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We present a simple prescription for the rotation of polarization produced by a relativistically
moving gravitational lens, applicable to arbitrary deflection angle and arbitrary velocity of the lens.
When geometric optics is applicable, two independent components contribute to the total rotation of
polarization: (i) in the frame of the lens the polarization vector experiences minimal rotation defined
by the deflection angle (as measured by a set of remote observers, or no rotation if defined in terms of
a parallel-propagated tetrad); (ii) the effect of the motion of the lens on the polarization can be taken
into account exactly using special-relativistic Lorentz transformation of polarization. The effects
of the gravitational lensing are thus parametrized by the deflection angle of the null geodesics
(not necessarily small) and the motion of the lens (not necessarily with velocities much smaller than
that of light).
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I. INTRODUCTION

In general relativity (GR) the polarization vector is
parallel-transported along the light ray [1]. In a nonrotating
spherically symmetric metric the final direction of polari-
zation is uniquely determined by the initial polarization and
the total deflection angle of the lens (Sec. II). (In a rotating
metric there is an additional contribution from the spin
parameter [2,3].)
A moving gravitational lens does lead to the rotation of

polarization (see, e.g., Ref. [4]). In Ref. [5] the GR
principles behind this observer-dependent rotation of
polarization were discussed, including the analysis of the
related controversies. In this paper we point out that
the rotation of polarization due to the relative velocity of
the lens and the observer is a special-relativistic effect [6–8]
and thus can be taken into account exactly, to any value of
the velocity (and not only much smaller than the speed of
light; see Sec. III).

II. POLARIZATION ROTATION DUE TO A
STATIONARY SCHWARZSCHILDIAN LENS

For completeness, let us first discuss the transformation
of polarization by a nonrotating (Schwarzschildian) lens.
The discussion below outlines the concept of parallel-
transport of polarization. The method we use to calculate
polarization is somewhat different from what is usually
done. For example, in Ref. [4] the polarization transfer was
done using an invariant relativistic formulation and then
projecting the four-dimensional results onto the three-
dimensional (3D) space of an observer. Instead, we define

the observers from the beginning; calculations of the
polarization vector are done in an absolute 3D space.
This method is simpler for the problem of moving lenses,
when both the emitter and the observer are located far away
from the source of gravity.
Let the initial direction of propagation and polarization

in the frame of the lens be n0
1 and p0

1, n
0
1 · p

0
1 ¼ 0, and the

final states are n0
2 and p0

2, n0
2 · p

0
2 ¼ 0 (primes denote

quantities measured in the frame of the lens). The relation
between n0

1 and n
0
2 is given by the GR bending of light [1].

We would like to find the final polarization p0
2 in terms of

n0
1, n

0
2 and p0

1.
Introducing the unit vector

kr ¼
n0
1 × n0

2

jn0
1 × n0

2j
; ð1Þ

the polarization will be rotated from p0
1 around the axis kr

by the angle sin θrot ¼ jn0
1 × n0

2j. The rotation matrix
around a direction kr is

Tr ¼ ð1 − cos θrotÞkr × kr þ cos θrotIþ sinrotθkr× ð2Þ

where kr× is the tensor product.
For example, if the initial direction of propagation is

n0
1 ¼ f0; 0; 1g, the polarization is p0

1 ¼ f1; 0; 0g and the
final direction is n2 ¼ fcosϕ sin θ; sinϕ sin θ; cos θg (θ is
the deflection angle that can be calculated, in the case when
both the source and the observer are at null infinities, using
GR for any photon trajectory), we find*lyutikov@purdue.edu
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kr ¼ f− sinϕ; cosϕ; 0g;
θrot ¼ θ;

Tr ¼

0
B@

ð1 − cos θÞ sin2 ϕþ cos θ −ð1 − cos θÞ sinϕ cosϕ sin θ cosϕ

−ð1 − cos θÞ sinϕ cosϕ ð1 − cos θÞ cos2 ϕþ cos θ sin θ sinϕ

− sin θ cosϕ − sin θ sinϕ cos θ

1
CA;

p0
2 ¼ fcos θ cos2 ϕþ sin2 ϕ;−ð1 − cos θÞ sinϕ cosϕ;− sin θ cosϕg: ð3Þ

It may be verified that p0
2 · n

0
2 ¼ 0. (The statement that the

polarization is not rotated during lensing by a stationary
nonrotating lens, implies that the polarization is just rotated
by the above amount, and nothing else.)
For example, for the photon’s motion in the x − z

plane, ϕ ¼ 0, the new direction of polarization is
p0
2 ¼ fcos θ; 0;− sin θg, while for the photon’s motion in

the y − z plane, ϕ ¼ π=2, the polarization remains along
the x direction, p0

2 ¼ f1; 0; 0g. For small deviation angles
θ ≪ 1, p0

2 ≈ f1; 0;−θ cosϕg.

III. RELATIVISTIC TRANSFORMATION
OF POLARIZATION

Let us next derive explicit relations for the Lorentz
transformation of polarization. Let a photon in some frame
be defined by a triad of unit vectors along the electric field,
magnetic field and the direction of propagation e0, b0, n0, so
that n0 ¼ e0 × b0. The easiest way to derive the relativistic
transformation of polarization is using relations for the
aberration of light,

n ¼
n0 þ vγð1þ γ

1þγ ðn0 · vÞÞ
γð1þ ðn0 · vÞÞ ð4Þ

and the transformation of the electromagnetic fields,

B ¼ γB0 −
γ2

γ þ 1
ðB0 · vÞv − γv × E0;

E ¼ γE0 −
γ2

γ þ 1
ðB0 · vÞv þ γv ×B0 ð5Þ

(β ¼ v=c is γ, the corresponding Lorentz factor). Using
E0 ¼ −n0 × B0, for the unit vector along the magnetic field
we find

b ¼ q0

ð1þ γÞð1þ ðn0 · vÞÞ ;

q0 ¼ b0 þ v × ðb0 × n0Þ − γ

γ þ 1
ðb0 · vÞv: ð6Þ

Thus, the new direction of polarization (unit vector
along e) is

e ¼ n × q0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 − ðn · q0Þ2

p ; ð7Þ

(cf. Ref. [8]). This solves in general the polarization trans-
formation. (In the Appendix we discuss how general rela-
tions for polarization transformation agree with the
relativistic transformation of acceleration for dipolar-type
emission.)
For example, if initially the photon propagates along

the ẑ direction and is polarized along the x̂ direction, and
the relative velocity is v ¼ fsin θv cosϕv; sin θv sinϕv;
cos θvgβ, the new direction of propagation and the polari-
zation angle are (Fig. 1)

nðxyÞ ¼
β sin θvð1þ γð1þ β cos θvÞ

ðγ þ 1Þð1þ β cos θvÞ
�
cosϕv

sinϕv

�
;

nz ¼
βγ cos θv þ ðγ − 1Þcos2θv þ 1

βγ cos θv þ γ
;

tan χ ¼ e · ŷ
e · x̂

¼ −
sin2θv sinϕv cosϕvð1þ β cos θvÞ

βðγþ1Þ cosðθvÞþ1

γ−1 þ sin2θvsin2ϕvð1þ β cos θvÞ þ βcos3θv þ ð2γþ1Þcos2θv
γ

: ð8Þ

In the limit γ → ∞,

tan χ ¼ −
sin2 θv sinϕv cosϕv

sin2 θv sin2 ϕv þ cos2 θv þ cos θv
: ð9Þ

Thus, there is no rotation of polarization for special cases of
motion along the photon direction, θv ¼ 0, in the polari-
zation plane, ϕv ¼ 0, or perpendicular to the polarization
plane, ϕv ¼ π=2.
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IV. POLARIZATION ROTATION
DUE TO A MOVING LENS

In Sec. II we derived the polarization rotation due to a
stationary lens and in Sec. III we derived the Lorentz
transformation of the polarization. Combining the two
expressions we can find the polarization rotation due to
a (relativistically) moving lens. For practical purposes, it is
easiest to start in the lens frame, and then (i) do a boost to
the lab frame to find the initial polarization in the lab frame,
and (ii) do a GR deflection and the corresponding rotation
of polarization in the lens frame and do a boost to the lab
frame to find the final polarization in the lab frame.
Thus, the general procedure of polarization transfer by a

moving lens involves a Lorentz boost of polarization
vectors p0

1 ¼ f1; 0; 0g and p0
2 [Eq. (3)] using the trans-

formation (7). This procedure formally solves the problem
of polarization rotation by a moving lens. (Alternatively,
starting with the wave vector and polarization in the
laboratory frame, n1, p1, do a boost to the lens’ frame

and find directions and polarization, n0
1;p

0
1, do a radiative

transfer in the frame of the lens to find n0
2;p

0
2, and then do a

Lorentz boost back to the observer’s frame to find n2, p2.)
Importantly, each step can be done exactly, without the
limitations of small angle deflection or small relative
velocity.
As practical applications are mostly limited to small lens

velocities, next we find explicit relations for β ≪ 1. If the
velocity of the lens in the lab frame is

v ¼ fcosϕv sin θv; sinϕv sin θv; cos θvgβ ð10Þ
then, keeping only linear terms in β, we find the initial
polarization vector

p0 ¼ f1; 0; 0g − βf0; 0; cosϕv sin θvg ð11Þ
[cf. Ref. [9], Eq. (1)]. There is no rotation if the lens
is moving along the direction of propagation of the
photon, θv ¼ 0.

The final polarization vector is

p2 ¼ p0
2 þ β cos μr̂;

r̂ ¼ fsin θ cosϕ; sin θ sinϕ; cos θg;
cos μ ¼ sin θ cosϕ cos θv − sin θvðcos θ cosϕ cos ðϕ − ϕvÞ þ sinϕ sin ðϕ − ϕvÞÞ: ð12Þ

For example, consider a lens moving in a direction perpendicular to the direction of the photon propagation, θv ¼ π=2.
We find then

p0 p2

ϕ ¼ 0, ϕv ¼ 0 f1; 0;−βg fcos θðβ sin θ þ 1Þ; 0; β cos2 θ − sinðθÞg ≈ fβθ þ 1; 0; β − θg
ϕ ¼ π=2, ϕv ¼ 0 f1; 0;−βg f1; β sin θ; β cos θg ≈ f1; βθ; βg
ϕ ¼ π=2, ϕv ¼ π=2 f1; 0; 0g f1; 0; 0g
ϕ ¼ 0, ϕv ¼ π=2 f1; 0; 0g fcos θ; 0;− sin θg ≈ f1; 0;− sin θg

If the lens moves along the initial propagation of the photon, θv ¼ 0, then p0 ¼ f1; 0; 0g and

p2 ¼
� fcos θ − βsin2θ; 0; sin θð−β cosðθÞ − 1Þg ≈ f1; 0;−ð1þ βÞθg ≈ f1; 0;−θg; for ϕ ¼ π=2;

f1; 0; 0g; for ϕ ¼ 0.
ð13Þ
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FIG. 1. Rotation of the polarization angle χ as a function of the direction of the velocity θ with respect to the photon propagation in the
rest frame. Left panel: γ ¼ 2, for different position angles ϕ ¼ 0; π=16…π=2. Right panel: ϕ ¼ π=4, for different Lorentz factor s
γ ¼ 1; 2;…10. (Only a fraction of the curve is revealed to the observer through the generally narrow radio beam.)
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V. DISCUSSION

In this paper we solved exactly the polarization transfer
by a moving gravitational lens by separating the motion of
the lens and gravitational light bending in the frame of the
lens. In the frame of the spherical (nonrotating) lens the
final polarization direction is determined only by the total
deflection angle in the frame of the lens (not necessarily
small), while the motion of the lens can be taken into
account exactly using the Lorentz transformation of polari-
zation. A typical value of the rotation angle is small ∼θβ,
where θ ≈ 4GM=ðrc2Þ is the deflection angle (M is the
mass of the lens and r is the impact parameter) and β is the
velocity of the lens [10].
Our method of separating the GR effects in the frame of

the lens and special-relativistic effects due to the motion of
the lens—both of which can be strong—can be applied to a
more general case of rotating lens as well. The relations of
Sec. II then need to be changed to include the effects of the
lens’ rotation (see e.g., Ref. [4]).

Possible applications of the effect include the double
pulsar [11], where the line of sight passes∼5 × 108 cm from
the pulsar B [12], so the deflection angle is≈1.5 × 10−3. The
pulsar B moves with a velocity ∼600 km s−1, β ¼ 2 × 10−3,
so that the polarization rotation angle is≈3 × 10−6. (Another
case of nearly in-the-orbital-plane line of sight [13] produces
a much smaller effect.)
In the case of cosmological gravitational lensing, the

deflection angle for strong lensing is typically a few
arcseconds, while the random velocity of the lens can be
estimated as a virial velocity in a large cluster of galaxies,
β ≤ 10−2. Thus, the expected rotation of polarization is in
the range of milliarcseconds (see also Ref. [14]). The
corresponding pattern for a lens propagating in a direction
θv ¼ π=2, ϕv ¼ π=2 is given in Fig. 2.
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APPENDIX: DIPOLAR EMISSION:
POLARIZATION TRANSFORMATION FROM
TRANSFORMATION OF ACCELERATION

In the case of dipolar-type emission, the electric field in
the wave is perpendicular to the projection of the particle
acceleration on the plane of the sky [Ref. [15], Eq. (67.6)]:

e ∝ ða × nÞ × n ∝ a − ða · nÞn;
b ∝ ða × nÞ: ðA1Þ

The Lorentz transformation of acceleration reads [16]

a ¼ qa

γ2ð1 − v0 · vÞ3 ;

qa ¼ a0 −
γ

1þ γ
ða0 · vÞv þ v × ðv0 × a0Þ; ðA2Þ

where a0 is an acceleration of a particle moving with
velocity v0 in the primed frame, v is the relative velocity of
the two frames, and the Lorentz factor refers to the relative
motion, γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
.

The similarity between the expressions for qa and q0,
Eqs (A2) and (6), is highly revealing. For example,
consider emission by a highly relativistic particle moving
along a curved trajectory. In this case v0 × a0 is directed
along the normal to the orbital plane. The particle’s velocity
in the primed frame is both along the trajectory and along
the direction of emission, n0 ∥ v0. Thus,

qa ¼ a0 −
γ

1þ γ
ða0 · vÞv þ v × ðn0 × a0Þ; ðA3Þ

so that the direction of acceleration (actually, the compo-
nent perpendicular to the direction of wave propagation)
transforms exactly as the electric field in the wave.

FIG. 2. Polarization pattern produced by a moving strong lens
as viewed by an observer. The source is polarized along the
vertical direction. Thin lines indicate the polarization direction for
a stationary lens; thick lines indicate the polarization direction for
a lens moving horizontally, in a direction transverse to the initial
photon propagation. The circle represents the Einstein ring. The
effects of motion are exaggerated for clarity. The lens is moving
from left to right, as seen by the observer.
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