼ 1.37 × 10−6
�

104

NGW

�
1=2

;

i:e:;ωBD > 0.73 × 106
�
NGW

104

�
1=2

; ð83Þ

FIG. 8. The average value of hΔξi for different redshifts z. Note
that hΔξi is computed by averaging the parameters ðm1; θ;ψ ; ιÞ,
where we takem1;phys ∈ ½2; 100�M⊙, cos θ ∈ ½−1; 1�, ψ ∈ ½0; 2π�,
and cos ι ∈ ½−1; 1�. The other parameters in the fiducial model are
given by m2;phys ¼ 1.4 M⊙, ϕ ¼ 0, tc ¼ 0, ψc ¼ 0, and ξ ¼ 0.
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which is slightly weaker than that in the uniform case, since
in the nonuniform case, fewer events are distributed in the
low frequency range z < 0.5.

IV. CONCLUSIONS

The discovery of GW bursts GW150914 and
GW151226 by LIGO opens up a new era of GW
astronomy, where tests of different theories of gravity
in the strong gravitational fields is one of the most
important issues. The current observations of the
advanced LIGO have placed interesting constraints on
some theories. By the ET, a third-generation ground-based
GW observatory, the total number and the distance of the
observable GW sources, including the inspiraling binary
systems, will be greatly improved, which will provide an
excellent laboratory to precisely test various gravitational
effects, as well as various theories of gravity in the strong
gravitational fields. As an example, in this paper, we
investigate the test ability of the ET on BD gravity by
constraining the model parameter ωBD. Up to the lowest
PN order, we first calculate the waveforms of gravitational
radiations, including the quadrupole radiation of the
metric field, and the monopole, dipole, and quadrupole
radiations of the scalar field, and then decompose them
into the plus, cross, and breathing modes. Employing the
stationary phase approximation, we derive the Fourier
transforms of these modes, and parametrize the modifi-
cations of waveforms in the amplitude, phase, and
polarization relative to those in GR. Utilizing the
Fisher information matrix, we study the potential

constraints on the parameter ωBD by the ET, and find
that an inspiraling compact binary system composed of a
neutron star and a black hole gives the strongest con-
straints on BD gravity. The bound on ωBD depends on the
mass of the black hole, the redshift of the system, the sky-
position angle θ, the inclination angle of the binary’s
orbital ι, and the polarization angle ψ . Consistent with the
previous results, we find that the system with a lower mass
can give rise to a tighter bound on ωBD. If a binary system
with a 2 M⊙ black hole at redshift z ¼ 0.1 is observed by
the ET, one expects to obtain a bound ωBD ≳Oð106Þ,
which is much more stringent than the current bound
derived from the Cassini-Huygens experiment.
Combining all the GW burst events can significantly
improve the bound, which could arrive at
ωBD ≳ 106 × ðNGW=104Þ1=2. So, even in the very
conservative considerations with the total number of
events NGW ¼ 104, the bound is more than one order
tighter than the current limit obtained from Solar System
experiments. Hence, we conclude that the testing ability of
the ET on theories of gravity is quite promising.
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APPENDIX A: DECOMPOSING POLARIZATION
MODES OF GRAVITATIONAL WAVES

A generic GW detector measures the local components
of the “electric” components of the Riemann curvature
tensor R0i0j, which can be formally written as R0i0j≡
−ð1=2Þd2hij=dt2. In general there are six independent
components, which can be expressed in terms of polar-
izations [1]. For a wave propagating in the z-direction, they
can be displayed by the matrix

hijðtÞ ¼

0
B@

hb þ hþ h× hx
h× hb − hþ hy
hx hy hL

1
CA: ðA1Þ

Three modes (hþ, h×, and hb) are transverse to the direction
of propagation, with two (hþ, h×) representing quadrupole
deformations and one (hb) representing a monopole, i.e.,

the breathing deformation. Three modes are longitudinal,
with one (hL) axially symmetric stretching mode in the
propagation direction, and one quadrupole mode in each of
the two orthogonal planes containing the propagation
direction (hx and hy).
Now, let us turn to the GW hijðtÞ that propagates in

the direction n̂ ¼ ð1; θ;ϕÞ in the coordinate system
X ≡ ðx; y; zÞ. We first consider the GW in another
coordinate system X0 ≡ ðx0; y0; z0Þ with n̂ ¼ ẑ0, where
we have

hþ ¼ ðh011 − h022Þ=2; h0× ¼ h012; hb ¼ ðh011 þ h022Þ=2;
hL ¼ h033; hx ¼ h013; hy ¼ h023: ðA2Þ

The tensor h0ij relates to hij by h0ij ¼ ðRThRÞij, and the
transformation tensor R is given by

R ¼

0
B@

cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1

1
CA
0
B@

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

1
CA:

ðA3Þ

Thus, we derive the following decompositions:

hþ ¼ 1

2
fh11ðcos2ϕ − cos2θsin2ϕÞ þ h22ðsin2ϕ − cos2ϕcos2θÞ − h33sin2θ

−h12½sin 2ϕð1þ cos2θÞ� þ h13 sinϕ sin 2θ þ h23 cosϕ sin 2θg; ðA4Þ

h× ¼ 1

2
fðh11 − h22Þ cos θ sin 2ϕþ h12ð2 cos θ cos 2ϕÞ − h13ð2 sin θ cosϕÞ þ h23ð2 sin θ sinϕÞg; ðA5Þ

hb ¼
1

2
fh11ðcos2 ϕþ cos2 θ sin2 ϕÞ þ h22ðsin2 ϕþ cos2 ϕ cos2 θÞ þ h33 sin2 θ

−h12ðsin 2ϕ sin2 θÞ − h13 sinϕ sin 2θ − h23 cosϕ sin 2θg; ðA6Þ

hL ¼ 1

2
fh11ð2 sin2 θ sin2 ϕÞ þ h22ð2 cos2 ϕ sin2 θÞ þ h33ð2 cos2 θÞ

þh12ð2 sin 2ϕ sin2 θÞ þ h13ð2 sinϕ sin 2θÞ þ h23ð2 cosϕ sin 2θÞg; ðA7Þ

hx ¼
1

2
fðh11 − h22Þ sin θ sin 2ϕþ h12ð2 sin θ cos 2ϕÞ þ h13ð2 cosϕ cos θÞ

−h23ð2 sinϕ cos θÞg; ðA8Þ

hy ¼
1

2
fh11ðsin 2θ sin2 ϕÞ þ h22ðcos2 ϕ sin 2θÞ − h33ðsin 2θÞ

þh12ðsin 2ϕ sin 2θÞ þ h13ð2 sinϕ cos 2θÞ þ h23ð2 cosϕ cos 2θÞg: ðA9Þ
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APPENDIX B: HIGHER POST-NEWTONIAN
ORDERS OF GW WAVEFORMS IN EINSTEIN’S

GENERAL RELATIVITY

For a compact binary system located at the sky position
(θ, ϕ) with the angle of orbital inclination ι and polarization
angle ψ , including the higher PN order terms, the wave-
forms in the two polarizations are given by

hþ;×ðtÞ ¼
2ηmx
dL

fHð0Þ
þ;× þ x1=2Hð1=2Þ

þ;× þ xHð1Þ
þ;× þ x3=2Hð3=2Þ

þ;×

þ x2Hð2Þ
þ;× þ x5=2Hð5=2Þ

þ;× þOð1=c6Þg; ðB1Þ

wherem ¼ m1 þm2 is the total mass and η ¼ m1m2=m2 is
the symmetric mass ratio. The PN expansion parameter is

defined as x≡ v2. The coefficients Hði=2Þ
þ;× (i ¼ 0; 1;…; 5),

are linear combinations of various harmonics with pre-
factors that depend on ι and η. The lowest order ones are

Hð0Þ
þ ¼ −ð1þ cos2 ιÞ cos2ΦðtÞ− ð1=96Þ sin2 ιð17þ cos2 ιÞ;

ðB2Þ

Hð0Þ
× ¼ −2 cos ι sin 2ΦðtÞ; ðB3Þ

ΦðtÞ ¼ ϕðtÞ − 2mωs lnðωs=ω0Þ; ðB4Þ

where ω0 is a constant frequency that can be conveniently
chosen as the entry frequency of an interferometric detector
[40]. The other terms can be found in the previous
work [44].
In general, we can write them as

HðsÞ
þ;× ¼

X
n

fCðn;sÞ
þ;× cos½nΦðtÞ� þDðn;sÞ

þ;× sin½nΦðtÞ�g: ðB5Þ

Thus, we have

hðtÞ≡ FþhþðtÞ þ F×h×ðtÞ

¼ 2μx
dL

X
n;s

xsfCðn;sÞ cos½nΦðtÞ� þDðn;sÞ sin½nΦðtÞ�g

ðB6Þ

¼ 2μx
dL

X
n;s

fxsPðn;sÞei½nψþφðn;sÞ�g; ðB7Þ

where

Cðn;sÞ ¼FþC
ðn;sÞ
þ þF×C

ðn;sÞ
× ;Dðn;sÞ ¼FþD

ðn;sÞ
þ þF×D

ðn;sÞ
× ;

ðB8Þ

Pðn;sÞ ¼ sign½FþC
ðn;sÞ
þ þ F×C

ðn;sÞ
× �f½FþC

ðn;sÞ
þ þ F×C

ðn;sÞ
× �2

þ ½FþD
ðn;sÞ
þ þ F×D

ðn;sÞ
× �2g1=2; ðB9Þ

φðn;sÞ ¼ tan−1
	
−
FþD

ðn;sÞ
þ þ F×D

ðn;sÞ
×

FþC
ðn;sÞ
þ þ F×C

ðn;sÞ
×



: ðB10Þ

The Fourier components of hðtÞ are given by

~hðfÞ ¼
X7
k¼1

~hðkÞðfÞ; ðB11Þ

where the harmonics are explicitly presented in [46]; e.g.,
the term ~hð1ÞðfÞ is given by

~hð1ÞðfÞ ¼ M5=6
c

dL

ffiffiffiffiffi
5

48

r
π−2=3ð2fÞ−7=6fe−iφð1;1=2ÞPð1;1=2Þð2πmfÞ1=3

þ ½e−iφð1;3=2ÞPð1;3=2Þ þ e−iφð1;1=2ÞPð1;1=2ÞS1�ð2πmfÞ
þ ½e−iφð1;2ÞPð1;2Þ þ e−iφð1;1=2ÞPð1;1=2ÞS3=2�ð2πmfÞ4=3
þ½e−iφð1;5=2ÞPð1;5=2Þ þ e−iφð1;3=2ÞPð1;3=2ÞS1 þ e−iφð1;1=2ÞPð1;1=2ÞS2�ð2πmfÞ5=3g
× ΘðfLSO − fÞ exp½ið2πftc − π=4þ ψðfÞÞ�;

in which

S1 ¼
1

2

�
743

336
þ 11

4
η

�
; S3=2 ¼ −2π; S2 ¼

7266251

8128512
þ 18913

16128
ηþ 1379

1152
η2:

The phase function is

ψðfÞ ¼ −ψc þ
3

256ð2πMcfÞ5=3
X7
i¼0

ψ ið2πmfÞi=3; ðB12Þ
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where

ψ0 ¼ 1; ψ1 ¼ 0; ψ2 ¼
20

9

�
743

336
þ 11

4
η

�
; ψ3 ¼ −16π; ψ4 ¼ 10

�
3058673

1016064
þ 5429

1008
ηþ 617

114
η2
�
;

ψ5 ¼ π

�
38645

756
þ 38645

252
ln ðf=fLSOÞ −

65

9
ηð1þ 3 ln ðf=fLSOÞÞ

�
;

ψ6 ¼
�
11583231236531

4694215680
−
640π2

3
−
6846γ

21

�
þ η

�
−
15335597827

3048192
þ 2255π2

12
−
1760θ

3
þ 12320λ

9

�

þ 76055

1728
η2 −

127825

1296
η3 −

6848

21
ln½4ð2πmfÞ1=3�;

ψ7 ¼ π

�
77096675

254016
þ 378515

1512
η −

74045

756
η2
�
;

in which γ ¼ 0.5772 is the Euler-Mascheroni constant,
λ ¼ −0.6451, and θ ¼ −1.28.

APPENDIX C: PATTERN FUNCTIONS OF THE
EINSTEIN TELESCOPE

A gravitational wave with a given propagation direction
n̂ can be written as

hijðt;xÞ ¼
X
A

eAijðn̂Þ
Z

∞

−∞
df ~hAðfÞe−2πifðt−n̂·xÞ; ðC1Þ

where A ¼ þ;×; b; L; x; y, eAij are the polarization tensors.
We take x ¼ 0 as the location of the detector. For a detector
which is sensitive only to GWs with a reduced wavelength
much larger than its size, such as resonant masses and
ground-based interferometers, we have 2πfn̂ · x ≪ 1 over
the whole detector, and we can neglect the spatial depend-
ence of hijðt;xÞ. So, to study the interaction of GWs with
such detectors we can simply write

hijðtÞ ¼
X
A

eAijðn̂Þ
Z

∞

−∞
df ~hAðfÞe−2πift ¼

X
A

eAijðn̂ÞhAðtÞ:

ðC2Þ

In general, the input of the GW detector has the form

hðtÞ ¼ DijhijðtÞ ¼
X
A

DijeAijðn̂ÞhAðtÞ ¼
X
A

FAðn̂ÞhAðtÞ;

ðC3Þ

where Dij is a constant tensor which depends on the
detector geometry and is known as the detector tensor.
FAðn̂Þ≡DijeAijðn̂Þ is the detector pattern functions.
Now, let us focus on the ET. One possible setup for the

ETwould be a triangular tube with 10 km edges containing
three interferometers with 60 degree opening angles. Con-
sider three interferometers with 60 degree opening angles,
arranged in an equilateral triangle. Let l̂AðA ¼ 1; 2; 3Þ be

unit vectors tangent to the edges of the triangles as shown in
Fig. 10. These can be expressed in terms of the unit vectors
ðx̂; ŷ; ẑÞ defining a Cartesian coordinate system, where
ðx̂; ŷÞ are in the detector plane:

l̂A ¼ cosðαAÞx̂þ sinðαAÞŷ; ðC4Þ

with αA ¼ π=12þ ðA − 1Þπ=3. The three interferometers
inside the triangular tube have detector tensors

1D
ij ¼ 1

2
ðl̂i1l̂j1 − l̂i2 l̂

j
2Þ; 2D

ij ¼ 1

2
ðl̂i2 l̂j2 − l̂i3 l̂

j
3Þ;

3D
ij ¼ 1

2
ðl̂i1l̂j1 − l̂i3 l̂

j
3Þ; ðC5Þ

where i ¼ 1, 2, 3 are spatial indices.

FIG. 10. Unit vectors defining the detector tensors for a
triangular Einstein Telescope.
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Assume the GW source in the direction n̂ ¼ ð1; θ;ϕÞ with the polarization angle ψ in the coordinate system ðx̂; ŷ; ẑÞ.
Utilizing the transformation between this system and the coordinate system ðx̂0; ŷ0; ẑ0Þ, we find that

1Fþðθ;ϕ;ψÞ ¼
ffiffiffi
3

p

2

�
1

2
ð1þ cos2θÞ cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ

�
; ðC6Þ

1F×ðθ;ϕ;ψÞ ¼
ffiffiffi
3

p

2

�
1

2
ð1þ cos2θÞ cos 2ϕ sin 2ψ þ cos θ sin 2ϕ cos 2ψ

�
; ðC7Þ

1Fbðθ;ϕ;ψÞ ¼
ffiffiffi
3

p

2

�
−
1

2
sin2θ cos 2ϕ

�
; ðC8Þ

1FLðθ;ϕ;ψÞ ¼
ffiffiffi
3

p

2

�
1

2
sin2θ cos 2ϕ

�
; ðC9Þ

1Fxðθ;ϕ;ψÞ ¼
ffiffiffi
3

p

2

�
1

2
sin 2θ cos 2ϕ cosψ − sin θ sin 2ϕ sinψ

�
; ðC10Þ

1Fyðθ;ϕ;ψÞ ¼
ffiffiffi
3

p

2

�
1

2
sin 2θ cos 2ϕ sinψ þ sin θ sin 2ϕ cosψ

�
; ðC11Þ

2FAðθ;ϕ;ψÞ ¼ 1FAðθ;ϕþ 2π=3;ψÞ; ðC12Þ

3FAðθ;ϕ;ψÞ ¼ 1FAðθ;ϕþ 4π=3;ψÞ: ðC13Þ
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