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Cosmic acceleration is widely believed to require either a source of negative pressure (i.e., dark energy),
or a modification of gravity, which necessarily implies new degrees of freedom beyond those of Einstein
gravity. In this paper we present a third possibility, using only dark matter (DM) and ordinary matter. The
mechanism relies on the coupling between dark matter and ordinary matter through an effective metric.
Dark matter couples to an Einstein-frame metric, and experiences a matter-dominated, decelerating
cosmology up to the present time. Ordinary matter couples to an effective metric that depends also on the
DM density, in such a way that it experiences late-time acceleration. Linear density perturbations are stable
and propagate with arbitrarily small sound speed, at least in the case of “pressure” coupling. Assuming a
simple parametrization of the effective metric, we show that our model can successfully match a set of basic
cosmological observables, including luminosity distance, baryon acoustic oscillation measurements,
angular-diameter distance to last scattering, etc. For the growth history of density perturbations, we find an
intriguing connection between the growth factor and the Hubble constant. To get a growth history similar to
the ΛCDM prediction, our model predicts a higher H0, closer to the value preferred by direct estimates.
On the flip side, we tend to overpredict the growth of structures whenever H0 is comparable to the
Planck preferred value. The model also tends to predict larger redshift-space distortions at low redshift
than ΛCDM.
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I. INTRODUCTION

There is a folk theorem which, roughly speaking, states
that late-time cosmic acceleration can arise in only one of
two ways: either it is due to dark energy, i.e., a source
of negative pressure, such as a cosmological constant or
“quintessence” [1–4]; or it is due to a modification of
Einstein gravity [5], such as in massive gravity, which
necessarily implies new degrees of freedom beyond the
standard helicity-2 gravitons. Naturally people have con-
sidered hybrid models that do both, e.g., dark energy scalar
fields interacting with dark matter (DM) [6] as well as
normal matter, as in chameleon [7,8] or symmetron models
[9,10]. But it appears that either dark energy or new
degrees of freedom are necessary to explain cosmic
acceleration.
In this paper we present a loophole in the theorem. There

is a third possibility: cosmic acceleration arising from
suitable interactions between DM and baryons, without
sources of negative pressure (in the Einstein frame) or new
degrees of freedom beyond DM and ordinary matter. The
mechanism relies on dark matter and baryons coupling to
different metrics. Our approach is purposely agnostic about
the microphysical nature of DM and applies equally well to
weakly interacting massive particles (WIMPs) [11], axions
[12–14], ultralight scalar field DM [15–27], or superfluid
DM [28–31]. In particular the coupling described below

through an effective metric is above and beyond other
allowed WIMP-like or axion-like couplings the DM may
have with ordinary matter. For concreteness we therefore
ignore such additional model-independent couplings, since
they have negligible impact on late-time cosmology.
It must be emphasized that our model is an effective field

theory with high-dimensional operators and as such it does
propagate additional degrees of freedom at the cutoff.
However, as we will see, the spice of our model lies in
the fact that these degrees of freedom are much heavier than
the Hubble scale. That is, the late-time cosmology is
governed by the dynamics at energy scales much below
the cutoff, where a direct coupling betweenDMand baryons
is induced by integrating out the heavy degrees of freedom.
For themoment let us put aside the particle physicsmodel

construction at high energy, and focus on the effective field
theory for cosmology: dark matter couples to an Einstein-
frame metric gμν and experiences a decelerating, approx-
imately matter-dominated expansion up to the present time.
Baryons instead couple to a physical (or “Jordan-frame”)
metric ~gμν, constructed from gμν and the physical parameters
of the DM component. As discussed in Sec. II, treating DM
in the hydrodynamical limit as a perfect and vorticity-free
fluid, DM can be described effectively as a PðXÞ scalar
theory, where X ¼ −gμν∂μΘ∂νΘ. The variables at our
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disposal for ~gμν are the DM 4-velocity uμ ¼ ∂μΘffiffiffiffiffi
−X

p and X. Its

most general form is therefore

~gμν ¼ R2ðXÞðgμν þ uμuνÞ −Q2ðXÞuμuν: ð1Þ

Hereinafter we will use letters with (without) a tilde to
denote quantities in the Jordan (Einstein) frame. In a
microscopic model of DM, one can think of Q and R as
functions of some scalar composite operator made of DM
fields, e.g., the energy density. In the present case, these
scalar functions R andQ are chosen such that i) they tend to
unity at high DM density, in order to reproduce standard
evolution at early times, and ii) they grow at late times
(roughly, at redshift ∼ a few) to generate apparent cosmic
acceleration for ordinary matter. Thus at the level of the
background evolution it seems straightforward to obtain
cosmic acceleration for judicious choices of R and Q. One
can even fine-tune these functions to exactly match the
ΛCDM expansion history, though in our analysis we will
consider more general functional forms. See Sec. III for an
overview of the mechanism and Sec. IV for a discussion of
the background evolution.
It is worth pointing out that, incidentally, condition iÞ

enforces a screening mechanism, so that the direct coupling
between DM and ordinary baryon particles will not result in
any violation of the equivalence principle. That is, no “fifth
force” on ordinary matter due to the mediation of DM will
be detected in local gravity experiments. Our conditions iÞ
and iiÞ on R and Q imply that the direct interaction
between DM and baryon particles is not turned on until
the ambient DM density is sufficiently low.1 As we will see
in Section VI, this seemingly counterintuitive fact arises
naturally from a microscopic model.
We would like to stress that our model for late-time

cosmology does not fit into the paradigm of quintessence
theories, although there are similar features such as the
presence of two metrics. The key difference is that there are
no additional light fields in our model. Said differently,
cosmic acceleration in our model is due to composite
operators made of DM. As we mentioned above, the origin
of these composite operators can be traced back to
integrating out heavy degrees of freedom.
What about the growth of density perturbations?

Because the Einstein-frame scale factor evolves as approx-
imately dust-dominated, a ∼ t2=3, and since DM couples
minimally to this metric, density perturbations grow as in
standard cold dark matter (CDM) δ ∼ a. Naively this would
seem to rule out the model, since an important consequence
of cosmic acceleration is that it slows down the growth of
structures, consistent with observations. However in our
model the observed growth rate should be measured
relative to the physical scale factor ~a ¼ Ra, resulting in

an effective growth function ∼ a
~a ¼ R−1. Thus the same

function R that grows at late times to mimic cosmic
acceleration also serves to suppress the growth of struc-
tures. More physically, this can be understood as a time
dilation effect. Although perturbations grow unimpeded in
the Einstein frame, the Einstein-frame universe is younger
than the “Jordan-frame” universe experienced by ordinary
matter. Hence, from the perspective of ordinary matter,
cosmic structures appear less developed than in a pure
CDM universe. Thus the observed growth history matches
that of a universe with dark energy, though in general it is
not identical to ΛCDM.
A critical test for the viability of the model is the stability

of linear perturbations. In Sec. V we carefully study
perturbations, in the limit that modes are well inside the
horizon, such that mixing with gravity can be ignored. Even
in this simplified regime, because DM and baryons are
coupled through ~gμν, their perturbations are kinetically
mixed. Perturbative stability requires that kinetic and gra-
dient matrices both be positive definite, and we find that the
resulting conditions on Q and R are easy to satisfy. A more
stringent constraint, however, comes from imposing that the
sound speed be sufficiently small, cs ≪ 1, to avoid
unwanted oscillations in the matter power spectrum
[32,33]. Of the two propagating scalar modes, we find that
one mode propagates with a sound speed that vanishes
identically as a result of baryons being pressureless. The
sound speed for the second mode is more complicated and
depends explicitly on the form of DM-baryon interactions.
For the conformal coupling (Q ¼ R), in which case

Eq. (1) reduces to ~gμν ¼ Q2gμν, demanding that Q varies
sufficiently fast to drive cosmic acceleration generically
leads to cs becoming relativistic at late times. This case is
therefore phenomenologically disfavored. Thus we are led
to consider the “maximally disformal” or “pressure”
coupling Q ¼ 1, for which Eq. (1) implies that the back-
ground metric in the Jordan frame takes the form of
d~s2 ¼ −dt2 þ R2a2ðtÞdx⃗2. In this case we show that the
sound speed can bemade arbitrarily small, as desired. This is
the coupling “de choix” for the rest of our analysis.
Although our scenario does not require any additional

degree of freedom beyond DM and ordinary matter, for
some applications it is conceptually helpful to “integrate
in” additional fields. Section VI provides such a formu-
lation, by introducing a scalar ϕ and vector Aμ. In the limit
that these fields are very heavy, and therefore approxi-
mately auxiliary, their expectation value is fixed by the DM
density and 4-velocity, respectively, as ϕ ∼ ρDM and
Aμ ∼ uμ. This formulation is particularly helpful to discuss
constraints from direct-detection experiments. Treating DM
as fermions for concreteness, we find that the DM-baryon
coupling reduces to an effective, density-dependent four-
fermion vertex. The effective Fermi constant can be made
arbitrarily small as cs → 0, and in fact vanishes in the
maximally disformal case Q ¼ 1.1We thank David E. Kaplan for discussions on this point.
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In Sec. VII we derive the observational predictions for our
model and compare the result to theΛCDMmodel.We focus
on the phenomenologically viablemaximally disformal case
Q ¼ 1, leaving us with a single function Rð ~aÞ to fully
specify themodel. For concreteness, in Sec.VIIAwe choose
a simple, Taylor-series parametrization of this function, in
terms of two constants α and β. We begin by imposing two
conservative restrictions on the ðα; βÞ parameter space. First,
we demand that the cosmological proper distance ~H0dPð~zÞ
(where ~H0 is the observed Hubble constant) agree with the
ΛCDM prediction to within 3% over the redshift range
0 ≤ ~z ≤ 3. Second, by matching to the angular diameter
distance to the cosmic microwave background (CMB), we
demand that our predicted Hubble constant ~H0 lie between
65 and 75 km s−1Mpc−1. This range is chosen to include, at
the lower end, the Planck best-fit ΛCDM value [34]
HΛCDM

0 ¼ 66.93� 0.62 km s−1 Mpc−1, and, at the upper
end, the direct Hubble Space Telescope (HST) [35] meas-
urement of Hdirect

0 ¼ 73.24� 1.74 km s−1Mpc−1.
With these two priors, we then go on to calculate various

cosmological observables, including the luminosity dis-
tance relation (Sec. VII B), baryon acoustic oscillations
(BAO) (Sec. VII C), and the growth function of density
perturbations (Sec. VII D). In the process we discover an
intriguing connection between the growth factor and the
Hubble constant. In the region of ðα; βÞ parameter space
where the predicted σ8 is comparable to the Planck best-fit
ΛCDM value of σ8 ¼ 0.83, the predicted Hubble constant
tends to be on the high side, closer to the direct HST
estimate. (Although there is agreement on σ8, the quantity
fσ8 probed by redshift-space distortions, where f is the
growth rate, is systematically higher than in ΛCDM at low
redshift.) On the other hand, in the region of ðα; βÞ
parameter space where ~H0 is comparable to the Planck
preferred value, then we predict higher values of σ8 (and
fσ8), which tends to exacerbate the existing mild tension
with weak lensing and cluster counts [36]. Thus to get a
sensible growth history our model predicts a higher Hubble
constant than ΛCDM, in better agreement with direct
estimates. It remains to be seen whether this conclusion
holds generally or is specific to the simple ðα; βÞ para-
metrization adopted here.
One observable we do not consider here is the CMB

angular power spectrum, as this requires modifying the
CAMB numerical code. The full derivation of the CMB
spectrum will be presented elsewhere [37]. However, since
by design the two metrics gμν and ~gμν coincide at early
times, resulting in decoupled DM-baryon sectors at recom-
bination, we expect negligible impact on the CMB spec-
trum on small angular scales. As with dark energy, the main
impact on the CMB is felt on large angular scales, through
the integrated Sachs-Wolfe (ISW) effect. In Sec. VII E we
give a preliminary estimate of the ISW contribution and
find that it may be problematic for our model. Specifically,

the predicted ISW signal is strongly scale dependent and
peaks on small scales, which naively implies a large ISW
signal. On the other hand, this may be a good thing: the
observed cross-correlation is larger than the ΛCDM pre-
diction by about 2σ (see, e.g., Ref. [38]). This warrants
further study.
Our model is not the first attempt to “unify”DM and DE.

The most famous example is the Chaplygin gas [39,40],
which proposes that DM is a substance with an unusual
equation of state P ∼ −ρ−α. This component therefore
behaves as dust (P≃ 0) at high density and as dark energy
(P < 0) at low density. However, in this model the sound
speed cs ∼ α can become significant at late times, resulting
in either large oscillations or exponential blow-up in the
matter spectrum [32,33]. In our case, the DM has cs ≃ 0 at
all times (just like CDM), and the matter power spectrum is
consistent with observations. Closer in spirit to our model is
the “abnormally weighting energy” model [41], in which
DM and baryons couple differently to a Brans-Dicke scalar
field. DM sources the time evolution of the scalar field,
which in turn results in the baryon metric undergoing
cosmic acceleration. A key difference is that our model
does not need any new degrees of freedom, scalar or
otherwise, beyond DM and ordinary matter.2 For other
attempts to unify dark matter and dark energy, see
Refs. [43–45].

II. SETUP

Our mechanism is most intuitive in the “Einstein frame,”
where the gravitational action is the standard Einstein-
Hilbert term:

L ¼ 1

16πGN

ffiffiffiffiffiffi
−g

p
Rþ LDM½gμν� þ Lb½~gμν�: ð2Þ

Dark matter, described by LDM, couples to gμν. Ordinary
matter (“baryons”), described by Lb, couples to a different
metric ~gμν to be defined shortly.
Let us first discuss the DM component. We will be

primarily interested in cosmological observables on linear
scales, which are determined by the expansion and linear
growth histories. On those scales, all we really know about
the dark matter is that it behaves to a good approximation as
a pressureless perfect fluid. Thus, to remain agnostic about
the DM microphysics, we shall treat DM in the hydrody-
namical limit as a perfect fluid. This description of course
breaks down on nonlinear scales, where the microphysical
nature of DM becomes important. However, as we will see
it is straightforward to “complete” our fluid model with any
microphysical theory of DM, be it WIMPs, axions, Bose-
Einstein condensate, superfluid, etc. In other words the

2The idea of having different cosmologies in Einstein and
Jordan frames has been explored in the context of the early
universe cosmology in Ref. [42].
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fluid approximation is made for simplicity, not out of
necessity.
We therefore treat DM within the effective field theory

description of perfect fluids [46–49]. At low energy, a fluid
is described by three Lorentz scalars ϕIðxμÞ, I ¼ 1, 2, 3,
specifying the comoving position of each fluid element as a
function of laboratory spacetime coordinates xμ. The
ground-state configuration is ϕI ¼ xI , while small pertur-
bations above this state describe phonon excitations. In the
absence of vorticity, the description simplifies to a single
degree of freedom Θ, corresponding to the longitudinal
degree of freedom responsible for laminar flow. This
truncation is consistent at the classical level, thanks to
Kelvin’s theorem. In the presence of the direct coupling
between DM and baryons, two fluid descriptions strictly
speaking are not equivalent; see the Appendix for details.
However, since we are interested in the laminar cosmo-
logical evolution of DM, the simplified description in terms
of a single scalar field will suffice. Specifically, the large
scale evolution of dark matter can be conveniently
described by

LDM ¼ ffiffiffiffiffiffi
−g

p
PðXÞ; X ¼ −gμν∂μΘ∂νΘ: ð3Þ

Here we take Θ to have mass dimension ½Θ� ¼ M−1 and the
function PðXÞ to have ½P� ¼ M4. The stress tensor of the
action LDM is given by

Tμν ¼ 2P;X∂μΘ∂νΘþ Pgμν: ð4Þ

This matches to the perfect fluid form Tμν ¼
ðρDMþPDMÞuμuνþPDMgμν, with the identification

ρDM ¼ 2P;XðXÞX − PðXÞ; PDM ¼ PðXÞ;

uμ ¼ −
1ffiffiffiffi
X

p ∂μΘ: ð5Þ

For our analysis we will not need to specialize to
aPðXÞ. All we need is forPðXÞ to describe nonrelativistic
particles, such that PDM ≪ ρDM. This amounts to
XP;X ≫ P, in which case

ρDM ≃ 2P;XX: ð6Þ

A. Baryon action

Baryons couple to the metric ~gμν, constructed from gμν
and the various parameters of the DM component: in the
hydrodynamical limit, these are the DM density, pressure,
4-velocity, bulk viscosity, and shear viscosity. However,
since the DM fluid is treated as approximately perfect and
is assumed to be nearly pressureless, the only quantities at
our disposal are the 4-velocity uμ and density, or equiv-
alently X. Therefore, the most general form for ~gμν is

~gμν ¼ −Q2ðXÞuμuν þ R2ðXÞðgμν þ uμuνÞ; ð7Þ

where R and Q are thus far arbitrary functions. The tensor
gμν þ uμuν is recognized as the 3-metric orthogonal to the
DM velocity. The inverse metric is

~gμν ¼ −Q−2ðXÞuμuν þ R−2ðXÞðgμν þ uμuνÞ: ð8Þ

The determinants are related by
ffiffiffiffiffiffi
−~g

p ¼QR3 ffiffiffiffiffiffi−gp
.

Equivalently, the metric (7) can be expressed as

~gμν ¼ R2ðXÞgμν þ SðXÞ∂μΘ∂νΘ; ð9Þ

where we have introduced

SðXÞ≡ R2ðXÞ −Q2ðXÞ
X

: ð10Þ

This latter form will be helpful when varying the action to
obtain the Einstein field equations.

B. Equations of motion

Our action (2) is given by

L ¼ 1

16πGN

ffiffiffiffiffiffi
−g

p
Rþ ffiffiffiffiffiffi

−g
p

PðXÞ þ Lb½~gμν�; ð11Þ

with ~gμν given in Eq. (7). The equation of motion for DM
can be obtained by taking the functional derivative of the
action with respect to the dark matter field Θ. Explicitly, it
is given by

∂νð½ð2P;X þQR3 ~Tαβ
b ð2RR;Xgαβ þ S;X∂αΘ∂βΘÞÞgμν

−QR3S ~Tμν
b � ffiffiffiffiffiffi

−g
p ∂μΘÞ ¼ 0; ð12Þ

where ~Tμν
b is the Jordan-frame energy-momentum tensor

for baryons,

~Tμν
b ¼ 2ffiffiffiffiffiffi

−~g
p δLb

δ~gμν
: ð13Þ

The equation of motion for the baryon sector follows from
the conservation equation for this stress tensor3:

~∇μ
~Tμν
b ¼ 0: ð14Þ

The Einstein field equations are obtained as usual by
varying the action with respect to gμν. For this purpose it is
useful to note the relation between the variations of the two
metrics:

3The conservation equation in the Jordan frame follows from
the fact that the baryon action

R
d4xLbð~gμνÞ is invariant under

coordinate transformations; see, e.g., Ref. [50].
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δ~gμν

¼R2δgμνþð2RR;XgμνþS;X∂μΘ∂νΘÞgακgβλ∂αΘ∂βΘδgκλ:

ð15Þ

The result is

Gμν ¼ 8πGN½Tμν þQR3 ~Tκλ
b ðR2gκμgλν

þ ð2RR;Xgκλ þ S;X∂κΘ∂λΘÞ∂μΘ∂νΘÞ�; ð16Þ

where the DM stress-energy tensor Tμν was given
in Eq. (4).

III. OVERVIEW OF THE MECHANISM

Before diving into a detailed description, it is worth
giving a simplified overview of the mechanism we have in
mind. On a spatially flat cosmological background, ds2 ¼
−dt2 þ a2ðtÞdx⃗2, the cosmological densities are functions
of the scale factor. In other words, in this case Eq. (7)
reduces to

~gμν ¼ diagð−Q2ðaÞ; R2ðaÞa2; R2ðaÞa2; R2ðaÞa2Þ: ð17Þ

There is much freedom in specifying the functions R andQ.
In general, they must satisfy two conditions. First, to ensure
that gravity is standard in the early universe, the coupling
must become trivial in the limit of high DM density:
R;Q → constant. By rescaling coordinates we can set the
constant to unity without loss of generality; hence,

R;Q → 1 as ρDM → ∞: ð18Þ

Switching for a moment to a microphysical description,
with ρDM → mψ̄ψ (for fermionic DM) or m2ϕ2 (for
bosonic DM), this condition also ensures that gravity is
standard in high-density regions in the present universe,
such as galactic halos. Thus, Eq. (18) enforces a screening
mechanism of a remarkably simple kind; unlike other
screening mechanisms [5] which generally involve solving
the intricate nonlinear dynamics of a scalar field, here the
deviations from standard gravity are directly determined by
the (suitably coarse-grained) local DM density.
The second condition is that R and Q should behave at

late times in such a way that baryons experience accelerated
expansion.4 Although the Einstein-frame scale factor is
always decelerating, the expansion history inferred by
baryons is governed by the physical scale factor

~a ¼ Ra; ð19Þ

which will be accelerating if R grows sufficiently fast at the
present time. In fact, for suitable R and Q this can exactly
match the ΛCDM expansion history. For future purposes, it
will be convenient to define a “rate function,”

f ≡ d ln a
d ln ~a

¼ 1 −
d lnR
d ln ~a

; ð20Þ

whose physical meaning will become clear shortly. Since R
increases with time, we see that f ≤ 1. Furthermore, the
Hubble parameters in the two frames are related simply by

~H ¼ H
Q
dln ~a
dlna

¼ H
fQ

: ð21Þ

A comment about the Einstein-frame expansion history
is in order. Clearly, in the approximation that one ignores
the backreaction of baryons, the Einstein-frame scale factor
describes standard Einstein–de Sitter evolution:

aðtÞ ∼ t2=3: ð22Þ

Remarkably, as we will see this result remains true when
including the contribution of baryons, for any choice of
QðaÞ and RðaÞ, to the extent that DM and baryons are
separately pressureless fluids.
What about the growth of density perturbations? Since

DM experiences Einstein–de Sitter expansion, density
perturbations in the linear regime grow (as usual) propor-
tional to the scale factor,

δ≡ δρDM
ρDM

∼ a: ð23Þ

This is at first sight worrisome, since a key role played by
dark energy is to slow down the growth of structures,
consistent with observations. However, in our model the
observed growth rate should be measured relative to the
physical scale factor ~a. Following Ref. [51], we define a
rescaled growth factor as

g≡ δ

δi ~a
¼ a

~a
¼ 1

R
: ð24Þ

Here δi is the initial density perturbation. In other words,
the rescaled growth factor increases at late times, and g
becomes less than unity, as desired. Similarly, the observed
growth rate is

d ln δ
d ln ~a

¼ d ln δ
d ln a

d ln a
d ln ~a

¼ d ln a
d ln ~a

¼ f: ð25Þ

This nicely matches the function f introduced in Eq. (20).
Thus the growth rate is less than unity at late times, as if
there were dark energy.

4We mention in passing that the future asymptotic behavior of
R and Q (as ρDM → 0) is of course not constrained by obser-
vations. One could for instance impose that the coupling function
once again becomes trivial in this limit: R;Q → constant as
ρDM → 0, where the constant is larger than unity. In this case the
present phase of cosmic acceleration would be a transient
phenomenon.
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Physically speaking, this can be understood as a time
dilation effect. Although perturbations grow unimpeded in
the Einstein frame, the Einstein-frame universe is younger
than the “Jordan-frame” universe experienced by baryons.
Hence, from the perspective of ordinary matter, cosmic
structures appear less developed than in a pure CDM
universe, as if there were dark energy. In Sec. VII we will
come back to a more quantitative analysis of cosmological
observables.

IV. BACKGROUND COSMOLOGY

We specialize the equations of motion (12)–(16) to a
cosmological background, ds2 ¼ −dt2 þ a2ðtÞdx⃗2. For this
purpose, we will remain general and not assume anything
about theDMand baryonic equations of state until Sec. IV B,
wherewewill specialize the results to the physically relevant
case of nonrelativistic matter.

A. Background expansion: General results

By symmetry the DM field depends only on time,
Θ ¼ ΘðtÞ, such that X ¼ _Θ2ðtÞ. The physical metric is
given by

~gμν ¼ diagf−Q2; R2a2ðtÞ; R2a2ðtÞ; R2a2ðtÞg: ð26Þ

As usual the baryon component can be treated as a perfect
fluid, with

~Tμν
b ¼ ð~ρb þ ~PbÞ ~uμb ~uνb þ ~Pb ~gμν; ð27Þ

where the baryon fluid 4-velocity ~uμb is unit timelike with
respect to ~gμν:

~gμν ~u
μ
b ~u

ν
b ¼ −1: ð28Þ

The conservation Eq. (14) implies

d~ρb
d ln ~a

¼ −3ð~ρb þ ~PbÞ; ð29Þ

where ~a ¼ Ra. In particular, if the baryons have negligible
pressure, then ~ρb ∼ 1

~a3 ¼ 1
R3a3. To keep the treatment general

in what follows we will allow for an arbitrary baryon
equation of state.
Meanwhile, the DM Eq. (12) reduces to

d
dt

��
−P;X þQR3

�
Q;X

Q
~ρb − 3

R;X

R
~Pb

��
a3 _Θ

�
¼ 0; ð30Þ

where we have used gκλ ~T
κλ
b ¼ −Q−2 ~ρb þ 3R−2 ~Pb. Without

loss of generality, we can assume _Θ > 0, and hence for the
background _Θ ¼ ffiffiffiffi

X
p

. Then, recalling from Eq. (5) that
ρDM ¼ 2P;XX − P, the above can be integrated to give

ρDM ¼ Λ4
DM

ffiffiffiffiffiffiffi
X
Xeq

s �
aeq
a

�
3

− P

þ 2XQR3

�
Q;X

Q
~ρb − 3

R;X

R
~Pb

�
; ð31Þ

where the “eq” subscript indicates matter-radiation equal-
ity. Since by assumption Q≃ R≃ 1 in the early universe,
and since P will soon be assumed to be negligible for
nonrelativistic DM, Λ4

DM will be identified as the DM mass
density at equality.
The (0,0) component of the Einstein Eq. (16) yields the

Friedmann equation:

3H2 ¼ 8πGNðρDM þ ρbÞ; ð32Þ

where we have defined an effective, Einstein-frame baryon
density,

ρb ≡QR3

�
~ρb

�
1 − 2X

Q;X

Q

�
þ 6X

R;X

R
~Pb

�
: ð33Þ

Substituting Eq. (31), the Friedmann equation becomes

3H2 ¼ 8πGN

�
Λ4
DM

ffiffiffiffiffiffiffi
X
Xeq

s �
aeq
a

�
3

− PþQR3 ~ρb

�
: ð34Þ

The ði; jÞ components, on the other hand, give the
“pressure” equation:

2
ä
a
þ _a2

a2
¼ −8πGNðPþ PbÞ; ð35Þ

where the effective baryon pressure is

Pb ≡QR3 ~Pb: ð36Þ

In particular, if the baryons are pressureless with respect to
the physical metric, they are also pressureless with respect
to the Einstein-frame metric. Finally, as a check it can easily
be verified that any two of the DM equation of motion (30),
Friedmann Eq. (34), and pressure Eq. (35) imply the third,
as they should.

B. Specializing to pressureless components

The above equations simplify tremendously when spe-
cialized to the physically relevant case of nearly pressure-
less matter components:

~Pb ≃ 0; P ≪ 2XP;X: ð37Þ

As noted before, for baryons the conservation Eq. (29) in
this case implies ~ρb ∼ ~a−3, i.e.,
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~ρb ¼
Λ4
b

R3

�
aeq
a

�
3

: ð38Þ

Since R≃ 1 in the early universe, Λ4
b is identified with the

baryon mass density at equality.
More importantly, since the right-hand side of the

“pressure” Eq. (35) vanishes in this limit, the background
is identically matter-dominated,

aðtÞ ∼ t2=3: ð39Þ

This result holds from matter-radiation equality all the way
to the present time, irrespective of the coupling between the
two species. In particular, the total energy density that can
be read off from Eq. (34),

ρtot ≡ 3H2

8πGN
≃

�
Λ4
DM

ffiffiffiffiffiffiffi
X
Xeq

s
þQðXÞΛ4

b

��
aeq
a

�
3

ð40Þ

[where we have neglected the P term and substituted
Eq. (38)], redshifts exactly as dust,

ρtot ∼
1

a3
: ð41Þ

It is worth stressing that, remarkably, this result holds for any
choice of QðXÞ and RðXÞ! This means that the dynamical
equation dictates that the combination in the square bracket
of Eq. (40) is time independent, for any QðXÞ.

V. LINEAR PERTURBATIONS AND STABILITY

In this section we study the stability of linear perturba-
tions about the cosmological background. To simplify the
analysis, we focus on modes that are well inside the
horizon, such that mixing with gravity can be ignored.
In this regime, the Einstein-frame metric can be treated as a
flat, unperturbed metric.
Our criteria for stability include the usual requirements

that the kinetic and gradient matrices be positive definite.
But there is more. Of the two propagating scalar modes, we
will find that one mode propagates with a sound speed that
vanishes identically, as a result of the baryon fluid being
pressureless. The expression for the sound speed of the
second mode, however, is more complicated and depends
explicitly on the form of DM-baryon interactions. In the
absence of interactions, it reduces to the DM sound speed,
which is arbitrarily small given our assumption of nearly
pressureless DM. The presence of interactions, however,
generically modifies the result and can give rise to a
relativistic sound speed. In particular, this is unavoidable
in the case of conformal coupling, QðXÞ ¼ RðXÞ.
A relativistic sound speed is undesirable, for it can give

rise to unwanted oscillatory features in the matter power
spectrum [32,33]. As we will show in Sec. V B, this seems

unavoidable in the particular case of conformal coupling
QðXÞ ¼ RðXÞ. However, the key point is that this con-
clusion is special to the conformal limit. More general,
disformal couplings (with Q ≠ R) do allow stable pertur-
bations with arbitrarily small sound speeds. We will dem-
onstrate this emphatically in Sec. V C with the “maximally
disformal,” or “pressure” coupling, corresponding toQ ¼ 1.

A. General demixing

For simplicity, we once again model the baryon compo-
nent as pressureless, ~Pb ¼ 0. Since theEinstein-framemetric
is approximated as flat in this analysis, the background
baryon physical density (38) is approximately constant.
Without loss of generality we can set the scale factor at
the time of interest to unity: a� ¼ aðt�Þ ¼ 1. Similarly the
DM conservation (30) tells us that the background value of
the DM field can be treated as time independent—i.e., X̄¼
Xðt�Þ¼const in our approximation—and hence that ρ̄DM ≃
2X̄P;XðX̄Þ ¼ const as well. By a trivial rescaling of Λb, we
will write the background baryon density at the time of
interest as

~̄ρb ¼
Λ4
b

R̄3
: ð42Þ

We perturb the DM field as Θ ¼ Θ̄ðtÞ þ θðt; x⃗Þ, such
that X ¼ X̄ þ 2 _̄Θ _θ at linear order. Dropping bars to
simplify notation, the linearized perturbation of the physi-
cal metric is given by

δ~gμν ¼ ð2R;XRgμν þ S;XXδ0μδ0νÞ2
ffiffiffiffi
X

p
_θ þ 2S

ffiffiffiffi
X

p
δ0ðμ∂νÞθ;

ð43Þ

where, in anticipation of ignoring the mixing with
gravity, we have fixed the Einstein-frame metric to
its unperturbed, Friedmann-Robertson-Walker form gμν ¼
diagð−Q2�; R2�; R2�; R2�Þ. The baryon variables are the density
perturbation ~δb ≡ δ~ρb

~ρb
¼ Λ−4

b δ~ρbR3 and velocity perturba-

tion ubi .
The linearized DM equation reads�
−2P;X −4XP;XXþ2Λ4

b

�
Q;Xþ2XQ̄;XXþ

6XQ;XR;X

R

��
θ̈

þ
�
2P;X−Λ4

b

�
S
Q
þ2Q;X

��
∇⃗2

θþ2Λ4
b

ffiffiffiffi
X

p
Q;X

_~δb

−
Λ4
b

ffiffiffiffi
X

p
S

R2
∂iubi ¼ 0: ð44Þ

Meanwhile, the energy and momentum conservation equa-
tions for baryons reduce to
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_~δb þ 6
ffiffiffiffi
X

p R;X

R
θ̈ þ Q

R2
∂iubi ¼ 0;

∂tubi þ
ffiffiffiffi
X

p �
2Q;X þ S

Q

�
∂i
_θ ¼ 0: ð45Þ

Thus we have a system of three coupled partial differential
equations for three variables θ, ~δb, and ubi . By solving the

first of Eq. (45) for _~δb and substituting the result into
Eq. (44), the problem is reduced to two coupled equations
for θ and ubi . Focusing on the longitudinal mode ubi ¼ ∂iub,
and working in Fourier space, these two equations combine
into a matrix equation:

�
−A11ω

2 − B11k2 A12k2

A12ωk A22ωk

��
θ

ub

�
¼ 0; ð46Þ

where

A11 ¼ −2P;X − 4XP;XX þ 2Λ4
bðQ;X þ 2XQ;XXÞ;

B11 ¼ 2P;X −
Λ4
b

Q
ðSþ 2Q;XQÞ;

A12 ¼ Λ4
b

ffiffiffiffi
X

p

R2
ðSþ 2Q;XQÞ;

A22 ¼ Λ4
b
Q
R2

: ð47Þ

Diagonalizing this matrix, it follows immediately that the
dispersion relations for the decoupled modes are

ω¼ 0; and ω2¼ P;X −
Λ4
b

2R2 ðQ−2XQ;XÞðSþ2QQ;XÞ
P;Xþ2XP;XX −Λ4

bðQ;Xþ2XQ;XXÞ
k2:

ð48Þ

Thus we see that one mode propagates with zero sound
speed, irrespective of the choice of coupling functions. The
vanishing of cs in this case traces back to our pressureless
assumption for the baryon component; indeed, it is
straightforward to show that allowing for ~Pb ≠ 0 would
make cs nonzero, though the expression is fairly compli-
cated and therefore not particularly illuminating.
Our main interest, however, is in the second mode. At

sufficiently early times, when R≃Q≃ 1 and the compo-
nents are decoupled, the dispersion relation reduces to the
standard expression for cs derived from PðXÞ. At late times,
however, when cosmic acceleration kicks in and the func-
tionsRðXÞ andQðXÞ grow by order unity, there is no reason
a priori for the sound speed to remain small (or even real, for
that matter). Instead, these functions must be selected such
that 0 < c2s ≪ 1, as desired. Below we consider two special
cases for the coupling: the conformal case, corresponding
QðXÞ ¼ RðXÞ, and the “maximally disformal” or “pressure”
coupling, corresponding to Q ¼ 1.

B. Conformal coupling

The conformal coupling QðXÞ ¼ RðXÞ, being the sim-
plest, deserves separate consideration. In this case
S ¼ 0, and the nonzero sound speed read off from
Eq. (48) reduces to

c2s ¼
P;X − Λ4

bQ;X þ 2Λ4
bX

Q2
;X

Q

P;X − Λ4
bQ;X þ 2XðP;XX − Λ4

bQ;XXÞ
: ð49Þ

For stability we need both the numerator and denominator
to be positive. Furthermore, we require that 0 < c2s ≪ 1.
These conditions amount to

P;X > Λ4
bQ;X

�
1 − 2X

Q;X

Q

�
;

P;XX ≫ Λ4
bQ

�
Q2

;X

Q2
þQ;XX

Q

�
: ð50Þ

It is straightforward to argue, however, that these
conditions are incompatible with our goal of achieving
cosmic acceleration. To see this, recall that PðXÞ is chosen
such that, in the absence of coupling to baryons, the would-
be DM sound speed,

c2DM ≡ P;X

P;X − 2XP;XX
; ð51Þ

is always small. This is an intrinsic property of PðXÞ that
remains true even when we turn on the coupling of baryons,
the only difference being that c2DM no longer represents the
propagation speed of physical modes. Nevertheless, it is
useful to cast the argument below in terms of c2DM ≪ 1.
For starters, we note that by definition

c2DM ¼ dP
dρDM

¼ P;X

ρDM

d ln a
d ln ρDM

dX
d ln a

≃ 1

2

d ln a
d ln ρDM

d lnX
d ln a

;

ð52Þ

where in the last step we have used ρDM ≃ 2XP;X. Although
DM-baryon interactions alter the usual scaling ρDM ∼ 1=a3

[see Eq. (31)] it is nevertheless reasonable to assume that
j d ln ρDMd ln a j ∼Oð1Þ to obtain a reasonable cosmology. In that
case we learn that

���� d lnXd ln a

���� ∼ c2DM ≪ 1; ð53Þ

or in other words XðaÞ is almost constant. Furthermore, in
order to mimic cosmic acceleration for the physical scale
factor ~a ¼ Qa, clearly it is necessary that d lnQd ln a ∼Oð1Þ at late
times. Combining this with Eq. (53), we obtain
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���� d lnQd lnX

���� ∼ 1

c2DM
≫ 1: ð54Þ

Thus, barring any cancellation the second of our desired
inequalities (52) amounts to

X2P;XX ≫
Λ4
bQ

c4DM
: ð55Þ

Meanwhile, from the definition (52) of c2DM it is easy to see
that, in the limit c2DM ≪ 1, we have

X2P;XX ≃ XP;X

2c2DM
≃ ρDM

4c2DM
; ð56Þ

where we have used Eq. (6). Furthermore, using the relation
(42) with R ¼ Q, the inequality (55) simplifies to

ρDM ≫ Q4
~ρb
c2DM

>
~ρb
c2DM

: ð57Þ

Here it is understood that ~ρb and ρDM are the baryon andDM
energy density at the time of interest. It is easy to see that the
above inequality is impossible to satisfy. For any reasonable
cosmology we expect ρDM and ~ρb to differ by at most an
order of magnitude [see Eq. (31)], which is clearly insuffi-
cient to overcome the factor of 1=c2DM on the right-hand side.
What we have learned is that, for conformal coupling,

the stability/phenomenological requirement 0 < c2s ≪ 1
embodied in Eq. (50) does not allow Q to vary sufficiently
to drive late-time cosmic acceleration. Instead, Q must
remain approximately constant. Possible loopholes in this
argument are that Q may be fine-tuned to keep the right-
hand side of Eq. (50) artificially small and/or j d ln ρDMd ln a j
artificially large. Although there may exist special func-
tional forms forQðXÞ for which this is the case, we will not
pursue the conformal case further. Instead, we turn to the
more promising case of disformal coupling, Q ≠ R.

C. Maximally disformal coupling

It should be clear from the dispersion relation in Eq. (48)
that the requirement cs ≪ 1 forces QðXÞ to be a slowly
varying function. This is what spelled doom for the
conformal case; since everything is controlled by Q in
that case, a nearly constant QðXÞ implies a negligible
impact on the background evolution. In the disformal case
Q ≠ R, however, it is in principle possible to keep Q
approximately (or even exactly) constant, while RðXÞ can
have arbitrary time dependence.
To simplify the discussion, let us focus on the maximally

disformal case where Q remains exactly constant, i.e.,
Q≡ 1 at all times. In this case, Eq. (48) implies (after some
manipulation) the sound speed

c2s ¼
1 − Λ4

b
2XP;X

ð1 − 1
R2Þ

1þ 2XP;XX

P;X

; ð58Þ

where we have substituted Eq. (10) for S. Next, using the
definition of c2DM [in particular, Eq. (56)] as well as ρDM ≃
2XP;X the sound speed becomes

c2s ≃ c2DM

�
1 −

Λ4
b

ρDM

�
1 −

1

R2

��

¼ c2DM

�
1 −

~ρb
ρDM

RðR2 − 1Þ
�
; ð59Þ

where in the last step we have substituted Eq. (42).
Thus in this case the sound speed is proportional to c2DM,

which can be made arbitrarily small. It remains to show that
c2s is also positive. To see this, note that Eq. (31) withQ ¼ 1,

P ≪ ρDM, and ~Pb ¼ 0 implies ρDM ¼ Λ4
DM

ffiffiffiffiffi
X
Xeq

q
ðaeqa Þ3.

Combined with Eq. (38), we get

~ρb
ρDM

≃ Λ4
b

Λ4
DM

ffiffiffiffiffiffiffi
Xeq

X

r
1

R3
: ð60Þ

Substituting into Eq. (59) gives

c2s ≃ c2DM

�
1 −

Λ4
b

Λ4
DM

�
1 −

1

R2

� ffiffiffiffiffiffiffi
Xeq

X

r �
: ð61Þ

By definition,Λ4
b andΛ4

DM set the baryon and DMdensity at

matter-radiation equality, and hence
Λ4
b

Λ4
DM

≃ 1
6
. Meanwhile, as

argued earlier XðaÞ is nearly constant in the limit c2DM ≪ 1;
see Eq. (53). Therefore, it follows that c2s is positive, as
desired.

VI. INTEGRATING IN FIELDS

Although our scenario does not require any additional
degree of freedom beyond DM and ordinary matter, it is
sometimes conceptually helpful to “integrate in” additional
fields to make contact with a language that is perhaps more
familiar to the reader. In the case of the conformal coupling,
it is sufficient to introduce a massive scalar field ϕ for this
purpose. In the generic case, on the other hand, the
introduction of an additional massive vector field Aμ is
required. Furthermore, for concreteness, and to make
contact with particle physics theories of DM, we shall
model the DM field as a fermion ψ . (The generalization to
bosonic DM is of course straightforward.)
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A. Scalar-vector-tensor formulation

Consider the (Einstein-frame) theory

L¼ ffiffiffiffiffiffi
−g

p �
R

16πGN
−
1

2
ð∂ϕÞ2 − 1

2
m2

ϕϕ
2 −

1

4
F2
μν þ

1

2
m2

AA
2
μ

�

−
ffiffiffiffiffiffi
−g

p ��
1−

ϕ

M

�
mψ ψ̄ψ þ αAμψ̄γ

μψ

�
þLb½~gμν�;

ð62Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength for Aμ, M is
some arbitrary mass scale, α is a dimensionless constant,
and

~gμν ≡ R2ðϕÞ
�
gμν −

AμAν

A2

�
þQ2ðϕÞAμAν

A2
: ð63Þ

Ignoring the contribution from baryons for a moment, the
equations of motion for ϕ and Aμ are

□ϕ ¼ m2
ϕϕ −

mψ

M
ψ̄ψ ;

∇μFμν ¼ −m2
AA

ν þ αψ̄γνψ : ð64Þ
For the purpose of solving Eq. (68), we imagine coarse-
graining the DM distribution over scales much larger than
the interparticle separation, which amounts to a hydrody-
namical approximation. In this regime mψhψ̄ψi reduces to
the DM energy density ρDM, whereas hψ̄γμψi represents the
averaged current and is therefore proportional to the 4-
velocity of the fluid element uμ. Furthermore, assuming that
ϕ andAμ are sufficiently heavy,we can ignore their gradients
and treat them as auxiliary fields. Thus, by averaging
Eq. (68) we obtain the expectation value of the auxiliary
fields on large (i.e., cosmological) scales, with the result

ϕ ¼ mψ

Mm2
ϕ

hψ̄ψi≃ ρDM
Mm2

ϕ

;

Aμ ¼ α

m2
A
hψ̄γμψi ∼ uμ: ð65Þ

It is straightforward to convince oneself that this implies the
equivalence of Eq. (65) and the original action (2) in the
regime that baryons are negligible.
For self-consistency, we should check our approximation

of neglecting baryons in the above equations. The baryonic
contribution to Eq. (64) can be readily computed:

δLb

δϕ
∶

dLb

d~gμν

d~gμν
dϕ

¼ dLb

d~gμν

�
2RR;ϕðϕÞ

�
gμν −

AμAν

A2

�

þ 2QQ;ϕðϕÞ
AμAν

A2

�
;

δLb

δAα
∶

dLb

d~gμν

d~gμν
dAα

¼ −
dLb

d~gμν
ðR2 −Q2Þ

×
δαμAν þ δανAμ − 2AμAνAα=A2

A2
: ð66Þ

These expressions can be greatly simplified if we notice
that

dLb

d~gμν
¼

ffiffiffiffiffiffi
−~g

p
2

~Tμν
b ¼

ffiffiffiffiffiffi
−~g

p
2

~ρb ~u
μ
b ~u

ν
b ð67Þ

for the pressureless baryon fluid. Moreover, at the back-
ground level the velocity ~uμb is aligned with the dark matter
velocity uμ, and consequently with Aμ. After combining
everything we get the remarkably simple result

δLb

δϕ
∶

dLb

d~gμν

d~gμν
dϕ

¼ −R3Q;ϕðϕÞ~ρb;

δLb

δAα
∶

dLb

d~gμν

d~gμν
dAα

¼ 0: ð68Þ

Therefore, our solution for Aμ [second equation of
Eq. (65)], is correct even when including baryons, whereas
our solution for ϕ [first equation of Eq. (65)] is accurate to
the extent that

ρDM
M

≫ R3jQ;ϕðϕÞj~ρb: ð69Þ

This is trivially satisfied for the maximally disformal
coupling, Q ¼ 1, telling us that in that case the solution
for ϕ continues to apply with baryons. More generally,
it is helpful to cast it in terms of the X variable using the
chain rule

Q;ϕ ¼ dρDM
dϕ

dP
dρDM

Q;X

P;X
≃ 2Mm2

ϕc
2
DM

XQ;X

ρDM
; ð70Þ

where we have used Eq. (65), the definition of c2DM ≡
dP=dρDM, and ρDM ≃ 2XP;X. Furthermore, using the fact
that Q;R ≥ 1, our criterion (69) reduces to

ρDM
M2m2

ϕ

≫
~ρb
ρDM

c2DM

���� d lnQd lnX

����: ð71Þ

On the other hand, since ρDM evolves cosmologically on a
Hubble time scale, we must require mϕ ≫ H (as well as
mA ≫ H) in order for Eq. (65) to remain true adiabatically.
Hence, Eq. (71) implies

ρDM
H2M2

≫
~ρb
ρDM

c2DM

���� d lnQd lnX

����: ð72Þ

Even in the conformal case (which, in any case, is
undesirable at the level of perturbations as discussed
earlier), where c2DMj d lnQd lnX j ∼Oð1Þ [see Eq. (54)], this
inequality is easily satisfied by taking M ≪ MPl. In the
maximally disformal case Q ¼ 1, the bound is of course
trivially satisfied.
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B. Local constraints

The scalar-vector-tensor formulation given by Eq. (62) is
particularly useful to derive the predicted signals for DM-
nucleon scattering (direct detection) and DM annihilation
(indirect detection). For this purpose we must determine the
field values ϕ̄ and Āμ assumed in the local environment.
Averaging over the local (galactic) DM density, the answer
is given by Eq. (65) (again ignoring baryons).
We are interested in the four-body effective interaction

vertex between DM particles and baryons. Expanding about
the background values ϕ ¼ ϕ̄þ φ and Aμ ¼ Āμ þ aμ, the
part of the action relevant for local experiments is

L ¼ −
1

2
ð∂φÞ2 − 1

2
m2

ϕφ
2 −

1

4
f2μν þ

1

2
m2

Aa
2
μ

þmψ

M
φψ̄ψ − αaμψ̄γμψ þQ;ϕðϕ̄Þ

Qðϕ̄Þ mbφb̄b

þQ2 − R2

R2Q2
mb

ai
Ā0

b̄γibþ � � � ; ð73Þ

wheremb denotes the mass of the baryon particle and fμν ≡
∂μaν − ∂νaμ is the field strength for the vector perturbation.
By integrating out φ and aμ we can write down effective
Fermi vertices describing DM-baryon interactions. This is
done as usual by evaluating the DM-baryon scattering
amplitude mediated by φ and aμ exchange. In the limit of
large mϕ and mA, the scalar and vector propagators just
become 1=m2

ϕ and 1=m2
A, respectively, and the effective

Lagrangian reduces to

Leff ∼Gφ
F ψ̄ψ b̄bþGa

Fψ̄γ
iψ b̄γib: ð74Þ

The effective Fermi constants are given by

Gφ
F ¼ mψmb

Mm2
ϕ

Q;ϕðϕ̄Þ
Qðϕ̄Þ ¼ 2

mψmb

ρDM
c2DM

d lnQ
d lnX

; ð75Þ

Ga
F ¼

Q2 − R2

R2Q2

mψmb

ρDM
; ð76Þ

where in the last step of Eq. (75) we have substi-
tuted Eq. (70).
These effective coupling constants exhibit screening first

because they are inversely proportional to ρDM, and second
because R → Q → 1 at high density. Both factors tend to
suppress GF and weaken DM-baryon interactions in
regions of high density. Moreover, Gφ

F is further suppressed
by c2DM, which can be made arbitrarily small. We leave a
detailed discussion of direct- and indirect-detection con-
straints to future work. As mentioned earlier our primary
interest lies in the maximally disformal case Q ¼ 1, for
which Gφ

F vanishes.

Wewould like to finish this section by stressing that we are
dealing with the effective field theory. Therefore, we should
expect the presence of new degrees of freedom in the
spectrum, with masses of the order of the cutoff of the
theory. Their presence is required by unitarity, as otherwise
the scattering amplitudes would diverge at the cutoff.
Therefore, in order to justify the novelty of our scenario
(claimed throughout the paper), we need to make sure that
these additional degrees of freedomaremuch heavier than the
Hubble scale. At late times theQ- andR-dependent factors of
the Fermi constants can be approximated as unity, resulting in

GF ∼
mψmb

ρDM
: ð77Þ

It is easy to see that the suppression scale of this coupling is
greater than H, as long as

ρDM ≫ mψmbH2: ð78Þ

Taking into account that at late times the DM density is
approximately equal to the total energy density, we can
use theFriedmannequationρDM ≃H2M2

Pl to rewriteEq. (78)
as

M2
Pl ≫ mψmb: ð79Þ

Obviously, this inequality is easily satisfied. In order to give a
numerical estimate of the coupling strength let us assume
mψ ¼ eV, mb ∼ GeV, and ρDM ∼meV4, resulting in

GF ∼
1

10−21 eV2
: ð80Þ

Therefore, the cutoff of our effective theory is many orders of
magnitude bigger than theHubble constant today.Thismeans
that all the additional degrees of freedom in our model are
much heavier than the curvature scale, manifesting the
novelty of our scenario.

VII. COSMOLOGICAL OBSERVABLES

In this section we derive various cosmological observ-
ables for our model and compare the results to ΛCDM
predictions. For concreteness, we focus on the maximally
disformal case Q ¼ 1, since (as discussed in Sec. V C) the
sound speed of fluctuations in this case is consistently small
and positive. This case is also more predictive, since we are
left with a single function RðXÞ to fit against data. For
illustrative purposes we will focus on a simple parametri-
zation for this function, involving two parameters, and
choose parameter values that give a reasonable fit to the
data, without attempting a full likelihood analysis to derive
a best-fit model. This is left for future work. One observable
we will not consider here is the CMB angular power
spectrum, as this requires modifying the CAMB numerical
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code. The full derivation of the CMB spectrum will be
presented elsewhere [37].
First, let us set some conventions. Instead of RðXÞ it

turns out to be convenient to work in terms of its inverse—
the rescaled growth factor defined in Eq. (24):

g≡ a
~a
¼ 1

R
: ð81Þ

By rescaling coordinates, we can set the physical scale
factor to unity at the present time, ~a0 ¼ 1, but then in
general the present-day Einstein frame scale factor is left
unfixed, a0 ¼ g0 ≠ 1. Redshift factors can be defined in
both frames as follows:

~a ¼ 1

1þ ~z
; a ¼ g0

1þ z
: ð82Þ

The present time corresponds to ~z ¼ z ¼ 0, as it should. We
also recall the rate function f ≡ d ln a

d ln ~a, introduced in
Eq. (20). This can be expressed in terms of redshift as

fð~zÞ ¼ 1 − ð1þ ~zÞ d ln g
d~z

: ð83Þ

We will work in the approximation that baryons are
pressureless, ~Pb ¼ 0. As discussed in Sec. IV B, it follows
that the Einstein-frame scale factor behaves exactly as a
dust-dominated universe, aðtÞ ∼ t2=3, all the way to the
present time. In other words,

HðaÞ ¼ H0

�
a0
a

�
3=2

: ð84Þ

A. Fiducial model

In principle to fix a model we should specify a DM
function PðXÞ and a coupling function RðXÞ, and then
solve the DM equation of motion (30) to obtain XðaÞ.
Equivalently, we can assume that this has been done already
and specify RðaÞ directly. This gives us an expression for
~aðaÞ ¼ RðaÞa, with which we can calculate various observ-
ables. In practice, however, the fitting procedure is simpler if
we have an analytic expression for the inverse, að ~aÞ. While
there is a one-to-one correspondence between the latter and
the former, this may require numerically solving a tran-
scendental equation. To short-circuit these complications,
we will follow an easier route by directly specifying the
function að ~aÞ, or in other words, gð ~aÞ. This suffices for the
purpose of this section, namely, to present a proof of
principle for the existence ofDM-baryon coupling functions
that give a reasonable fit to data.
Specifically, we consider as a fiducial function the

following polynomial form:

að ~aÞ ¼ ~aþ α ~a2 þ β ~a3: ð85Þ

The corresponding rescaled growth function follows
immediately:

gð ~aÞ ¼ 1þ α ~aþ β ~a2: ð86Þ
The coefficient of the linear termwas fixed by the requirement
that a≃ ~a at early times (i.e., for ~a ≪ 1). We have explored
the effect of including higher-order terms as well, but this
turns out tomake little difference in terms of improving the fit
to data. One should keep in mind that this simple functional
form is only meant to be valid up to the present time, ~a ≤ 1.
This may be appropriately modified at larger values of ~a, in
order to get suitable future asymptotic behavior.
The next step is to determine the values of α and β for

which our model provides a reasonable fit to data. For
starters we impose two conservative restrictions on the
predicted expansion history. The first condition is that
the proper distance dP, normalized to ~H0, agrees with the
ΛCDM prediction to within 3% over the redshift range
0 ≤ ~z ≤ 3. Specifically, the quantity of interest is

~H0dPð~zÞ ¼
Z

~z

0

d~z0
~H0

~Hð~z0Þ : ð87Þ

The expression in ΛCDM cosmology is

HΛCDM
0 dΛCDMP ð~zÞ ¼

Z
~z

0

d~z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛCDM

m ð1þ ~z0Þ3 þ 1 −ΩΛCDM
m

p ;

ð88Þ
wherewewill assumeΩΛCDM

m ¼ 0.315, corresponding to the
Planck best-fit value [36]. The 3% constraint is a
conservative requirement that ensures good agreement with
low-redshift geometric tests, such as Type Ia supernovae
(Sec. VII B) and baryonic acoustic oscillations (Sec. VII C).
The second restriction pertains to the normalization of

the cosmic ladder, set by the angular diameter distance to
the CMB at ~zCMB ≃ 1090:

dAð~zCMBÞ ¼
1

1þ ~zCMB
dPð~zCMBÞ: ð89Þ

In ΛCDM cosmology with ΩΛCDM
m ¼ 0.315, the result is

dΛCDMA ðCMBÞ≃ 3×10−3

HΛCDM
0

. Matching this to CMB data, the

Planckmission can indirectly determine theHubble constant,
with the result [34] HΛCDM

0 ¼ 66.93�0.62 kms−1Mpc−1.
This is well known to be in tension (at the≳3σ level) with the
direct estimate with the Hubble Space Telescope [35] of
Hdirect

0 ¼ 73.24� 1.74 km s−1Mpc−1. See Refs. [52,53] for
a nice discussion of this tension.
Similarly, in our model we must match the predicted

dAð~zCMBÞ to Planck, which fixes ~H0.
5 However, since our

5The CMB constraint on H0 does not solely come from the
sound horizon at last scattering, but also from the photon
diffusion length scale which affects the Silk damping tale [54].
For the purpose of this preliminary analysis, we limit ourselves
to matching dAð~zCMBÞ. We thank Adam Lidz for pointing this out
to us.
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expansion history is generally different than ΛCDM, so is
our value of ~H0. We impose as a prior that our predicted ~H0

lies within the range 65 to 75 kms−1 Mpc−1. This range is
chosen to include, at the lower end, the Planck best-fit

ΛCDM value [34], and, at the upper end, the direct HST
[35] measurement.
The allowed region in ðα; βÞ parameter space satisfying

both requirements is shown as thewhite region in Fig. 1. The
blue shaded region is excluded by the dP prior, the orange
region is excluded by the ~H0 prior, and the purple region
represents the overlap. Within the white region we have
selected three sample choices of coefficients, i.e., one central
value (Case 2) and two extreme values (Cases 1 and 3):

Case 1∶ α ¼ −0.16; β ¼ −0.038;

Case 2∶ α ¼ −0.08; β ¼ −0.09;

Case 3∶ α ¼ −0.02; β ¼ −0.12: ð90Þ

These are shown as red dots within the allowed region.
For illustrative purposes, in the remaining subsections we
will calculate various observables and compare the results to
the ΛCDM prediction for three sample choices of coef-
ficients. For the record, the predicted Hubble constant in
each case is

~HCase 1
0 ¼ 74.1 km s−1 Mpc−1;

~HCase 2
0 ¼ 72.3 km s−1 Mpc−1;

~HCase 3
0 ¼ 67.5 km s−1 Mpc−1: ð91Þ

Figure 2 compares the normalized Hubble parameter as a
function of the redshift ~H

~H0
in each case together with the

ΛCDM prediction HΛCDM

HΛCDM
0

, over the redshift range 0 ≤ ~z ≤ 3.

The grey band represents the Planck ΛCDM 1σ range,
Ωm ¼ 0.315� 0.026, with the black curve corresponding
to the central value. The right panel shows that in all cases
the difference with ΛCDM is ≲3% over this range.

Case 1

Case 2

Case 3

–0.20 –0.15 –0.10 –0.05
α

–0.14

–0.12

–0.10

–0.08

–0.06

–0.04

–0.02

β

FIG. 1. The white region represents the allowed region in ðα; βÞ
parameter space, where α and β are coefficients of our fiducial
polynomial function að ~aÞ¼ ~aþα ~a2þβ ~a3. The region is determined
by two requirements: i) the proper distance dPð~zÞ agrees with the
ΛCDMprediction (withPlanckbest-fit parameters) towithin 3%over
theredshift range0≤ ~z≤3; ii) theHubbleconstant ~H0 lieswithinthe2σ
range from direct measurements. The blue shaded region is excluded
by the dP prior, the orange region is excluded by the ~H0 prior, and the
purple region represents the overlap. The red dots within the allowed
region (labeled asCases 1, 2, and 3) are three representative choices of
coefficients for which we later derive observable predictions.

FIG. 2. Left panel: Normalized Hubble parameter as a function of the redshift
~Hð~zÞ
~H0

for our three fiducial sets of parameters. The grey
band represents the Planck ΛCDM 1σ range,Ωm ¼ 0.315� 0.026, with the black curve corresponding to the central value. Right panel:

The fractional difference between our results and the ΛCDM prediction with Ωm ¼ 0.315, i.e., Δ ~H
~H
≡

~H
~H0
−HΛCDM

HΛCDM
0

HΛCDM

HΛCDM
0

.
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B. Luminosity distance

Consider the luminosity distance dLð~zÞ to type Ia
supernovae. This is related to the physical distance (87)
as usual by

dLð~zÞ ¼ ð1þ ~zÞdPð~zÞ: ð92Þ

Type Ia observations offer tight constraints on dLð~zÞ over the
redshift range 0≲ ~z≲ 1.5 [55]. An important constraint on
our model is that our luminosity distance ~H0dL agrees well
with the corresponding ΛCDM expression HΛCDM

0 dΛCDML
over this redshift range. Figure 3 compares our model
predictions for the three fiducial cases listed above and
theΛCDMprediction over the redshift range 0 ≤ ~z ≤ 2. The
right panel shows that in all cases the differencewithΛCDM
is ≲2% over the entire range.

C. Baryon acoustic oscillations

Observations of BAO in large-scale structure surveys
constrain the combination rdrag=dVð~zÞ, where rdrag is the

comoving sound horizon at the end of the baryon drag
epoch [56], and dV is given by

dVð~zÞ ¼
�
d2Pð~zÞ

~z
~Hð~zÞ

�
1=3

: ð93Þ

More precisely, galaxy surveys now have the statistics to
decompose transverse and line-of-sight clustering informa-
tion, thereby placing constraints on dA and H separately
[57]. However, for the purpose of this preliminary analysis
we will content ourselves with the comparison to the angle-
averaged observable, dV. Various surveys constrain
rdrag=dVð~zÞ to within 5–10% of the ΛCDM best-fit pre-
diction from Planck over the redshift range 0≲ ~z≲ 1, as
summarized nicely in Fig. 14 of Ref. [36]. Figure 4
compares our model predictions for ~H0dVð~zÞ for our three
fiducial parameter sets with the ΛCDM prediction
HΛCDM

0 dΛCDMV for 0 ≤ ~z ≤ 1. The right panel shows that
in all cases the difference with ΛCDM is ≲3% over
this range.

FIG. 3. Left panel: The luminosity distance as a function of redshift, with the same conventions as in Fig. 2. Right panel: The fractional

difference with ΛCDM, defined as ΔdL
dL

≡ ~H0dLð~zÞ−HΛCDM
0

dΛCDML ð~zÞ
HΛCDM

0
dΛCDML ð~zÞ .

FIG. 4. Left panel: The distance relation dVð~zÞ probed by BAO observations, with the same conventions as in Fig. 2. Right panel: The

fractional difference with ΛCDM, defined as ΔdV
dV

≡ ~H0dVð~zÞ−HΛCDM
0

dΛCDMV ð~zÞ
HΛCDM

0
dΛCDMV ð~zÞ .
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D. Growth history of linear perturbations

Next we consider the growth history of DM linear
perturbations. For simplicity let us ignore the contribution
from baryons, in which case the function gð ~aÞ given by
Eq. (86) matches the rescaled growth function defined in
Ref. [51]. Figure 5 shows this growth factor as a function of
redshift for our three sets of fiducial parameters, together
with the ΛCDM fitting function proposed in Ref. [51]:

gΛCDM ¼ e
R

a

0
d ln a0½Ωmða0Þ0.545−1�: ð94Þ

The predicted σ8 in each case is

σCase 18 ¼ 0.84;

σCase 28 ¼ 0.87;

σCase 38 ¼ 0.90: ð95Þ

Clearly, Case 1 offers the closest match to the ΛCDM best-
fit normalization σ8 ¼ 0.831� 0.013 [36]. Interestingly,
recall from Eq. (91) that this case also predicts the largest
value of the Hubble constant, ~H0 ¼ 74.1 km s−1 Mpc−1, in
good agreement with direct estimates. Conversely, the
Hubble constant for Case 3 is closest to the Planck
ΛCDM value, but it is clear from Fig. 5 that this case
overpredicts the growth of structures.
Redshift-space distortions (see, e.g., Refs. [58,59]) con-

strain the combination fσ8, where f is the growth rate
defined inEq. (20). This quantity is plotted in Fig. 6, together
with the ΛCDM prediction. Our model agrees well with
ΛCDMat ~z ∼ 1, but we systematically predict a larger fσ8 at
low redshift. This seems in tension with the most recent
constraints from the completed SDSS-III BOSS survey [59],
whichmeasuredfσ8 ¼ 0.430� 0.054 at zeff ¼ 0.38, fσ8 ¼
0.452� 0.057 at zeff ¼ 0.51, and fσ8 ¼ 0.457� 0.052 at
zeff ¼ 0.61. We leave a more detailed comparison to
redshift-space observations to future work.

E. Integrated Sachs-Wolfe effect

One observable that is potentially problematic for us is the
ISWeffect, both through its impact on the low-multipole tail
of the CMB power spectrum and on the cross-correlation
with galaxy surveys. The ISW signal is determined by the
rate of change of the effective gravitational potentialΦþ Ψ
felt by photons integrated along the null trajectory:

�
δT
T

�
ISW

¼
Z

τ0

τrec

dτ
∂
∂τ ðΦþ ΨÞ; ð96Þ

where τrec and τ0 are, respectively, the conformal time at
recombination and at present.
In our case the scalar potentials experienced by photons

are those of the physical metric ~gμν, i.e.,

d~s2 ¼ −ð1þ 2 ~ΦÞdt2 þ ð1 − 2 ~ΨÞ ~a2dx⃗2: ð97Þ

In the maximally disformal case of interest (Q ¼ 1), they
are related to the Einstein-frame potentials by

FIG. 5. The rescaled DM growth factor gð~zÞ [defined in Eq. (86)] is plotted as a function of redshift for the three fiducial sets of
parameters, and compared to the ΛCDM prediction, calculated from Linder’s fitting formula (94).

FIG. 6. The observable fσ8ð~zÞ, which is constrained by
redshift-space distortion measurements, is plotted for our model
and ΛCDM.
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~Φ ¼ Φ;

~Ψ ¼ Ψ −
δR
R

¼ Ψ −
d lnR
d lnX

δX
X

; ð98Þ

where we have used the fact that the spatial metrics are
related by ~gij ¼ R2ðXÞgij, and expanded RðXÞ to linear
order. An argument similar to that given for the conformal
case in Sec. V B leads us to conclude that d lnRd lnX ∼

1
c2DM

at late

times in order for the RðXÞ coupling to have a significant
impact on the expansion history. Similarly, it follows from
the argument given around Eq. (53) that δX

X ∼ c2DM
δρDM
ρDM

.
Putting everything together, our ISW potential is

~Φþ ~Ψ ¼ Φþ ΨþOð1Þ δρDM
ρDM

; ð99Þ

and thus receives a contribution proportional to δρDM
ρDM

. [It is
worth emphasizing that Eq. (99) only holds at late times,
when R is significantly different from unity and drives
cosmic acceleration.]
The issue comes from the fact that δρDMρDM

∼ k2Φ is strongly
scale dependent and peaks on small scales. This naively
implies a large ISW signal, which may be problematic. On
the other hand, it is worth noting that observations favor (at
the ≃2σ level) a larger ISW effect than predicted by
standard ΛCDM cosmology [38]. Meanwhile, the contri-
bution from Φþ Ψ is expected to be small. Indeed, at least
to the extent that baryons are negligible, the (Einstein-frame)
gravitational potentials experience a matter-dominated uni-
verse to the present time, and hence are constant on linear
scales. Therefore, only the δρDM=ρDM term is expected to
contribute significantly to Eq. (96). A quantitative treatment
of the ISW effect, together with detailed predictions for the
CMB and matter power spectrum, is currently in progress
and will be presented in a future paper [37].
Another observable that is determined by the combina-

tion Φþ Ψ is the large-scale weak lensing power spectrum
measured by Planck.6 This could similarly be affected by
the density-dependent contribution, though its impact will
ultimately depend on the behavior of RðXÞ where the
lensing kernel peaks. This also deserves further study.

VIII. DISCUSSION

In this paper we presented a third avenue for generating
cosmic acceleration, without a source of negative pressure
and without new degrees of freedom beyond those of
Einstein gravity. The mechanism relies on the coupling
between DM and baryons through an effective metric. Dark
matter couples to an Einstein-frame metric, and experiences
a matter-dominated, decelerating cosmology up to the
present time. Ordinary matter, meanwhile, couples to an

effective metric that depends both on the Einstein-frame
metric and on the DM density. By construction this
effective metric reduces to the Einstein-frame metric at
early times, but describes an accelerating cosmology at late
times. Interestingly, the fact that the Jordan-frame metric
reduces to the Einstein-frame metric at large dark matter
densities screens the violation of the equivalence principle
from a local observer. To be more specific, the local dark
matter densities are of the order of the cosmological
densities at redshift z≃ 50. Therefore, the level of obscurity
of the equivalence principle for the short-scale observer will
be determined by the cosmological evolution at z≃ 50.
Fortunately, observations require a significant departure of
Einstein- and Jordan-framemetrics only from redshift of the
order of a few. Although a detailed analysis of the nonlinear
dynamics is beyond the scope of this paper, this qualitative
argument about screening should be applicable to the
nonlinear regime of structure formation. In other words,
the coupling functions could be selected in such a way that
the Einstein- and Jordan-frame metrics coincide at virial
densities.
Linear perturbations are stable and propagate with

arbitrarily small sound speed, at least in the case of
maximally disformal or pressure coupling Q ¼ 1. The
case of conformal coupling, on the other hand, generically
results in a relativistic sound speed at late times, and is
therefore observationally disfavored [32]. As the name
suggests, the case of pressure coupling Q ¼ 1 implies that
pressureless sources (i.e., nonrelativistic particles) are in
fact decoupled from the DM. The DM only affects
relativistic particles; in particular, all observational conse-
quences derive from the effect of the ambient DM back-
ground on the propagation of photons. In this sense our
proposal is spiritually similar to the old idea of “tired light,”
proposed long ago by Zwicky as an alternative to the
expanding universe. In our case the accelerating universe is
a consequence of photons interacting with the DM medium
along the line of sight.
In general, baryonic and dark matter perturbations

experience different growth histories in our scenario.
However, taking into account that the cosmological struc-
ture is dark matter dominated, we expect the cumulative
growth rate to be close to that of dark matter. However, for
the pressure coupling Q ¼ 1 (for which the detailed fitting
was performed) the situation simplifies. In this case, as they
decouple from DM, the nonrelativistic baryons share the
same growth history as DM.
We do not claim that our model is somehow better

motivated from a particle physics standpoint than existing
explanations for cosmic acceleration. After all we have at
our disposal a priori two free functions QðXÞ and RðXÞ
(one function in the maximally disformal case) that must be
engineered to reproduce standard evolution at early times
and generate an accelerating universe at late times. This is
similar to the tuning inherent to quintessence models,6We thank Paolo Creminelli for discussions of this point.
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where one specifies a scalar potential to obtain the desired
evolution. Nevertheless the mechanism is sufficiently
novel and different than existing explanations on the market
that it is definitely worth exploring its observational
consequences.
As a sanity check, we have performed a preliminary

check for a few key cosmological observables—focusing
on the maximally disformal coupling—and compared the
results to ΛCDM predictions. For a simple parametrization
of the RðXÞ coupling function, our model can successfully
reproduce various geometric constraints, including the
luminosity distance relation and BAO measurements. For
density perturbations, our model predicts an intriguing
connection between the growth factor and the Hubble
constant (which is fixed by matching the angular diameter
distance to the CMB). To get a growth history similar to the
ΛCDM prediction, our model predicts a higher H0, closer
to the value preferred by direct estimates. On the flip side,
we tend to overpredict the growth of structures whenever
H0 is comparable to the Planck preferred value.
One observable that may be problematic is the ISW

effect, both through its impact on the CMB power spectrum
at low multipoles and on the cross-correlation with galaxy
surveys. The form of our coupling implies a density-
dependent contribution to this observable, which may yield
too large a signal on small scales. On the other hand, as
mentioned already, there is a 2σ excess in the observed
cross-correlation relative to the ΛCDM prediction [38]. In
ongoing work we are modifying the CAMB code to calculate
the CMB and matter power spectra. This will allow us to
make rigorous predictions and check, in particular, whether
the ISW signal is compatible with observations.
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APPENDIX: EQUIVALENCE BETWEEN
FLUID DESCRIPTIONS

In this appendix we elaborate on the points briefly
mentioned in Sec. II regarding the equivalence of DM
effective theories in the hydrodynamical regime. In particu-
lar, we clarify the physical implications of neglecting DM
vorticity.

The most general effective field theory description of a
fluid/solid continuum includes not only the longitudinal
mode but also the transverse degrees of freedom.
Specifically, following Refs. [46,49], a fluid/solid is
described by three Lorentz scalars ϕIðxμÞ, I ¼ 1, 2, 3,
specifying the comoving position of each fluid element as a
function of laboratory spacetime coordinates xμ. For a
homogeneous and isotropic fluid/solid, the action should be
invariant under internal translations ϕI → ϕI þ aI and
rotations ϕI → RI

Jϕ
J. Furthermore, in the case of a perfect

fluid, shear deformations come at no cost in energy, and
hence the action should also be invariant under volume-
preserving diffeomorphisms:

ϕI → ϕ̂I; det
∂ϕ̂I

∂ϕJ ¼ 1: ðA1Þ

At lowest order in derivatives, this implies that the action is
a function of the determinant:

LB ¼ −
ffiffiffiffiffiffi
−g

p
ρðBÞ; B≡ det ðgμν∂μϕ

I∂νϕ
JÞ: ðA2Þ

The ϕI’s have units of length, and hence B is
dimensionless.
The equation of motion following from this action reads

∂μð
ffiffiffiffiffiffi
−g

p
ρ;BðBÞBðB−1ÞIJgμν∂νϕ

JÞ ¼ 0: ðA3Þ
Therefore, an isolated fluid (no external source) in the flat
spacetime (gμν ¼ ημν) allows the following ground-state
configuration:

ϕ̄I ¼ αxI; ðA4Þ

with α being a dimensionless constant. We parametrize the
fluctuations around this ground state by

πI ¼ ϕI − ϕ̄I: ðA5Þ

It is straightforward to show that the stress tensor of this
action can be cast into the form of a perfect fluid,

Tμν ¼ ðρþ PÞuμuν þ Pgμν; ðA6Þ

where the energy density ρ and pressure P are given by

ρðϕÞ ¼ ρðBÞ; PðϕÞ ¼ 2Bρ;BðBÞ − ρðBÞ; ðA7Þ

and the velocity field uμ is given by

uμðϕÞ ¼ 1

6
ffiffiffiffi
B

p ϵμαβγϵIJK∂αϕ
I∂βϕ

J∂γϕ
K: ðA8Þ

The three degrees of freedom can be regrouped into a
longitudinal phonon field and a vortex field. At linear order
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in fluctuations, they are just the longitudinal and transverse
parts of the vector πI.
When no vertex field is excited, the number of degrees of

freedom reduces to one. Therefore it is not surprising that
the fluid action (A2) enjoys a simpler dual description
involving only one scalar field:

LX ¼ ffiffiffiffiffiffi
−g

p
PðXÞ; X ¼ −∂μΘ∂νΘgμν: ðA9Þ

We briefly review the proof of the equivalence between the
two effective descriptions of fluids. The stress tensor of the
action LX also takes the perfect fluid form (A6), with

ρðΘÞ ¼ 2P;XðXÞX − PðXÞ; PðΘÞ ¼ PðXÞ;

uμðΘÞ ¼ −
1ffiffiffiffi
X

p ∂μΘ: ðA10Þ

The precise statement of the equivalence between the ρðBÞ
and PðXÞ descriptions says that one can establish some
relation between ϕI and Θ, such that

ρðϕÞ¼ ρðΘÞ; PðϕÞ¼PðΘÞ; uμðϕÞ¼ uμðΘÞ: ðA11Þ

We will prove this by constructing an explicit map.
The key point of this construction lies in finding the

correct condition to eliminate the extra degree of freedom
present in the ρðBÞ language. It turns out that this is
possible in the absence of vorticity. Let us begin by
defining the following form:

V ¼ Vμdxμ ¼ −ρ;BðBÞ
ffiffiffiffi
B

p
uμðϕÞdxμ: ðA12Þ

Then, the relativistic version of the vorticity of the fluid is
given by the 2-form dV. Vanishing vorticity implies that the
1-form V must be closed, and thus

Vμ ¼ −ρ;BðBÞ
ffiffiffiffi
B

p
uμðϕÞ ¼ Λ4∂μΘ: ðA13Þ

The proportionality constant is introduced to match dimen-
sions on both sides.
It follows immediately from Eq. (A13) that

X ¼ Bf;BðBÞ2; fðBÞ≡ −Λ−4ρðBÞ: ðA14Þ

Moreover, if one defines PðXÞ ¼ Λ4pðXÞ with

pðXðBÞÞ ¼ fðBÞ − 2Bf;BðBÞ; ðA15Þ

then all the equalities in Eq. (A10) are satisfied. This
completes our construction.

To get some intuition about this duality, let us work out
the relation between the fluctuations ϕ and Θ. Writing
Θ ¼ ctþ θ, Eq. (A13) becomes

ðcþ _θ;∂iθÞ¼−f0;B

�
1þ

�
1þ2f0;BB

f0;B

�
∂Iπ

I

�
ð1;πIÞþOðπ2Þ;

ðA16Þ

where we have rescaled the coordinate in such a way that

α ¼ 1 and B0 ¼ α3 ¼ 1, and denoted by fðnÞ0 ¼ fðnÞð1Þ.
Therefore one obtains that

c ¼ −f0;B; ðA17Þ

c _πI ¼ ∂Iθ; ðA18Þ

_θ ¼ c

�
1þ 2f0;BB

f0;B

�
∂Iπ

I: ðA19Þ

The second equation implies that πI must be a gradient
mode πI ¼ ∂Iffiffiffiffiffiffi

−∂2p πL, while the second and third equations

combined require that

π̈L ¼
�
1þ 2f0;BB

f0;B

�
∂2πL ¼ c2s∂2πL; ðA20Þ

which is nothing but the linearized equation of motion for
longitudinal πI . That is, the no-vorticity condition can only
be satisfied for on-shell configurations; the duality between
ρðBÞ and PðXÞ is a classical equivalence.
On the other hand, the above construction does not work

for fluids coupled to an external source. For instance, the
action in the B language,

L ¼ ffiffiffiffiffiffi
−g

p ð−ρðBÞ þ ΩðBÞLbaryonÞ; ðA21Þ

is not simply equivalent to that in the X language,

L0 ¼ ffiffiffiffiffiffi
−g

p ðPðXÞ þQðXÞLbaryonÞ; ðA22Þ

where PðXÞ and ρðBÞ are related by Eq. (A15). This is
because in the presence of an external source (i.e., baryons
in the above example), the vorticity is no longer conserved:
dV ≠ 0. In order to establish the equivalence, one would
need to find a new, conserved vortex vector V̂ by including
baryon fields. For concreteness, we have chosen to for-
mulate our theory in the X language.
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