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Discordance in the Λ cold dark matter cosmological model can be seen by comparing parameters
constrained by cosmic microwave background (CMB) measurements to those inferred by probes of large
scale structure. Recent improvements in observations, including final data releases from both Planck and
SDSS-III BOSS, as well as improved astrophysical uncertainty analysis of CFHTLenS, allows for an
update in the quantification of any tension between large and small scales. This paper is intended, primarily,
as a discussion on the quantifications of discordance when comparing the parameter constraints of a model
when given two different data sets. We consider Kullback-Leibler divergence, comparison of Bayesian
evidences and other statistics which are sensitive to the mean, variance and shape of the distributions.
However, as a byproduct, we present an update to the similar analysis in [R. A. Battye, T. Charnock, and A.
Moss, Phys. Rev. D 91, 103508 (2015)], where we find that, considering new data and treatment of priors,
the constraints from the CMB and from a combination of large scale structure (LSS) probes are in greater
agreement and any tension only persists to a minor degree. In particular, we find the parameter constraints
from the combination of LSS probes which are most discrepant with the Planck2015þ Polþ BAO
parameter distributions can be quantified at a ∼2.55σ tension using the method introduced in [R. A. Battye,
T. Charnock, and A. Moss, Phys. Rev. D 91, 103508 (2015)]. If instead we use the distributions constrained
by the combination of LSS probes which are in greatest agreement with those from Planck2015þ Polþ
BAO this tension is only 0.76σ.
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I. INTRODUCTION

Λ cold dark matter (ΛCDM) is an extremely successful
cosmological model based on general relativity with
components of dark energy and cold dark matter, in
addition to baryonic matter. It predicts baryon acoustic
oscillations (BAO), the periodic fluctuations in the density
of visible matter, as well as the polarization and gravita-
tional lensing of photons. The evolution of ΛCDM is
imprinted in the cosmic microwave background (CMB)
radiation, relic light from the epoch of recombination, and
in the large scale structure (LSS) of the Universe and can be
measured by a host of different techniques. ΛCDM can be
quantified by just six cosmological parameters [1]: the
physical densities of baryonic and cold dark matter Ωbh2

and Ωch2, the angular diameter of the CMB acoustic scale
ΘMC, the amplitude of the curvature density fluctuations As,

the scalar spectral index ns, and the optical depth to
reionization τ.
Measurements from the CMB or LSS can be used to

constrain the ΛCDM parameters from which all other
derived parameters can be calculated, e.g. the Hubble
parameter, the physical density of matter or the amplitude
of density fluctuation at a scale of 8h−1 Mpc, H0, Ωm and
σ8 respectively. Indications of a discrepancy between
constraints of the ΛCDM parameters when using either
the CMB or LSS probes could show that physics may
deviate from vanilla ΛCDM, i.e. with no additional
physics. It has been widely noted [2–16] that probes of
LSS suggest the joint values of Ωm and σ8 do not seem to
agree with those obtained using the CMB. In particular, the
constraints from LSS imply that there is too little small-
scale structure when compared to the constraints from
measurements of the CMB.
In [17] we analyzed the discrepancy which arises in each

of the five relevant ΛCDM parameters when using mea-
surements of the CMB and observations of LSS available at
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that time. The CMB measurements were obtained using
the Planck2013 temperature anisotropies [18] combined
with WMAP polarization (WP) [19] and baryon acoustic
oscillation (BAO) results from the third Sloan Digital Sky
Survey (SDSS-III) experiment, Baryon Oscillation
Spetroscopic Survey (BOSS) DR9 [20], as well as the
6dF Galaxy Survey [21] and the SDSS DR7 Main Galaxy
Sample [22]. A host of large scale structure probes were
used in [17], such as weak lensing from the Canada-France-
Hawaii Telescope Lensing Survey (CFHTLenS) [23],
lensing of the CMB from the Planck lensing analysis
[24], redshift-space distortions (RSD) from SDSS-III
BOSS DR11 [25] and Sunyaev-Zel’dovich (SZ) galaxy
cluster counts [2]. By placing Gaussian priors from
Planck2013 on ΘMC and ns in the Markov-chain
Monte Carlo (MCMC) analysis from COSMOMC [26],
constraints using a combination of all the LSS probes
could be obtained. By comparing the joint probability
distribution for the five ΛCDM parameters from both the
CMB and LSS we were able to state that this tension was in
excess of 5σ. This lead to the consideration of extensions to
ΛCDM to reduce the power of density fluctuations on small
scales only. This included adding either an active or sterile
neutrino component, or modifying the tilt of the primordial
power spectrum. By including these modifications to the
model, the tension between the parameters obtained from
the CMB and from LSS decreased to ∼2σ reducing the
discrepancy by a large amount, although not alleviating it
totally. This came with a reasonably significant nonzero
mass of active or sterile neutrinos, which was discrepant
with the result obtained by Planck [18].
This paper is primarily concerned with studying various

methods to quantify any discrepancy which arises when
two data sets predict different parameter values from the
same model. In Sec. II we review (not exhaustively)
different measures that can be used to interpret these
discordances. We also define two methods which are not
used in the literature which are robust in a wide variety of
situations. A detailed explanation of how each of these
measures perform when applied to a range of different
probability distributions is presented in Appendix A. In
Sec. III we will introduce the data used to constrain the
ΛCDM parameters. Finally, in Sec. IV the remaining
discordance between ΛCDM parameters when measured
using the CMB and a combination of LSS probes is
updated. We quote the amount of disagreement using the
measures introduced in Sec. II and comment on how each
of them can be interpreted. Finally in Sec. V, extending
ΛCDM with neutrino content is discussed, as is a note on
how the impact of the most recent Planck20161 analysis
may affect the results.

II. QUANTIFYING DISCREPANCY

The probability distribution PðθÞ of the five relevant
ΛCDM parameters, excluding τ which is only constrained
by the CMB, is a complicated 5D, not-necessarily Gaussian,
function. When constraining the parameters using the CMB
only, one distribution PðθjCMB;ΛCDMÞ is found and a
second, supposedly similar, distribution PðθjLSS;ΛCDMÞ,
can be derived from constraints using LSS. Since each of
these distributions are difficult to quantify in a simple way,
any comparisonbetween them is also complicated.Anumber
of different measures are used to give a simple, generally
“single-numbered,” quantification of any differences
[27,28], where [29–31] are particularly used in cosmology
and astronomy. The way each of these measures are
interpreted can lead to confusing statements about any
discordance and so a thorough discussion of a few of the
major methods is laid out here. Detailed descriptions of each
method, using some simple distributions, can be found in
Appendix A in order to help guide the reader.
Consider the posterior distributions P1ðθÞ≡ Pðθjd1;MÞ

and P2ðθÞ≡ Pðθjd2;MÞ for data d1 and d2, respectively,
parameters, θ, of a model M.
(1) Bhattacharyya distance. The Bhattacharyya distance

[28] compares the probability distributions from
each model at a given parameter value

B ¼
Z

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ðθÞP2ðθÞ

p
: ð2:1Þ

B ¼ 1 indicates two identical distributions while
B≳ 0 for disparate distributions with values in
between indicating the level of tension. If one of
the distributions is particularly broad compared to
the other then this will give a low Bhattacharyya
distance value meaning the distributions are dis-
tinctly different. This is true even if the peaks of the
distributions are identical. The Bhattacharyya dis-
tance is not used in a cosmological context since the
variance of the posterior distribution given LSS data
is often much wider than when using measurements
of the CMB. It is, however, easy to understand and
aids in comprehension of comparisons between
posterior distributions.

(2) Overlap coefficient. The overlap coefficient [27]
works in a similar way to the Bhattacharyya dis-
tance. In this case the quantity obtained is given by

O ¼
Z

dθMin½P1ðθÞ; P2ðθÞ�: ð2:2Þ

As with B, two identical distributions have O ¼ 1
and nonoverlapping distributions have O ¼ 0. The
scale of difference between 0 < O < 1 is not the
same as the Bhattacharyya distance, with the overlap
coefficient taking lower values for the same pair of

1The MCMC chains or likelihood analysis for Planck2016 was
not available at the time of submission.
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differing distributions. Again broader distributions
are indicated as being in tension, even with identical
distribution peaks. This is also not often used for
cosmological comparison.

(3) Difference vector. This measure, introduced in [17]
and inspired by the two sample T-test [32], involves
calculating the difference between the parameter
ranges from the first and second probability distri-
butions and creating a new probability distribution
from the difference vector

PðδθjD1; D2;MÞ ¼
Z

dθ0P1ðθ0ÞP2ðθ0 − δθÞ:

ð2:3Þ

Here δθ ¼ θ1 − θ2, where θ1 and θ2 are the allowed
values of the parameters from the distributions from
data d1 and data d2, thus P2ðθ1 − δθÞ≡ P2ðθ2Þ.
This convolution effectively shifts the mean
of the new distribution to the difference in the
means of the original two distributions, μδθ ¼
μθ1 − μθ2 , with parameters spanning a range from
μδθ −Min½θ1; θ2� to μδθ þMax½θ1; θ2�. For conven-
ience Pðδθjd1;d2;MÞ is denoted PðδθÞ. A quanti-
fication of the disagreement between the
distributions is obtained by integrating this new
distribution within the isocontour formed by the
value of the probability distribution function at
δθ ¼ 0,

C ¼
Z
A
dδθPðδθÞ; ð2:4Þ

where

A ¼ fδθjPðδθÞ > Pð0Þg: ð2:5Þ

In [17] samples were taken from MCMC chains and
analyzed, giving means for each parameter and a
covariance matrix for each distribution. The covari-
ance matrices were then combined using the law of
total covariance [33]. This combined covariance was
used to form a multivariate Gaussian distribution
centered at the difference in the means of the
parameters obtained from the COSMOMC analysis
of the MCMC chains. In this paper the difference
between the samples in the chains are used directly
to form the probability distribution. This means that
any non-Gaussianity of the distributions is taken into
account.
As a single unit measure this does a good job of

indicating disagreements between distributions. It
can be interpreted easily since C is a measure of the
fraction of samples within a bounded area. This area
is arbitrary and choosing δθ ¼ 0 is not essential.

Of course, the measure cannot fully describe the
complexity of both of the entire probability distri-
bution functions P1ðθÞ and P2ðθÞ. Using more
parameters can help give greater understanding.

(4) Integration between intervals. Using two numbers
to quantify the similarities and differences between
probability distributions can provide more informa-
tion. By integrating each of the probability distribu-
tions within a given interval of the other distribution,
the total level of agreement can be quantified. The
two useful numbers here are

I1 ¼
Z
A2

dθP1ðθÞ ð2:6Þ

I2 ¼
Z
A1

dθP2ðθÞ; ð2:7Þ

where

Ai ≡
�
θj
Z

dθPiðθÞ ¼ 0.997

�
: ð2:8Þ

I1 is obtained by integrating the probability distri-
bution P1ðθÞ within the θ isocontour of the proba-
bility distribution P2ðθÞ which would contain 99.7%
of the samples drawn from it. I2 is obtained in exactly
the sameway, exchanging the probability distribution
P1ðθÞ for P2ðθÞ. This measure is particularly useful
since I1 and I2 can be directly related to samples
obtained via MCMC analysis. The limit chosen for
the integration interval is arbitrary. If the interval is
chosen to measure the amount of P1ðθÞ within the
isocontour which contains 68.4% of P2ðθÞ then, if
I1 ¼ 0, the tension could be interpreted as being
greater than 1σ. We have chosen to consider iso-
contours containing 99.7% of the samples from each
distribution. If I1 ¼ 0 when integrated within the
bounds containing 99.7% of the samples drawn from
P2ðθÞ then P1ðθÞ would be considered to be in > 3σ
tension with P2ðθÞ. Although computationally in-
tensive, this method can be used to quantify an exact
tension by increasing the integration limits of one of
the distributions until the integral of the other dis-
tribution was no longer zero. This procedure is not
performed in Sec. IV due to computational resources.

(5) Surprise. Another method which compares one
distribution to another giving two measures is that
used in [15,31]. Here the relative entropy (Kullback-
Leibler divergence) is found when P2ðθÞ is used as
an update to P1ðθÞ and is given by

DðP2ðθÞ∥P1ðθÞÞ ¼
Z

dθP2ðθÞ log
P2ðθÞ
P1ðθÞ

: ð2:9Þ
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An expected relative entropy can be found using

hDi ¼
Z

dd2

Z
dθDðP2ðθÞ∥P1ðθÞÞpðd2Þ ð2:10Þ

where pðdiÞ is the evidence given data di,

pðdiÞ ¼
Z

dθPðdijθ;MÞpðθÞ: ð2:11Þ

Pðdijθ;MÞ is the likelihood of the data di given
parameters θ and a modelM, where the index i ¼ 1,
2 denotes which data set is used. pðθÞ is the prior on
the parameters θ. The expected relative entropy is
therefore the mean of the prior distribution of
DðP2ðθÞ∥P1ðθÞÞ given new data d2. By comparing
the difference of the relative entropy to the expected
relative entropy a quantity (which is named surprise
in [31]) can be calculated

S ¼ DðP2ðθÞ∥P1ðθÞÞ − hDi: ð2:12Þ

Using a combination of DðP2ðθÞ∥P1ðθÞÞ and S a
quantification of information gain due to different
distributions can be found. S should be close to
zero for data sets which are similar and can be
positive or negative. A positive “surprise” indicates
that the distribution used to update the original is
more different than expected. A negative surprise is
obtained when the updating distribution is in more
agreement than expected with the original distribu-
tion. This technique is particularly useful when
comparing the amount of surprise for a given
expected relative entropy. The results of which
can be quoted as a p value and interpreted as
how likely one distribution is to be in agreement
with the other.

(6) Quantification of Bayesian evidence. Other mea-
sures that have previously been discussed generally
involve comparisons of Bayesian evidences. The
most simple and commonly used was introduced in
[29]. This is given by

R ¼ pðd1;d2Þ
pðd1Þpðd2Þ

; ð2:13Þ

where, as in Eq. (2.11), pðdiÞ is the evidence given
data di. The numerator of Eq. (2.13) is given by

pðd1;d2Þ ¼
Z

dθPðd1jθ;MÞPðd2jθ;MÞpðθÞ:

ð2:14Þ

This is related quite closely to the Bhattacharyya
distance. R is the ratio of the evidence given both

data sets, to the evidence of each data set. The prior
assumptions of the parameter must be specified and
taken into account. Using logR, the results can be
interpreted on the Jefferys scale with logR > 0
indicating agreement and logR < 0 indicating
disagreement to some degree. This, as for the
Bhattacharyya distance and the overlap coefficient
methods, reveals a degeneracy between shifts in the
peaks of distributions and broadening of the var-
iances of distributions. The numbers from logR are
dependent on the choice of priors. As long as the
prior is stated along with analysis then the results
can be recreated and interpreted by the individual.

(7) Shifted probability distribution. Another measure,
used in [30], shifts one distribution (in a similar way
to the difference vector method) so that the maxima
of the two distributions coincide is then found. The
ratio of the joint evidences is

T ¼ pðd1;d2Þshifted
pðd1;d2Þ

: ð2:15Þ

Identical distributions have logT ¼ 0 and logT > 0
indicates deviations from similarity. The values of
logT do not directly map to a statistical significance
or a p value. Also, logT can be expected to be twice
as large when the dimensionality of the problem
increases by 2. This can either be corrected or taken
into consideration when interpreting the result.

Each of the measures described in this section indicate,
to some degree, whether or not two distributions agree or
disagree with each other. They do not each give the same
emphasis as to where tension arises.

(i) The Bhattacharyya distance, overlap coefficient and
quantification of Bayesian evidence give disagree-
ments arising from broadening of one distribution in
comparison to another. The difference vector, shifted
probability distribution, integration between inter-
vals and surprise methods take this broadening into
account.

(ii) The Bhattacharyya distance and overlap coefficient
have results which are difficult to interpret and do
not map to any useful scales.

(iii) The quantification of Bayesian evidence and shifted
probability distribution methods are prior dependent
and, out of the two, only logR can be interpreted on
the Jeffreys scale.

(iv) The surprise gives a variety of quantifications which
can be mapped to two p values, thus quantifying the
amount of disagreement when either distribution is
used to update the other.

(v) The difference vector relates the fraction of samples
within an arbitrary boundary formed by the samples
away from the difference in the means. It does not
capture all the information, but can be quoted as a
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single number by mapping C onto the interval
of the 1D Gaussian. Due to its construction, the
value of C matches the expected results when
comparing 2D likelihood contours, but extends to
higher dimensions.

(vi) Integration between intervals is more powerful than
using C for observing differences and it is easy to
understand each integral individually. However, the
combination needs to be taken into account to truly
describe how much tension is present between
distributions. This can lead to some confusion when
considering a broad distribution compared with a
tight one.

Another possible test to consider is calculating the p
value of combinations of data given a best-fit model.
Assuming that the Universe is described by a point in
ΛCDM parameter space, the p value would show the
probability of obtaining data with an equal or worse
likelihood compared to the real data. In fact, each of the
above measures could be interpreted using this method (as
is already, more usually, done with the surprise method).
The p value would describe, for a given set of the ΛCDM
parameters, how likely is it to obtain a more extreme
quantification from each method for different realizations
of the data. As the uncertainties in the data are encoded in
the uncertainties in the parameters and it is much more
efficient to perform the above tests using parameters rather
than taking realizations of nontrivial likelihoods we do not
considered finding the p value throughout this paper.
In Sec. III, the difference vector measure (3) will be used

for comparison of the constraints on ΛCDM parameters
derived from the CMB and individual LSS probes. This
represents an update of [17] on the basis of more recent data.
In Sec. IV, each of the other statistics will be calculated in
order to quantify the level of tension between the parameter
distributions from the CMB to LSSwith a discussion ofwhat
each implies. The probability distributions are complex and
multidimensional, and so care needs to be taken when
histogramming the samples from MCMC chains. These
distributions can often be sparsely sampled in the important
overlapping regions. Formeasures 1, 2 and4–7 the histogram
is made for a number of different bins and both with and
without Gaussian smoothing. The results quoted in Sec. IV
are the consensusvalues from this rangeof tests (which are all
quite similar in any case). For measure 3 the number of
samples from the chains is much greater since there are
NCMB × NLSS differences, where NCMB is the number of
samples from the CMB chains and NLSS is the number of
samples from the LSS chains. This is then histogrammed
with a range of bins and with and without Gaussian
smoothing to check that the results are robust.

III. DATA

In the time since [17] there has been a number of data
releases from CMB and LSS observations, as well as

improved data analysis taking into account astrophysical
uncertainty. Here, we consider updated versions of each of
the data sets used in [17] to reassess the quantification of
the tension in parameter constraints when obtained from the
CMB and by LSS probes. As in the Planck analyses [1],
ΛCDM is extended with a fixed neutrino mass

P
mν ¼

0.06 eV to account for the knowledge that neutrinos must
be massive due to results from oscillation experiments.

A. CMB

The temperature anisotropies and polarization of photons
from the CMB have been measured to an extremely high
resolution over the largest possible scales by Planck [34].
For brevity, we consider only one combination of CMB
measurements.
Planck2015þ Polþ BAO: We use the updated results

from the Planck2015 analysis. We include the temperature
(T), E-mode and T-E cross-spectra from Planck high
frequency instrument (HFI) for 29 < l < 2509 and T, E-
and B-mode spectra from Planck LFI for 2 < l < 29 [35].
We combine this with the measure of the BAO peak from
the 6dF Galaxy Survey [36] and the SDSS DR7 Main
Galaxy Sample [22] as in [17] and update the SDSS-III
BOSS result to the final DR12 CMASS and LOWZ [37]
result. The Planck2015þ Polþ BAO 2σ constraint con-
tours in the Ωm − σ8 plane can be seen in orange in Figs. 1
and 2 as well as in Fig. 5 where ΛCDM has been extended
to include active or sterile neutrinos. It should be noted that
when quoting the discrepancy between results from the
CMB and from LSS, it is the amount of disagreement in
the five applicable ΛCDM parameters, not the tension in
the two-dimensional Ωm − σ8 plane.
Large scale structure measurements of BAO are consid-

ered a sensible addition to the CMB data since the
clustering scale from both agree well [18]. The CMB
parameter distributions with BAO are slightly better con-
strained than when BAO data are not included, so we
expect that the tension quoted throughout is actually
slightly greater than it would be if BAO were not included
as part of the CMB data set.

B. LSS

Large scale structure can be measured in a number
of different ways. We consider four independent measure-
ments of LSS which can be consistently combined to form
a total constraint which we call All LSS. It should be noted
that where surveys have overlapping observation volume,
as for CFHTLenS and BOSS, there will be some covariance
within the measurements. Mentioned in [38–40], it may
be beneficial to include the cross-correlation between
different surveys. We have chosen to neglect any covari-
ance and assume that the LSS measurements are com-
pletely independent. This is often done and is used for
consistency checks when calculating the multisurvey
covariance matrix [41]. Since LSS cannot constrain the
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optical depth to reionization it is fixed to the central
value from Planck2015þ Polþ BAO of τ ¼ 0.078. For
consistency with the thorough analysis of weak lensing
using CFHTLenS [42] we adopt the same wide priors
on the other ΛCDM parameters: Ωbh2 ¼ ½0.013; 0.033�;
Ωch2 ¼ ½0.01; 0.99�; θMC ¼ ½0.5; 10�; ns ¼ ½0.7; 1.3�; and
logAs ¼ ½2.3; 5�. This is different to the prescription used
previously in [17] which fixes tight, Gaussian priors toΘMC
andns which skews the other (somewhat-correlated)ΛCDM
parameters to less favorable regions of parameter space. This
can be considered as one of the reasons for the large apparent
discordance between the CMB and LSS constraints.

1. Galaxy lensing

Surveys of the gravitational lensing of photons by large
scale structures are able to probe the underlying matter
power spectrum of density perturbations and as such can
give constraints on both Ωm and σ8 directly [43]. The
matter power spectrum arises from the correlation of the
cosmological shear, but there are also other contributions
from intrinsic alignments, i.e. shape-shape correlations due
to galaxies forming near each other within the same
gravitational potential or shape-shear correlations due to
galaxies affecting the shear along the line of sight. These
intrinsic alignment effects are small, but do contribute to
the measurements from weak lensing surveys and should
be taken into account. Modeling the gravitational lensing
signature is also difficult since it involves knowing, to a
high precision, galaxy dynamics. We present, here, three
different constraints for weak lensing.
CFHTLenS (strong): This relates directly to the Min case

in [42] Fig. 12 which has the strongest assumptions made
about astrophysical uncertainties. There are seven angular
bins and seven tomographic redshift bins which each have

FIG. 1. 1 and 2σ constraint contours in theΩm − σ8 planewithin
the ΛCDM model for a range of data. In each subplot the orange
contours show the constraints from Planck2015þ Polþ BAO.
The top subplot shows the constraints from weak lensing with the
CFHTLenS (strong) and CFHTLenS (weak) results plotted in
purple and light blue respectively. The second and third subplots
show the constraint fromCMBlensing in dark blue and fromBOSS
DR12RSD in red. The bottom subplot contains the constraint from
SZ galaxy cluster counts with mass biases from CMB lensing in
lime green and WtG in yellow. The amount of disagreement
between the combined five parameter constraints obtained by the
CMB and probes of LSS are shown in the bottom-right of each
subplot.

FIG. 2. The 1 and 2σ constraints on the Ωm − σ8 plane from
Planck2015þ Polþ BAO in orange and from combining each of
the LSS data sets, with those in the most tension with the CMB
data set in brown and in the least tension in green. The 5
parameter ΛCDM difference vector with Planck2015þ Polþ
BAO is quoted for both sets of constraints in the bottom-left
corner.
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their own uncertainties related to them. These redshift
uncertainties are Gaussians about Δz1 ¼ −0.045� 0.014,
Δz2 ¼ −0.013� 0.010, Δz3 ¼ 0.008;�0.008, Δz4 ¼
0.042� 0.017 and Δz5 ¼ 0.042� 0.034 leaving the last
two bins with flat priors of Δz6;7 ¼ ½−0.1; 0.1�, keeping all
angular scales. There are also tight priors on the amplitude
of intrinsic alignments and the intrinsic alignment lumi-
nosity and redshift dependence are zero. The 2σ constraint
contours for CFHTLenS (strong) can be seen in the top
subplot of Fig. 1 in purple. It can be seen that, in the Ωm −
σ8 plane, the distribution lies far from the Planck2015þ
Polþ BAO contours. The value of C ¼ 0.99ð2.65σÞ.
CFHTLenS (weak): As for the CFHTLenS (strong) case,

this also comes from [42] where it is denoted Max. The
astrophysical assumptions are greatly reduced with wide
flat priors on intrinsic alignment measurements and Δz ¼
½−0.1; 0.1� for each of the seven tomographic bins, while
nonlinear scales are cut in the matter power spectrum.
The cut to the nonlinear scales is the main cause for
measurements from CFHTLenS (weak) being much less
constraining than CFHTLenS (strong). This can also be
found in the top subplot of Fig. 1 in light blue.
Since the constraints are quite weak, there is clearly no
discrepancy with Planck2015þ Polþ BAO in the
Ωm − σ8 plane, although the central value is different.
The value of C ¼ 0.12ð0.15σÞ.
DES science verification: The results from the Dark

Energy Survey (DES) follow the prescription in [44] where
the range of angular scales included is less than in either of
the CFHTLenS analyses for each of its three redshift bins.
Here uncertainties in the redshift bins are not taken into
account and intrinsic alignments are set to zero. As such the
constraints are not as tight as the CFHTLenS (strong) but
provide a stronger constraint than CFHTLenS (weak).
Although not shown in Fig. 1 for presentational reasons,
the discrepancy between this data and Planck2015þ Polþ
BAO is C ¼ 0.63ð0.90σÞ.
Since we performed this analysis the Kilo-Degree

Survey [45] has produced results which are similar in
many ways to those produced by CFHTLenS. Given this,
we have not quoted a value for this data presuming it to be
close to that for CFHTLenS.

2. CMB lensing

Measuring the gravitational lensing of CMB photons can
also provide information about cosmological shear corre-
lations related to the matter power spectrum, hence
revealing information about Ωm and σ8 [46].
Planck lensing: As well as measuring the primary

anisotropies and polarization, Planck also detected the
effects of the gravitational lensing of CMB photons.
Here, we use the measurements of the lensing power
spectrum between 40 < l < 400, as in [47]. As expected,
there is no discrepancy between Planck lensing and the
measurements of the CMB temperature and polarization

from Planck2015þ Polþ BAO. This can be seen in the
Ωm − σ8 plane in the second subplot of Fig. 1, in particular
we find that C ¼ 0.07ð0.08σÞ.

3. Redshift-space distortions

Nonlinear effects from the peculiar velocities of galaxies
within galaxy clusters can be measured by surveys in
redshift space. In particular, fingerlike structures can form
in redshift space due to the velocities of galaxies falling
towards the center of galaxy clusters. Measuring the
deviation of observations from a fiducial cosmology allows
the RSD to be quantified into the Alcock-Paczynski factor
FAP, which is related directly to the Hubble parameter
HðzÞ, and the angular diameter distance DAðzÞ. The joint
growth of structure and amplitude of density perturbations
of dark matter fσ8, can also be constrained using the
relative amplitudes of the RSD monopole and quadru-
pole [25].
SDSS-III BOSS DR12 RSD: Measurements of the clus-

tering of galaxies along the line of sight at effective redshifts
of zLOWZ ¼ 0.32 and zCMASS ¼ 0.57 can constrain fσ8 and
the combination of the Hubble parameter, the comoving
sound horizon at the baryon drag epochHðzÞrsðzdÞ and ratio
of the angular diameter distance to the sound horizon
DAðzÞ=rsðzdÞ [48]. Here, we use the covariance matrix for
these parameters from the quick-particle-mesh mocks. The
constraints coming from RSD in the Ωm − σ8 plane can be
seen in the third subplot of Fig. 1 in red which suggests it is
consistent with Planck2015þ Polþ BAO, but with the
central value lying lower in the σ8 direction. In this
case C ¼ 0.75ð1.16σÞ.

4. Sunyaev-Zel’dovich galaxy cluster counts

Inverse Compton scattering of CMB photons by high
energy electrons in intracluster media can be used to
measure the number of galaxy clusters as a function of
redshift, from which the growth of structure and various
geometrical factors can be constrained [49]. The relation-
ship between the observable, Y, and the mass of the cluster,
M, must be determined empirically using either observa-
tions or simulations. A simple assumption for the thermal
state of a cluster is to assume hydrostatic equilibrium [49],
and any deviation from the Y −M relation derived from
this assumption is quantified using a hydrostatic mass bias
1 − b. This factor can be constrained using followup
observations of x-ray detected samples using weak lensing
or directly from the lensing effect of clusters on the CMB
measured from the Planck data.
Planck lensing: The lensing effect of clusters on the

CMB can be used to infer 1=ð1 − bÞ ¼ 0.99� 0.19 [47].
Constraints using this mass bias are presented in lime green
in the bottom subplot of Fig. 1 for the Ωm − σ8 plane where
it can be seen that the disagreement with the CMB is
significant. The value of C ¼ 0.96ð2.01σÞ.
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Weighing the giants (WtG): There are 51 galaxy clusters
in the sample studied by the WtG project, 22 of which
overlap with the Planck galaxy clusters, for which lensing
data exists [50]. The mass bias determined by WtG is lower
than for Planck at 1 − b ¼ 0.688� 0.092 and as such
galaxy cluster dynamics suggest that these objects deviate
significantly from hydrostatic equilibrium. The 1 and 2σ
constraint contours in the Ωm − σ8 plane can be found in
the bottom subplot of Fig. 1 in bright yellow, showing
reasonable overlap with the Planck2015þ Polþ BAO
constraints, such that C ¼ 0.68ð0.99σÞ.

IV. CONCORDANCE OR DISCORDANCE?

Since each of the LSS probes are independent measure-
ments, they can be combined to provide an All LSS
constraint. As pointed out in [17], if each of the mildly
discrepant LSS constraints lie in the same region of
parameter space, then their combination could become
more significant than each separately. In order to inves-
tigate this we consider two combinations of data.
All LSS (weak): By combining CFHTLenS (weak) with

Planck lensing, RSD (DR12) and SZ galaxy cluster counts
using the WtG mass bias we find the least discrepant joint
analysis compared to Planck2015þ Polþ BAO. We can
see in Fig. 2 the green contours in the Ωm − σ8 plane have
reasonable overlap with Planck2015þ Polþ BAO and the
value of C ¼ 0.55ð0.76σÞ.
All LSS (strong): Combining the CFHTLenS (strong)

constraints with Planck lensing, RSD (DR12) and SZ
galaxy cluster counts using the mass bias from Planck
lensing is shown in brown in Fig 2. This provides the most
discrepant combination of data with C ¼ 0.99ð2.55σÞ.
Note that this is less discrepant than the CFHTLenS
(strong) discrepancy by itself. This suggests that there
are internal tensions between the LSS data sets, as well as
with CMB constraints.

In Tables I and II we present the calculated values for
each of the statistics. The overall picture is that All LSS
(strong) is more discrepant than the parameter distributions
inferred from Planck2015þ Polþ BAO while using All
LSS (weak) appears to be more compatible. However, the
details indicate a more complicated story dependent on
which measure is used.
The results of measures 1 and 2 in Tables I and II are

small compared to B ¼ 1 or O ¼ 1 suggesting a large
degrees of discordance between constraints obtained from
LSS and CMB data sets. To illuminate how poor these
measures are at quantifying tension, a toy model can be
considered to seewhat the results are equivalent to in terms of
shifts of two distributions. If P1 ¼ N ðμ1;ΣÞ and P2 ¼
N ðμ2;ΣÞ with μ1 ¼ ð0; 0; 0; 0; 0Þ, μ2 ¼ ð0; 0; 0; 0; θÞ and
Σ ¼ diagð1; 1; 1; 1; 1Þ then B ¼ 1.81 × 10−2 needs θ ¼
4.23 while B ¼ 8.90 × 10−4 needs θ ¼ 5.59. In a similar
wayO¼ 2.71×10−3 requires θ¼ 3.48 andO¼ 9.70×10−5

needs θ ¼ 4.42. From these shifts in the five-dimensional
distributions it appears that All LSS (weak) and All LSS
(strong) are both quite distinct from Planck2015þ Polþ
BAO. There is a strong dimensional dependence using these
two measures so extremely small values can, and do, appear
as large discrepancies. On the basis of this, these measures
indicate significant discordance betweenAll LSS (weak) and
Planck2015þ Polþ BAO and severe discordance between
All LSS (strong) and Planck2015þ Polþ BAO. However,
since the shift in the means has an equivalent description
in terms of broadening of the variance then it is difficult to
make any useful statement. Instead consider another toy
model where P1 ¼ N ðμ;Σ1Þ and P2 ¼ N ðμ;Σ2Þ with
μ ¼ ð0; 0; 0; 0; 0Þ, Σ1 ¼ diagð1; 1; 1; 1; 1Þ and Σ2 ¼
diagðσ2; σ2; σ2; σ2; σ2Þ then B ¼ 1.81 × 10−2 needs σ ≈ 10

whilst B¼ 8.90×10−4 needs σ ≈ 33. Neither of these P2

distributions would be considered in tension with P1,
although P2 would not be informative. In general, the values

TABLE I. Quantification of the similarity of the probability
distributions of the ΛCDM parameters from Planck2015þ Polþ
BAO and All LSS (weak) for each of the measures 1–7 from
Sec. II. The first column contains the measure used, the second
column shows the result and the final column gives a description
of degree of discordance.

Measure Result Interpretation

1 B ¼ 1.81 × 10−2 Unknown
2 O ¼ 2.71 × 10−3 Unknown
3 C ¼ 0.55ð0.76σÞ Low
4 ICMB ¼ 3.81 × 10−1 Low

ILSS ¼ 2.30 × 10−3

5 DðCMB∥LSSÞ ¼ 7.20 × 10−2 Likely similar
SCMB→LSS ¼ −4.25 × 10−1

DðLSS∥CMBÞ ¼ 8.52
SLSS→CMB ¼ 8.03

6 logR ¼ 3.29 Low
7 log T ¼ 2.59 Mild

TABLE II. Identical table to Table I using All LSS (strong) to
constrain the LSS parameter distributions. The first column
contains the measure used, the second column shows the result
and the final column gives a description of the degree of
discordance.

Measure Result Interpretation

1 B ¼ 8.90 × 10−4 Unknown
2 O ¼ 9.70 × 10−5 Unknown
3 C ¼ 0.99ð2.55σÞ Moderate
4 ICMB ¼ 2.82 × 10−2 Moderate

ILSS ¼ 5.44 × 10−5

5 DðCMB∥LSSÞ ¼ 2.85 × 10−3 Likely different
SCMB→LSS ¼ −5.85

DðLSS∥CMBÞ ¼ 7.84
SLSS→CMB ¼ 1.99

6 logR ¼ −1.36 Significant
7 logT ¼ 7.56 Significant
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of B and O are much less than 1, which would suggest that
there is reasonably significant discordance between All LSS
(weak) orAll LSS (strong) andPlanck2015þ Polþ BAO. It
is clear why neither the Bhattacharyya distance nor the
overlap coefficient measures are used for data comparison in
cosmology.
Measure 3 is easy to interpret in both Tables I and II. Since

the value ofC is the fraction of samples within an interval then
this maps easily to the number of samples in an interval of a
1D Gaussian distribution. This means that C maps directly to
a quantification in terms of a number of standard deviations.
For All LSS (weak) compared to Planck2015þ Polþ BAO,
C ¼ 0.55 is equivalent to 0.76σ, which is interpreted
as very little discordance. Comparing All LSS (strong)
to Planck2015þ Polþ BAO provides C ¼ 0.99 which
(including more significant figures in the calculation) maps
to 2.55σ. While this is much greater than for All LSS (weak),
the suggested interpretation of the tension is only a moderate
one. These values reflect the position of the contours in Fig. 2.
When interpreting measure 4 it is only necessary to consider

Max½ICMB; ILSS� to get an indication of the level of agreement.
The ratio of the larger value to the smaller value then describes
the relative widths of the distributions. In a similar way to
measure 3, the values of ICMB and ILSS relate directly to
numbers of samples, although the distributions are cut at the
complementary distributions 3σ isocontours, meaning they are
discontinuous. While this means they cannot truly be mapped
to intervals of a 1D Gaussian, that is still a useful indicator of
discordance. For All LSS (weak) 38.1% of the samples drawn
from the Planck2015þ Polþ BAO distribution are within the
isocontour which would contain 99.7% of the samples drawn
from the All LSS (weak) distribution. This seems like a small
fraction, but is actually the equivalent of a discrepancy of 0.88σ
when compared to a 1D Gaussian and so should be interpreted
as indicating a low level of discordance. Since ICMB > ILSS
then the constraints on the parameters using Planck2015þ
Polþ BAO are tighter than those from All LSS (weak).
Similarly, ICMB is larger in Table II showing that the constraints
from Planck2015þ Polþ BAO are tighter than those from
All LSS (strong). ICMB ¼ 2.82 × 10−2 means that 2.82% of
the samples drawn from the Planck2015þ Polþ BAO dis-
tribution are within the isocontour which would contain 99.7%
of the samples drawn from the All LSS (strong) distribution.
Again, this seems quite low but is the equivalent to 2.2σ and so
is again only moderately discordant.
Measure 5, is a bit more difficult to interpret in both

Tables I and II. In the case of updating both the All LSS
(weak) and the All LSS (strong) constraints with the
constraints from Planck2015þ Polþ BAO there is little
relative entropy, but have large negative surprise. Since the
values of the surprise are negative this suggests that the
distributions are more similar than expected. It should be
noted that this does not mean that the distributions are that
similar, just that there is less of an information gain than
expected. Indeed, it is very difficult to quantify quite how

severe the discordance is using this measure; it should
rather be used to describe whether one data set is likely to
update another data set. The important outcome of the
measure 5 results from Tables I and II is the similarity
between the results for DðAll LSS ðweakÞ∥Planck2015þ
Polþ BAOÞ and those for SAll LSSðweakÞ→Planck2015þPolþBAO.
This indicates that the distributions are likely to be similar,
whereas DðAll LSS ðstrongÞ∥Planck2015þ Polþ BAOÞ
being larger than SAll LSSðStrongÞ→Planck2015þPolþBAO shows
that it is more probable that the parameter distributions
from Planck2015þ Polþ BAO can be updated with the
constraints from All LSS (strong). This means the distri-
butions are likely to be more distinct.
For measure 6, Table I has logR ¼ 3.29 signifying that

the joint distribution with Planck2015þ Polþ BAO and
All LSS (weak) as data sets is more likely than each of the
distributions separately. The similarity is quite significant
when using flat priors from the minimum to maximum
parameter values obtained in the samples. This happens
only when the two distributions are at worst mildly
discordant. When comparing this to the All LSS (strong)
result of logR ¼ −1.36, in Table II, the negative value
shows that the joint distribution is less likely than each of
the distributions separately, which is true when the dis-
tributions are more distinct. It is best to interpret the values
of logR on the Jeffreys scale often used in Bayesian
analysis [51], with a result of logR ¼ 3.29 showing
Planck2015þ Polþ BAO is “decisively similar” to All
LSS (weak) and logR ¼ −1.36 suggesting Planck2015þ
Polþ BAO is significantly different to All LSS (strong).
These statements are more extreme than the other measures
as a result of placing relatively tight priors. Increasing the
range of the prior distribution allows less extreme inter-
pretation of the results but with the same quantitative
outcome—the All LSS (weak) distribution is more similar
to Planck2015þ Polþ BAO than the All LSS (strong)
distribution is.
Finally, measure 7 indicates that the discordance between

All LSS (weak) and Planck2015þ Polþ BAO is mild, but
as with measure 6 this statement is prior dependent. Again,
the logT value when using All LSS (strong) gives a much
more significant discordance. By changing the priors, the
interpretation of this result can change from All LSS (weak)
being in almost complete agreement with Planck2015þ
Polþ BAO to there being significant or severe disagree-
ment. The interpretation from All LSS (strong) then follows
suit, being always more discordant than All LSS (weak). To
summarize the usefulness of each of these methods:

(i) 1 and 2 cannot give a useful quantification of
discordance, although the small values would suggest
more significant discordance than other methods.

(ii) 3 and 4 can be related to drawn samples from
distributions and so mapped to intervals on a 1D
Gaussian and tend to give slightly more conservative
interpretations of the discordance.
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(iii) 5 is useful to find out whether a distribution is likely to
usefully update the distribution from a preexisting
data set, but cannot be easily interpreted as a quanti-
fication of the difference between the data sets.

(iv) 6 and 7 are prior dependent and so care needs to
taken when interpreting the actual values as a
indication of the severity of discordance.

All of these measures, for both All LSS (weak) and All
LSS (strong), are not representative of the value of the
tension obtained in [17]. This is true even though the Ωm −
σ8 2σ contour for the All LSS (strong) looks similar to the
contour in the left-hand subplot of Fig. 3 in [17]. This is due
to updated data and the application of Planck2013 priors on
ΘMC and ns in [17]. These parameters were chosen since
they are well measured by the CMB and in particular ΘMC
is known to within 0.05%. Using importance sampling
on the All LSS (strong) chains and placing priors ofΘMC ¼
1.04086� 0.00048 and ns ¼ 0.9652� 0.0062, the result-
ing tension with Planck2015þ Polþ BAO is C ¼
0.999ð95Þð4.06σÞ which is in closer agreement with the
previously found result. There are relatively few samples in
the prior regions of ΘMC and ns when using All LSS
(strong) as can be seen in certain regions of Fig. 4. This
means that the probability distribution from the samples is
likely not to be representative of the true distribution. Since
these values are restricted to a particular region of their
parameter space, the other three ΛCDM parameters (Ωbh2,
Ωch2 and logAs) become constrained to less favorable
regions. Figures 3 and 4 show the projected likelihood
contours comparing Planck2015þ Polþ BAO to All LSS

(weak) and All LSS (strong) respectively. Although, not
entirely accurate—the application of priors on ΘMC and ns
would restrict the green and the brown contours to the size
of the Planck2015þ Polþ BAO contours in the ΘMC and
ns directions. For Fig. 3, even though the priors limit the All
LSS (weak) parameter distributions in all directions, they
do not become significantly more discrepant with
Planck2015þ Polþ BAO. On the other hand, for Fig. 4,
the priors restrict logAs andΩch2 to the upper range of their
allowed values. This causes a knock on effect requiring
both lower and higher Ωbh2 values from the correlation
with Ωch2 and the allowed region from the priors respec-
tively. This “new constraint” lies further from
Planck2015þ Polþ BAO and so the agreement with All
LSS (strong) with priors decreases. It should be noted that it
is naive to use the combinations of the 2D contours in
Figs. 3 and 4 to make serious assumptions about shifts in
the distributions with the application of priors. The true
distributions are five dimensional and can only be projected
down to the 2D contours via marginalizing out other
parameters, therefore losing a lot of information in the
process. Releasing these priors to cover a wider range
allows more natural values in the remaining parameters to
be chosen. These new parameter values lie closer to the
values from Planck2015þ Polþ BAO, reducing the ten-
sion with All LSS.
It should be noted that if the belief in the ns and ΘMC

priors is strong, the result in greater tension may be favored.
We do not consider the application of these priors further

FIG. 3. Projected 1 and 2σ likelihood contours for each of the
relevant ΛCDM parameters. The green contours show the All
LSS (weak) constraints and the orange contours are the con-
straints from Planck2015þ Polþ BAO.

FIG. 4. Projected 1 and 2σ likelihood contours for each of the
relevant ΛCDM parameters. The brown contours show the All
LSS (strong) constraints and the orange contours are the con-
straints from Planck2015þ Polþ BAO.
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since we give no preference to which data is used to
constrain well understood cosmology.

V. DISCUSSION

A. Neutrinos

The inclusion of massive neutrinos into themodel reduces
the amount of small-scale power. This is because neutrino
perturbations with Fourier modes within the comoving
horizon at the nonrelativistic transition cannot cluster until
these modes leave the comoving free-streaming length. This
occurs earlier in the Universe for more massive species
[52–57]. We consider the effects of both active and sterile
neutrinos, i.e. three neutrinoswith a combinedmass of

P
mν

equally divided between the three, and an additional neutrino
with an effective massmeff

sterile related to the true mass via the
extra effective number of relativistic degrees of freedom,
ΔNeff ¼ Neff − 3.046. No assumption is made about the
thermalmass of the sterile neutrino and so the free parameters
encapsulate Dodelson-Widrow “on resonance” models,
where msterile ¼ meff

sterile=ΔNeff and “off resonance” models

with meff
sterile ¼ ΔN−3=4

eff meff
sterile (see [17] and references

within). Using Planck2015þ Polþ BAO to constrain
ΛCDMwith either active or sterile neutrinos added indicates
no preference for either a mass for active neutrinos,

P
mν <

0.15 eV or any mass deviation of the number of relativistic
degrees of freedom from sterile neutrinos,meff

sterile < 0.65 eV
and Neff < 3.384. Here, active neutrinos are included with a
flat prior from

P
mν ¼ ½0; 3� eV and sterile neutrinos with

meff
sterile ¼ ½0; 3� eV and Neff ¼ ½3.046; 10� where the pre-

vious Planck value for the active neutrino mass,P
mν ¼ 0.06 eV, is kept.
Although the significance of the tension between con-

straints on ΛCDM parameters from the CMB and LSS
without neutrinos is reduced from the analysis in [17], we
can still investigate if the inclusion of neutrinos makes any
additional difference. Most importantly, we can see if there
is any preference for massive neutrinos when combining
CMB measurements with LSS observations. The equiv-
alent plot to Fig. 2 is shown in the upper subplot of
Fig. 5 when active neutrinos are included and in the lower
subplot when sterile neutrinos are included. Clearly there is
very little benefit from adding active neutrinos, evident
from the Ωm − σ8 contours. When including

P
mν, such

that the probability distribution is six dimensional, C ¼
0.999ð85Þð3.79σÞ and C ¼ 0.781ð1.23σÞ for All LSS
(strong) and All LSS (weak) respectively. The distributions
are marginally more discrepant with the addition of

P
mν.

This is due to the distribution of neutrino mass not aligning
particularly well in All LSS (strong) or (weak) compared to
Planck2015þ Polþ BAO and not because an extra degree
of freedom has been added. Opposite to the result obtained
in [17], the tension increases with the addition of active
neutrinos. With the application of ΘMC and ns priors,
the

P
mν distributions aligned better along correlated

parameter directions than when the priors are removed.
The value of the combined mass of neutrinos using All LSS
(strong) or All LSS (weak) combinations with Planck2015
+Pol included becomes

P
mν ¼ ð0.176� 0.056Þ eV orP

mν ¼ ð0.146� 0.057Þ eV, where the significance of
neutrino masses has slightly reduced from the

P
mν ¼

ð0.357� 0.099Þ eV from [17]. The inclusion of this
neutrino content does not help alleviate any tension
between constraints from the CMB and LSS probes.
This indicates that using active neutrinos as an extension
to ΛCDM is not particularly useful, as suggested in [58].
Sterile neutrinos fare a little better than their active

counterparts in reducing the tension. The visible overlap
is slightly better than vanilla ΛCDM and much better
than when active neutrinos are added. When we include
these two parameters in the quantification analysis C ¼
0.891ð1.60σÞ and C ¼ 0.652ð0.94σÞ when comparing
Planck2015þ Polþ BAO to All LSS (strong) and All
LSS (weak) respectively. This is in good agreement with
what would be expected from the visual inspection ofΩm −
σ8 contours. Due to the high dimensionality of this problem
each bin in the histogram for meff

sterile and Neff is computed
separately, written to disk and then analyzed from the disk.

FIG. 5. The 1 and 2σΩm − σ8 where ΛCDM has been extended
by the inclusion of active neutrinos in the top subplot and sterile
neutrinos in the bottom. Constraints from Planck2015þ Polþ
BAO are in orange whilst constraints from the All LSS (strong)
and All LSS (weak) combinations of LSS probes are in brown
and green respectively. The 5 parameter ΛCDM difference vector
with Planck2015þ Polþ BAO is quoted for both sets of con-
straints in the bottom-left corner.
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This increases computation times significantly, especially
when testing for a range of bin sizes and amounts of
Gaussian smoothing.
The values of meff

sterile ¼ ð0.470� 0.227Þ eV and Neff ¼
3.139� 0.057 or meff

sterile ¼ ð0.234� 0.115Þ eV and Neff ¼
3.162� 0.059 are obtained by combining All LSS (strong)
or All LSS (weak) combinations with Planck2015þ Pol.
These constraints are similar to the values expected from
Planck2015þ Polþ BAO, although with peaks in their
respective distributions.

B. Planck2016 results

In [59] the Planck2015 temperature anisotropies are
combined with the low-l EE polarization data (lollipop)
from the Planck HFI and obtain a lower value of the optical
depth to reionization τ. This shifts the Planck2015 value of
τ ¼ 0.078� 0.019 to τ ¼ 0.058� 0.012. It was suggested
in [17] that constraining τ using LSS rather than the WMAP
polarization (which requires τ ¼ 0.091� 0.013) leads to a
constraint of τ ¼ 0.049� 0.021 which is close to the new
Planck2016 value.
The discrepancy between the values of τ inferred from

WP and LSS suggested a possible resolution to the source of
tension. With the new, lower constraint on τ from Planck,
the tension would be expected to be reduced. Since the
Planck+lollipop chains and likelihood code were not
publicly available at present the Planck2015þ Polþ BAO
chains were importance sampled using τ ¼ 0.058� 0.012.
In this case, the quantification of tension when comparing to
All LSS (weak) reduces from C ¼ 0.550ð0.76σÞ to
C ¼ 0.432ð0.57σÞ. This also reduces to a minor extent
from C ¼ 0.989ð2.55σÞ to C ¼ 0.985ð2.44σÞ for the com-
parison to All LSS (strong). At this stage we are unable to
make any conclusive statement that the lowering of τ is in
any more or less tension than Planck2015þ Polþ BAO.

VI. CONCLUSIONS

In this article, we have discussed a variety of measures
with which to quantify the amount of discordance between
any two probability distributions. By comparing methods,
an understanding of how the different quantifications can be
interpreted is found. Further, we have presented two new
methods which are extremely robust and have an easy
interpretation. The main point that we have made is that
there are many issues arising from subjective interpretations
of discordance.
We have used the measure introduced in [17] and

described in detail here how to quantify the differences
in the 5D ΛCDM parameter distributions when obtained by
Planck2015þ Polþ BAO and a range of large scale
structure probes. This update to [17] is performed for
different analyses of the same probe (SZ galaxy cluster
counts from Planck and Weighing the Giants for example)
to show that the choice of analysis can significantly affect

the constraints on parameters. By combining the LSS data
sets in most tension with the CMB into All LSS (strong)
and in least tension into All LSS (weak) two interpretations
of the discordance are possible. In the All LSS (strong) case
the discrepancy between the parameters is C ¼ 0.989
(around 2.55σ when mapping C to an interval on a 1D
Gaussian) which is greatly reduced from the value quoted in
[17]. Further analysis, imposing much tighter priors on
ΘMC and ns through importance sampling shows that the
parameter distributions can be squashed into less likely
regions, providing much greater discrepancy—in better
agreement with the value in [17]. This highlights how
important it is to understand the applied priors and how they
can affect the probability distribution. Further, if the belief
in these priors is great enough then the tension remains
problematic and more study into the alleviation of the
discrepancy should again be considered. In the All LSS
(weak) case, the difference from Planck2015þ Polþ BAO
is almost nonexistent at C ¼ 0.550 (around 0.76σ). Each of
the other measures discussed in this paper show the same
general trend, that All LSS (strong) is more distant from
Planck2015þ Polþ BAO than All LSS (weak), but impor-
tantly, suggests the discordance exists to different degrees
for each measure.
We finished by discussing neutrinos, added as an exten-

sion to ΛCDM in [4,17]. We now conclude that active
neutrinos provide no improvement over vanilla ΛCDM,
worsening the discordance marginally with the All LSS
(strong) combination and remaining similar for All LSS
(weak). Sterile neutrinos are somewhat better, reducing the
parameter discrepancy marginally in the All LSS (strong)
case when taking into account all seven of the relevant
parameters. There is a slight worsening for All LSS (weak),
but only by a small amount. With the small discordance
between the ΛCDM parameters without neutrinos, it is
unlikely that their addition would be deemed necessary to
solve the issue.
Although not studied in detail here, we expect a non-

standard equation of state parameter,w ≠ −1, would also not
be an encouraging addition to ΛCDM when the apparent
tension is already so small. w < −1 has been suggested to
reduce discordance betweenH0 inferred from the CMB and,
for example, measured from supernovae [60]. The size of the
H0 discordance is not considered here as the analysis uses the
total 5 ΛCDM parameter distributions.
We also discuss the implication of the Planck+

lollipop result. It was shown in [17] that the optical
depth to reionization τ, would be much lower if combining
Planck without polarization results but instead in combi-
nation with LSS probes. This lower τ was then found when
considering the low-l EE polarization from Planck [59].
Attempting to mimic the Planck+lollipop likelihood by
imposing a range of priors, we find a very small reduction
in the amount of tension between parameters obtained from
CMB and LSS data. Since these chains do not contain the
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true probability distribution of the new Planck results the
reduction is not definite, but provide hints of an indication.
The code used to calculate results in this paper can be

found at Ref. [61].

ACKNOWLEDGMENTS

We would like to thank the referee for excellent com-
ments and suggestions to improve the paper. T. C. is
supported by an Science and Technology Facilities
Council (STFC) studentship. A. M. is supported by a
Royal Society University Research Fellowship. We are
grateful for access to the University of Nottingham High
Performance Computing Facility.

APPENDIX A: COMPARISON OF METHODS

To understand how each of the different methods of
quantification work it is useful to compare some simple
distributions, shown in Tables III and IV. Figures for each
measure of every 1D and 2D parameter distribution
comparison can be found below. As in Sec. II, these
posterior distributions are P1 ≡ PðθjD1;MÞ and P2 ≡
PðθjD2;MÞ for data sets D1 and D2 respectively in a
model M. In the 1D case θ≡ θ is a one-dimensional
parameter, whereas in 2D θ ¼ fθ1; θ2g. In each case the
probability distributions are normalized such that

Z
dθPi ¼ 1: ðA1Þ

Identical distributions.—Figure 6 shows the distributions
and integrated measures quantifying the amount of agree-
ment or disagreement of two identical distributions,
described in row I of Tables III and IV. Each method is
unanimous in its quantification of the combination of these
two distributions in both 1D and 2D.
(1,2) The Bhattacharyya distance and the overlap coef-

ficient are B ¼ 1 and O ¼ 1, in both one and two
dimensions. This shows the distributions are iden-
tical, since P1 ¼ P2 then

ffiffiffiffiffiffiffiffiffiffiffi
P1P2

p ¼ P1 ¼ P2 and
Min½P1; P2� ¼ P1 ¼ P2 which is unity when inte-
grated as in Eqs. (2.1) and (2.2).

(3) A value of C ¼ 0 means that the distributions must
be identical. The parameter ranges are identical for
identical distributions (and infinite for the distribu-
tions in Tables III and IV) so the difference in the
range is the same, δθ ¼ θ1 ¼ θ2. A new Gaussian is
formed with half the variance and a mean at δθ ¼ 0.
Since δθ ¼ 0 is at the maximum of the distribution
then there are no parameter ranges above the value of
the probability distribution function at δ ¼ 0 to
integrate. For the result in Fig. 6 the result obtained
by integrating inside the isocontour formed by the
value of the probability density function at δθ ¼ 0
deviates slightly from zero due to the finite number
of samples taken. The rest of the samples outside of
this boundary can be considered consistent.

(4) When I1 ¼ I2 ¼ 0.997 then the two distributions are
shown to be identical. The set of parameter values
which contain 99.7% of the samples of either dis-
tribution are equal for identical distributions. This
means integrating either distribution for these param-
eter ranges will equate to Ii ¼ 0.997, i.e. the total
fraction of samples that can be drawn from the
parameter ranges are drawn from both distributions.

(5) There is nogain in informationwhen twodistributions
are identical. Since this is expected it means there is
also no surprise. This can be seen trivially in Eq. (2.9)
since logðP2=P1Þ ¼ log 1 ¼ 0 when P1 ¼ P2.

(6) A value of logR ¼ 1.730 or logR ¼ 3.460 shows
that evidence favors the combined probability dis-
tribution when the distribution is chosen to be
uniform between −10 < θ < 10 in one or two
dimensions. This is expected for identical distribu-
tions since, although the integrals pðD1Þ and pðD2Þ
are greater than pðD1; D2Þ their combination
pðD1ÞpðD2Þ is smaller. This is always true inde-
pendent of the choice of prior. The magnitude of
logR does depend on the prior: logR is larger when
the prior is wider; it is smaller when the prior is
narrower. The positive logR can be interpreted as an
indication that the two distributions are somewhat
similar. Although logR ¼ 1.730 means the distri-
butions are identical with the given prior, it is not a
particularly intuitive value.

TABLE III. 1D probability distributions being compared.

P1 P2

I N ð0; 1Þ N ð0; 1Þ
II N ð0; 1Þ N ð0; 3Þ
III N ð5; 1Þ N ð−5; 1Þ
IV N ð0; 1Þ N ð1.427; 1Þ
V N ð0; 1Þ þN ð−2; 1Þ N ð1.427; 1Þ þN ð4; 2Þ

TABLE IV. 2D probability distributions being compared.

P1 P2

I
N
�
ð 0 0 Þ;

�
1 0

0 1

��
N
�
ð 0 0 Þ;

�
1 0

0 1

��
II

N
�
ð 0 0 Þ;

�
1 0

0 1

��
N
�
ð 0 0 Þ;

�
32 0

0 32

��
III

N
�
ð 5 5 Þ;

�
1 0

0 1

��
N
�
ð−5 −5 Þ;

�
1 0

0 1

��
IV

N
�
ð 0 0 Þ;

�
1 0

0 1

��
N
�
ð 1.427 1.427 Þ;

�
1 0

0 1

��
V

N
�
ð 0 0 Þ;

�
1 0

0 1

��
N
�
ð 1.427 1.427 Þ;

�
1 0

0 1

��

þN
�
ð−2 −2 Þ;

�
1 0

0 1

�
þN

�
ð 4 4 Þ;

�
22 0

0 22

��
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(7) Similar to measure 3, logT ¼ 0 shows that the two
distributions are identical since pðD1; D2Þshifted ¼
pðD1; D2Þ. Both of the means of the joint probability
distributions are the same so the mean of the shifted
distribution does not move. The ratio is therefore
T ¼ 1 giving a logT ¼ 0 showing that they are
identical. This is again true in both 1D and 2D.

One distribution broader than the other but with the
same mean.—Figure 7 shows the measure of discordance
when one distribution remains the same as in I, but the
width of the second distribution increases to σ ¼ 3 as in the
second row of Tables III and IV. A useful measure here
would indicate either that the distributions are very similar,
or that P1 is completely consistent with P2 even though P2

is not completely consistent with P1.
(1) B ¼ 0.775 and B ¼ 0.600 in one and two dimen-

sions. These values show that the distributions are
not concordant in some way. It does not illuminate in
which way the distributions disagree. Knowing the
distributions, it can be seen that the disagreement
occurs because the values of P2 are small for
parameter values where P1 is large, and vice versa.
The integral over the combined distributions is
therefore less than unity.

(2) Similarly, the overlap coefficient reveals O ¼ 0.516
and O ¼ 0.325 in one and two dimensions respec-
tively. The low maximum value of P2 means that
Min½P1; P2� is capped where P1 is large. This gives
the same misleading interpretation as the Bhatta-
charyya distance. In fact, since the values of O are
lower, they could be interpreted as the distributions
being in greater disagreement.

(3) The measure here does not take into account broad-
ening of distributions and so C ¼ 0 again. The
variance of P2 has increased (compared to in I) so
the variance of the new distribution PðδθÞ is larger,
but the mean is still centered on δθ ¼ 0. The
isocontour defined by the value of Pð0Þ contains
no parameter values and so integrating again gives
zero. This measure indicates that the samples in the
new distribution are consistent and so the original
distributions agree. In fact, they can be interpreted as
being identical, which may be misleading.

(4) This measure is the most informative of all the
quantifications of the level of agreement. I1 ¼
1.000 and I2 ¼ 0.684 show that all of samples drawn
from P1 are contained in the parameter ranges which
contain 99.7%of the samples drawn fromP2. Simply,
P1 is completely consistent withP2. I2 < I1 indicates
that P2 has a greater variance than P1, the value of I2
showing how broad the distribution is in comparison
to P1. If I2 ≲ I1 then P2 is quite similar to P1, but if
I2 ≪ I1 then P2 has a much greater variance.

(5) There is a gain in information from updating P1 with
P2 since there is an extension of available parameter
space, but this is mostly due to surprise as the
entropy expected by broadening the distribution is
small. On the other hand, when P1 updates P2 there
is a much smaller relative entropy, but there is
expected to be a large amount, so the surprise is
negative. These two values can be interpreted as
showing that P2 does not agree with P1 as much as
expected and that P1 agrees with P2 more than is
expected.

(6) The interpretation of this measure is exactly the
same as for I. The distributions must be similar since
logR is positive. The value is lower for the same
reason that the Bhattacharyya distance is less but,
because it is normalized by the evidences of each
distribution, it is still informative. As such it is
possible to tell that, for a given prior, P1 is not the
same as P2, but they are still similar.

(7) Similar to measure 3, logT ¼ 0 shows the distribu-
tions are consistent (or identical in fact). The
maximum value of the distribution pðD1; D2Þshifted
is less, but it is still equal to pðD1; D2Þ and so the log
of their ratio vanishes.

Discordant distributions.—Figure 8 shows examples of
each of the measures when two distributions are greatly
separated. This is the last of the distribution combinations
in which all of the measures are in agreement, showing that
the distributions are not similar.
(1,2,4,6) Since P1 is negligible where P2 ≠ 0 then the

integration of any combination of P1 and P2 will
(approximately) vanish, which explains the val-
ues of B ¼ 0 and O ¼ 0. Similarly, if the
integration ranges where 99.7% of the samples
from one distribution would be drawn do not
overlap with the non-negligible regions of the
other distribution then Ii ≈ 0. Since pðD1Þ and
pðD2Þ are much greater than PðD1; D2Þ (which
almost vanishes) then logR is extremely nega-
tive, preferring either evidence to the joint
evidence. All these measures show that P1 is
not at all similar to P2.

(3) The mean of the new distribution is far δθ ¼ 0
and the value of the distribution is negligible
there. The parameter range within the contour
formed where Pð0Þ ¼ 0 contains the whole
distribution and as such C ¼ 1. This is only
possible when the whole distribution is inte-
grated, showing that none of the samples drawn
from either of the original distributions would be
consistent with the other.

(5) There is a very large relative entropy since the
distributions contain completely different areas
of parameter space, so a large amount of

CHARNOCK, BATTYE, and MOSS PHYSICAL REVIEW D 95, 123535 (2017)

123535-14



information is gained. However, since the means
are incompatible, this information is not expected
so the whole of the relative entropy is driven by
surprise. This shows that the distributions do not
agree with each other.

(7) When means of P2 are shifted to coincide with
the means of P1, pðD1; D2Þshifted ≫ pðD1; D2Þ
and so T is large. A large positive logT indicates
that the distributions are severely discordant.

Slightly shifted distribution.—Figure 9 shows the row IV
distributions from Tables III and IV. The second distribu-
tion P2, has the same variance as P1 but the means of P2 are
shifted such that the value of B is the same as using the
distributions in row II of Tables III and IV.
(1) As already described, B ¼ 0.775 and B ¼ 0.601 in

one and two dimensions. These are the same values
obtained when the variance of P2 is three times that
of P1. This example shows how the Bhattacharyya
distance allows broadening of distributions to be
mapped to shifts in the mean. Due to this, it is harder
to interpret the meaning of B without seeing at least
a projection of the probability distribution. 0 < B <
1 could arise from purely a flattening of a distribu-
tion, or a shift in the means, or a combination
of both.

(2) The overlap coefficient is similar to the Bhattachar-
yya distance, although a shift in the means of one
distribution is more heavily penalized (a lower value
ofO found) than a broadening of the variance of that
distribution. The same problem still persists, that
there is no distinction between flattening of the
distribution or shifts or combinations of them both.

(3) PðδθÞ is centered slightly away from δθ ¼ 0 be-
cause the means of P1 and P2 are not equal. The
value of the probability distribution at δθ ¼ 0 forms
a contour (or interval) which contains 69.7% and
61.1% of the samples drawn from the distribution in
one and two dimensions. These percentages can be
mapped to the proportion of samples drawn from a
one-dimensional Gaussian, comparing the intervals
to a number of standard deviations. In this paper,
69.7% would map to a tension of ∼1.0σ, which
means the distributions are consistent.

(4) Since I1 ¼ I2 ¼ 0.942 then both P1 and P2 must
have the same variance, but I1 ¼ I2 < 0.997 shows
that not all the possible samples are contained within
the integration interval. This indicates that the means
of P1 must not coincide with the means of P2. Since
the result of I1 and I2 are close to 0.997, then the
means are not well separated and hence the distri-
butions are in reasonable agreement.

(5) The information gain from updating either dis-
tribution with the other is equal showing that
both distributions have the same variance. In one

dimension this gain is mostly expected and so the
surprise is small and the distributions can be
considered compatible. In two dimensions there is
a lot more expected relative entropy than informa-
tion gained and so the surprise is highly negative.
This means the distributions are more similar than
expected. It is difficult to quantify what this means in
terms of similarity of the two distributions.

(6) logR ¼ 1.221 and logR ¼ 2.442 in one and two
dimensions. These values indicate that the joint evi-
dence is more likely than each of the individual
evidences pðD1Þ and pðD2Þ, and therefore the dis-
tributions are similar. Interestingly, these measures
show that the shift in the means of one of
the distributions is more consistent than each of
the distributions having equal means, but the variance
of one being larger (as in row II of Tables III and IV).

(7) logT ¼ 0.509 and logT ¼ 1.018 show that the dis-
tributions are similar but not identical, in one and two
dimensions.The shifted joint evidence is slightly larger
thanpðD1; D2Þ, but because themeans ofP2 are close
to the means of P1 the ratio between pðD1; D2Þshifted
and pðD1; D2Þ is only slightly greater than one.

Unusually shaped distributions.—Figure 10 shows the
values each of the measures give for unusual shaped
distributions (constructed by combining Gaussians in this
case) in Tables III and IV.
(1,2) The Bhattacharyya distance is lower than the com-

parisons of P1 and P2 in rows II and IV from
Tables III and IV suggesting that these distributions
agree less than in those cases. The same is true for
the overlap coefficient. In the one-dimensional case,
mapping B ¼ 0.487 to a shift in the mean only is
equivalent to moving the peak of a Gaussian dis-
tribution by θ ¼ 2.4 from the center of the other
distribution. Likewise, O ¼ 0.264 obtained here is
equivalent to shifting the peak of a Gaussian dis-
tribution to θ ¼ 2.2 compared to another Gaussian
with the same variance centered at θ ¼ 0. Compar-
ing the values of B and O to shifts in the mean is a
useful way to interpret results from these methods,
although it still does not take into account the
flattening of the distributions.

(3) The values ofC ¼ 0.620 andC ¼ 0.310 suggest that
P1 and P2 are extremely consistent, although not
identical. Mapping to one-dimensional Gaussian
distributions, these are equivalent to tensions of
0.9σ and 0.4σ respectively. This may be quite
misleading since (according to Fig. 10) a lot of
the distribution lies away from δθ ¼ 0, it is just the
primary peak which is near to δθ ¼ 0. This means it
is the only measure here to quantify these two
distributions as more consistent than in row IV of
Tables III and IV.
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(4) 70.4% of samples drawn from P1 are within the
99.7% confidence intervals of P2 and 59.3% of the
samples drawn from P2 are within the 99.7%
confidence intervals of P1 in one dimension. This
shows that P1 is more consistent with P2 than the
other way around. Since I1 > I2 then the effective
variance of P2 is larger than P1’s. Both the values of
I1 and I2 being less than 0.997 suggests a shift so
that the peaks of the distribution are not aligned. Of
course, the distributions could both be peaked at the
same parameter value but one of the distributions
skewed which would give similar results.

(5) The relative entropy is mostly surprise driven
suggesting the distributions are not in a great level
of agreement. P2 is less consistent with P1 than P1 is
with P2 since the information gain and surprise are
smaller when P1 is used to update P2.

(6) The positive values of logR ¼ 0.120 and logR ¼
1.110 show that the two probability distributions are
consistent since the joint evidence is more likely
than either of the evidences combined. The values of
logR are closer to zero than any of the previous
comparisons from Tables III and IV with the
exception of row III suggesting that the agreement
is less in this case.

(7) The ratio of pðD1; D2Þshifted to pðD1; D2Þ is fairly
large so logT shows that the agreement is less than
for the other comparisons in Tables III and IVexcept
row III. The value is much less than logT for row III
and so it is clear that these distributions are not
wholly discordant.

When comparing the one- and two-dimensional distribu-
tions it can be seen that the general trends are the same. It
should be noted here that the 2D distributions are slightly
more distinct than the 1D distributions are for each row in
Tables III and IV so the measure values are expected to
show less consistency. The integration between interval (4)
and difference vector methods (3) have the same interpre-
tation value independent of the number of dimensions. The
other methods (1, 2, 5, 6 and 7) give different values in

different dimensions, which needs to be taken into account
or corrected when analyzing the measures.

APPENDIX B: PROBABILITY DISTRIBUTION
COMPARISON FIGURES

Each figure in this section shows the comparison of two
probability distributions for each method discussed in the
previous section. The top row of Figs. 6, 7, 8, 9 and 10
show the comparisons of the distributions in rows I, II, III,
IVand V in table III respectively. Likewise, the bottom row
of each figure shows the comparison between the distri-
butions in rows I–V in Table IV. The columns show the
Bhattacharyya distance (1), the overlap coefficient (2), the
integral of P1 between the limits containing 99.7% of P2

and the integral of P2 between the limits containing 99.7%
of P1 (4), the quantification of Bayesian evidence (6), the
shifted probability distribution (7), surprise (5) and the
difference vector (3) from left to right. For the first six
columns the solid, blue and dashed, red lines indicate the
distributions P1 and P2 respectively. In the top rows, the
shaded grey area (bounded by a dotted, black line) shows
the integrated quantity used to give the comparisonmeasure.
In the bottom rows, the integrated quantities are shaded with
blue being close to zero, turning red for Max½P1; P2�. In the
top row of the sixth column the green shaded area (bounded
by a dot-dashed, green line) indicates the integrated shifted
quantityP1Pshifted

2 , while the grey shaded area (bounded by a
dotted, black line) marks the integrated nonshifted quantity
P1P2, the ratio of which gives the measure. The seventh
column shows the amount of relative entropy in the wider,
darker bars and the amount of surprise in the slimmer, lighter
bars. The upper, blue bars indicate the relative entropy and
surprisewhenP2 is used to updateP1 and the lower, red bars
show the relative entropy and surprise when P1 updates P2.
The final column shows the probability distribution of the
difference vector with a solid purple line. The grey shaded
area in the top row is the integrated quantity giving the
measure. The integration bounds are the values of the
probability distribution greater than its value at δθ ¼ 0.

FIG. 6. Comparison of identical distributions (I).
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FIG. 7. Comparison of one distribution broader than the other but with the same means (II).

FIG. 8. Comparison of discordant probability distributions (III).

FIG. 9. Comparison of slightly shifted distributions (IV).
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