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Among many alternative gravitational theories to General Relativity (GR), fðR; TÞ gravity (where R is
the Ricci scalar and T the trace of the energy-momentum tensor) has been widely studied recently.
By adding a matter contribution to the gravitational Lagrangian, fðR; TÞ theories have become an
interesting extension to GR displaying a broad phenomenology in astrophysics and cosmology. In this
paper, we discuss, however, the difficulties appearing in explaining a viable and realistic cosmology
within the fðR; TÞ class of theories. Our results challenge the viability of fðR; TÞ as an alternative
modification of gravity.
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I. INTRODUCTION

Astronomical observations during the 20th century
unveiled two of the biggest phenomena in the Universe:
dark matter and dark energy. The former behaves as an
invisible dust matter favoring the process of gravitational
clustering while the latter yields a late time acceleration of
the cosmological background. It is, however, worth noting
that such intriguing mechanisms (or substances) have
emerged complementing the pure general relativity (GR)
based description of gravity.
By avoiding the insertion of new unknown ingredients

the search for alternative theories to GR has become a
fruitful investigation route. Since the GR can be modified in
many distinct directions, the consequence is the large
number of theories available in the literature [1].
What is the best alternative theory? There is no clear

answer to this question. However, the set of available
options has been reduced over the past years. Gravitational
theories can be ruled out if they do not successfully
describe modern astronomical observations or because of
theoretical incompatibilities and unphysical features, e.g.,
the appearance of ghosts.
Our aim in this work is to show the inviability of one of

such proposals when applied to the cosmological context.
We focus on the so-called fðR; TÞ theory where R is the
Ricci scalar and T is the trace of the stress-energy tensor.
The GR case of such a theory corresponds to the standard
Einstein-Hilbert term fðR; TÞ ¼ R in the gravitational
Lagrangian. This model has been introduced in Ref. [2]
as a possible interpretation for a running cosmological
constant. Then, one expects that this modification of
gravity accounts for the accelerated expansion. Dark matter
seems therefore to be a fundamental ingredient in the
fðR; TÞ scenario.

It is worth noting that the mapping between well known
cosmological scenarios (e.g., the ΛCDM one) have been
reconstructed from the fðR; TÞ theory as, for example, in
Ref. [3]. This reference also claims an agreement of the
theory with the baryonic acoustic oscillation data, but a
proper confrontation between theory and data is not
performed.
We show that most of the available fðR; TÞmodels in the

literature do not lead to a viable cosmological background
expansion. We use current available expansion data to show
that in the low-redshift domain there is no compatible
cosmological expansion in the fðR; TÞ gravity. Some cases
do not even lead to a late time accelerated expansion which
is a well established observational fact [4].
The indication that fðR; TÞ theories have difficulties in

describing the linear growth of matter perturbations has
already been discussed in Ref. [5]. This conclusion was
made, however, on a qualitative ground without proper
comparison with observation data such as the cosmic
microwave background spectrum, the baryonic acoustic
oscillations measurements, or the matter power spec-
trum PðkÞ.
In the next section we review the fðR; TÞ gravity

applying it to a Friedmann-Lemaître-Robertson-Walker
(FLRW) metric. We discuss how realistic cosmologies
are built in the realm of fðR; TÞ gravity pointing out some
typical misunderstandings in the literature.
It is convenient to bring to the reader’s attention an

important assumption we are going to make throughout this
paper. For the Riemann tensor we adopt the standard
convention Rα

βγδ¼∂γΓα
βδ−∂δΓα

βγþΓα
μγΓμ

βδ−Γα
μδΓμ

βγ ,
from which the Ricci tensor is obtained by contracting
the first index with the third one, e.g. Rαβ ¼ Rγ

αγβ. Such a
choice is the most used by some of the main GR textbooks
[6–9] and is a widespread adoption in the literature. So, we
believe it is useful to emphasize this point in order to help
some readers to not be misled by less usual definitions as
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for instance that one made by the authors in [5], who
consider Weinberg’s assumption [10]. In the latter case the
Riemann tensor appears with an opposite sign to the one
adopted in this work, which coincides with the conventions
used in [2]. Besides, it can be checked that this choice shall
influence the sign of the term involving the differential
operator gμν□ −∇μ∇ν. In the particular case of Ref. [5], the
authors adjust such a sign difference through a proper
definition for the energy-momentum tensor.
In Sec. III we list four cases of fðR; TÞ theories which

comprise most of the ones investigated in the literature.
For the first three examples we compute the respective
deceleration parameters and confront these models with the
observational data for HðzÞ (inferred from cosmic chro-
nometers) and Supernovae type Ia data. In particular, we
complement the model III analysis (see below) with
Supernovae data constraints. These models are plagued
due to the fact that they do not lead to accelerated phases of
the Universe. According to the available literature [11]
our model IV is in principle viable and promotes the
transition from deceleration to acceleration. However, for
the model IV we point out our disagreement with the
authors of [11], showing explicitly that their conclusions
about the deceleration-acceleration transition is based on an
erroneous deceleration parameter (we make these issues
clear in the Appendix). Section IV brings an alternative
approach for the fðR; TÞ theory, in which such a modified
gravity is assumed as the underlying theoretical scenario
for the dark matter hypothesis, whereas the usual cosmo-
logical constant remains responsible for the cosmic accel-
eration. The final section is dedicated to the discussion of
our results and the concluding remarks of this work.

II. THE BACKGROUND COSMOLOGICAL
DYNAMICS IN f ðR;TÞ GRAVITY

In an fðR; TÞ theory the gravitational action is given by

S ¼ SG þ Sm ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðR; TÞ þ

Z
d4x

ffiffiffiffiffiffi
−g

p
Lm;

ð1Þ

where κ2¼ 8πG, T ¼ Tμ
μ, and Lm is the Lagrangian

density of the matter fields. We adopt c ¼ 1. The energy-
momentum tensor is defined in terms of the matter action as
follows:

Tμν ¼ −
2ffiffiffiffiffiffi−gp δSm

δgμν
; ð2Þ

which by turn leads to

Tμν ¼ gμνLm − 2
∂Lm

∂gμν : ð3Þ

In the metric formalism, one considers the metric tensor as
the only dynamical variable of the respective gravitational
theory, so that the corresponding field equations are
obtained by varying the action with respect to the metric.
Following this procedure we get

fRðR; TÞRμν −
1

2
fðR; TÞgμν þ ðgμν□ −∇μ∇νÞfRðR; TÞ

¼ ½κ2 − fTðR; TÞ�Tμν − fTΘμν; ð4Þ

where

Θμν ≡ gαβ
Tαβ

δgμν
¼ −2Tμν þ gμνLm − 2gαβ

∂2Lm

∂gμν∂gαβ : ð5Þ

We assume the standard cosmological scenario in which the
Universe behaves as a homogeneous and isotropic fluid at
large scales. This hypothesis is envisaged by a Friedmann-
Lemaître-Robertson-Walker spacetime

ds2 ¼ dt2 − aðtÞ2δijdxidxj; ð6Þ

along with an energy-momentum tensor of a perfect fluid
written in terms of its energy density ρ and the pressure p,

Tμν ¼ ðρþ pÞuμuν − pgμν: ð7Þ

Comparing (3) and (7) we can write the Lagrangian as
Lm¼−p, while the tensor (5) reduces to Θμν¼−2Tμν−
pgμν. In this work we shall focus on a class of fðR; TÞ
theories where the generalized Einstein-Hilbert Lagrangian
is given byfðR; TÞ ¼ f1ðRÞ þ f2ðTÞ, with f1ðRÞ andf2ðTÞ
being functions purely dependent upon R and T, respec-
tively. Thus, the modified field equations are

−3ð _H þH2Þf01 −
f1
2
−
f2
2
þ 3H _f01 ¼ κ2ρþ f02ð1þ wÞ

ð8Þ

and

ð _H þ 3H2Þf01 þ
f1
2
þ f2

2
− f̈01 − 2H _f01 ¼ κ2p; ð9Þ

where the prime and dot denote derivatives with respect to
the argument, i.e., f01 ¼ df1ðRÞ=dR, and to the cosmic time,
respectively.
A general fðR; TÞ model gives rise to a deviation from

the usual conservation law, implying in the following form
for the continuity equation:

_ρþ3Hρð1þwÞ¼−
1

κ2þf02

�
ð1þwÞρ _f02þw_ρf02þ

1

2
_f2

�
;

ð10Þ
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where w is the parameter of the equation of state, which for
a barotropic fluid is given by p ¼ wρ. Notice that (8), (9),
and (10) form a system of three independent differential
equations. The fourth-order derivatives of the metric
appearing in these equations, f̈01, enhances the arising of
new degrees of freedom in fðR; TÞ theory, so that along
with the variables a and ρ, it is also necessary to consider ä
as an independent variable in order to provide a solution for
such a system of equations.
The covariant conservation ofTμν is an essential feature of

GR, which manifests as an immediate consequence of the
diffeomorphism invariance of the theory. So, it is expected
that any classical gravitational theory shall in principle obey
such a requirement as well. In the context of interacting dark
energy models, a local violation of ∇μTμν ¼ 0 may be
allowed bymeans of a possible exchange of either energy or
momentum (or both) between the two dark components.
Nonetheless, even in these models this exchange occurs in
such a way as to preserve the conservation of the total dark
fluid. Differently, Eq. (10) shows a nonconservation of the
matter-energy content as a whole, revealing a significant
drawback of this class of fðR; TÞ theories. In light of this, in
[5] the authors imposed by hand the fulfillment of (10) by
setting to zero the expression inside the bracket, e.g.
ð1þ wÞρ _f02 þ w_ρf02 þ 1

2
_f2 ¼ 0. By using a chain rule,

one can get rid of the time derivatives and write this
constraint condition as a second order differential equation
for the function f2ðTÞ, whose integration provides a solution
in the form

f2ðTÞ ¼ σT
3wþ1
2ðwþ1Þ þ σ0; ð11Þ

where σ and σ0 are integration constants. We may avoid the
trivial case f2ðTÞ ¼ const by assuming the necessary
condition ω ≠ −1=3. Also, ω ≠ þ1=3 is adopted in order
to assure that T ≠ 0. Considering a dustlike matter, for
which ω ¼ 0, the solution above becomes

f2ðTÞ ¼ σT
1
2 þ σ0: ð12Þ

The authors then argued that this model should represent the
only viable fðR; TÞ theory, as it constitutes the only case in
which the standard conservation law is preserved, which
implies automatically ruling out anyone else. This result
imposes a stringent restriction on the fðR; TÞ gravity. They
used such a viable fðR; TÞ model to study the linear
evolution of matter density perturbations within the sub-
Hubble regime, assuming a quasistatic approximation.1

However, they found an inconvenient scale dependence
for the dynamics of the perturbations which would strongly
disagree with expected results, but not properly comparing

such a prediction with data. Nevertheless, Ref. [5] already
brings the message that fðR; TÞ theories are disfavored.
Our purpose in this work aims to reinforce at background

level the difficulties these fðR; TÞ theories showed to
experience at the perturbative regime, which can undermine
them as a viable way out to explain the observed universe.

III. THE USUAL CHOICES FOR f ðR;TÞ
As mentioned in the previous section, we will concen-

trate our attention on the fðR; TÞ theories obeying the form

fðR; TÞ ¼ f1ðRÞ þ f2ðTÞ: ð13Þ

The simplest and most trivial choice for the R dependence
corresponds to the Einstein-Hilbert f1ðRÞ ¼ R term. This is
the way to study how the material corrections given by
f2ðTÞ promote deviations from GR. With the following
choice:

fðR; TÞ ¼ Rþ λT þ γnTn; ð14Þ

we can cover most of the proposed f2ðTÞ functions in the
literature. The parameters λ and γn are arbitrary constants.
The subscript appearing in γn refers to the respective
powers of the term Tn in (14).
Given f1ðRÞ ¼ R, let us recall that the departure from

GR encoded in (13) means a minimal coupling between the
curvature and the energy-momentum tensor, so that the
presence of matter fields constitutes an essential condition
for the effects of the modification of gravity to be
perceived. So, there are two possible ways to recover
GR from (14): setting the coefficients λ and γn to zero or
merely considering the vacuum case, T ¼ 0. But, notice
that the latter case is degenerated with the choice ω ¼ 1=3.
Besides, it is easy to notice that the GR plus the cosmo-
logical constant can be obtained by fixing n ¼ 0 along with
λ ¼ 0 and γ0 ¼ 2Λ. So, in order to ensure that fðR; TÞ
behaves as a regular function at the vacuum limit (which as
mentioned above shall coincide with the GR vacuum), it is
reasonable to assume positiveness for the powers of T,
i.e., n ≥ 0.
Given the barotropic equation of state p ¼ wρ the

background expansion in a FLRW universe can be written
in terms of the fractionary density Ω ¼ ρ=ρc0, where the
critical density reads ρc0 ¼ 3H2

0=κ
2,

H2

H2
0

¼ Ωþ 3

2
λ̄

�
1 −

w
3

�
Ω

þ γ̄n

�
ð1þ wÞnð1 − 3wÞn−1 þ ð1 − 3wÞn

2

�
Ωn; ð15Þ

where we have defined the constants λ and γn, in terms of
new dimensionless parameters

1This means to neglect all the time derivatives of the Bardeen
potentials present in the perturbative equations.
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λ̄ ¼ λ

κ2
; γ̄n ¼

γnð3H2
0Þn−1

κ2n
: ð16Þ

In the standard cosmology one considers pressureless
matter p ¼ 0, and then Ω ¼ Ω0a−3 where the scale factor
today is set to the unity a0 ¼ 1. In a flat ΛCDM cosmology
Ω0 ¼ 0.3 and ΩΛ ¼ 0.7.
It is barely noticed in the literature that expansion (15)

imposes the following constraint on Ωðz ¼ 0Þ ¼ Ω0:

1 ¼ Ω0 þ
3λ̄

2

�
1 −

w
3

�
Ω0

þ γ̄nΩn
0

�
ð1þ wÞnð1 − 3wÞn−1 þ ð1 − 3wÞn

2

�
: ð17Þ

Therefore, the usual interpretation of the parameter Ω0 as
being a fraction of today’s critical density of the fluid does
not trivially apply when λ̄ ≠ 0 or γ̄n ≠ 0, though since
energy density is a positive definite quantity, the require-
ment Ω0 > 0 imposes lower bounds on the λ̄ and γ̄n values.
Since fðR; TÞ theories are supposed to explain the

accelerated expansion, i.e., the dark energy phenomena,
we assume for simplicity that ρ represents the total matter
distribution. It is a reasonable approximation to neglect
now the 5% contribution in the baryonic sector.
It is also worthwhile to point out that modified gravity

theories can be recast in the standard GR form such that
Rμν − ð1=2ÞRgμν ¼ κ2ðTm

μν þ TeffDE
μν Þ where all the new

geometrical terms (appearing on the left-hand side) are
grouped (on the right-hand side) to form an effective dark
energy contribution TeffDE

μν . According to this, Eq. (15)
reads H2=H2

0 ¼ ΩþΩeffDE. This is a standard procedure
in fðRÞ theories, for example. In fðR; TÞ, however, such
decomposition is not useful since such effective dark
energy density would still be coupled to the actual matter
field, i.e., ΩeffDE ≡ΩeffDEðΩÞ. Therefore, one cannot
constrain the theory from a bound such that Ωeff

DE > 0 since
this is degenerated with the Ω0 value.
In the standard cosmology, the temporal dependence of

the density ρ in a FLRW universe is found via the usual
conservation law ∇μTμν ¼ 0 → _ρþ 3Hðρþ pÞ ¼ 0.
Rather than, in fðR; TÞ, from (10)

_Ωþ 3HΩð1þ wÞ ¼ − _Ω
1þ λ̄þ nγ̄nΩn−1ð1 − 3wÞn−1

×

�
λ̄ð1 − wÞ

2
þ nγ̄nΩn−1ð1 − 3wÞn−1

×

�
2nð1þ wÞ − ð1þ 3wÞ

2

��
: ð18Þ

With the choice (14) we identify the following
submodels:

(i) Model I: fðR; TÞ ¼ Rþ λT with (γn ¼ 0);
(ii) Model II: fðR; TÞ ¼ Rþ γ2T2 with (λ ¼ 0);

(iii) Model III: fðR; TÞ ¼ Rþ γ1=2T1=2 with (λ ¼ 0);
(iv) Model IV: fðR; TÞ ¼ Rþ λT þ γ2T2 with (λ ≠ 0

and γ2 ≠ 0).
We proceed to compare the background expansion

in fðR; TÞ models with observational data. We investigate
now whether the cosmologies provided by models I, II,
and III pass the test of describing available background
data. For Figs. I, II, and III we use typicalHðzÞ data obtained
from the differential evolution of cosmic chronometers
[galaxies that are assumed to passively evolve and therefore
provide a direct estimate of HðzÞ ¼ −1=ð1þ zÞdz=dt ≅
−1=ð1þ zÞΔz=δt] [12]. The data points shown in these
figures consist of 28 data points listed in [13].
Model I is the simplest version of fðR; TÞ gravity and the

most common one in the literature. It is worth noting that
the energy density is a positive definite quantity and
therefore ΩðzÞ > 0, ∀z. Therefore, from (17) one sets
the bound

1 ¼ Ω0

�
1þ 3λ̄

2

�
1 −

w
3

��
→ λ̄

�
1 −

w
3

�
> −

2

3
: ð19Þ

For the pressureless case, as expected in a pure cold dark
matter (CDM) scenario, λ̄ > −2=3.
The left (right) panel of Fig. 1 shows the evolution of

the expansion rate with the redshift for model I (II).
The inset of this figure amplifies the low-z region. The
HðzÞ data used here lie in the range 0 < z < 2. All curves
assume the reference value H0 ¼ 70 km=s=Mpc and
pressureless matter fluid w ¼ 0. Since the theory parameter
λ̄ is fixed, condition (19) determines theΩ0 value. The solid
black line represents the standard flat ΛCDM model
H2

ΛCDM ¼ H2
0½0.3ð1þ zÞ3 þ 0.7�. The dashed black line

shows the pure matter dominated Einstein–de Sitter uni-
verse H2

EdS ¼ H2
0ð1þ zÞ3. We also show the expansion in

model I for the values λ̄ ¼ −0.1 (red line) and λ̄ ¼ 1.5 (blue
line). The EdS expansion is achieved with λ̄ ¼ 0. It is worth
noting that one could promote a reasonable fit of data by
adopting large λ̄ values. However, such a choice would lead
to a pathological behavior for high redshifts. Therefore, a
statistical analysis leading to the “best-fit” parameters
would hide the inviability of the model as a whole. In
order to assess the transition to the accelerated expansion
phase we should calculate the deceleration parameter
qðzÞ ¼ −1 − _H=H2. Calculating this quantity for model I,

qIðzÞ ¼
1

2þ 3λ̄
; ð20Þ

which is a constant value. Therefore, since the current
acceleration expansion epoch is a well established model
independent observational fact (see, e.g., [4]), we conclude
that as model I does not provide the transition from
deceleration to an accelerated phase it should be ruled out.
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The background expansion for model II is shown in the
right panel of Fig. 1. Again, by calculating the deceleration
parameter in this case we find

qIIðzÞ ¼
1þ γ̄2Ω
2þ 5γ̄2Ω

; ð21Þ

which remains positive for all γ̄2 > 0 values. Therefore, we
conclude once more that model II should also be ruled out
as a viable alternative.
We focus now on model III and show the results in

Fig. 2. In this case the usual conservation law forΩ applies,

i.e., the right-hand side of (18) vanishes. Again, the
Einstein–de Sitter evolution is recovered by setting
γ̄1=2 ¼ 0. Contrary to models I and II, the deceleration
parameter in model III depends on time

qIIIðzÞ ¼
2Ω −Ω1=2γ̄1=2
4ðΩþ Ω1=2γ̄1=2Þ

; ð22Þ

and we have verified that the transition to acceleration
occurs for any γ̄1=2 > 1.2. According to (17) the parameters
are related via the expression

FIG. 1. Background expansion as a function of the redshift. The observational data plotted are obtained from the cosmic chronometers
technique. The ΛCDM expansion is plotted in the solid black line and the Einstein–de Sitter (Eds) expansion in the dashed black line.
The inset of the figure amplifies the low-z region. Left: Model I. Right: Model II.

FIG. 2. Model III: In the left panel the background expansion as a function of the redshift is shown. The observational data plotted are
obtained from the cosmic chronometers technique. The ΛCDM expansion is plotted in the solid black line and the Einstein–de Sitter
(EdS) expansion in the dashed black line. The red line assumes γ̄1=2 ¼ 2, and the blue line assumes γ̄1=2 ¼ 3. The inset of the figure
amplifies the low-z region. In the right panel the distance modulus relation is shown with the JLA Supernovae data. The same colors
apply in both panels.
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1 ¼ Ω0 þ γ̄1=2Ω
1=2
0

wþ 2

2ð1 − 3wÞ1=2 : ð23Þ

Since model III cannot be discarded immediately as the
previous cases we proceed with a more robust data
comparison using the Supernovae data. In the right panel
of Fig. 2 we plot distance modulus μ,

μ¼ 5log10

�
dL

10pc

�
with dL ¼ð1þ zhelÞc

Z
zcmb

0

dz0

Hðz0Þ ;

ð24Þ

where c is the speed of light and zcmb and zhel are,
respectively, the CMB rest frame and the heliocentric
supernovae redshifts. We have also defined the luminosity
distance dL. The data are taken from the Joint Light-Curve
analysis (JLA) data set [14] where the observed distance
modulus is defined according to

μobs ¼ m⋆
B −MB þ α × X1 − β × C; ð25Þ

where m⋆
B is the B band rest-frame observed peak magni-

tude, C describes the Supernova color at maximum bright-
ness, X1 describes the time stretching of the light curve, and
the MB is the absolute B-band magnitude (see more details
in [14]). The parameters α and β are free and should be
determined with the proper statistical analysis.
In both panels of Fig. 2 we plot the ΛCDM model in the

solid black line and the cases γ̄1=2 ¼ 2 (red line) and γ̄1=2 ¼
3 (blue line). In the low-z region, the larger the parameter
γ̄1=2, the closer model III is to the ΛCDM. The left panel
shows, on the other hand, the contrary behavior on larger
redshifts.
We have also calculated the age of the Universe in each

configuration of model III, and the results are compatible
with the standard model. While the age of the Universe is
estimated as 13.7 Gy in the ΛCDM model, we find
13.4 Gy for γ̄1=2 and 14.5 Gy for γ̄1=2 ¼ 3.
Finally, we are to add a brief discussion about model IV,

arguing why it in fact fails to provide an accelerated
universe as we observe today, despite the claims raised
in [11]. As we did for the previous cases, here we found the
following deceleration parameter:

qIVðzÞ ¼
1þ γ̄2Ω

2þ 3λ̄þ 5γ̄2Ω
: ð26Þ

Besides, for this model the constraint (17) reduces to the
form

5

2
γ̄2Ω2

0 þ
�
1þ 3λ̄

2

�
Ω0 − 1 ¼ 0: ð27Þ

In [11] the authors show a transition from the decelerated
to the accelerated stage when fixing properly the free

parameters of the model. We can translate the model’s
parameters they used into the dimensionless ones (16)
adopted in our work. In doing so, we shall see that for λ̄ this
mapping leads to the choice λ̄ ¼ −2=3. It is easy to notice
that using this λ̄’s value in (27) one brings up the relation

Ω0 ¼
ffiffiffiffiffi
2
5γ̄2

q
, which obliges the γ̄2’s sign to be positive, as

the density parameter today is obviously a real (and
positive) number. Substituting λ̄ ¼ −2=3 in (26) we are
left with a new deceleration parameter in the form

~qIVðzÞ ¼
1þ γ̄2Ω
5γ̄2Ω

: ð28Þ

Since ΩðzÞ as well as the model parameter γ̄2 have to be
positive, the ~qIVðzÞ must also be positive for all z, which
describes a decelerated universe which cannot transit to an
accelerated phase. This result contradicts what the authors
have found in [11], where they assert to have achieved such
a transition for model IV. However, we noticed that such a
conclusion is a consequence of a mistake in the evolution
equation for the scale factor, which makes them end up
with a wrong solution for aðtÞ and hence an incorrect
deceleration parameter.
In the Appendix we can see in more detail how this

mistake has constituted a crucial factor for the result they
obtained. Besides, we show that by fixing this error and
computing the correct deceleration parameter, we get a
cosmology in which the universe is unable to transit from a
decelerated to an accelerated stage, confirming what is
expected from (28) as discussed in the previous paragraph.

IV. FðR;TÞ AS AN ALTERNATIVE FOR
DARK MATTER

Recently, Ref. [15] investigated fðR; TÞ theories in the
context of galactic rotation curves. Then, this is a clear
attempt to solve the dark matter problem via a modified
gravity theory. Following such a perspective we ask now
whether fðR; TÞ theories can also afford an explanation for
the cosmological dark matter effect on the background
expansion. Let us consider a late time cosmological model
with its total energy momentum tensor composed uniquely
by the known pressureless baryonic component, i.e.,
Tμν ¼ Tμν

b . The accelerated expansion is therefore achieved
by including a Λ-like effect on the expansion with the help
of the choice n ¼ 0. Then, expansion (15) is rewritten as

H2

H2
0

¼ Ωb þ
3

2
λ̄0Ωb þ

γ̄0
2
: ð29Þ

Notice that γ̄0 plays the role of the cosmological constant.
The conservation law for the baryonic energy density
obeys to
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_Ωb þ 3HΩb ¼
−λ̄0

2ð1þ λ̄0Þ
_Ωb: ð30Þ

Keeping the conservative side, we also assume that the
baryonic sector is constrained byBang Bang nucleosynthesis
results leading to today’s fractionary density Ωb0 ¼ 0.04.
The deceleration parameter in this scenario is written as

qðzÞ ¼ 1

2

1 − γ̄
Ωb

1þ 3λ̄0
2
þ γ̄

2Ωb

; ð31Þ

and it does lead to a transition to the accelerated phase.
In Fig. 3 we plot the background expansion in this case.

It is worth noting the disagreement with the expected pure
dustlike behavior H ∼ ð1þ zÞ3=2 on large redshifts.

V. FINAL DISCUSSION

In this paper the viability of the fðR; TÞ models in the
cosmological realm was discussed. We employed such
theories to address the two main dilemmas of the modern
cosmology—the dark energy and dark matter. As such, we
replaced such dark components by fðR; TÞ-like modifica-
tions of the standard gravity. Among many possible shapes
for fðR; TÞ we selected those that are often used in the
literature whose forms can be encoded in the choice
fðR; TÞ ¼ Rþ λT þ γnTn. This choice branches off into
models I, II, III, and IV presented in the third section of this
article. Model III (λ ¼ 0 and n ¼ 1=2) is particularly
interesting as it is the only one which obeys the usual
continuity equation. Aiming at providing a description for
the cosmological background consistent with the observed

cosmic acceleration we have confronted these models with
HðzÞ data, and for model III we have reinforced our
analysis by making a comparison with Supernovae data.
While the HðzÞ analysis shows a visible consistency of
models I and II withΛCDMat low redshifts, it is noticed that
a significant deviation of these models from the standard
scenario as one goes into the past, evidencing clear obstacles
faced by such a class of fðR; TÞ theories in describing
correctly the cosmological evolution as a whole. Besides,
these difficulties become more evident when we compute
the deceleration parameter for either model: both show up
unviable as they lead to universes without a transition from a
decelerated stage to an accelerated one, as it is expected for
any cosmology compatible with the observational predic-
tions. We consider that this is enough to rule out these
models as viable scenarios for cosmology. On the other
hand, model III manifests such a deceleration-acceleration
transition, coming up as a possible route toward a realistic
cosmological picture. Insisting on the model III study, we
have verified that its disagreement with both the HðzÞ and
Supernovae data increases at higher redshift regimes,
whereas it is less notable at lower redshifts. However, even
this case presents an inconvenient behavior when compared
with the data: while at very low-z this model approaches the
ΛCDM for increasing values of the coefficients γ̄1=2, this
pattern reverses at high-z (z≳ 2) and the model gets closer
and closer to the standard cosmology as the parameters γ̄1=2
assume lower and lower numerical values. Besides, using
the Supernovae data set one observes a slight departure from
the data for larger redshifts. These incongruencies indicate a
serious disadvantage of model III, showing its failure in
providing a consistent description of the background
dynamics. Furthermore, for model IV we have shown in

FIG. 3. The background expansion as a function of the redshift is shown for the case FðR; TÞ replacing the dark matter sector, Eq. (29).
The observational data plotted are obtained from the cosmic chronometers technique. The ΛCDM expansion is plotted in the solid black
line and the Einstein–de Sitter (EdS) expansion in the dashed black line. The red line assumes λ̄0 ¼ 10 and the blue line assumes λ̄0 ¼ 5.
The right panel amplifies the low-z region.
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detail that the supposed deceleration-acceleration transition
claimed in the literature is an incorrect result.
Then, we have also investigated the viability of an

alternative hypothesis, according to which the dark matter
is interpreted as a natural consequence of a fðR; TÞ theory,
while the cosmic increase in speed keeps being driven by a
cosmological constant. We have concentrated on the case
n ¼ 0 in (14) and verified that for such an assumption the
HðzÞ evolution shows a strong contradiction with the
corresponding data set when one looks at larger redshifts.
Our analysis challenges the fðR; TÞ explanations of the DM
phenomena. But this result applies only to the particular way
we have conceived Eq. (29).
In fact, we have pointed out in this work difficulties that

fðR; TÞ gravity present when one tries to realize the usual
cosmic expansion. It was possible to build up new models
by adding either extra fields (e.g. radiation, neutrinos, or
scalar fields) or other types of fðR; TÞ functions and testing
the viability of them.
Also, concerning the dark matter description via fðR; TÞ

gravity, it is important to realize that the background
expansion does not reach an Einstein–de Sitter evolution
on large redshifts. Then, the standard matter dominated
expansion is not achieved and structure formation can be
affected. However, results from Ref. [5] indicate a tendency
for a wave number dependent super matter agglomeration
for fðR; TÞ theories when compared to the standardΛCDM
scenario; i.e., the nonlinear stage is reached much earlier in
the fðR; TÞ case. Perhaps, this trend can be compensated by
the faster background expansion (z ≫ 1) found in Fig. 3
leading to a viable scenario. A careful analysis is demanded
here, and we leave this investigation for a future work.
Finally, it is worth noting that the approach we have

employed in this work can immediately be extended to
similar theories like FðR; TϕÞ [2] and FðR; T; RμνTμνÞ [16].
This analysis should appear in future works.
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APPENDIX: COMPUTING THE CORRECT
DECELERATION PARAMETER FOR λ̄= − 2=3
For the sake of comparison with Ref. [11], let us express

model IV as fðR; TÞ ¼ Rþ αT þ βT2. For this theory,
considering p ¼ 0, it is straightforward to see that Eqs. (8)
and (9) turn out to be

3

�
_a
a

�
2

¼ 8πGρþ 1

2
ð3αþ 5βρÞρ ðA1Þ

and

2
ä
a
þ
�
_a
a

�
2

¼ 1

2
ðαþ βÞρ; ðA2Þ

which coincide with Eqs. (4) and (5) of [11] for dust. Then,
let us resort to the same fixing they assume for this model in
which α ¼ − 16πG

3
, which leads the equation above to a

simpler form

3

�
_a
a

�
2

¼ 5β

2
ρ2; ðA3Þ

and

ä
a
þ 1

5

�
_a
a

�
2

¼ −
4πG
3

ρ: ðA4Þ

The next step is to employ (A3) to write ρ in terms of the

scale factor and its first time derivative as ρ ¼
ffiffiffiffi
6
5β

q
ð _aaÞ.

Then using it in (A4) we obtain

ä
a
þ 1

5

�
_a
a

�
2

¼ −
4πG
3

ffiffiffiffiffi
6

5β

s �
_a
a

�
: ðA5Þ

Let us note that this equation is different from the one
obtained in [11].2 By multiplying (A5) by a= _a, we can
express this equation as follows:

d
dt

�
ln _aþ 1

5
ln a

�
¼ −α1; ðA6Þ

where we have defined α1 ≡ 4πG
3

ffiffiffiffi
6
5β

q
. Integrating (A6) we

find the following solution:

aðtÞ ¼ a0ðe−α1t − 1Þ5=6: ðA7Þ

Here we have fixed one of the integration constants by
assuming the initial condition að0Þ ¼ 0. As expected we
obtained a distinct scale factor which by turn shall yield a
different deceleration parameter

q̂IVðtÞ ¼ −1þ 6

5
eα1t: ðA8Þ

Since the argument of the exponential factor is always
positive, the second term on the left-hand side shall remain
greater than 1, for every value of α1 and for every instant of
time. Thus, no deceleration-acceleration transition is
observed for this case, contrary to what the authors in
[11] claimed, but in accordance with what we argue in
Sec. III.

2See Eq. (7) of that reference which seems to be incorrect.
Moreover, let us notice that this equation shows a summation
between two terms with incompatible units.
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