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We discuss the correlation function for the metric for homogeneous and isotropic cosmologies. The
exact propagator equation determines the correlation function as the inverse of the second functional
derivative of the quantum effective action. This formulation relates the metric correlation function
employed in quantum gravity computations to cosmological observables as the graviton power spectrum.
In the Einstein-Hilbert approximation for the effective action the on-shell graviton correlation function can
be obtained equivalently from a product of mode functions which are solutions of the linearized Einstein
equations. In contrast, the product of mode functions, often employed in the context of cosmology, does not
yield the correlation function for the vector and scalar components of the metric fluctuations. We divide the
metric fluctuations into “physical fluctuations,”which couple to a conserved energy momentum tensor, and
gauge fluctuations. On the subspace of physical metric fluctuations the relation to physical sources
becomes invertible, such that the effective action and its relation to correlation functions no longer needs to
involve a gauge fixing term. The physical metric fluctuations have a similar status as the Bardeen
potentials, while being formulated in a covariant way. We compute the effective action for the physical
metric fluctuations for geometries corresponding to realistic cosmologies.
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I. INTRODUCTION

The correlation function for the metric is a central
quantity in classical and quantum gravity. It permits us
to compute the (linear) response of the metric to a source,
e.g., a moving body. The equal time correlation function
contains the information on the power spectrum of fluc-
tuations in the Gaussian approximation. The (two-point)
correlation function or propagator for the metric plays
also a central role for any computation in quantum gravity.
A typical loop contribution from the metric fluctuations
involves a trace over powers of the metric propagator, with
appropriate vertices inserted. Within functional renormal-
ization the exact flow equation for the effective average
action Γk,

∂kΓk ¼
1

2
Trfð∂kRkÞGkg; ð1Þ

involves the propagator Gk in presence of the infrared
cutoff Rk [1–3].
While the metric correlation in flat space can be

computed rather easily for a simple form of the effective
action, much less is known for the metric correlation in
curved space. For the linear response of the metric to some
sources as galaxies, stars or other moving bodies one needs
the metric propagator in some “background cosmology,”
i.e., for an appropriate homogeneous and isotropic solution
of the gravitational field equations. The same holds for the

determination of the fluctuation spectrum. The metric
correlation in a background is needed if one wants to
explore the dependence of the effective action on the
metric, e.g., in Eq. (1). Particularly interesting are back-
grounds that obey the field equations.
Indeed, functional methods in quantum field theory work

best if the “background field,” for which expressions as (1)
are evaluated, is close to an appropriate extremum of the
action. For example, the functional renormalization group
for scalar fields gives excellent results in simple truncations
if one expands around the minimum of the effective
potential [4–8]. In contrast, expansions with few couplings
around the origin in field space, φ ¼ 0, fail to provide good
results in case of spontaneous symmetry breaking. For
quantum gravity computations often only a few couplings
are kept. One therefore would like to evaluate the effective
action in the vicinity of characteristic solutions of the
cosmological field equations. Typically, these may be
geometries close to de Sitter space as relevant for inflation.
This is also the region in field space for which knowledge
of the effective action Γ is most useful. The exact field
equations follow from the first functional variation of Γ and
employ therefore knowledge about its form in the vicinity
of the relevant solution.
In gravity, the metric propagator evaluated for a back-

ground that solves the field equations (“on shell propaga-
tor”) shows particular properties that do not hold for
general background geometries. One may define gauge
invariant fluctuation quantities (Bardeen potentials [9]). If
the background obeys the field equations only the graviton
mode corresponds to a propagating wave or particle,*c.wetterich@thphys.uni‑heidelberg.de
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whereas the gauge invariant scalar and vector modes
contained in the metric play the role of “auxiliary fields”
that do not describe propagating waves or particles.
Nevertheless the correlation function for the scalar and
vector parts of the physical metric fluctuations does not
vanish.
The consequences of the nonpropagating character of

scalar and vector modes for quantum gravity calculations
are not much explored. The auxiliary field property does
not hold away from solutions of the field equations. It is not
easily visible on the level of the metric fluctuations in
general covariant gauges, for which the difference between
background geometries obeying the field equations or not
is not very apparent at first sight. We clarify in this paper
the relation between the nonpropagating Bardeen potentials
and the nontrivial metric correlation function in the vector
and scalar sector.
More generally, it is the aim of the present paper to

constitute a bridge between concepts typically used in
cosmology, such as mode functions and particular assump-
tions about “vacua” on one side, and functional integral
approaches for a quantum field theory of gravity on the
other. For background geometries obeying the field equa-
tions the metric correlation contains directly the information
about the power spectrum of cosmic fluctuations. For
example, the amplitude and spectrum of the tensor fluctua-
tions can be extracted directly from the equal time corre-
lation function for the graviton component of the metric.
The situation is similar for an additional scalar (inflaton)
field for which amplitude and spectrum can be obtained
from the (gauge invariant) scalar correlation. Since sub-
stantial work has been invested in the computation of the
cosmic fluctuation spectrum for various interesting cosmo-
logical solutions [10–16], one may use this knowledge in
order to gain information about the metric correlation for
realistic cosmological solutions. In the other direction, a
computation of the quantum correlation for the metric
translates directly to important cosmological observables.
While the connection between existing computations of

the cosmic fluctuation spectrum and the metric correlation
is rather direct for the propagating graviton fluctuations (or
an additional inflaton), this is no longer the case for the
scalar and vector modes contained in the metric. First of all,
the standard approach of using commutation relations for
operators of free fields for the definition of a “vacuum
correlation” is only meaningful for the fields describing
propagating waves or particles. Second, the linearized field
equations (mode equations) admit for the gauge invariant
scalar fields or gravitational potentials Φ, Ψ (Bardeen
potentials) only the solution Φ ¼ Ψ ¼ 0 in the absence
of additional matter fluctuations. The usual prescription for
obtaining the correlation function as a product of mode
functions (solutions of the mode equation) would then
imply that the metric correlation in the scalar sector
vanishes. This is, however, not the case.

For the gauge invariant vector fluctuation Ωm the
situation is similar. The only solution of the mode equation
is Ωm ¼ 0, while we find a rotation invariant correlation
function in Fourier space

hΩ�
nðk; ηÞΩmðk; η0Þic ¼

2iδðη − η0Þ
M2k2a2ðηÞ

�
δmn −

kmkn
k2

�
× ð2πÞ3δ3ðk − k0Þ: ð2Þ

Here η is conformal time, aðηÞ the scalar factor, M the
Planck mass and k the comoving wave number. This
correlation function is “instantaneous,” i.e., ∼δðη − η0Þ,
and reflects the role of Ωm as an auxiliary field. It cannot
be written as a product of mode functions.
The different properties of correlation functions in the

graviton sector on one side, and the vector and scalar sector
on the other side, seem related to the difference between
“propagating” and “auxiliary” fields in the operator for-
malism. While the computation of the correlation functions
for the propagating tensor mode is rather straightforward in
the operator formalism, a computation for the scalar and
vector correlations is presumably a rather involved exercise
in this formalism. (See Ref. [17] for structural aspects.)
For the computation of the metric correlation or Green’s

function we need a method that goes beyond mode
functions for free quantum fields. We will directly employ
the defining equation for the Green’s function G

Γð2ÞG ¼ E; ð3Þ

with Γð2Þ involving a suitable differential operator and E the
unit matrix in the appropriate space of fields. Here G is
considered as a matrix with internal and space or momen-
tum indices, and similar for Γð2Þ. For the quantum effective
action Γ the matrix Γð2Þ is the second functional derivative,
and Eq. (3) is an exact identity that follows from the basic
definition of the effective action. The use of this identity for
the computation of primordial cosmic fluctuations has been
demonstrated in Refs. [18–20]. One recovers known results
as special solutions, but also can discuss the most general
solution as an initial value problem for a differential
equation. Starting from the defining equation (3) we will
discuss the conditions under which the correlation function
can be represented as a product of mode functions.
The metric fluctuations around a given background

metric can be divided into physical and gauge fluctuations.
Only the propagator for the physical metric fluctuations
matters for the response of the metric to a covariantly
conserved energy-momentum tensor. Similarly, only the
correlation function for the physical metric fluctuations
leads to observable quantities such as the primordial
fluctuation spectrum. An important aspect of the present
paper is the clear separation between physical and gauge
fluctuations of the metric. This can be achieved by
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imposing a constraint on the metric fluctuations which
eliminates the gauge fluctuations. Alternatively, one can
employ a particular “physical” gauge fixing.
This paper is organized as follows: we present the basic

concepts in Sec. II. Section III deals with the distinction
between physical metric fluctuations and gauge fluctua-
tions. In Sec. IV, we introduce the quantum effective action
for the physical metric fluctuations. It contains all the
information needed for the computation of the quantum
field equations and the correlations for physical metric
fluctuations. Section V turns to the correlation function for
the metric and the defining propagator equation. The on-
shell metric correlation in flat space is addressed in Sec. VI.
This demonstrates several issues as projectors on physical
modes, irreducible representations of the rotation group,
connection to Bardeen potentials, time dependence and
gauge fixing in an explicit form, employing a language that
can be directly used in the following sections. Section VII
extends this discussion to the off-shell propagator for the
metric fluctuations which is needed in quantum gravity
computations.
In Sec. VIII we turn to homogeneous and isotropic

geometries and discuss, in particular, the role of mode
functions, the linearized Einstein equations, projectors on
physical fluctuations, and the connection to gauge fixing.
Section IX proceeds to a decomposition of the physical
metric fluctuations into representations of the rotation
group. We obtain propagator equations for the individual
modes which can be the basis for a future explicit
computation of the correlation function for all components
of the physical metric fluctuations. In Sec. X we focus on
the graviton correlation which is technically simplest. This
makes a direct connection to the observable tensor modes
in the primordial cosmic fluctuation spectrum. The results
agree with the well-known results obtained in the operator
formalism [15,16]. This section mainly serves the demon-
stration of equivalence of methods for the case of propa-
gating fluctuations in a background solving the field
equations, where the operator formalism is straightforward.
We specialize to de Sitter space in order to underline the

equivalence by the explicit form of the graviton propagator.
The full metric correlation has been discussed extensively
for a de Sitter geometry [21–28]. The results of Ref. [27]
include the physical gauge fixing advocated here. Still, some
work needs to be done to extract the explicit form of the
propagator for physical scalar and vector fluctuations from
the general structure described in Ref. [27]. Geometries
close to de Sitter space may avoid the singular behavior of
propagators in de Sitter space, cf. [28] for a discussion. Only
little is known [29] about the full metric propagator in
general homogeneous and isotropic cosmologies.
Our conclusions are found in Sec. XI. Several more

technical points, as the explicit connection to the Bardeen
potentials or a more general mode decomposition can be
found in the appendices.

II. BASIC CONCEPTS

For an effective action of gravity which is invariant under
general coordinate transformations (diffeomorphisms) the
second functional derivative is not invertible in the function
space of arbitrary metric fluctuations. The local gauge
symmetry implies that there are “gauge modes” for which
Γð2Þ vanishes. There are two possible ways to cope with this
issue. The first reduces the field space for G and Γð2Þ to
“physical fluctuations” by projecting out the “gauge
fluctuations”. In this case the inhomogeneous term E on
the r.h.s. of Eq. (3) is a projector on the space of physical
fluctuations. The second functional derivative becomes
invertible on this restricted space if suitable boundary
conditions are specified. (For massless fields the zero
momentum mode may need a special regularization).
The second alternative employs gauge fixing in a standard
way. In the presence of gauge fixing Γ is no longer gauge
invariant. Thus Γð2Þ becomes invertible on the full space of
metric fluctuations and E is the unit matrix in this space.
We will concentrate in this paper on the projection to

physical metric fluctuations. We show that this is equivalent
to a particular gauge fixing. For local gauge theories as
gravity the source for the metric field is related to the
energy momentum tensor Tμν. A central point of our
formalism is the restriction to sources that reflect the most
general covariantly conserved energy momentum tensors,
Tμν

;ν ¼ DνTμν ¼ 0, with Dν a covariant derivative. Such
sources couple only to covariantly conserved metric fluc-
tuations, such that the quantum effective action will only
involve these “physical fluctuations” of the metric.
A quantum field theory for gravity can be formulated as a

functional integral over the “fluctuating metric” g0μν. We
decompose the metric g0μν as

g0μν ¼ ḡμν þ h0μν ¼ ĝ0μν þ a0μ;ν þ a0ν;μ; ð4Þ

with “background metric” ḡμν and

ĝ0μν ¼ ḡμν þ f0μν; f0μν;ν ¼ 0: ð5Þ

Here semicolons denote covariant derivatives that are
formed with the background metric ḡμν such that ḡμν;ρ¼0.
Similarly, an arbitrary symmetric second rank contravariant
tensor Bμν is decomposed as

Bμν ¼ Tμν þ Tμ
V;

ν þ Tν
V;

μ; Tμν
;ν ¼ 0: ð6Þ

For a source term (with ḡ ¼ det ḡμν)

SB¼−
1

2

Z
x

ffiffiffī
g

p
g0μνBμν

¼−
1

2

Z ffiffiffī
g

p fĝ0μνTμνþða0μ;νþa0ν;μÞðTμ
V;

νþTν
V;

μÞg ð7Þ
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one finds indeed that only the physical metric ĝ0μν couples to
Tμν. Restricting the source to TV ¼ 0, the argument of the
effective action Γ will be restricted to

ĝμν ¼ ḡμν þ fμν; fμν ¼ hf0μνi; fμν;ν ¼ 0: ð8Þ

In order to avoid explicit constraints for the metric we
may extend the argument of Γ formally to arbitrary metrics
gμν, e.g. Γ½ĝμν� → Γ½gμν�. The fact that Γ actually only
depends on ĝμν is then reflected by the local gauge
symmetry of Γ. The local gauge symmetry corresponds
to the statement that Γ does not depend on the gauge
fluctuations of the metric

aμν ¼ ha0μ;ν þ a0ν;μi: ð9Þ

In a gauge fixed version of gravity the metric correlation
depends, in general, on the choice of the gauge. For a
general gauge, this often obscures the relation between the
effective action and the propagator for the physical metric
fluctuations. Having identified the physical metric fluctua-
tions it will be natural to choose for the fluctuating metric
in the functional integral a gauge a0μ ¼ 0 or h0μν;ν ¼ 0,
corresponding to g0μν ¼ ĝ0μν. For the functional integral
defining quantum gravity one may therefore employ a
corresponding gauge fixing with the associated ghosts. For
this type of gauge fixing the propagator equation (3)
becomes block diagonal, decaying into separate sectors
for the physical fluctuations and the gauge fluctuations. We
can therefore compute the correlation function for the
physical metric fluctuation on a restricted function space
with appropriate projector E in Eq. (3). On the level of the
relation between the effective action and the correlation
function for the metric the gauge fixing and ghost terms are
not needed if G is restricted to the correlation function for
physical metric fluctuations and E is the appropriate
projector. We can work directly with a diffeomorphism
invariant quantum effective action Γ and do not have to
worry about gauge fixing and ghosts.
The physicalmetric fluctuations fμν are “gauge invariant”

in the same sense as the Bardeen potentials. We explicitly
construct the relation between the physical metric fluctua-
tions and the Bardeen potentials, which turn out to be rather
involved. In contrast to the Bardeen potentials the projection
on fμν can be done in a manifestly covariant way. This is
important for quantum gravity and flow equations where
diffeomorphism invariance plays a crucial role in order to
restrict the form of the effective action. There is, however, a
price to pay for the covariant formulation.While the relation
of the Bardeen potentials to metric fluctuations is simple in
certain gauges as theNewtonian gauge, it getsmore complex
in a covariant setting.
The propagator equation (3) is a differential equation,

DG ¼ E; ð10Þ

with differential operator D ¼ Γð2Þ. This makes it manifest
that G is given by an initial value problem [30–39], and is
not a priori fixed for a given cosmological solution and a
given time. As a simple condition for a possible scaling
solution [18] we employ here the condition that the high
momentum tail of the metric correlation is already at some
early time given by the Lorentz invariant correlation
function in flat space. This generalizes the Bunch-Davies
initial condition [40] to interacting fields, arbitrary geo-
metric backgrounds and nonpropagating modes. It selects
a particular correlation among several proposed ones
[41–44]. The complete discussion of the physical metric
correlation function in flat space presented in this paper is
therefore not only a very explicit example how the
projection on physical fluctuations operates, but also sets
the initial conditions for the solution of Eq. (10).
The correlation function G for the metric is an important

quantity beyond its crucial role for quantum gravity
computations on one side and the cosmic fluctuation
spectrum on the other side. For example, it enters directly
the computation of the bispectrum B from the third func-
tional derivative of the effective action Γð3Þ, that we may
symbolically express as B ¼ Γð3ÞG3. In this paper we
discuss G in the Einstein frame. The determination of G
by the propagator equation (3) makes transformations
between different frames straightforward [20].
Besides the development of the formalism for computing

G from the propagator equation, and the direct relation
between cosmological fluctuation observables and the
covariant correlation for physical metric fluctuations that
may be extracted from quantum gravity calculations, our
paper also contains practical progress: we derive the
explicit form of the propagator equation for the physical
metric fluctuations for a homogeneous and isotropic
cosmological background.

III. PHYSICAL AND GAUGE PART OF METRIC

We formulate quantum gravity as a functional integral
for the partition function

Z½Kμν� ¼
Z

~Dg0ρσ exp
�
−S½g0ρσ�þ

Z
x
g0μνðxÞKμνðxÞ

�
: ð11Þ

The regularization of this functional integral as, for
example, gauge fixing and ghost terms, are here formally
included in the functional measure

R
~Dg0ρσ. The action S

is supposed to be invariant under general coordinate
transformations or diffeomorphisms

δξg0μν ¼ −∂μξ
ρg0ρν − ∂νξ

ρg0μρ − ξρ∂ρg0μν: ð12Þ

The source Kμν ¼ Kνμ transforms as a contravariant tensor
density
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δξKμν ¼ ∂ρξ
μKρν þ ∂ρξ

νKμρ − ξρ∂ρKμν − ∂ρξ
ρKμν; ð13Þ

such that the source term is diffeomorphism invariant. For
the functional measure we will employ a background field
formalism such that the measure is invariant under a
simultaneous diffeomorphism transformation of the back-
ground metric and the fluctuations, see below. Therefore Z
is invariant under this combined transformation.
We write the action in terms of a scalar function L,

S ¼
Z
x

ffiffiffiffi
g0

p
L½g0ρσ�; g0 ¼ detðg0μνÞ;

δξL ¼ −ξρ∂ρL: ð14Þ
For the example of Einstein gravity with reduced Planck
mass M and cosmological constant V one has

L ¼ −
M2

2
Rþ V; ð15Þ

with R the curvature scalar of the metric g0μν. For purposes
of analytic continuation we will admit complex values of
g0μν, while coordinates remain fixed. For Minkowski sig-

nature g0μν is real and one has
ffiffiffiffi
g0

p
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðg0μνÞ

p
,

accounting for the factor i in the weight factor e−S of
the functional integral.
As mentioned in Sec. II, we split the metric g0μν into a

“physical metric” ĝ0μν and a “gauge part” a0μν which can be
obtained by covariant derivatives of a vector a0μ,

g0μν ¼ ĝ0μν þ a0μν; a0μν ¼ a0μ;ν þ a0ν;μ: ð16Þ
Covariant derivatives, denoted by semicolons, are formed
with the connection Γ̄μν

ρ of a background metric ḡμν,

a0μ;ν ¼ Dνa0μ ¼ ∂νa0μ − Γ̄νμ
ρa0ρ: ð17Þ

In principle, the background metric is arbitrary. We will
focus later on solutions of the field equations.
General sources KμνðxÞ are introduced in order to

construct generating functionals as in Eq. (1). This allows
us to probe the response of the metric expectation value to
any given particular source, as the energy momentum
tensor for radiation and matter in cosmology. We use the
background metric ḡμν to relate the sourceKμν to the energy
momentum tensor Tμν,

Kμν ¼ 1

2
ḡ
1
2Tμν; ḡ ¼ detðḡμνÞ: ð18Þ

Again, Tμν is considered here as general source, with
possible a posteriori specification of a “physical source” if
appropriate.
For the effective action Γ the source term in Eq. (11) is

reflected in the quantum field equation (for details see
Sec. IV)

∂Γ
∂gμν ¼ Kμν;

2ffiffiffī
g

p ∂Γ
∂gμν ¼ Tμν: ð19Þ

Identifying gμν and ḡμν, such that Γ depends only on gμν,
the second equation (19) is the usual defining equation for
the energy momentum tensor. (See Ref. [45] for a dis-
cussion and modifications of the identification gμν ¼ ḡμν.)
If one considers extended field theories, for example with
an additional scalar inflaton field, the metric variation of the
effective matter action would contribute (with negative
sign) to Tμν. The precise nature of Kμν and Tμν will not be
important for our discussion. We only will employ the
structural aspect of a conserved energy momentum tensor.
We will focus on sources Kμν corresponding to a

conserved energy momentum tensor, Tμν;ν. They obey

∂νKμν þ Γ̄νρ
μKρν ¼ 0: ð20Þ

These sources couple only to the physical metric, motivat-
ing the naming,

Z
x
g0μνKμν ¼

Z
x
ĝ0μνKμν: ð21Þ

Indeed, partial integration and the relation (20) imply

Z
x
a0μνKμν ¼

Z
x
ða0μ;ν þ a0ν;μÞKμν

¼ −2
Z
x
a0μð∂νKμν þ Γ̄νρ

μKρνÞ ¼ 0: ð22Þ

The constraint (20) is invariant under simultaneous gauge
transformations of Kμν and ḡμν.
With respect to diffeomorphisms all three objects ĝ0μν, ḡμν

and a0μν transform as tensors according to Eq. (12). Writing

ĝ0μν ¼ ḡμν þ f0μν; ð23Þ

and observing

δξḡμν ¼ −ðξμ;ν þ ξν;μÞ; ð24Þ

one sees that the transformation of g0μν can also be realized
for a fixed background metric ḡμν if the transformation of
a0μν obtains an additional inhomogeneous part,

δ̂ξa0μν ¼ δinha0μν þ δξa0μν;

δinha0μν ¼ −ðξμ;ν þ ξν;μÞ: ð25Þ

For a0μ → 0 the inhomogeneous part dominates and
becomes

δinha0μ ¼ −ξμ: ð26Þ

QUANTUM CORRELATIONS FOR THE METRIC PHYSICAL REVIEW D 95, 123525 (2017)

123525-5



This identifies infinitesimal a0μν with the infinitesimal
change of the background metric ḡμν under a diffeomor-
phism transformation. By a suitable gauge transformation
one can always achieve a0μ ¼ 0. This justifies the naming of
a0μν as the gauge part of the metric g0μν.
Strictly speaking, the classification of physical and

gauge fluctuations is exact only on the linear level, e.g.,
for infinitesimal f0μν and a0μν. Beyond, the nonlinear
construction of the notion of a “physical metric” ĝμν is
more involved [46]. Beyond the linear level one would also
like to replace Γ̄νρ

μ in Eq. (20) by the connection formed
with the macroscopic metric gμν. Then this equation,
together with the first equation (19), guarantees invariance
of the effective action with respect to gauge transformations
acting only on gμν [46]. Linear fluctuations are sufficient
for the computation of propagators and field equations. We
therefore stick to the linear definition (16) and (17), leaving
nonlinear extensions aside.
Formally, we can obtain the physical metric fluctuations

by applying a suitable projector PðfÞ,

h0μν ¼ g0μν − ḡμν; f0μν ¼ PðfÞρτ
μν h0ρτ; ð27Þ

where the product includes a product in position space

f0μνðxÞ ¼
Z
y
PðfÞ
μν

ρτðx; yÞh0ρτðyÞ: ð28Þ

The projector PðfÞρτ
μν is symmetric in μ → ν and ρ ↔ τ and

obeys

PðfÞ
μν

αβPðfÞ
αβ

ρτ ¼ PðfÞ
μν

ρτ;

DμPðfÞ
μν

ρτ ¼ 0; PðfÞ
μν

ρτDτ ¼ 0: ð29Þ

We discuss this projector in more detail in Sec. A as well as
in Secs. VI and VIII. The properties (29) guarantee that f0μν
is divergence free

Dμf0μν ¼ 0; ð30Þ

and invariant under the inhomogeneous gauge transforma-
tion δinh. Indeed, applying PðfÞ on the transformed fluc-
tuations yields again f0μν

PðfÞ
μν

ρτðf0ρτ þ a0ρτ −Dρξτ −DτξρÞ ¼ f0μν: ð31Þ

The regularization of the functional integral is done by
using only the objects ĝ0μν and a0μν, preserving the gauge
transformation δξ which acts on both objects. It will not be
invariant under the inhomogeneous transformation δ̂ξ. We
note that δξ and δ̂ξ can be related by a “split transformation”
δsĝ0μν ¼ sμν, δsa0μν ¼ −sμν, for the particular case

sμν ¼ ξμ;ν þ ξν;μ. The split symmetry of objects formed
only with g0μν is broken by the regularization which involves
ĝ0μν and a0μν separately. The regularized functional integral
employs gauge fixing

Z½Kμν; ḡμν� ¼
Z

Dg0μνJ½a0μν; ĝ0μν� expf−Sgf ½a0μν; ĝ0μν�g

× expf−S½g0μν�g exp
�Z

x
ĝ0μνKμν

�
; ð32Þ

with Sgf a gauge fixing term in the action and J½a0μν; ĝ0μν� the
associated Faddeev-Popov determinant. As usual, J can be
represented by a functional integral over ghost degrees of
freedom.
In the setting of the present paper we form covariant

derivatives and the source constraint (20) with the back-
ground metric ḡμν. For a fixed ḡμν this maintains the
discussion of metric fluctuations within the standard
approach. In particular, the source term remains linear in
the fluctuating metric g0μν. As a shortcoming of this formal-
ism Tμν is covariantly conserved only with respect to the
background of the metric ḡμν, and not with respect to the
macroscopic metric gμν as one would like it to be.
One may wish to find a formulation where Eqs. (18) and

(20) employ the macroscopic metric gμν which is the
argument of the effective action, such that for all gμν the
energy momentum tensor is covariantly conserved. This
possibility is described elsewhere [45]. In this case ḡμν may
be replaced by a dynamical macroscopic field gμν, e.g.

gμν ¼
∂ lnZ
∂Kμν : ð33Þ

The source term is then no longer linear since gμν depends
implicitly on Z. As a consequence, Eq. (8) holds only for
infinitesimal fμν, while the general form of the physical
metric ĝμν receives corrections. In this paper we keep a
fixed ḡμν different from gμν, and the present setting can be
viewed as an approximation to the formulation which uses
the macroscopic metric.

IV. QUANTUM EFFECTIVE ACTION

For the construction of the effective action we have
two options. The first one restricts the sources to those
obeying the constraint (20). In consequence, the effective
action will only depend on fields that couple to the
constrained source, i.e.,

ĝμν ¼ hĝ0μνi: ð34Þ

These fields will be constrained according to

ĝμν ¼ ḡμν þ fμν; fμν ¼ hf0μνi; fμν;ν ¼ 0: ð35Þ
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In this formulation the effective action contains no gauge
modes such that the second functional derivative Γð2Þ is
typically invertible once projected on the appropriate space
of physical fluctuations. If a possible gauge fixing term
vanishes for gμν ¼ ĝμν, it needs not to be included on the
level of the effective action. This is the option we will
mainly pursue in this paper. The second option considers
instead of the constrained sources Kμν arbitrary sources
Lμν, and therefore arbitrary gμν. Then typically a gauge
fixing term is present in Γ. One can subsequently project on
the space of physical metric fluctuations. If the gauge fixing
term is projected out by this procedure, it no longer appears
in the projected quantities. In our case we will see that the
two options are equivalent.

A. Effective action for constrained fields

Let us now formulate the effective action in the presence
of constraints on sources and fields. Our starting point is the
partition function (32) where we have indicated explicitly
that Z depends on the background metric ḡμν. This
dependence arises from the constraint (20) for Kμν which
involves the connection formed with ḡμν. Also the definition
of the split of g0μν into ĝ0μν and a0μν involves ḡμν. It is
worthwhile to note, however, that for our construction the
background metric only enters indirectly through the pro-
jections on physical sources and fields, i.e., Kμν and

ĝ0μν ¼ PðfÞρτ
μν g0ρτ. By construction, Z½Kμν; ḡμν� is diffeomor-

phism invariant if both Kμν and ḡμν are transformed
simultaneously. The invariant partition function is the basis
for the construction of the quantum effective action.
We first define the generating functional for the con-

nected correlation functions

W½Kμν; ḡμν� ¼ lnZ½Kμν; ḡμν�; ð36Þ

with

δW
δKμν ¼ hĝ0μνi ¼ ĝμν: ð37Þ

The second functional derivative Wð2Þ defines the con-
nected two-point correlation function (Green’s function,
propagator)

Wð2Þ
ρτσλðx; yÞ ¼ hf0ρτðxÞf0σλðyÞic

¼ hf0ρτðxÞf0σλðyÞi − hf0ρτðxÞihf0σλðyÞi: ð38Þ

[Note that the background metric ḡμν in Eq. (23) drops out
in the connected correlation function.] Below we will
identify the correlation function Wð2Þ with the propagator
for the physical metric fluctuations.
In Eq. (37) the expectation value ĝμν obeys the same

constraint as ĝ0μν, namely

ĝμν∶ν ¼ 0: ð39Þ

(Recall that this constraint is not trivial since covariant
derivatives are formed with ḡμν). Due to the presence of the
constraint (39) we can invert Eq. (37) and obtain the
constrained source Kμν as a functional of ĝμν.
We can make the constraint (38) more explicit by

employing the general decomposition

gμν ¼ ḡμν þ bμν þ
1

4
σḡμν þ vμ;ν þ vν;μ þ 2τ;μν: ð40Þ

With

bμν;ν ¼ −
1

4
∂μσ; bμμ ¼ 0; vμ;μ ¼ 0; ð41Þ

the constraint (39) is realized for

vμ ¼ 0; τ ¼ 0: ð42Þ

Indeed, we have chosen the basis (40) such that for vμ ¼ 0,
τ ¼ 0 one has gμν;ν ¼ 0, according to Eq. (39). Due to the
restriction (20) for the sources, which corresponds to a
conserved energy momentum tensor, no “gauge part” of gμν
is present. The metric ĝμν contains therefore only the
“physical excitations” around the background, namely
bμν and σ, while vμ and τ are set to zero,

fμν ¼ bμν þ
1

4
σḡμν: ð43Þ

The effective action obtains by a Legendre transform

Γ½ĝμν; ḡμν� ¼ −W½Kμν; ḡμν� þ
Z
x
ĝμνKμν; ð44Þ

with Kμν½ĝμν; ḡμν� obtained by solving Eq. (37). As usual,
one has the exact quantum field equation

δΓ
δĝμν

¼ Kμν ¼ 1

2

ffiffiffī
g

p
Tμν: ð45Þ

Our setting is realized by considering Γ as a functional of
fμν (as well as ḡμν), while W depends on sources Kμν that
correspond to Tμν in the general decomposition (6). We will
work within an approximation where Γ is a gauge invariant
functional only of the metric ĝμν. This can formally be
achieved by setting ḡμν ¼ ĝμν in Eq. (44). Gauge invari-
ance permits us to drop the explicit constraint on ĝμν since
the Γ is independent of the gauge fluctuations. We can
therefore consider well-known approximations to the
effective action as the Einstein-Hilbert action. A justifica-
tion of our approximation and a detailed discussion of the
issue of diffeomorphism invariance can be found in Sec. B.
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B. Expansion around a cosmological background

Let us consider some particular “physical source” Kμν0
that corresponds to a homogeneous and isotropic energy
momentum tensor Tμν0. Examples are radiation or dust in
cosmology. We choose the background metric such that for
the physical source Kμν

0 the field equation is obeyed if
ĝμν ¼ ḡμν,

δΓ
δĝμν

ðĝμν ¼ ḡμνÞ ¼ Kμν
0 : ð46Þ

General (inhomogeneous) sources can be written as an
expansion around Kμν,

Kμν ¼ Kμν0 þ ΔKμν: ð47Þ

We consider smallΔKμν such that linearization is valid. We
may expand W around Kμν

0 ,

W ¼ Wð0Þ þ
Z
x
ḡμνðxÞΔKμνðxÞ

þ 1

2

Z
x

Z
y
ΔKμνðxÞWð2Þ

μνρσðx; yÞΔKρσðyÞ þ � � � ; ð48Þ

with Wð0Þ and Wð2Þ depending on Kμν
0 . Equation (37) reads

δW
δΔKμν

¼ ḡμνþ fμν ð49Þ

and comparison with Eq. (48) yields

fμνðxÞ ¼
Z
y
Wð2Þ

μνρσðx; yÞΔKρσðyÞ þ � � � ð50Þ

This equation expresses the response of the metric to
sources in the linear approximation. It involves the metric
correlation function Wð2Þ.
As an example we may consider Einstein gravity in flat

space with Kμν0 ¼ 0 and ḡμν ¼ ημν. A small

ΔK00ðyÞ ¼ i
2
mδ3ðyÞ ð51Þ

may represent a static test mass m or a star at position
y ¼ 0, with T00 ¼ mδ3ðyÞ. For the component f00 Eq. (50)
reads

f00ðt; xÞ ¼
i
2
m
Z
t0
Wð2Þ

0000ðt; x; t0; 0Þ: ð52Þ

Thus the correlation function Wð2Þ
0000 is related to the

Newtonian potential

ΦN ¼ −
1

2
f00 ¼ −

im
4

Z
t0
Wð2Þ

0000ðt; x; t00Þ ¼ −
m

8πM2jxj :

ð53Þ

The linear relation (50) accounts for the response of the
metric to arbitrary small “perturbations” or inhomogeneous
sources ΔKμν. For this purpose the cosmological back-
ground Kμν0 and ḡμν is arbitrary. The relation (50) encodes
one of the central properties of the metric propagator.

C. Expansion in physical metric fluctuations

For a given background metric ḡμν we can expand the
effective action in terms of the physical metric fluctuations
fμν. Expanding in second order in

fμν ¼ ĝμν − ḡμν ¼ bμν þ
1

4
σḡμν ð54Þ

yields

Γ ¼ Γð0Þ þ
Z
x
Γð1ÞμνðxÞfμνðxÞ

þ 1

2

Z
x

Z
y
fμνðxÞΓð2Þμνρσðx; yÞfρσðyÞ þ � � � ð55Þ

with Γð0Þ, Γð1Þ, and Γð2Þ depending on ḡμν and obeying

Γð1ÞμνðxÞ ¼ Kμν
0 ðxÞ: ð56Þ

An expansion of the quantum field equation (45),
combined with Eq. (46), yields in linear orderZ
y
Γð2Þμνρσðx; yÞfρσðyÞ þ � � � ¼ KμνðxÞ − Kμν

0 ðxÞ

¼ ΔKμνðxÞ: ð57Þ

Comparison of Eq. (50) with Eq. (57) shows already that
the metric correlation function is related to an appropriately
projected inverse of Γð2Þ. This relation will be discussed in
the next section.
Both Kμν

0 and ΔKμν obey separately Eq. (20). Thus
Eq. (57) yields a constraint on Γð2Þ,

Z
y

� ∂
∂xν Γ

ð2Þμνρσðx; yÞ þ Γ̄ντ
μðxÞΓð2Þτνρσðx; yÞ

�
fρσðyÞ ¼ 0;

ð58Þ

where higher orders in fμν are omitted.
The formulation of the effective action in terms of

“physical metrics” obeying a constraint, due to the use
of constrained physical sources, may seem somewhat
unfamiliar. In Sec. A we relate this formulation to the
more common approach with gauge fixing. It corresponds
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to the limit of an infinite gauge parameter β that enforces
the constraint fμν;ν ¼ 0.

V. CORRELATION FUNCTION

In this section we discuss the defining equation for the
correlation function, namely the exact propagator equa-
tion (3) based on the second functional derivative of the
effective action. For the Einstein-Hilbert action with a
cosmological constant we display the inverse propagator
both for unconstrained metric fluctuations hμν and for
physical metric fluctuations fμν.

A. Propagator equation

We may interpret the second functional derivatives Γð2Þ

and Wð2Þ as matrices. They obey the usual matrix identity

Γð2ÞWð2Þ ¼ 1; ð59Þ
that follows directly from the defining relations for Γ. In
position space this readsZ

y
Γð2Þμνρτðx; yÞWð2Þ

ρτσλðy; zÞ ¼ Eμν
σλðx; zÞ; ð60Þ

where Eμν
σλ is the unit matrix in the space of appropriate

functions. For unconstrained hσλ the unit matrix reads
E0μν

σλ ¼ 1
2
ðδμσδνλ þ δμλδ

ν
σÞδðx − zÞ, while in the presence of a

constraint for fμν it becomes the projector PðfÞμν
σλ, which

obeys the defining relations (29). Equation (59) is the exact
“propagator equation” for the Green’s function

Gρτσλðx; yÞ ¼ Wð2Þ
ρτσλðx; yÞ: ð61Þ

In the presence of a constraint on physical sources and
fluctuations we recall the connection (38) to the two-point
correlation function.
If Γð2Þ contains time-derivatives Eq. (60) is an evolution

equation which describes the time dependence of the
Green’s function. Typically, Γð2Þ is of the form

Γð2Þμνρτðx; yÞ ¼ δðx − yÞΓð2ÞμνρτðyÞ; ð62Þ

where Γð2ÞμνρτðyÞ contains derivatives with respect to y. The
resulting propagator equation reads

Γð2ÞμνρτðxÞGρτσλðx; yÞ ¼ Eμν
σλðx; yÞ: ð63Þ

B. Inverse propagator for unconstrained
metric fluctuations

We will next assume a simple form of Γ based on an
expansion in the number of derivatives. The first two lowest
invariants are given by

Γ ¼
Z
x

ffiffiffi
g

p �
V −

M2

2
R½gμν�

�
: ð64Þ

Expanding an unconstrained metric gμν ¼ ḡμν þ hμν in
second order in hμν one has

ðg1
2Þð2Þ ¼ ḡ

1
2

�
1

8
h2 −

1

4
hρμh

μ
ρ

�
; ð65Þ

and

ðg1
2RÞð2Þ ¼

1

2
ḡ
1
2

�
R̄

�
1

4
h2 −

1

2
hρμh

μ
ρ

�
− R̄μνhhμν

þ hhμν;μν − hh;μμ þ 2Rð2Þ

�
; ð66Þ

with

Rð2Þ ¼ R̄μνhνρh
ρ
μ þ hμνh;μν þ hμνhνμ;ρρ

− hμνðhρν;ρμ þ hρν;μρÞ − 1

2
hμν;ρh

ρ
ν;μ þ 3

4
hμν;ρhνμ;ρ

− hμν;νh
ρ
μ;ρ þ hμν;νh;μ −

1

4
h;μh;μ: ð67Þ

For unconstrained hμν the second functional derivative of
the effective action (64) is given by

Γð2Þμνρτ ¼ −
M2

8

ffiffiffī
g

p fðḡμρḡντ þ ḡνρḡμτ − 2ḡμνḡρτÞD2 þ ḡμνðDτDρ þDρDτÞ þ ḡρτðDμDν þDνDμÞ
− ðḡμρDτDν þ ḡνρDτDμ þ ḡμτDρDν þ ḡντDρDμÞ þ R̄ðḡμνḡρτ − ḡμρḡντ − ḡμτḡνρÞ

þ 2ðR̄μρḡντ þ R̄νρḡμτ þ R̄μτḡνρ þ R̄ντḡμρÞ − 2ðR̄μνḡρτ þ R̄ρτḡμνÞg þ V
4

ffiffiffī
g

p ðḡμνḡρτ − ḡμρḡντ − ḡμτḡνρÞ: ð68Þ

Applying a suitable projection of this operator in Eq. (63)
constitutes the basic equation of this paper. Correlation
functions are obtained as solutions to this differential
equation with appropriate initial values.
We can take account of the constraint to physical metrics

in different equivalent ways. One method projects the

second functional derivative (68) onto the space of physical
metrics. A second one inserts the constraint fνμ;ν ¼ 0
already into the expansion of Γ. If the physical metric
fluctuations fμν are expressed in terms of independent
fields one can directly obtain Γð2Þ in the space of these
fields by functional variation. While the second method is
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often technically simpler, we will also use occasionally the
first method in order to make the role of projections
apparent.

C. Physical metric fluctuations

According to the second method we directly investigate
the effective action (64) in quadratic order in the physical
metric fluctuations fμν; fνμ;ν ¼ 0, i.e.,

Γ2 ¼
Z
x

�
Vðg1

2Þð2Þ −
M2

2
ðg1

2RÞð2Þ
�

¼ ΓðVÞ
2 þ ΓðRÞ

2 : ð69Þ

In Sec. C we decompose Γ2 into parts from the trace and
traceless metric fluctuations. This decomposition simplifies
considerably if we restrict the background geometries to the
ones with a vanishing Weyl tensor,

ΓðVÞ
2 ¼ V

16

Z
x
ḡ1=2ðσ2 − 4bμνbμνÞ;

ΓðRÞ
2 ¼ M2

8

Z
x
ḡ
1
2

�
bμν

�
−D2 þ 2

3
R̄

�
bμν þ

3

4
σD2σ

�
; ð70Þ

where D2 ¼ DμDμ and

σ ¼ fμνḡμν; bμν ¼ fμν −
1

4
σḡμν;

ḡμνbμν ¼ 0; bνμ;ν ¼ −
1

4
∂μσ: ð71Þ

Due to the last relation the trace σ and the traceless part bμν
are not independent.
A decomposition of fμν into independent fields can be

done as

fμν ¼ tμν þ sμν ð72Þ

where tμν is traceless and divergence free

tμνḡμν ¼ 0; tνμ;ν ¼ 0; ð73Þ

while sμν is a linear function of σ

sμν ¼ Ŝμνσ; ð74Þ

with

Ŝμνḡμν ¼ 1; DμŜμν ¼ 0; Ŝμν ¼ Ŝνμ: ð75Þ

This entails the relation

bμν ¼ tμν þ ~sμν; ð76Þ

with

~sμν ¼ sμν −
1

4
σḡμν; ~sνμ;ν ¼ −

1

4
∂μσ: ð77Þ

The construction of the operator Ŝμν needs, however, some
care due to the noncommuting properties of the covariant
derivatives. It is not unique, since we can always add a
divergence free and traceless tensor to sμν.
For important simple cases we can easily find Ŝμν.

Consider geometries with a constant curvature scalar,
∂μR̄ ¼ 0. In this case we can choose

Ŝμν ¼ ðḡμνD2 −DμDν þ R̄μνÞð3D2 þ R̄Þ−1: ð78Þ

Indeed, one has

DμŜμν ¼ ð½Dν; D2� þDμR̄
μ
νÞð3D2 þ R̄Þ−1

¼ ðDμR̄
μ
ν − R̄μ

νDμÞð3D2 þ RÞ−1
¼ Rμ

ν;μð3D2 þ R̄Þ−1 ¼ 0; ð79Þ

where we use the commutator relation (acting on a scalar)

½Dν; D2� ¼ −R̄μ
νDμ: ð80Þ

The Bianchi identity R̄μ
ν;μ − ∂νR̄=2 ¼ 0 implies R̄μ

ν;μ for
geometries with constant R̄. The other two relations (75)
are easily verified. One infers

~sμν ¼ −
��

DμDν −
1

4
D2ḡμν

�

−
�
R̄μν −

1

4
R̄ḡμν

��
ð3D2 þ R̄Þ−1σ: ð81Þ

D. Inverse propagator for physical metric fluctuations

The inverse propagator for the physical metric fluctua-
tions can be extracted directly from the expansion of the
effective action in second order in fμν. We therefore
compute Γ2 in terms of the independent fields tμν and σ,

Γ2 ¼ ΓðtÞ
2 þ ΓðσÞ

2 þ ΓðtσÞ
2 : ð82Þ

For the transversal traceless tensor tμν one finds

ΓðtÞ
2 ¼ −

M2

8

Z
x
ḡ1=2tμν

�
D2 −

2

3
R̄þ 2V

M2

�
tμν; ð83Þ

while ΓðσÞ
2 and ΓðtσÞ

2 are computed in Sec. C, given expli-

citly by Eqs. (C25) and (C26). The mixed term ΓðtσÞ
2 is

proportional to
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Z
x
ḡ1=2tμν ~sμν ¼

Z
x
ḡ1=2tμνR̄μνð3D2 þ R̄Þ−1σ: ð84Þ

It vanishes for R̄μν ¼ cḡμν.
For the computation of ΓðσÞ

2 we need

D2 ~sμν¼−
�
DμD2Dν−

1

4
D4ḡμνþ

7

12
R̄D2ḡμν

−
1

3
R̄DμDν−2R̄μνD2þ2R̄ρ

μDρDνþR̄ρ
νDρDμ

−R̄ρλDρDλḡμν−
5

2
R̄μν;

ρDρþ
1

2
R̄ρ
μ;νDρ

�
ð3D2þR̄Þ−1σ:

ð85Þ

Here we use the commutator relation

½D2; Dμ�Dν ¼ Rρ
μDρDν − 2Rμ

ρ
ν
λDρDλ − Rμ

ρ
ν
λ
;ρDλ ð86Þ

and assume a vanishing Weyl tensor.

E. Propagator equation for maximally
symmetric spaces

We next specialize to geometries with

R̄μν ¼
1

4
R̄ḡμν; ∂μR̄ ¼ 0; ð87Þ

where the r.h.s of eq. (84) vanishes and

D2 ~sμν ¼
�
1

4
D4gμν −DμDνD2 þ 1

6
R̄D2ḡμν

−
2

3
R̄DμDν

�
ð3D2 þ R̄Þ−1σ: ð88Þ

We conclude that for such spaces the fluctuations tμν and σ
decouple

ΓðtσÞ
2 ¼ 0: ð89Þ

Geometries with vanishing Weyl tensor and obeying
Eq. (87) are maximally symmetric,

R̄μρνλ ¼
R̄
12

ðḡμνḡρλ − ḡμλḡνρÞ: ð90Þ

They describe de Sitter, anti-de Sitter, or flat space.
For maximally symmetric spaces ~sμν simplifies

~sμν ¼ −
�
DμDν −

1

4
D2ḡμν

�
ð3D2 þ R̄Þ−1σ: ð91Þ

One finds

Z
x
ḡ
1
2 ~sμν ~sμν ¼

1

4

Z
x
ḡ1=2σD2ð3D2 þ R̄Þ−1σ ð92Þ

and

Z
x
ḡ1=2 ~sμνD2 ~sμν¼

1

4

Z
ḡ1=2σD2

�
D2þ2

3
R̄

�
ð3D2þ R̄Þ−1σ:

ð93Þ

This yields the scalar part of the quadratic part of the
expansion of the effective action,

ΓðσÞ
2 ¼M2

4

Z
x
ḡ1=2σ

��
D2 þ 3

8
R̄

�
D2 þ V

2M2

�
D2 þ 1

2
R̄

��
× ð3D2 þ R̄Þ−1σ: ð94Þ

For background geometries that solve the field equa-
tions, e.g., R̄ ¼ 4V=M2, this simplifies further

ΓðσÞ
2 ¼ M2

12

Z
x
ḡ1=2σ

ðD2 þ 1
4
R̄Þ2

D2 þ 1
3
R̄

σ: ð95Þ

Correspondingly, ΓðtÞ
2 takes the form

ΓðtÞ
2 ¼ −

M2

8

Z
x
ḡ1=2tμν

�
D2 −

1

6
R̄

�
tμν: ð96Þ

The corresponding second functional derivative Γð2Þ is
block diagonal in the fields tμν and σ.
For maximally symmetric geometries obeying the field

equations the correlation functions for tμν and σ,

Gtt
μνρτðx; yÞ ¼ htμνðxÞtρτðyÞic;
Gσσðx; yÞ ¼ hσðxÞσðyÞic; ð97Þ

obey the propagator equations

−
M2

4

ffiffiffī
g

p �
D2 −

R̄
6

�
Gtt

μνρτðx; yÞ ¼ PðtÞ
μνρτðx; yÞ;

M2

6

ffiffiffī
g

p �
D2 þ R̄

4

�
2
�
D2 þ R̄

3

�−1
Gσσðx; yÞ ¼ δðx − yÞ;

ð98Þ

where D2 acts on the variable x and the first two indices
ðμνÞ of Gtt

μνρτ. Here PðtÞ projects on tμν

tμνðxÞ ¼ PðtÞ
μν

αβðxÞhαβðxÞ;
PðtÞ
μν

αβPðtÞ
αβ

ρτ ¼ PðtÞ
μν

ρτ: ð99Þ

The full Green’s function obtains as
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Gμνρτðx; yÞ ¼ Gtt
μνρτðx; yÞ þ ŜμνðxÞŜρτðyÞGσσðx; yÞ: ð100Þ

The projector PðtÞ
μν

ρτ obeys the defining relations

DμPðtÞ
μν

ρτ ¼ 0; ḡμνPðtÞ
μν

ρτ ¼ 0: ð101Þ

In terms of the projector PðfÞ given by Eqs. (27) and (29) it
obtains as

PðtÞ
μν

ρτ ¼ PðfÞ
μν

ρτ − PðσÞ
μν

ρτ; ð102Þ

with

PðσÞ
μν

ρτ ¼ ŜμνḡαβP
ðfÞ
αβ

ρτ

PðσÞ
μν

ρτhρτ ¼ Ŝμνσ: ð103Þ

One verifies the conditions (101), while the projector
property of PðtÞ follows from the projector properties of

PðfÞ and PðσÞ. (For the latter we use PðfÞ
μν

ρτŜρτ ¼ Ŝμν.)

VI. METRIC CORRELATION IN FLAT SPACE

In this section we discuss the metric correlation function
in a flat space background. This has the advantage that all
projections can be made in a simple explicit form, and D2

becomes a block-diagonal differential operator. The flat
space correlation function describes the limiting high
momentum or short distance behavior of the metric corre-
lation in an arbitrary background geometry. This holds in the
range where terms involving the curvature tensor can be
neglected as compared to the squared momentum.
For a noncompact space as Minkowski space a unique

specification of the Green’s function involves boundary
conditions. They are typically set at some initial time, that
may go to minus infinity. We do not discuss here the general
solution of the evolution equation for the propagator [18].
We rather impose Lorentz symmetry on the correlation
function which fixes it uniquely, if the effective action is
taken to be the Einstein-Hilbert action, cf. Ref. [18]. We
concentrate in this section on the “on-shell propagator” for
which the backgroundmetric obeys the field equations. For a
flat background the cosmological constant V in Eq. (64) is
therefore set to zero. The off-shell propagator in flat space,
with V ≠ 0, will be discussed in the next section.
In cosmology one is often interested in the time evolution

of the propagator which we display explicitly. For more
general geometries the correlation functions are best
formulated in dependence on conformal time η, i.e.,
G ¼ Gðη; η0Þ. The flat space conformal time η coincides
with Minkowski time t. For easy comparison with the
following sections we use η as time argument. The propa-
gator equation amounts to a differential equation for the time
evolution. The explicit form of the time-dependent metric
correlation function (200) in three-dimensional Fourier

space constitutes for arbitrary geometries the “initial value”
for η → −∞, η0 → −∞ and small jη − η0j. Indeed, for
geometries close to de Sitter space, as appropriate for
inflationary cosmology, the flat space correlations describe
the limiting behavior of the metric correlations for jkηj ≫ 1,
jkη0j ≫ 1, jkðη − η0Þj ≪ 1, with k the comoving wave
number. For fixed k and initial values set at minus infinity,
the flat space correlations are therefore well suited as initial
conditions for the evolution toward larger η or η0. For the
propagating modes these initial conditions are equivalent to
the Bunch Davies vacuum in the operator formalism for free
quantum fields.
The Lorentz invariant flat space metric propagator is

known since a long time, see for example Ref. [47]. We
describe it nevertheless in some detail in this section. The
reason is that several important characteristic features of
our approach to compute the correlation function of the
physical metric fluctuations from the inversion of the
second functional derivative of the effective action can
be seen very explicitly in flat space. A first point concerns
the use of “mode functions” as familiar in cosmology.
Mode functions are solutions of the linearized field
equations for fluctuations. In cosmology, the propagator
is often constructed as the “square of mode functions.” We
discuss the applicability of this procedure in Sec. VIII and
find that the on-shell correlation for the propagating modes
can indeed be expressed in terms of mode functions. For the
metric, this applies to the graviton, i.e. the traceless
divergence free tensor mode. For the scalar and vector
parts of the physical metric fluctuations the mode functions
vanish while the propagator differs from zero. It is therefore
important to understand the origin of the scalar and vector
parts of the metric correlation. In flat space this can be done
in a straightforward way. Related to this issue is the role of
the gauge invariant Bardeen potentials. For this purpose we
display explicitly the propagator for the different repre-
sentations of the rotation group.
A second issue concerns the relation between the use of

constrained physical metric fluctuations and a procedure
with unconstrained metric fluctuations and explicit gauge
fixing. For a particular “physical gauge fixing” the two
approaches are equivalent. This can be seen rather explic-
itly in flat space. Functional variation for unconstrained
fields and the corresponding evolution equation for the
propagator have to take the constraints properly into
account. This can be facilitated by the use of representa-
tions of the rotation group for which the physical scalar
fluctuations are unconstrained, while the constraints for the
graviton and vectors take a time independent form.

A. Inverse propagator

For Einstein gravity [V ¼ 0 in Eq. (64)] the expansion
of the effective action in second order in the
metric fluctuations is given in flat space, ḡμν ¼ ημν ¼
diagð−1; 1; 1; 1Þ, by
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Γ2 ¼ −
iM2

8

Z
x
ðhμνD2hμν − hD2h − 2hμνhρν;ρμ þ 2hhμν;νμÞ:

ð104Þ

In four-dimensional Fourier space we can replace
∂μ → iqμ, qμ ¼ð−ω;kÞ, qμ ¼ðω;kÞ, D2¼−q2¼−qμqμ ¼
ω2−k2, such that

Γ2 ¼
1

2

Z
q
hμνð−qÞΓð2ÞμνρτðqÞhρτðqÞ; ð105Þ

where
R
q ¼

R
d4q=ð2πÞ4. The second functional derivative

reads

Γð2Þμνρτðq; q0Þ ¼ Γð2ÞμνρτðqÞδðq − q0Þ; ð106Þ

with

Γð2ÞμνρτðqÞ ¼ iM2

8
fðημρηντ þ ηνρημτ − 2ημνηρτÞq2

þ 2ηρτqμqν þ 2ημνqρqτ

− ðημρqνqτ þ ηνρqμqτ þ ημτqνqρ þ ηντqμqρÞg;
ð107Þ

and δðq−q0Þ ¼ ð2πÞ4δ4ðqμ−q0μÞ. Acting on the gauge part
of the metric fluctuation, aρτ ¼ iðqρaτ þ qτaρÞ, one has

Γð2Þμνρτaρτ ¼ 0: ð108Þ

We introduce the projector on “transversal components”,

~Pμ
ρ ¼ δρμ −

qμqρ

q2
; ð109Þ

obeying

~Pμ
ρqρ ¼ 0; qμ ~Pμ

ρ ¼ 0;

~Pμ
ρ ~Pρ

ν ¼ ~Pμ
ν; ~Pμν ¼ ~Pνμ; ~Pμ

μ ¼ 3: ð110Þ

We can write Γð2Þ in Eq. (107) in terms of this transversal
projector as

Γð2Þμνρτ ¼ iM2q2

8
f ~Pμρ ~Pντ þ ~Pμτ ~Pνρ − 2 ~Pμν ~Pρτg: ð111Þ

B. Projector on physical metric fluctuations

In flat space we may define the projector on the physical
part of the metric

fμν ¼ PðfÞ
μν

ρτhρτ; PðfÞ
μν

ρτPðfÞ
ρτ

λσ ¼ PðfÞ
μν

λσ;

qμPðfÞ
μν

ρτ ¼ 0; PðfÞ
μν

ρτqτ ¼ 0;

PðfÞ
μν

ρτ ¼ PðfÞ
νμ

ρτ ¼ PðfÞ
μν

τρ: ð112Þ

The projector is diagonal in momentum space,

PðfÞ
μν

ρτðq; q0Þ ¼ PðfÞ
μν

ρτðqÞδðq − q0Þ; ð113Þ

and we will often omit the δ-function for simplicity of
notation. The projector on physical metric fluctuations has
a simple expression in terms of the transversal projector,

PðfÞ
μν

ρτ ¼ 1

2
ð ~Pμ

ρ ~Pν
τ þ ~Pμ

τ ~Pν
ρÞ: ð114Þ

The orthogonal projector PðaÞ
μν

ρτ projects on the gauge
fluctuations and obeys

PðaÞρτ
μν hρτ ¼ aμν: ð115Þ

It is given by

PðaÞ
μν

ρτ ¼ 1

2
ðδρμδτν þ δτμδ

ρ
νÞ − PðfÞ

μν
ρτ

¼ −qμNν
ρqτ þ ðμ ↔ νÞ þ ðρ ↔ τÞ; ð116Þ

where

Nν
ρ ¼ −

1

q2
δρν þ 1

2q4
qνqρ: ð117Þ

With

aν ¼ −
i
q2

�
δτν −

qνqτ

2q2

�
qρhρτ ð118Þ

and

aμν ¼ iðqμaν þ qνaμÞ

¼ 1

q2

�
qμδτν þ qνδτμ −

qμqνqτ

q2

�
qρhρτ ð119Þ

one easily verifies Eq. (115).
The explicit form of PðaÞ reads

PðaÞρτ
μν ¼ 1

2q2
ðqμqρδτν þ qνqρδτμ þ qμqτδ

ρ
ν þ qνqτδ

ρ
μÞ

−
1

q4
qμqνqρqτ: ð120Þ

From there the explicit form of PðfÞ obtains easily as
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PðfÞρτ
μν ¼ 1

2
ðδρμδτν þ δτμδ

ρ
νÞ − PðaÞρτ

μν : ð121Þ

C. Correlation function

The Green’s function for the physical metric fluctuations
takes the form

Gρτσλðq; q0Þ ¼ hfρτðqÞfσλð−q0Þic
¼ PðfÞ

ρτ
ρ0τ0 ðqÞhhρ0τ0 ðqÞhσ0λ0 ð−q0ÞicPðfÞ

σλ
σ0λ0 ðq0Þ:

ð122Þ

It vanishes when contracted with qρ, qτ, q0σ or q0λ. The
defining propagator equation (63) reads

Γð2ÞμνρτGρτσλ ¼ PðfÞμν
σλ: ð123Þ

The propagator on the r.h.s of Eq. (123) corresponds to the
unit matrix in the space of the physical metric fluctuations
fμνðqÞ. From Eqs. (123) and (111) we infer the propagator
equation

iM2

4
AμνρτðqÞGρτσλðq; q0Þ ¼ PðfÞμν

σλðqÞδðq − q0Þ; ð124Þ

where

AμνρτðqÞ ¼ q2

2
ð ~Pμρ ~Pντ þ ~Pμτ ~Pνρ − 2 ~Pμν ~PρτÞ ð125Þ

obeys

PðfÞαβ
μνðqÞAμνρτðqÞ ¼ AαβρτðqÞ: ð126Þ

We impose translation symmetry in space and time

Gρτσλðq; q0Þ ¼ GρτσλðqÞδðq − q0Þ; ð127Þ

such that for every q we have the matrix-type equation

AμνρτðqÞGρτσλðqÞ ¼ −
4i
M2

PðfÞμν
σλðqÞ: ð128Þ

The solution reads

Gρτσλ ¼ −
2i

M2q2
ð ~Pρσ

~Pτλ þ ~Pρλ
~Pτσ − ~Pρτ

~PσλÞ

¼ −
2i

M2q6

�
q4ðηρσητλ þ ηρλητσ − ηρτησλÞ

− q2ðηρσqτqλ þ ητλqρqσ þ ηρλqτqσ þ ητσqρqλ

− ηρτqσqλ − ησλqρqτÞ þ qρqτqσqλ

�
: ð129Þ

It is manifestly Lorentz covariant, with both sides of
Eq. (129) transforming as appropriate tensors. The

ingredient that makes the inversion of Γð2Þ unique is
four-dimensional translation invariance.
The components of G are

G0000 ¼ −
2ik4

M2q6
;

Gm000 ¼
2iωk2km
M2q6

;

Gm0n0 ¼
2i
M2

�
k2

q4
δmn −

k2kmkn
q6

�
;

Gmn00 ¼ −
2i
M2

�
k2δmn − 2kmkn

q4
þ k2kmkn

q6

�
;

Gmnp0 ¼ −
2iω
M2

�
1

q4
ðδmpkn þ δnpkm − δmnkpÞ −

kmknkp
q6

�
;

Gmnpq ¼ −
2i
M2

�
1

q2
ðδmpδnq þ δmqδnp − δmnδpqÞ

−
1

q4
ðδmpknkq þ δnqkmkp þ δmqknkp þ δnpkmkq

− δmnkpkq − δpqkmknÞ þ
kmknkpkq

q6

�
; ð130Þ

with all other components obtained by appropriate index
permutations using the symmetries of G. For fixed km we
observe that the divergence for ω2 → k2 can be up to q−6.

D. Irreducible representations of Lorentz symmetry

In flat space the irreducible representations of the
Lorentz group are given for fμν by a scalar σ and a
traceless divergence free tensor tμν,

σ ¼ fμμ; fμν ¼ tμν þ
1

4
σημν þ ~sμν;

~sμν ¼
�
1

12
ημν −

qμqν
3q2

�
σ; ð131Þ

with tμν traceless and divergence free,

tμμ ¼ 0; qνtμν ¼ 0: ð132Þ

This is a special case of Eq. (91). Using

fμν ¼ tμν þ sμν ¼ tμν þ
1

3
~Pμνσ ð133Þ

one has Ŝμν ¼ ~Pμν=3. Contractions with the transversal
projector obey the simple properties

~Pμνtμν ¼ 0; ~Pμνfμν ¼ σ: ð134Þ

The metric correlation (129), (130) can be decomposed
into contributions from the different irreducible Lorentz
representations. For the scalar part we infer
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Gσσ
μνρτ ¼

1

9
~Pμν

~PρτGσσ;

Gσσ ¼ ~Pρτ ~PσλGρτσλ ¼
6i

M2q2
∼ hσσic: ð135Þ

Here hσσic symbolizes the relation

hσðqÞσð−q0Þic ¼ Gσσδðq − q0Þ: ð136Þ

The mixed term vanishes

Gtσ
ρτ ¼ Gρτσλ

~Pσλ −
1

3
~PρτGσσ ¼ 0; ð137Þ

and similar for Gσt
ρτ. The transversal traceless correlation

function therefore reads

Gtt
μνρτ ¼ Gμνρτ −

1

9
~Pμν

~PρτGσσ

¼ −
2i

M2q2

�
~Pμρ

~Pντ þ ~Pμτ
~Pνρ −

2

3
~Pμν

~Pρτ

�
;

∼ htμνtρτic: ð138Þ

These Lorentz invariant Green’s functions correspond to
particular solutions of the propagator equation (98).
We may employ the projector on the traceless and

divergence free part of the metric fluctuations,

PðtÞ
μνρτ ¼ 1

2
ð ~Pμρ

~Pντ þ ~Pμτ
~PνρÞ −

1

3
~Pμν

~Pρτ: ð139Þ

It obeys

PðtÞρτ
μν hρτ ¼ tμν;

PðtÞρτ
μν PðtÞσλ

ρτ ¼ PðtÞσλ
μν : ð140Þ

In terms of this projector the Green’s function reads

Gtt
μνρτ ¼ −

4i
M2q2

PðtÞ
μνρτ: ð141Þ

We also use the projector on the σ-mode

PðσÞ
μνρτ ¼ 1

3
~Pμν

~Pρτ ð142Þ

with

PðfÞ
μνρτ ¼ PðtÞ

μνρτ þ PðσÞ
μνρτ ð143Þ

and

PðσÞρτ
μν hρτ ¼ sμν: ð144Þ

In terms of this projector one has

Gσσ
μνρτ ¼

2i
M2q2

PðσÞ
μνρτ: ð145Þ

We observe the relations

PðtÞρτ
μν PðfÞλσ

ρτ ¼ PðtÞλσ
μν ;

PðσÞρτ
μν PðfÞλσ

ρτ ¼ PðσÞλσ
μν ;

PðtÞρτ
μν PðσÞλσ

ρτ ¼ 0: ð146Þ

The metric correlation function (129) can be written in
terms of the projectors PðtÞ and PðσÞ as

Gμνρτ ¼ Gtt
μνρτ þ Gσσ

μνρτ ¼ −
4i

M2q2

�
PðtÞ
μνρτ −

1

2
PðσÞ
μνρτ

�
:

ð147Þ

Similarly, the second functional derivative (107) obeys

Γð2Þμνρτ ¼ iM2q2

4
ðPðtÞμνρτ − 2PðσÞμνρτÞ: ð148Þ

Using the projector properties (146) one verifies easily that
Eqs. (148) and (147) obey the propagator equation.

E. Irreducible representations of rotation symmetry

With respect to the subgroup of space-rotations the trace
σ transforms as a scalar. The part tμν can be reduced to
tensor, vector and scalar components, γmn;Wm and κ,

t00 ¼ κ; tm0 ¼ Wm −
ωkm
k2

κ;

tmn ¼ γmn −
ω

k2
ðkmWn þ knWmÞ

þ
�
q2δmn

2k2
þ 2k2 − 3q2

2k4
kmkn

�
κ; ð149Þ

with

δmnγmn ¼ 0; kmγmn ¼ 0; kmWm ¼ 0: ð150Þ

We further decompose the metric correlation function into
contributions from different representations of the rotation
symmetry. This will be useful for the matching with more
general geometries that represent homogeneous and iso-
tropic cosmologies, but no longer exhibit Lorentz symmetry.
For the scalar part of the transversal correlation function

we define

Gκκ ¼ Gκκ
0000 ¼ Gtt

0000 ¼ −
8ik4

3M2q6
∼ hκκic: ð151Þ
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The scalar contribution to other index combinations of the
transversal traceless correlation function (138) can be
obtained by employing relations of the type

Gκκ
m000 ¼ htðκÞm0t

ðκÞ
00 ic ¼ htðκÞm0κic

¼ −
ωkm
k2

hκκic ¼ −
ωkm
k2

Gκκ; ð152Þ

with tðκÞm0 the part in tm0 proportional to κ. This yields

Gκκ
m000 ¼ −

ωkm
k2

Gκκ ¼ 8iωk2km
3M2q6

;

Gκκ
m0n0 ¼

ω2kmkn
k4

Gκκ ¼ −
8iω2kmkn
3M2q6

;

Gκκ
mn00 ¼

�
q2δmn

2k2
þ 8k2 − 3q2

3k4
kmkn

�
Gκκ; ð153Þ

and similarly for the other components.
The transverse vector component obtains as

GWW
m0n0 ¼ Gtt

m0n0 −Gκκ
m0n0 ¼ GWW

mn

¼ 2i
M2q4

ðk2δmn − kmknÞ ∼ hWmWnic; ð154Þ

while

GWW
mnpq ¼

ω2

k4
ðkmkpGWW

nq þ kmkqGWW
np

þ knkpGWW
mq þ knkqGWW

mp Þ

¼ 2ik2

M2q4
ðBmBpQnq þ BmBqQnp

þ BnBpQmq þ BnBqQmpÞ; ð155Þ

and

GWW
mnp0 ¼ BmGWW

np þ BnGWW
mp

¼ 2ik2

M2q4
ðBmQnp þ BnQmpÞ: ð156Þ

Here we employ the three dimensional projector

Qmn ¼ δmn −
kmkn
k2

;X
n

QmnQnp ¼ Qmp;X
m

kmQmn ¼ 0;
X
m

Qmm ¼ 2: ð157Þ

We also introduce the shorthand

Bm ¼ −
ωkm
k2

: ð158Þ

For the objects carrying only space indices as Qmn or Bm
we will raise indices with δmn, such that Qm

m ¼ 2,
Qn

mBn ¼ 0 etc.
We can write the decomposition of tμν in terms of Qmn

and Bm

tm0 ¼ Wm þ Bmκ;

tmn ¼ γmn þ BmWn þ BnWm þ
�
q2

2k2
Qmn þ BmBn

�
κ:

ð159Þ

This simplifies the explicit representation of particular
components, as

Gκκ
mnpq ¼

�
q4

4k4
QmnQpq þ

q2

2k2
ðQmnBpBq þ BmBnQpqÞ

þ BmBnBpBq

�
Gκκ: ð160Þ

The transversal tensor part can now be extracted as

Gγγ
mnpq ¼ Gtt

mnpq −GWW
mnpq − Gκκ

mnpq

¼ −
2i

M2q2
ðQmqQnp þQmqQnp −QmnQpqÞ

∼ hγmnγpqic: ð161Þ

We observe that Gγγ
μνρτ vanishes if at least one of the indices

equals zero, and GWW
μνρτ is nonzero only for the index

combinations ðμνρτÞ¼ðm0n0Þ;ðm0npÞ;ðmpn0Þ;ðmpnqÞ,
with permutations according to the symmetries μ → ν,
ρ ↔ τ, and ðμνÞ ↔ ðρτÞ. All mixed terms vanish, such that

Gμνρτ ¼ Gσσ
μνρτ þ Gκκ

μνρτ þGWW
μνρτ þGγγ

μνρτ: ð162Þ

It is straightforward to verify this by a direct computation.
The different pieces of the Green’s function can also be

obtained from Eq. (141) by the use of suitable projectors,

PðtÞ
μνρτ ¼ PðγÞ

μνρτ þ PðWÞ
μνρτ þ PðκÞ

μνρτ; ð163Þ

with

Gγγ
μνρτ ¼ −

4i
μ2q2

PðγÞ
μνρτ;

GWW
μνρτ ¼ −

4i
M2q2

PðWÞ
μνρτ;

Gκκ
μνρτ ¼ −

4i
M2q2

PðκÞ
μνρτ: ð164Þ
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The projector on the graviton mode

PðγÞpq
mn ¼ 1

2
ðQp

mQ
q
n þQq

mQ
p
n −QmnQpqÞ ð165Þ

obeys

PðγÞpq
mn hpq ¼ γmn; PðγÞ

mn
pqPðγÞ

pq
rs ¼ PðγÞ

mn
rs; ð166Þ

and

PðγÞpq
mn Qpq ¼ 0; PðγÞpq

mn kq ¼ 0: ð167Þ

As forQmn the indices of P
ðγÞ
mnpq are raised and lowered with

δmn, δmn. All components pf PðγÞ with at least one index
equal to zero vanish.
The projector on the vector part obeys

PðWÞ
mnpq ¼ −

k2

2q2
ðBmBpQnq þ BmBqQnp

þ BnBpQmq þ BnBqQmpÞ; ð168Þ

and

PðWÞ
mnp0 ¼ −

k2

2q2
ðBmQnp þ BnQmpÞ; ð169Þ

with similar components obtained by index-symmetries.
One also has

PðWÞ
m0n0 ¼ −

k2

2q2
Qmn; PðWÞ

mn00 ¼ 0; ð170Þ

while the components of PðWÞ with three of four indices
zero vanish. One verifies the relations

PðWÞρτ
m0 tρτ ¼ Wm;

PðWÞρτ
mn tρτ ¼ BmWn þ BnWm; ð171Þ

as well as the projector property

PðWÞαβ
μν PðWÞρτ

αβ þ PðWÞρτ
μν ; ð172Þ

and the orthogonality

PðγÞαβ
μν PðWÞρτ

αβ ¼ 0; PðWÞαβ
μν PðγÞρτ

αβ ¼ 0: ð173Þ

Finally, the projector PðκÞ can be extracted from Eq. (163),
employing Eqs. (168), (169), (170), (166), and (140). It is
orthogonal to PðγÞ and PðWÞ and obeys PðκÞÞ2 ¼ PðκÞ.

F. Effective action for physical metric fluctuations

So far we have computed the correlation function by first
deriving the form (107) of Γð2Þ for arbitrary metric
fluctuations hμν, and subsequently inverting it on the space
of functions fμν. The resulting Green’s function was then
decomposed into irreducible representations of the sym-
metry groups. One may also proceed more directly by
inserting hμν ¼ tμν þ sμν directly in Γ2, decomposing into
irreducible representations, taking functional derivatives
with respect to these independent representations and
performing the inversion at the end. We briefly show here
that the two procedures are equivalent.
We first employ that the pieces for tμν and σ decouple

in Γ2,

Γ2 ¼ ΓðtÞ
2 þ ΓðσÞ

2 ; ð174Þ

with ðtμνð−qÞ ¼ t�μνðqÞÞ

ΓðtÞ
2 ¼ iM2

8

Z
q
q2tμνð−qÞtμνðqÞ

¼ iM2

8

Z
q
q2tμνð−qÞPðtÞ

μνρτtρτðqÞ ð175Þ

and

ΓðσÞ
2 ¼ iM2

8

Z
q
q2
�
sμνð−qÞsμνðqÞ −

3

4
σð−qÞσðqÞ

�

¼ −
iM2

12

Z
q
q2σð−qÞσðqÞ: ð176Þ

Variation with respect to the independent fluctuations tμν
and σ yields

Γð2Þ
σσ ¼ −

iM2q2

6
ð177Þ

and

Γð2Þμνρτ
tt ¼ iM2q2

4
PðtÞμνρτ: ð178Þ

These expressions are easily inverted. The corresponding
correlation functions Gσσ and Gtt

μνρτ coincide with
Eqs. (135) and (138).
For comparison it is also instructive to decompose fμν

into a trace and traceless part

hμν ¼ bμν þ
1

4
σημν þ aμν ¼ fμν þ aμν;

ημνbμν ¼ 0; bμνqν ¼ −
1

4
σqμ: ð179Þ
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One finds

Γð2Þμνρτhρτ ¼ Γð2Þμνρτ
�
bρτ þ

1

4
σηρτ

�

¼ iM2

4

�
q2bμν þ

�
qμqν −

3

4
ημνq2

�
σ

�
ð180Þ

and therefore

Γ2 ¼
iM2

8

Z
q
q2
�
bμνð−qÞbμνðqÞ −

3

4
σð−qÞσðqÞ

�
: ð181Þ

One should recall, however, that bμν is not unconstrained,
cf. Eq. (71), such that the σ-propagator cannot be obtained
by variation of Eq. (181) at fixed bμν.

G. Effective action for scalar, vector,
and graviton modes

We can further decompose ΓðtÞ
2 into pieces corresponding

to the irreducible representations of the rotation group,

ΓðtÞ
2 ¼ ΓðγÞ

2 þ ΓðWÞ
2 þ ΓðκÞ

2 : ð182Þ

With

tμνtμν ¼ γmnγmn −
2q2

k2
WmWm þ 3q4

2k2
κ2 ð183Þ

one obtains

ΓðγÞ
2 ¼ iM2

8

Z
q
q2γmnð−qÞPðγÞ

mnpqγpqðqÞ;

ΓðWÞ
2 ¼ −

iM2

4k2

Z
q
q4Wmð−qÞQmnWnðqÞ;

ΓðκÞ
2 ¼ 3iM2

16k4

Z
q
q6κð−qÞκðqÞ: ð184Þ

The corresponding pieces of the second functional deriva-
tive are

Γð2Þmnpq
γγ ¼ iM2q2

4
PðγÞmnpq;

Γð2Þmn
WW ¼ −

iM2q4

2k2
Qmn

Γð2Þ
κκ ¼ 3iM2q6

8k4
: ð185Þ

The Green’s functions Gκκ; GWW , and Gγγ follow by simple
inversion and coincide with Eqs. (151), (154), and (161).

H. Gauge invariant Bardeen potentials

The physical metric fluctuations fμν or γmn;Wm; κ, and σ
are “gauge invariant” in the same sense as the well known
Bardeen potentials, i.e., that they are not affected by an
infinitesimal diffeomorphism transformation of ḡμν. It is
instructive to express the scalars σ and κ in terms of the
“gauge invariant” Bardeen potentials [9] Φ and Ψ, and to
employ the gauge invariant vector fluctuation

Ωm ¼ q2

k2
Wm: ð186Þ

The correlation function for Ωm,

GΩΩ
mn ¼ q4

k4
GWW

mn ¼ 2i
M2k2

Qmn ∼ hΩmΩnic ð187Þ

is independent of ω. This shows that Ωm is not a
propagating degree of freedom, but rather a constrained
field.
The Bardeen potentials are given by (cf. Sec. D)

Φ ¼ q2

4k2
κ þ 1

6
σ;

Ψ ¼ q2ðk2 − 3q2Þ
4k4

κ þ 1

6
σ; ð188Þ

such that

κ ¼ 4k4

3q4
ðΦ −ΨÞ;

σ ¼ 2

q2
½k2Ψþ ð3q2 − k2ÞΦ�: ð189Þ

The correlation functions for the Bardeen potentials read

Gϕϕ ¼ q4

16k4
Gκκ þ 1

36
Gσσ ¼ 0

GΨΨ ¼ q4ðk2 − 3q2Þ2
16k8

Gκκ þ 1

36
Gσσ

¼ i
M2k2

�
1 −

3q2

2k2

�
¼ −

i
2M2k2

�
1 −

3ω2

k2

�
;

GΦΨ ¼ GΨΦ ¼ q4ðk2 − 3q2Þ
16k6

Gκκ þ 1

36
Gσσ ¼ i

2M2k2
:

ð190Þ
Again, the propagator matrix in the ðΦ;ΨÞ-space has no
pole for k ≠ 0 such that Φ and Ψ are not propagating.
The fact that the Bardeen-potentials are not propagating

implies that their mode functions vanish in the absence of
sources. This does not imply that the correlation function of
the metric in the scalar and vector channel vanishes, as
obvious from our explicit computations. This simple
finding tells us that correlations functions cannot always
be constructed as products of mode functions.
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I. Time-dependent correlation functions

For cosmology one needs the metric correlation as a
function of time. More precisely, the correlation function is
bilinear in the fields and therefore involves two time
arguments. The power spectrum of primordial fluctuations
is given by the equal-time correlation function where the
two time arguments coincide. In general, geometries
relevant for cosmology do not show time translation
invariance. Correlation functions are specified by initial
conditions. Under many circumstances these initial values
can be given by the Lorentz-invariant correlation function
in flat space. This holds if the relevant momentum of the
mode is much larger than all geometric scales given by
curvature etc.
For the time translation invariant correlation in flat

space G only depends on the difference of the two time
arguments. Starting from the Green’s function in four-
dimensional Fourier space derived previously, the depend-
ence of the correlation function on time obtains by a Fourier
transform

Gðη − η0; kÞ ¼
Z

∞

−∞

dω
2π

e−iωðη−η0ÞGðω; kÞ: ð191Þ

Here we use the symbol η for conformal time in view of
later comparison with a homogeneous and isotropic back-
ground. (For flat space with a ¼ 1 one has t ¼ η.) The time
translation symmetry is reflected by a time dependence
only involving the difference η − η0. Analytic continuation
replaces ω → ωð1þ iϵÞ, q2 → k2 − ω2 − 2iϵω2, and the
determinant

ffiffiffi
g

p ¼ ið1þ iϵÞ. We define the ω-integration
as the limit ϵ → 0 of the analytically continued integra-
tion. This fixes the integration contour around the poles
of the propagator. (See Ref. [18] for a motivation of this
procedure for the context of cosmology.) For example,
one has

−
Z
ω

i
q2

e−iωðη−η0Þ ¼ −lim
ϵ→0

Z
∞

−∞

dω
2π

ið1þ iϵÞe−iωðη−η0Þ
k2 − ω2 − 2iϵω2

¼ 1

2k
e−ikjη−η0j; ð192Þ

where
R
ω ¼ R

dω=2π and k > 0. We infer from Eq. (161)
the flat space graviton propagator

Gγγ
mnpq ¼ GgravP

ðγÞ
mnpq;

Ggravðk; η; η0Þ ¼
2

M2k
e−ikjη−η0j: ð193Þ

The Fourier transforms of q−4 and q−6 follow from

−
Z
ω

i
q4

e−iωðη−η0Þ ¼ 1

2k
∂
∂k

Z
ω

i
q2

e−iωðη−η0Þ

¼ 1

4k3
½1þ ikjη − η0j�e−ikjη−η0j; ð194Þ

and

−
Z
ω

i
q6
e−iωðη−η0Þ¼ 1

4k
∂
∂k

Z
ω

i
q4
e−iωðη−η0Þ

¼ 3

16k5

�
1þikjη−η0j−k

2

3
ðη−η0Þ2

�
e−ikjη−η0j:

ð195Þ

(We omit in these results a factor expð−ϵjη − η0jÞ that will
be needed for a well defined transformation from three-
dimensional Fourier space to position space.) We infer the
scalar correlation functions

Gσσ ¼ −
3

M2k
e−ikjη−η0j;

Gκκ ¼ 1

2M2k

�
1þ ikjη − η0j − k2

3
ðη − η0Þ2

�
e−ikjη−η0j;

ð196Þ

and the vector correlation

GWW
mn ¼ −

Qmn

2M2k
½1þ ikjη − η0j�e−ikjη−η0j: ð197Þ

We observe the negative value of the equal time correlation
functions Gσσ and GWW .
We also may employ the relation

Z
ω
ωfðω; kÞe−iωðη−η0Þ ¼ i∂η

Z
ω
fðω; kÞe−iωðη−η0Þ: ð198Þ

One infers the Fourier transforms

Z
ω

ω

q4
e−iωðη−η0Þ ¼−

ðη−η0Þ
4k

e−ikjη−η0j;Z
ω

ω

q6
e−iωðη−η0Þ ¼−

ðη−η0Þ
16k3

½1þ ikjη−η0j�e−ikjη−η0j: ð199Þ

This allows us to compute all components of the full metric
correlation (129) and (130), e.g.,
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G0000 ¼
3

8M2k

�
1þ ikjη − η0j − k2

3
ðη − η0Þ2

�
e−ikjη−η0j;

Gm000 ¼ −
ikmðη − η0Þ

8M2k
½1þ ikjη − η0j�e−ikjη−η0j;

Gm0n0 ¼ −
1

2M2k

�
Qmn½1þ ikjη − η0j� þ 1

4

kmkn
k2

½1þ ikjη − η0j þ k2ðη − η0Þ2�
�
e−ikjη−η0j;

Gmn00 ¼
1

2M2k

�
ð1þ ikjη − η0jÞδmn −

kmkn
4k2

½5ð1þ ikjη − η0jÞ þ ðη − η0Þ2�
�
e−ikjη−η0j;

Gmnp0 ¼
iðη − η0Þ
2M2k

�
δmpkn þ δnpkm − δmnkp −

kmknkp
4k2

ð1þ ikjη − η0jÞ
�
e−ikjη−η0j;

Gmnpq ¼
1

M2k

�
δmpδnq þ δmqδnp − δmnδpq −

1

2k2
ðδmpknkq þ δnqkmkp þ δmqknkp þ δnpkmkq

− δmnkpkq − δpqkmknÞð1þ ikjη − η0jÞ þ 3kmknkpkq
8k4

ð1þ ikjη − η0j − k2

3
ðη − η0Þ2Þ

�
e−ikjη−η0j: ð200Þ

As a check, we may compute the Newton potential from

G0000 ¼ Wð2Þ
0000 according to Eq. (53). From Eq. (200) one

obtains

Z
η0
G0000ðη − η0; kÞ ¼ −

2i
M2k2

: ð201Þ

The three dimensional Fourier transform yields indeed the
familiar form (53). We can also relate the Newton potential
to the correlation functions for the Bardeen potentials using

f00 ¼
2k2

q4
ðω2Φ − k2ΨÞ ð202Þ

and Eq. (190),

G0000 ¼
4k6

q8
ðk2GΨΨ − 2ω2GΦΨÞ: ð203Þ

This demonstrates in a simple way that the correlation
function for the Bardeen potentials cannot vanish.
The equal time correlation G0000 is positive,

G0000ðk; η; ηÞ ¼
3

8M2k
; ð204Þ

while we observe negative values of the equal time
correlation in the vector channel, e.g.

δmnGm0n0ðk; η; ηÞ ¼ −
9

8M2k
: ð205Þ

The correlation functions (200) show discontinuities at
η ¼ η0. Applying η-derivatives may produce singular terms

∼δðη − η0Þ. For first and second derivatives one finds that
the only such term arises from

∂2
ηG

ðsingÞ
mnpq ¼ −

2i
M2

ðδmpδnq þ δmqδnp − δmnδpqÞδðη − η0Þ:
ð206Þ

We also note the “secular” increase of G for increasing
jη − η0j. This is essentially due to the presence of projectors.
Equation (123) is an inhomogeneous second order differ-
ential equation. The projector on the r.h.s. shows itself
secular behavior.
Indeed, the projector on the physical metric fluctuations

does not vanish for η ≠ η0,

PðfÞμν
ρτðk; η; η0Þ ¼

Z
ω
e−iωðη−η0ÞPðfÞμν

ρτðω; kÞ: ð207Þ

For example, the component PðfÞ00
00 is the Fourier trans-

form of k4=q4, e.g.,

PðfÞ00
00 ¼

ik
4
½1þ ikjη − η0j�e−ikjη−η0j: ð208Þ

It shows a secular increase for large jη − η0j. For η > η0
one has

ð∂2
η þ k2ÞPðfÞ00

00 ¼
ik3

2
e−ikðη−η0Þ;

ð∂2
η þ k2Þ2PðfÞ00

00 ¼ 0: ð209Þ

Only expressions as ð∂2
η þ k2Þð∂2

η0 þ k2ÞPðfÞ00
00ðη; η0Þ or

ð∂2
η þ k2Þ2PðfÞ00

00ðη; η0Þ are proportional to δðη − η0Þ.
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J. Propagator with gauge fixing

So far we have discussed the correlation function for the
metric by restricting to the physical metric fluctuations and
employing the corresponding projector PðfÞ in the propa-
gator equation. An equivalent description of this correlation
function can be found in a gauge fixed version if the gauge
fixing enforces vanishing gauge fluctuations, aμν ¼ 0.
(This does not hold for arbitrary gauge fixing.) For our
purpose we may employ the gauge fixing

Γgf ¼
1

2β

Z
ḡ1=2hνμ;νhμρ;ρ

¼ i
2β

Z
q
qνqρημτh�μνðqÞhρτðqÞ; ð210Þ

and take the limit β → 0 at the end.
In the presence of gauge fixing we can consider uncon-

strained metric fluctuations hμν. The metric correlation is
defined for arbitrary hμν and depends, in general, on the
gauge fixing. The gauge fixing (210) adds to Γð2Þ in
Eq. (107) a term

Γð2Þμνρτ
gf ¼ i

4β
ðqμqρηντ þ qνqρημτ þ qμqτηνρ þ qνqτημρÞ:

ð211Þ
The propagator equation has now the unit matrix on the
r.h.s. and no longer a projector

ðΓð2Þ
ph þ Γð2Þ

gf ÞμνρτGρτσλ ¼
1

2
ðδρμδτν þ δτμδ

ρ
νÞ: ð212Þ

Here Γð2Þ
ph is given by Eq. (107) or (111). The operator

Γð2Þ ¼ Γð2Þ
ph þ Γð2Þ

gf can be inverted on the full space of
arbitrary metric fluctuations.
For the solution of Eq. (212) we make the ansatz

Gρτσλ ¼ Gph
ρτσλ þ βGgf

ρτσλ; ð213Þ

with Gph given by Eq. (129). With

Γð2Þ
gf G

ph ¼ 0 ð214Þ

Eq. (212) becomes�
i
2
ðqμqρηντ þ qνqρημτÞ þ βΓð2Þμνρτ

ph

�
Ggf

ρτσλ

¼ 1

2
ðδμσδνλ þ δμλδ

ν
σÞ − PðfÞμν

σλ ¼ PðaÞμν
σλ

¼ 1

2q2
ðqμqσδνλ þ qνqσδ

μ
λ þ qμqλδνσ þ qνqλδ

μ
σÞ

−
qμqνqσqλ

q4
: ð215Þ

The solution reads

Ggf
ρτσλ ¼ −

i
q4

�
qρqσητλ þ qτqσηρλ þ qρqλητσ

þ qτqληρσ −
3

q2
qρqτqσqλ

�
; ð216Þ

and obeys

Γð2Þ
phG

gf ¼ 0: ð217Þ

In the limit β → 0 the contribution from Ggf to the metric
correlation (213) vanishes. We recover the result based on a
formulation in terms of constrained physical metric
fluctuations.
We can decompose aμν into two representations of the

Lorentz group, a divergence free vector cμ and a scalar d,

aμ ¼ cμ þ ∂μd; ∂μcμ ¼ 0;

aμν ¼ iðqμcν þ qνcμÞ − qμqνd: ð218Þ

For this purpose we may employ projectors

PðdÞρτ
μν ¼ 1

q4
qμqνqρqτ; PðdÞρτ

μν hρτ ¼ −qμqνd; ð219Þ

and

PðcÞρτ
μν ¼ 1

2q2
ðqμqρδτν þ qνqρδτμ þ qμqτδ

ρ
ν þ qνqτδ

ρ
μÞ

−
2

q4
qμqνqρqτ;

PðcÞρτ
μν hρτ ¼ iðqμcν þ qνcμÞ: ð220Þ

They obey

PðcÞρτ
μν PðdÞλσ

ρτ ¼ 0; PðaÞρτ
μν ¼ PðcÞρτ

μν þ PðdÞρτ
μν : ð221Þ

In terms of these projectors we may write

Γð2Þμνρτ
gf ¼ iq2

2β
ðPðcÞμνρτ þ 2PðdÞμνρτÞ; ð222Þ

and

Ggf
μνρτ ¼ −

2i
q2

�
PðcÞ
μνρτ þ 1

2
PðdÞ
μνρτ

�
: ð223Þ

Using the orthogonality of the projectors the propagator
equation (212) decays into four separate equations for the
Lorentz representations tμν; σ; cμν and d. For arbitrary β the
propagator equation for Gph is given by Eq. (123).
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VII. OFF-SHELL METRIC PROPAGATOR

In quantum gravity one needs the effective action for
arbitrary values of the metric, at least in the vicinity of the
final cosmological solution. This permits to get the
response to arbitrary conserved sources by Eq. (45).
Functional derivatives of the effective action yield field
equations, inverse propagator, and interactions. It is not
sufficient to evaluate Γ only for a given cosmological
solution. A computation of the effective action for quantum
gravity is an off-shell problem, and one therefore needs the
off-shell propagator for the metric fluctuations.
If one employs the exact flow equation (1) one may use a

given cosmological solution for the background metric that
is used in the definition of the constraint on physical metric
fluctuations or the physical gauge fixing, as well as in the
definition of the IR-cutoff Rk. This cosmological solution
refers to k ¼ 0 or some fixed value k0. Evaluating the flow
of Γk for metrics equal to the background metric will
involve the on-shell propagator only if k ¼ k0. During the
flow with k ≠ k0 the propagator Gk will be off-shell. For
k ≠ k0 the on-shell propagator would correspond to sol-
utions of the field equations derived from Γk þ ΔΓk, where
ΔΓk contains the cutoff term [1]. These solutions differ
from the solutions of the field equations derived from Γk0 .
The flow equation therefore involves the off-shell propa-
gator even if we evaluate it for a solution of the field
equations derived from Γk0 .
At the end one is interested in on-shell quantities as the

power spectrum of fluctuations which can be extracted
from the on-shell propagator. It is therefore interesting
to understand how the particular properties of on-shell
propagators arise within the extended space of off-shell
propagators. Our approach treats off-shell propagators and
on-shell propagators on equal footing. In this section we
explicitly discuss the off-shell metric propagator in flat
space. It obtains by admitting V ≠ 0 in the action (64).
Expanding around a flat background in the presence of a

nonvanishing cosmological constant V adds to Γ2 in
Eq. (104) a term

ΓðVÞ
2 ¼ iV

Z
x

�
1

8
h2 −

1

4
hρμh

μ
ρ

�
: ð224Þ

In turn, this supplements a constant piece to the second
functional derivative

Γð2Þμνρτ
ðVÞ ¼ iV

4
ðημνηρτ − ημρηντ − ημτηνρÞ: ð225Þ

In momentum space this piece adds to Eq. (107).
Applying the inverse propagator on the gauge fluctua-

tions yields

Γð2Þμνρτ
ðVÞ aρτ ¼

V
2
ðqμaν þ qνaμ − qρaρημνÞ: ð226Þ

In contrast to Eq. (108) the off-shell inverse propagator is
therefore no longer acting only in the space of physical
fluctuations. For constraint physical metric fluctuations, or
for a “physical gauge fixing”with α → 0, we therefore have
to project on the physical fluctuations. This is most easily
done by insertion of the decomposition

hμν ¼ fμν þ aμν

¼ tμν þ
1

3
σ ~Pμν þ iðqμaν þ qνaμÞ ð227Þ

into Eq. (224),

ΓðVÞ
2 ¼ iV

�
σ2

24
−
1

4
tνμt

μ
ν þ ΔV

�
; ð228Þ

with

ΔV ¼ 1

4
ðqμaμÞ2 þ

iσ
2
qμaμ þ

1

2
q2aμaμ: ð229Þ

The projection on the physical metric fluctuations elimi-
nates ΔV . In the gauge fixed version this is achieved by
enforcing qμaν þ qνaμ ¼ 0 through the gauge condition.
The projection on physical fluctuations replaces hμν by fμν
in Eq. (224). This results in multiplication of Γð2Þ

V in
Eq. (225) by PðfÞ from left and right.
Combining the part for tμν in Eq. (228) with Eq. (175)

one recovers Eq. (83). Correspondingly, the second func-
tional derivative (178) is extended to

Γð2Þμνρτ
tt ¼ iM2

4

�
q2 −

2V
M2

�
PðtÞμνρτ: ð230Þ

Similarly, the combination of the σ-dependent part in
Eq. (228) with Eq. (176) is consistent with Eq. (94).
This modifies the second functional derivative (177),

Γð2Þ
σσ ¼ −

iM2

6

�
q2 −

V
2M2

�
: ð231Þ

For the representations of the rotation group Eq. (230)
can be taken over by using the decomposition (163) of the
projector PðtÞ. Correspondingly, the off-shell correlation
functions Gγγ; GWW , and Gκκ obtain from their on-shell
counterparts (151), (154), and (161) by multiplication with
q2=ðq2 − 2V=M2Þ. For Gσσ the multiplicative factor is
q2=ðq2 − V=2M2Þ. The index structure and k-dependence
arising from the projectors remains unchanged.
These simple observations have important consequences

for quantum gravity. For V < 0 the negative cosmological
constant acts like a mass term for the graviton, with mass
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2V=M2

p
. It provides for an infrared cutoff

for the graviton fluctuations. In contrast, a positive
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cosmological constant V > 0 makes the graviton fluctua-
tions tachyonic. The negative mass term −2V=M2 leads to
a strong infrared instability. This concerns the momentum
modes with q2 ≈ 2V=M2.
One infers that the on-shell metric propagator has a very

special place in the space of metric propagators. It is located
at the boundary between stable and unstable behavior. The
particular property that the graviton is massless is realized
only on-shell.
The case of a positive cosmological constant is

of particular interest. We concentrate on the graviton
propagator, where for Gγγ ¼ GgravPðγÞ one has now in
Fourier space

Ggrav ¼ −
4i
M2

�
q2 −

2V
M2

�
−1
: ð232Þ

The Fourier transform (191) to position space in time,

Ggravðη − η0; kÞ ¼ −
4i
M2

Z
ω

e−iωðη−η0Þ

k2 − 2V=M2 − ω2 − 2iϵω2
;

ð233Þ

obeys

Ggrav ¼
( 2

M2k̄ðVÞ e
−ik̄ðVÞjη−η0j for k2 > 2V

M2

2i
M2k̄ðVÞ e

−k̄ðVÞjη−η0j for k2 < 2V
M2

; ð234Þ

where

k̄ðVÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk2 − 2V=M2j

q
: ð235Þ

One may check that Ggrav obeys the propagator equation,
which reads for k2 < 2V=M2

−
iM2

4
ð∂2

η þ k̄2ðVÞÞGgravðη; η0Þ ¼ δðη − η0Þ: ð236Þ

The solution (234) is not the only solution of the
propagator equation (236). For k2 < 2V=M2 another sol-
ution is

Ggrav ¼ −
2i

M2k̄ðVÞ e
k̄ðVÞjη−η0j: ð237Þ

This solution grows exponentially with jη − η0j, instead of
the exponential decay in Eq. (234). The general solution
can be constructed from mode functions w� that obey for
k2 < 2V=M2

ð∂2
η þ k̄2ðVÞÞw�ðηÞ ¼ 0: ð238Þ

We normalize the mode functions according to

w�
k ðηÞ ¼ ½2k̄ðVÞ�−1=2e∓iπ=4e�k̄ðVÞη: ð239Þ

Taking into account the symmetry of the propagator one
finds for the general solution to the propagator equa-
tion (236) (for k2 < 2V=M2Þ,

Ggravðk; η; η0Þ ¼ Ggravðk; η0; ηÞ ¼
4

M2
fc−k ½w−

k ðηÞwþ�
k ðη0Þθðη − η0Þ þ wþ�

k ðηÞw−
k ðη0Þθðη0 − ηÞ�

þ cþk ½wþ
k ðηÞw−�

k ðη0Þθðη − η0Þ þ w−�
k ðηÞwþ

k ðη0Þθðη0 − ηÞ� þ d−k ½w−
k ðηÞwþ�

k ðη0Þ þ wþ�
k ðηÞw−

k ðη0Þ�
þ dþk ½wþ

k ðηÞw−�
k ðη0Þ þ w−�

k ðηÞwþ
k ðη0Þ� þ eþwþ

k ðηÞwþ�
k ðη0Þ þ e−w−

k ðηÞw−�
k ðη0Þg: ð240Þ

The inhomogeneous term on the r.h.s of Eq. (236) yields a
constraint for the coefficients,

c−k þ cþk ¼ 1: ð241Þ

The other coefficients are free. Time translation symmetry is
obeyed for eþ¼e−¼0. The solution (234) corresponds to
c−k ¼ 1, with all other coefficients vanishing, while Eq. (237)
is realized for cþk ¼ 1 as the only non-vanishing coefficient.
Finding the “correct propagator” amounts to an initial

value problem [18], with Gin
gravðkÞ an “initial correlation”,

typically given for η0 → −∞, η → −∞, with η close to η0. In
the approximation (64) for the effective action the coef-
ficients c�k , d

�
k , e

�
k do not depend on η or η0. Realizing the

correlation function (234) requires a particular initial value

for which only c−k ¼ 1 differs from zero. In a more
complete treatment one expects that the propagator equa-
tion no longer remains linear [18]. For V ≤ 0 this may
induce an approach to the correlation function (234) for
rather general initial conditions. For V > 0, k2 < 2V=M2,
however, the nonlinearities typically induce nonzero d�k .
Even if c−k remains one (and cþk therefore zero), the parts
∼d�k are exponentially growing and will overwhelm the
exponentially decaying part ∼c−k . At the end the exponen-
tially growing parts will win. For nonzero exponentially
growing parts no Fourier transform to momentum space
exists—this is the reason why the growing parts do not
appear in the Fourier transform of Eq. (232).
In a quantum gravity computation an exponentially

growing unstable propagator would lead to huge uncon-
trollable effects. It seems therefore plausible that quantum
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fluctuations act in a way such that the quantum effective
action does not lead to this type of unstable propagator.
This may be achieved by strong renormalization effects
for V.

VIII. MODE FUNCTIONS IN HOMOGENEOUS
AND ISOTROPIC COSMOLOGY

In this section we turn to the discussion of the metric
correlation function in cosmology. We assume a homo-
geneous and isotropic background geometry with vanishing
spacial curvature. For the propagating graviton the general
solution of the propagator equation can be described in terms
of mode functions. The normalization of the correlation
function is only restricted by the inhomogeneous term in the
propagator equation—no explicit quantum field operators
and associated commutation relations are needed [19,18].
The mode functions coincide with the solution of the
linearized Einstein equations only in the case where the
background geometry obeys the field equations. For
the vector and scalar modes contained in the metric the
propagator equation cannot always be solved by mode
functions.

A. Metric fluctuations for homogeneous
and isotropic cosmology

A homogeneous and isotropic background metric with
zero spatial curvature can be written in the form

ḡμν ¼ a2ðηÞημν; HðηÞ ¼ ∂ ln aðηÞ
∂η ; ð242Þ

with η conformal time and aðηÞ the scale factor. Analytic
continuation can be easily implemented by admitting a
complex phase factor for η00 such that η00 ¼ −1 for
Minkowski signature and η00 ¼ 1 for Euclidean signature.
We will assume that η extends from −∞ to þ∞, as typical
for realistic cosmologies. We also assume that boundary
terms can be neglected in the sense that partial integration
for η-dependent functions can be performed.
For certain limiting cases as de Sitter space the scale

factor may diverge at finite η, e.g.

a ¼ −
1

Hη
; H ¼ −

1

η
: ð243Þ

In this case one may formally patch a de Sitter geometry
with increasing a2 for η < 0 to one with decreasing a2 for
η > 0 by taking the limit ϵ → 0 for

a2 ¼ 1

H2ðη − iϵÞ2 ; H ¼ −
1

η − iϵ
: ð244Þ

Since the propagator equation is local in η and the correlation
function is fixed by initial values for a differential equation,

this formal continuation does not matter for the correlation
function for arguments η; η0 obeying jη=ϵj ≫ 1; jη0=ϵj ≫ 1.
It is convenient to perform a Fourier transformation in

the three space dimensions, e.g.,

fμνðxÞ ¼ fμνðη; xÞ ¼
Z

d3k
ð2πÞ3 e

ikxfμνðη; kÞ; ð245Þ

and similar for other fields. We assume space-translation
symmetry of the correlation functions. The propagator
equation can then be decomposed into separate equations
for each k-mode.
For a homogeneous and isotropic cosmology the scalar

covariant Laplacian reads explicitly

D2σ ¼ −a−2ð∂2
η þ 2H∂η þ k2Þσ; ð246Þ

with k2 ¼ δmnkmkn ¼ a2kmkm. For the components of σ;μν
one finds

σ;00 ¼ ð∂2
η −H∂ηÞσ; σ;m0 ¼ ikmð∂η −HÞσ;

σ;mn ¼ −ðkmkn þHδmn∂ηÞσ: ð247Þ

For a symmetric traceless tensor bμν one has D2bμν ¼
bμν;ρρ, with

D2b00 ¼ −
1

a2
fð∂2

η − 2H∂η − 2∂ηH − 8H2 þ k2Þb00
þ 4iHδjlkjbl0g;

D2bm0 ¼ −
1

a2
fð∂2

η − 2H∂η − 2∂ηH − 6H2 þ k2Þbm0

þ 2iHkmb00 þ 2iHδjlkjbmlg;

D2bmn ¼ −
1

a2
fð∂2

η − 2H∂η − 2∂ηH − 2H2 þ k2Þbmn

− 2H2δmnb00 þ 2Hðikmbn0 þ iknbm0Þg: ð248Þ

The constraint fμν;ν ¼ 0 translates to the relations

ð∂η þ 4HÞb0μ þ ikmbmμ ¼ −
1

4
∂μσ; ð249Þ

or

ikjδjlbμl ¼ −
a2

4
∂μσ þ ð∂η þ 2HÞbμ0: ð250Þ

This can be inserted into the first two equations (248).
Relations for the action of D2 on traceless divergence free
tensors tμν can be computed from Eq. (248), cf. Sec. IX.
The nonvanishing components of the curvature tensor,

Ricci tensor and curvature scalar read
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R0m0n ¼
∂ηH

a2
g00gmn;

Rmnkl ¼
H2

a2
ðgmkgnl − gmlgnkÞ;

R00 ¼ −3∂ηH; Rmn ¼ ð2H2 þ ∂ηHÞδmn;

R ¼ 6

a2
ðH2 þ ∂ηHÞ: ð251Þ

Equipped with these relations one may try to solve the
propagator equation for homogeneous isotropic geom-
etries. The complications of this task arise from the mixing
of different components, e.g., in Eq. (248).

B. Mode functions

In cosmology correlation functions are often assumed to
be a product of mode functions. These mode functions are
solutions of the linearized Einstein equations or suitable
generalizations. The normalization is then provided by free
quantum fields in an appropriate vacuum. Given our basic
formulation of the correlation function as a solution of the
propagator equation we can investigate systematically the
conditions for this ansatz to work or fail.
Space-translation invariant Green’s functions take in

Fourier space the form

Gρτσλðη; k; η0; k0Þ ¼ Gρτσλðk; η; η0Þδðk − k0Þ; ð252Þ

where

Gρτσλðη; k; η0; k0Þ ¼
Z
x;y

e−iðkx−k0yÞGρτσλðη; x; η0; yÞ ð253Þ

and δðk − k0Þ ¼ ð2πÞ3δ3ðk − k0Þ. Similarly, for a homo-
geneous background metric ḡμνðη; xÞ ¼ ḡμνðηÞ the operator
Γð2Þ is diagonal in momentum space,

Γð2Þμνρτðη0; k0; η; kÞ ¼ Γð2Þμνρτðk; η0; ηÞδðk − k0Þ: ð254Þ

For our purposes it can be written as a differential operator
Dη acting on η [cf. Eq. (68)]

Γð2Þμνρσðk; η0; ηÞ ¼ δðη − η0ÞDμνρτ
ðηÞ ðkÞ: ð255Þ

The propagator equation (59) takes then the form

Dμνρτ
ðηÞ ðkÞGρτσλðk; η; η0Þ ¼ Eμν

σλðk; η; η0Þ; ð256Þ

where the Fourier transform of Eμν
σλðx; yÞ is given by

Eμν
σλðk; η; η0Þδðk − k0Þ. This is a system of independent

differential equations for each value of k. Rotation sym-
metry imposes further constraints on DðηÞ and G.
If the inhomogeneous term in the propagator equation is

proportional δðη − η0Þ we can solve this equation in terms

of mode functions, as we will see below. For the physical
metric fluctuations Eμν

σλðk; η; η0Þ is given by the projector
PðfÞμν

σλðk; η; η0Þ, which does not necessarily vanish for
η ≠ η0, cf. Eq. (208). (An exception is the graviton mode.)
If the homogeneous term is not proportional to δðη − η0Þ an
expression of the propagator as a sum of products of mode
functions is, in general, not possible. Examples are the
correlation functions (200) in Minkowski space which
cannot be represented as simple products of mode functions.
For solving the propagator equation in terms of mode

functions we have two options. Either one works with
unconstrained metric fluctuations and includes in D̄η a
gauge fixing term as described in Sec. A. In this case the
mode equation reads

Dμνρτ
ðηÞ hρτ ¼ 0; ð257Þ

where the definition of DðηÞ in Eq. (255) includes the
contribution to Γð2Þ from the gauge fixing term. As an
alternative, one may decompose the physical metric fluc-
tuations into unconstrained representations of the rotation
group. For some representations, the propagator equation
may take the form

DðηÞðkÞGðk; η; η0Þ ¼ δðη − η0Þ: ð258Þ

Here DðηÞ and G are N × N matrices with N the dimension
of the representation, and we have not written explicitly the
unit matrix on the r.h.s.. For rotation symmetric correlation
functions different irreducible SOð3Þ-representations do
not mix and can be treated separately. (There may be,
however, several representations of the same type.) The
dependence ∼δðη − η0Þ of the inhomogeneous term in
Eq. (258) does not follow from the decomposition itself
but needs particular properties.
We next construct the solution of the propagator equation

in terms of mode functions. For this purpose we assume a
propagator equation of the type (258). For η ≠ η0 the
differential equation (258) is homogeneous. The (general-
ized) mode functions wðαÞðk; ηÞ are a set of linearly
independent solutions of the homogeneous equation

DðηÞðkÞwðαÞðk; ηÞ ¼ 0; ð259Þ

such that the most general solution to the mode equation

DðηÞðkÞ ~wðk; ηÞ ¼ 0 ð260Þ

can be written in the form

~wðk; ηÞ ¼
X
α

cαðkÞwðαÞðk; ηÞ: ð261Þ

A given mode function wðαÞ is a N-component vector and
Eqs. (259) to (261) are vector equations. For purely real or
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imaginary DðηÞ the functions wðαÞ� also obey Eq. (259) and
we can equally well expand the general solution of
Eq. (260) in terms of wðαÞ�.
We will next show that the general solution of the

propagator equation (258) can be expressed in terms of
the mode functions as

Gstðk; η; η0Þ ¼
X
α;β

fdαβðkÞwðαÞ
s ðk; ηÞwðβÞ�

t ðk; η0ÞΘðη − η0Þ

þ dβαðkÞwðαÞ�
s ðk; ηÞwðβÞ

t ðk; η0ÞΘðη0 − ηÞg
− iFstðk; ηÞδðη − η0Þ: ð262Þ

From Eq. (259) one infers DðηÞGðη; η0Þ ¼ 0 for η ≠ η0.
(This shows that the mode function ansatz (262) cannot
work if the inhomogeneous term in Eq. (256) differs from
zero for η ≠ η0.) The coefficients dαβðkÞ will be constrained
by the inhomogeneous term in Eq. (258) and by sym-
metries. They can be viewed as a Hermitian matrix

d�βαðkÞ ¼ dαβðkÞ: ð263Þ

The Green’s function is symmetric,

Gðk; η; η0Þ ¼ GTðk; η0; ηÞ: ð264Þ

For η ≠ η0 it can be written as

Gðk; η; η0Þ ¼ GðsÞðk; η; η0Þ
þGðaÞðk; η; η0Þðθðη − η0Þ − θðη0 − ηÞÞ; ð265Þ

with GðsÞ and GðaÞ symmetric and antisymmetric, respec-
tively. Furthermore, the reality condition implies that for
Minkowski signature both GðsÞ and GðaÞ are Hermitian.
Thus GðsÞ is real and GðaÞ purely imaginary. This implies
eq. (263). For η ≠ η0 both GðsÞ and GðaÞ obey separately the
homogeneous equation

DðηÞðkÞGs;aðk; η; η0Þ ¼ 0: ð266Þ

Using Eq. (264) this implies a similar equation for the
dependence on η0

Dðη0ÞðkÞGðs;aÞðk; η; η0Þ ¼ 0: ð267Þ

It is now straightforward to show Eq. (262).
Equations (266), (260), and (261) imply for η > η0

Gstðk; η; η0Þ ¼ ~cα;tðk; η0ÞwðαÞ
s ðk; ηÞ; ð268Þ

where ~cα;t are N-component vectors for each α. Using
Eq. (267) we infer from Eqs. (260) and (261)

~cα;tðk; η0Þ ¼
X
β

dαβðkÞwðβÞ�
t ðk; η0Þ: ð269Þ

This establishes Eq. (262) for η > η0. The behavior for η0 <
η follows by Eq. (264). With Eq. (263) we conclude for
Fst ¼ 0 that the real part ofG is continuous at η ¼ η0, while
the imaginary parts jumps.
We next turn to the inhomogeneous term in the propa-

gator equation (256). We concentrate first on Fst ¼ 0. The
operatorDðηÞ contains a factor

ffiffiffī
g

p ¼ ia4 and can be written

as DðηÞ ¼ iDðRÞ
ðηÞ , with DðRÞ

ðηÞ a real differential operator. The

inhomogeneous term on the r.h.s of Eq. (256) is real. It is
therefore related to the behavior of the purely imaginary
part of G, as given by GðaÞ. Indeed, this imaginary part
shows a discontinuity at η ¼ η0, cf. Eq. (265), which can
produce the inhomogeneous term. In contrast, the propa-
gator equation for the real part GðsÞ is homogeneous for all
η and η0. We conclude that GðsÞ and GðaÞ obey separate
propagator equations

D̄ηGðsÞ ¼ 0;

D̄ηfGðaÞsignðη − η0Þg ¼ δðη − η0Þ: ð270Þ

The linear equation for GðsÞ does not fix its amplitude,
allowing typically for a large variety of solutions of the
propagator equation. The correlation function will therefore
be uniquely determined only once boundary conditions are
specified. The issue has been discussed extensively
in Ref. [18].
As an example we consider an operator of the form

DðηÞ ¼ iAðηÞ½∂2
η þ 2CðηÞ∂η þ BðηÞ�; ð271Þ

with real functions AðηÞ;BðηÞ; CðηÞ. The equation

DðηÞfGðaÞðη; η0Þ½θðη − η0Þ − θðη0 − ηÞ�g ¼ δðη − η0Þ ð272Þ

is obeyed for

∂ηGðaÞðη; η0Þjη¼η0 ¼ −
i

2Aðη ¼ η0Þ : ð273Þ

Differential equations of this type apply for operators of the
type (68), whereby the functions A, B, C may differ for the
different SOð3Þ-representations contained in hμν (see later).
For the graviton the normalization of dαβ inferred from
Eq. (273) corresponds to the normalization following from
the commutator relations for free quantum fields. On the
level of the quantum effective action it is a direct conse-
quence of the basic identity (59) and only involves proper-
ties of “classical fields.” No operators and commutation
relations are involved in our formalism.
For an operator DðηÞ containing two η-derivatives the

general solution of the mode equation (260) involves two
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linearly independent mode functions for each component of
the vector ws. They can be related by complex conjugation.
For irreducible representations of the rotation group the
solutions are degenerate and related by symmetry. Our
boundary conditions, that can be related to properties under
analytic continuation [18], typically admit only one inde-
pendent mode function for each irreducible representation.
If we restrict the setting to the physical metric fluctuations
the differential operator DðηÞ will typically admit more than
one independent mode function for a given irreducible
representation. The sum (262) can no longer be written as a
product of a given mode function wðηÞw�ðη0Þ. An exception
is the graviton for which DðηÞ remains second order.
The most general solution of the propagator equation

may also contain a term −iFstδðη − η0Þ. This does not
contribute for η ≠ η0, but it can contribute to the solution of
the inhomogeneous equation. A simple example is

DðηÞ ¼ iAðηÞδst; Fst ¼
1

AðηÞ δst; ð274Þ

where AðηÞ contains no η-derivatives, e.g. AðηÞ ¼ k2.
If AðηÞ has no zero, the mode equation DðηÞ ~w ¼ 0
has only the trivial solution w ¼ 0 such that for η ≠ η0

GðsÞ ¼ GðaÞ ¼ 0. The propagator (262) therefore only
involves the term −iFstδðη − η0Þ. It cannot be written as
a product of mode functions or a sum of such products.
More generally, the contribution of Fst to the inhomo-
geneous term is

−iDðηÞ½Fδðη − η0Þ� ¼ fðη; η0Þδðη − η0Þ: ð275Þ

We conclude that the use of mode functions for the
correlations of the physical metric fluctuations is more
involved than for a single scalar field (or the graviton).
Mode functions can only be employed if the inhomo-
geneous term is ∼δðη − η0Þ, as realized for unconstrained
fields. Expressing the propagator equation in terms of
constrained physical fluctuations typically leads to higher
order differential operators DðηÞ. Due to the appearance of
projectors the inhomogeneous term is often no longer
proportional δðη − η0Þ. As a consequence, it is not possible
to use mode functions directly for constrained fluctuations.
An alternative possibility for the use of mode functions

may be the explicit use of gauge fixing. Once a solution for
the propagator equation is found in terms of mode functions
for unconstrained fields, the projection onto constrained
physical fluctuations is responsible both for the higher
derivative terms and the deviation of the inhomogeneous
term from the δ-distribution due to the appearance of a
projector. Still, the issue remains rather involved. The
operator Γð2Þ mixes the different components of hμν and
one expects the presence of a large number of different
mode functions in the sum (262).

Finally, even for an inhomogeneous term ∼δðη − η0Þ
sums of products of mode functions are not the only
possible solution of the propagator equation. There can be
additional terms in G which are proportional to δðη − η0Þ
themselves. These terms ð∼FÞ cannot be expressed as
products of mode functions. For nonderivative forms of
DðηÞ without zero eigenvalues, the solution G ∼ δðη − η0Þ is
the only solution of the propagator equation.

C. Mode functions with gauge fixing

One possibility for constructing the correlation function
from solutions of the mode equation employs an explicit
gauge fixing term

Γgf ¼
1

2β

Z
x
ḡ1=2hνμ;νhμρ;ρ: ð276Þ

This adds to Γ̄ð2Þ as given by Eq. (68) a term

Γð2Þμνρτ
gf ¼ −

1

4β

ffiffiffī
g

p fḡμρDνDτ þ ḡνρDμDτ

þ ḡμτDνDρ þ ḡντDμDρg; ð277Þ

Γð2Þ ¼ Γ̄ð2Þ þ Γð2Þ
gf : ð278Þ

In the limit β → 0 the second functional derivative Γð2Þ is
dominated by Γð2Þ

gf .
For and understanding of the structure of the mode

equation Γð2Þμνρτhρτ ¼ 0, we split

hμν ¼ fμν þ aμν

fμν;ν ¼ 0; aμν;ν ¼ Aμ: ð279Þ

For our choice of a physical gauge fixing the leading order
mode equation

Γð2Þμνρτ
gf fρτ ¼ 0 ð280Þ

is obeyed for arbitrary physical metric fluctuations. For the
“gauge modes” aρτ the leading order mode equation

Γð2Þμνρτ
gf aρτ ¼ 0 ð281Þ

implies

Aμ;ν þ Aν;μ ¼ 0; ð282Þ

or

aμρ;ρν þ aνρ;ρμ ¼ 0: ð283Þ

For a homogeneous and isotropic background one has in
Fourier space
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A0 ¼ −
1

a2
ð∂η þHÞa00 þ

δjk

a2
ðikjak0 −HajkÞ;

Aj ¼ −
1

a2
ð∂η þ 2HÞaj0 þ i

δlk

a2
klajk: ð284Þ

The condition (282) reads

ð∂η −HÞA0 ¼ 0;

ð∂η − 2HÞAj þ ikjA0 ¼ 0;

iðklAj þ kjAlÞ − 2HδjlA0 ¼ 0: ð285Þ

The first Eq. (285) is solved by

A0 ¼ aðηÞc0ðkÞ; ð286Þ

while for Aj one has

Aj ¼ ikjLþ Tj; kjTj ¼ 0;

ð∂η − 2HÞLþ A0 ¼ 0;

ð∂η − 2HÞTj ¼ 0;

iðklTj þ kjTlÞ − 2HδjlA0 − 2klkjL ¼ 0: ð287Þ

Combining Eqs. (286) and (287) one obtains for k ≠ 0

A0 ¼ 0; L ¼ 0; Tj ¼ 0: ð288Þ
Discarding the special case k ¼ 0we conclude that the only
solution is

Aμ ¼ 0: ð289Þ

The remaining leading order mode equation for the
vector aμ,

D2aμ þDνDμaν ¼ 0; ð290Þ

obtains from Eq. (284) by insertion of aμν ¼ aμ;ν þ aν;μ.
By virtue of Eq. (280) the full mode equation becomes

Γ̄ð2Þμνρτðfρτ þ aρτÞ þ Γð2Þμνρτ
gf aρτ ¼ 0; ð291Þ

with Γ̄ð2Þμνρτ given by Eq. (68). One set of solutions
corresponds to the physical modes f ≠ 0, a ¼ 0,

Γ̄ð2Þf ¼ 0; ð292Þ

while the gauge modes, f ¼ 0, a ≠ 0, obey

ðΓð2Þ
gf þ Γ̄ð2ÞÞa ¼ 0: ð293Þ

The most general solutions are linear combinations of the
solutions of Eq. (292) with solutions of Eq. (293). For small
β we can solve Eq. (293) iteratively

a ¼ a0 þ βa1 þ � � � ; Γð2Þ
gf a0 ¼ 0;

Γ̄ð2Þa0 þ βΓð2Þ
gf a1 ¼ 0: ð294Þ

With Γð2Þ
gf ∼ 1=β one infers that a1 and a0 have the same

scaling with β. For β → 0 one can neglect the term ∼βa1 in
the solutions of Eq. (293) and we recover the leading
expression given by Eqs. (281) and (290). For β → 0 the
general solution of the mode equation combines physical
modes wf obeying Eq. (292) with gauge modes wa

obeying Eq. (281).
Assume now that the propagator can be represented as a

product of mode functions,

Gðη; η0Þ ¼ w−ðηÞwþðη0Þθðη − η0Þ þ wþðηÞw−ðη0Þθðη0 − ηÞ;
ð295Þ

with

w�ðηÞ ¼ w�
f ðηÞ þ w�

a ðηÞ: ð296Þ

Here wþ and w− are vectors in the space of mode functions
and G is therefore a matrix in this space, cf. Eq. (262). (An
extension to a sum of such products will be straightfor-
ward.) The propagator equation

Γð2ÞðηÞGðη; η0Þ ¼ δðη − η0Þ ð297Þ

requires that w� has nonvanishing components w�
f and w�

a .

Multiplying from left and right with PðfÞ yields

PðfÞðΓ̄ð2Þ þ Γð2Þ
gf ÞðPðfÞ þ PðaÞÞGPðfÞ ¼ PðfÞ; ð298Þ

or, using PðfÞΓð2Þ
gf ¼ 0,

PðfÞΓ̄ð2ÞPðfÞGff þ PðfÞΓ̄ð2ÞPðaÞGaf ¼ PðfÞ; ð299Þ

with

Gff ¼ PðfÞGPðfÞ; Gaf ¼ PðaÞGPðfÞ: ð300Þ

The projected pieces Gff and Gaf involve appropriate
factors of wf and wa in the products (295), according to

PðfÞwf ¼ wf; PðfÞwa ¼ 0;

PðaÞwf ¼ 0; PðaÞwa ¼ wa: ð301Þ

For β → 0 the part wa in Eq. (296) has to be ∼β1=2 or

smaller, since otherwise the piece ∼Γð2Þ
gf G would yield a

divergent contribution multiplying δðη − η0Þ. Therefore
Gaf ≲ ffiffiffi

β
p

, and we end for β → 0 with the propagator
equation for constrained physical fluctuations
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Γð2Þ
f Gff ¼ Pf; Γð2Þ

f ¼ PfΓð2ÞPf: ð302Þ

[This corresponds in the more abstract discussion of Sec. A
to Eq. (A15).] As a consequence, the propagator for the
physical fluctuations is expressed in terms of the mode
functions wf as

GðphÞ ¼ Gffðη; η0Þ ¼ w−
f ðηÞwþ

f ðη0Þθðη − η0Þ þ ðη ↔ η0Þ:
ð303Þ

The mode functions w�
f are solutions of the homogeneous

equation (292), with Γ̄ð2Þ involving up to two derivatives
with respect to η. The higher derivatives in the inverse

propagator for constrained fields Γð2Þ
f act on the product of

mode functions such that the inhomogeneous term of the
propagator equation for constrained fields,

Γð2Þ
f Gph ¼ PðfÞ; ð304Þ

equals the projector PðfÞ.

D. Linearized Einstein equations

The mode functions are usually associated to the
solutions of the linearized Einstein equations. If the back-
ground metric ḡμν is a solution of the “background” field
equation this indeed coincides with the more general
definition (259). For background geometries not obeying
the field equations this simple coincidence is no longer
valid. We compute here the mode equations for the (con-
strained) physical fluctuations, assuming the effective
action (64). We recall however, that the resulting mode
functions in the scalar and vector channel cannot be used
for the construction of the correlation function.
For the effective action (64) the expansion of the Einstein

equation,

Rμν −
1

2
Rgμν ¼

1

M2
Tμν; ð305Þ

reads in linear order in hμν,

Gð1Þμν ¼ Rμνð1Þ −
1

2
ðRgμνÞð1Þ ¼

1

M2
Tð1Þμν;

Gð1Þμν ¼
1

2
fhρμ;νρ þ hρν;μρ − hμν;ρρ − h;μν

− R̄hμν − ðhρτ ;ρτ − h;ρρ − R̄ρτhρτÞḡμνg: ð306Þ

For the action (64) and in the absence of any further
contributions to Tμν one has

Tð1Þμν ¼ −Vhμν: ð307Þ

Solutions of the background field equation relate R̄μν to V.

We may evaluate the mode equation (257) for physical
metric fluctuations fμν,Z

y
Γð2Þμνρτðx; yÞfρτðyÞ ¼ 0; ð308Þ

with Γð2Þ given in Eq. (68). This may be compared to the
solution of the linearized Einstein equations (306) and
(307), also evaluated for hμν ¼ fμν. We show in Sec. D that
the two equations for fμν only coincide if the background
metric obeys the field equations. Otherwise, the solution of
the mode equation (308) differs from the solution of the
linearized Einstein equation. The origin of this difference
arises from the relation of the first functional derivative
δΓ=δgμν and the Einstein equation, which involves a factor
g1=2gμρgντ. The linearization of the first functional deriva-
tive has to take this factor into account.
For a homogeneous and isotropic background (242) we

may further elaborate the linearized Einstein equation. For
a vanishing Weyl tensor C̄μνρτ ¼ 0 one has for the physical
metric fluctuations fμν

Gð1Þμν ¼
1

2

�
2R̄ρ

μfνρ þ 2R̄ρ
νfμρ − R̄μνf −

4

3
R̄fμν

þ 1

3
R̄fḡμν − fμν;ρρ − f;μν þ f;ρρḡμν

�
: ð309Þ

We next split fμν ¼ bμν þ σḡμν=4, according to Eq. (71).

Gð1Þμν ¼
3

8
σ;

ρ
ρḡμν −

1

2
σ;μν −

1

2
bμν;ρρ

þ R̄ρ
μbνρ þ R̄ρ

νbμρ −
2

3
R̄bμν; ð310Þ

with

Gð1Þ00 ¼
1

2a2
ð∂2

η þ 2H∂η þ 2∂ηH − 8H2 þ k2Þb00

þ 1

8
ð−∂2

η þ 6H∂η þ 3k2Þσ;

Gð1Þm0 ¼
1

2a2
ð∂2

η − 2∂ηH − 6H2 þ k2Þbm0

þ ikm

�
H

b00
a2

−
1

2
∂ησ þ 1

4
Hσ

�
;

Gð1Þmn ¼
1

2a2
fð∂2

η − 2H∂η − 6∂ηH − 2H2 þ k2Þbmn

− 2H2δmnb00 þ 2Hiðkmbn0 þ knbm0Þg

−
1

8
ð3∂2

η þ 2H∂η þ 3k2Þδmnσ þ 1

2
kmknσ: ð311Þ

Here we recall that the covariant derivatives of bμν and σ are
related by Eq. (71).
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For the trace Eqs. (311) and (250) yield

a2Gð1Þ
μν ḡμν ¼ Gð1Þmnδ

mn −Gð1Þ00

¼ 4

a2
ðH2 − ∂ηHÞb00 − ð∂2

η þ 2H∂η þ k2Þσ:
ð312Þ

In particular, for a de Sitter background one has ∂ηH ¼ H2

such that Eq. (312) only involves σ. Also the trace of Tð1Þμν
depends only on σ

a2Tð1Þμνḡμν ¼ −a2Vσ: ð313Þ

For a solution of the background field equation,

3H2 ¼ a2V
M2

; ð314Þ

the mode equation for σ therefore becomes

ð∂2
η þ 2H∂η − 3H2 þ k2Þσ ¼ 0: ð315Þ

The mode equations for the other components of the
metric are somewhat more involved. One first uses the
relation bμν ¼ tμν þ ~sμν, Eq. (76), in order to combine
Eqs. (306), (307), and (311) into a coupled system of
differential equations for tμν and σ. Finding solutions of this
linearized Einstein equation will be facilitated if we
decompose the metric fluctuations into irreducible repre-
sentations of the rotation group.

E. Projectors

Projectors are needed for the definition of the constrained
fluctuations or for the projection of unconstrained fluctua-
tions onto the physical fluctuations. The projectors PðfÞ and
PðaÞ on physical or gauge fluctuations are in Fourier space
functions of km, and involve a unit matrix δðk − k0Þ. They
depend on two time arguments η and η0, e.g.,Z

η0
PðaÞ
μν

ρτðη; η0Þhρτðη0Þ ¼ aμνðηÞ: ð316Þ

For PðaÞ we write, similar to Eq. (116),

PðaÞ
μν

ρτðη; η0Þ ¼ 1

2
DðηÞμNν

ρðη; η0ÞDτ
ðη0Þ

þ ðμ ↔ νÞ þ ðρ ↔ τÞ; ð317Þ

whereDðηÞ acts on η andDðη0Þ on η0. The projector propertyZ
η00
PðaÞ
μν

ρτðη; η00ÞPðaÞλσ
ρτ ðη00; η0Þ ¼ PðaÞλσ

μν ðη; η0Þ ð318Þ

is realized if Nν
ρ obeys

ðD2δνμ þDνDμÞNν
ρ ¼ δρμδðη − η0Þ: ð319Þ

Here the covariant derivatives act on η and are taken as acting
only on the index ν, since ρ and τ are contracted with hρτ
in Eq. (316).
We can view N as the inverse of the derivative operator

D2δνμ þDνDμ. In flat space one has

Nν
ρ ¼ 1

D2
δρν −

1

2D4
DρDν; ð320Þ

but this form gets modified once covariant derivatives no
longer commute.
The projector on the physical metric fluctuations PðfÞ is

determined by

PðfÞρτ
μν ¼ 1

2
ðδρμδτν þ δτμδ

ρ
νÞ − PðaÞρτ

μν : ð321Þ

One verifies

Dμfμν ¼ DμPðfÞ
μν

ρτhρτ

¼ Dμhμν −DμPðaÞ
μν

ρτhρτ

¼ hνμ;μ − ðD2δμν þDμDνÞAμ
ρhρτ;τ ¼ 0: ð322Þ

Finding the explicit form of the projectors is not expected to
be an easy task.

IX. MODE DECOMPOSITION

The solution of mode equations or the expression of the
effective action in terms of unconstrained fields is facili-
tated if we decompose the metric fluctuations into repre-
sentations of the rotation group. We proceed here to a
separate decomposition of the physical metric fluctuations
and the gauge fluctuations. The connection to other,
perhaps more familiar decompositions is established in
Sec. E. In this appendix we also display the relation
between the vector and scalar parts of the physical metric
fluctuations to the Bardeen potentials.

A. Decomposition of physical metric fluctuations
into SOð3Þ-representations

Similar to flat space, we decompose the physical metric
fluctuations into irreducible representations of the rotation
group SOð3Þ,

fμν ¼ tμν þ Ŝμνσ ¼ tμν þ sμν; ð323Þ

with
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t00 ¼ a2κ;

tm0 ¼ a2
�
Wm −

ikm
k2

ð∂η þ 4HÞκ
�
;

tmn ¼ a2
�
γmn −

i
k2

ð∂η þ 4HÞðkmWn þ knWmÞ

þ 1

2k2
ð∂η þ 4HÞ2

�
δmn −

3kmkn
k2

�
κ

þ 1

2

�
δmn −

kmkn
k2

�
κ

�
; ð324Þ

and

γmnδ
mn ¼ 0; kmγmn ¼ 0; kmWm ¼ 0: ð325Þ

This decomposition is consistent with tνμ;ν ¼ 0, tμμ ¼ 0,
fνμ;ν ¼ 0, if sμν ¼ Ŝμνσ is symmetric and obeys, cf. Eq. (75),

smm þ s00 ¼ σ;

ð∂η þ 4HÞs00 þ ikmsm0 ¼ Hσ;

ð∂η þ 4HÞs0m þ iknsnm ¼ 0: ð326Þ

The physical metric fluctuations contain a traceless diver-
gence free tensor γmn, a divergence free vectorWm and two
scalars σ and κ. The decomposition in the scalar sector is
not unique, since Eq. (326) has no unique solution.
Different solutions correspond to different definitions of σ.
Two possible simple choices for sμν are

sð1Þ00 ¼ 0; sð1Þm0 ¼ −
ikm
k2

a2Hσ;

sð1Þmn ¼ a2

2k2

�
2kmkn þ

�
δmn −

3kmkn
k2

�

× ðk2 þH∂η þ ∂ηHþ 4H2Þ
�
σ; ð327Þ

and

sð2Þ00 ¼−a2σ; sð2Þm0¼
ikm
k2

a2ð∂ηþ3HÞσ;

sð2Þmn¼−
a2

2k2

�
δmn−

3kmkn
k2

�
ð∂ηþ4HÞð∂ηþ3HÞσ: ð328Þ

They differ by a traceless divergence free tensor

Δsμν ¼ sð1Þμν − sð2Þμν ; ð329Þ

with

Δs00¼ a2σ; Δsm0¼−
ikm
k2

a2ð∂ηþ4HÞσ;

Δsmn ¼
a2

2

�
δmn−

kmkn
k2

þ
�
δmn−

3kmkm
k2

�ð∂ηþ4HÞ
k2

σ

�
;

ð330Þ

which has the same properties as tμν, e.g.,

Δsμμ ¼ 0; Δsνμ;ν ¼ 0: ð331Þ

The general solution of Eq. (326) involves an arbitrary
scalar field ϵ with

sμν ¼ sð1Þμν þ sðϵÞμν ;

sðϵÞ00 ¼ a2ϵ; sðϵÞm0 ¼ −
ikm
k2

a2ð∂η þ 4HÞϵ;

sðϵÞmn ¼ a2

2

�
δmn −

kmkn
k2

þ
�
δμν −

3kmkn
k2

� ð∂η þ 4HÞ2
k2

�
ϵ:

ð332Þ

The freedom in the choice of the decomposition associated
to ϵ can be used in order to simplify the effective action. We
have already discussed in Sec. V a choice for maximally
symmetric spaces that makes Γð2Þ diagonal. This choice
amounts to

ϵ ¼ 1

a2
ðk2 þ 3H∂η − 3H2Þð3D2 þ R̄Þ−1σ; ð333Þ

which entails for de Sitter space the relation

ðk2 þ ∂2
η þ 6H∂η þ 12H2Þϵ ¼ −

1

3
ðk2 þ 3H∂η þ 9H2Þσ:

ð334Þ

B. Effective action for graviton, vector,
and scalars in de Sitter space

Let us concentrate on the background geometry of de
Sitter space,

R̄μν ¼
R̄
4
ḡμν ¼

V
M2

ḡμν ¼
3H2

a2
ḡμν;

H ¼ −
1

η
¼ Ha; ∂ηH ¼ H2: ð335Þ

Here we have assumed that the background metric obeys
the field equations. For de Sitter space we will use the
definition (77), (91) for sμν. For a background geometry
solving the field equation the quadratic effective action

Γ1 ¼ ΓðtÞ
2 þ ΓðσÞ

2 is then given in momentum space by
Eq. (96),
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ΓðtÞ
2 ¼ −

iM2

8

Z
η;k

a4tμν�
�
D2 −

R̄
6

�
tμν; ð336Þ

and Eq. (95)

ΓðσÞ
2 ¼ iM2

12

Z
η;k

a4σ�
ðD2 þ 1

4
R̄Þ2

D2 þ 1
3
R̄

σ: ð337Þ

For the scalar σ the covariant Laplacian is given by
Eq. (246) and R̄ is constant.
From Eq. (248) we infer the relation

�
D2 −

R̄
6

�
t00 ¼ −

1

a2
ð∂2

η þ 2H∂η þ k2Þt00
¼ −ð∂2

η þ 6H∂η þ 10H2 þ k2Þκ; ð338Þ

and similarly

�
D2−

R̄
6

�
tm0¼−

1

a
ð∂2

ηþ2H∂ηþk2ÞðaWmÞ

þ ikm
a2k2

∂ηð∂2
ηþ2H∂ηþk2Þt00

¼−ð∂2
ηþ4H∂ηþ4H2þk2ÞWm

þ ikm
k2

ð∂ηþ2HÞð∂2
ηþ6H∂ηþ10H2þk2Þκ;

ð339Þ
while

�
D2−

R̄
6

�
tmn

¼−ð∂2
ηþ2H∂ηþk2Þγmn−

δmn

3a2
ð∂2

ηþ2H∂ηþk2Þt00

þ 1

2a2k2

�
kmkn
k2

−
δmn

3

�
ð3∂2

ηþk2Þð∂2
ηþ2H∂ηþk2Þt00

þ i
ak2

ð∂ηþHÞð∂2
ηþ2H∂ηþk2Þ½aðkmWnþknWmÞ�:

ð340Þ
Solutions of the equation

�
D2 −

R̄
6

�
tμν ¼ 0 ð341Þ

imply that the three mode functions t00, ~Wm ¼ aWm, and
γmn obey all the same mode equation

ð∂2
η þ 2H∂η þ k2Þw ¼ 0: ð342Þ

In the presence of a gauge fixing the vector and scalar mode
equations will have an additional source term according to

Eq. (291). This will permit additional solutions with
aμν ≠ 0.
We next compute for a de Sitter geometry the effective

action for the physical modes. Inserting the expressions
(338)–(340), Eq. (336) decomposes as

ΓðtÞ
2 ¼ ΓðγÞ

2 þ ΓðWÞ
2 þ ΓðκÞ

2 : ð343Þ

The graviton part reads

ΓðγÞ
2 ¼ iM2

8

Z
η;k

a2fk2γ�mnγpq − ∂ηγ
�
mn∂ηγpqgPðγÞmnpq

¼ iM2

8

Z
a2γ�mnD̂γpqPðγÞmnpq: ð344Þ

Here we use the shorthand

D̂ ¼ ∂2
η þ 2H∂η þ k2: ð345Þ

The projector PðγÞ is given by Eqs. (165) and (157).
For the vector part one finds

ΓðWÞ
2 ¼ −

iM2

4

Z
η;k

a2k2Ω�
mΩnQmn; ð346Þ

with

Ωm ¼ 1

ak2
D̂ðaWmÞ ð347Þ

the gauge invariant vector fluctuation. Finally, the scalar
part obtains as

ΓðκÞ
2 ¼ 3iM2

16

Z
η;k

1

a2
ðk2ρ�ρ − ∂ηρ

�∂ηρÞ; ð348Þ

where

ρ ¼ D̂
k2

ða2κÞ: ð349Þ

Comparing these results with flat space we find
correspondence with Eq. (184) if we set a ¼ 1 and replace
q2 → ∂2

η þ 2H∂η þ k2 ¼ D̂.

C. Decomposition for gauge fluctuations

The gauge fluctuations aμν ¼ aμ;ν þ aν;μ can be obtained
from a vector aμ. We decompose aμ into two scalars a0 and
r and a divergence free vector Um,

am ¼ ikmrþ Um; kmUm ¼ 0: ð350Þ

This yields for aμν
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a00 ¼ 2D0a0 ¼ 2ð∂η −HÞa0;
am0 ¼ ikm½a0 þ ð∂η − 2HÞr� þ ð∂η − 2HÞUm;

amn ¼ iðkmUn þ knUmÞ − 2kmknr − 2Hδmna0;

δmnamn ¼ −2k2r − 6Ha0: ð351Þ

The leading order mode equations for a0, r and Um
follow from Eq. (284) with Aμ ¼ 0,

ð2∂2
η − 8H2 − 2∂ηHþ k2Þa0 þ ð∂η − 4HÞk2r ¼ 0;

ð∂η þ 4HÞa0 þ ð∂2
η − 4H2 − 2∂ηHþ 2k2Þr ¼ 0;

ð∂2
η − 4H2 − 2∂ηHþ k2ÞUm ¼ 0: ð352Þ

X. GRAVITON CORRELATION

In this section we discuss the on-shell graviton propa-
gator in a de Sitter geometry. The graviton corresponds to
the traceless and divergence free metric fluctuations γmn. If
the background obeys the field equations we recover the
standard results of perturbation theory for linear cosmic
fluctuations. This section therefore links directly the formal
concepts developed in the present paper to cosmological
observation and earlier theoretical work. The graviton
correlation can be constructed from mode functions.
The metric component corresponding to the graviton

obtains from a general metric fluctuation by a particularly
simple projection

hðγÞμν ¼ PðγÞρτ
μν hρτ: ð353Þ

The projector PðγÞ is given by Eq. (165) if all indices are
spacelike and vanishes for all other index combinations. Its
time dependence is a simple unit matrix δðη − η0Þ. Indeed,
one has for arbitrary metrics of the form (242) the relations

DμhðγÞμn ¼ ikmhðγÞmn;

DμhðγÞμ0 ¼ −HhðγÞmm : ð354Þ

By virtue of the relations

kmPðγÞpq
mn ¼ 0; δmnPðγÞpq

mn ¼ 0; ð355Þ

or

kmhðγÞmn ¼ 0; δmnhðγÞmn ¼ 0; ð356Þ

one establishes that hðγÞmn belongs to the physical metric

fluctuations, DμhðγÞμν ¼ 0. Furthermore, hðγÞmn is divergence

free and traceless. We can therefore identify hðγÞmn ¼ a2γmn.
The simple time dependence of the graviton projector PðγÞ
is the reason why the graviton contribution to the metric

correlation is much simpler than those from vector and
scalar modes.

A. Evolution equation for graviton propagator

We first derive the general propagator equation for the
graviton correlation. The most general graviton correlation
is specified by initial values for the solution of this
differential equation. The effective action (344) for γmn
involves only two time derivatives and one finds directly
the propagator equation for the graviton fluctuations

iM2a2

4
ð∂2

η þ 2H∂η þ k2ÞGγγ
mnpq ¼ PðγÞ

mnpqδðη − η0Þ: ð357Þ

Rotation symmetry implies for a traceless and divergence
free symmetric tensor ðk ¼ jkjÞ

Gγγ
mnpqðk; η; η0Þ ¼ PðγÞ

mnpqGgravðk; η; η0Þ: ð358Þ
The function Ggrav obeys the evolution equation

ð∂2
η þ 2H∂η þ k2ÞGgravðk; η; η0Þ ¼ −

4i
M2a2

δðη − η0Þ:
ð359Þ

It is the same as for a massless scalar. [This holds up to an
overall normalization factor 4=M2 on the r.h.s. of eq. (359)
which could be absorbed by a rescaling of Ggrav.]
The propagator equation (357) can also be found by

projecting the inverse propagator (68) on the tensor
structure of the graviton. In Sec. C we decompose Γð2Þ
into a traceless and trace parts. The graviton γmn does not
contribute to the trace of the metric, h ¼ ḡμνhμν ¼ 0, nor
does it contribute to the divergence, hνμ;ν ¼ 0. The relevant
part of Γð2Þ is given by the last equation (C16), e.g.

Γð2Þμνρτ
bb ¼ −

iM2a4

4

�
D2 −

R̄
6

�
PðbÞμνρτ; ð360Þ

with projector on the traceless part

PðbÞ
μν

ρτ ¼ 1

2
ðδρμδτν þ δτμδ

ρ
νÞ − 1

4
ḡμνḡρτ: ð361Þ

For the graviton only the space components contribute,
such that the operator D2 from Eq. (248) reads

D2 ¼ −
1

a2ðηÞ ð∂
2
η − 2H∂η − 2∂ηH − 2H2 þ k2Þ: ð362Þ

For the graviton propagator we employ hmn ¼ a2γmn, such
that

hhmnðη; kÞh�pqðη0; k⃗0ic ¼ a2ðηÞa2ðη0Þhγmnðη; kÞγ�pqðη0; k0Þic:
ð363Þ
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The differential operator acting on γμν is given for a de
Sitter geometry by

−
�
D2 −

R̄
6

�
a2 ¼ D̂ ¼ ∂2

η þ 2H∂η þ k2: ð364Þ

Projecting on the traceless part of bmn replaces a4PðbÞμνρτ

in Eq. (360) by PðβÞmnpq, with projector

PðβÞ
mnpq ¼ 1

2
ðδmpδnq þ δmqδnpÞ −

1

3
δmnδpq; ð365Þ

and indices of PðβÞ raised with δmn.
We finally have to project on the transversal part of bmn

by imposing kmbmn ¼ 0. This replaces the projector PðβÞ
mnpq

by PðγÞ
mnpq, as given by Eq. (165), with Qmn given by

Eq. (157). The projector PðγÞ obeys

PðγÞ
mnpqQ

q
s ¼ PðγÞ

mnps; PðγÞ
mnpqQpq ¼ 0; ð366Þ

and

PðγÞ
mn

rsPðβÞ
rsuvPðγÞuv

pq ¼ PðγÞ
mnpq: ð367Þ

The various projections of Γð2Þ result in the differential
operator

Γð2Þmnpq
γγ a2 ¼ iM2

4
PðγÞmnpqD̂: ð368Þ

(Here a factor a4 is absorbed by our index convention for
PðγÞ.) The propagator equation for Gγγ becomes

Γð2Þmnpq
γγ a2ðηÞa2ðη0ÞGγγ

pqrsðη; η0Þ ¼ PðγÞmn
rs : ð369Þ

With PðγÞpq
mn Gγγ

pqrs ¼ Gγγ
mnrs Eq. (369) coincides with

Eq. (357).

B. General solution for graviton correlation
in de Sitter space

The general solution of Eq. (359) has been discussed
extensively in Refs. [19,18]. For η > η0 it reads

Ggravðk;η;η0Þ ¼
2ðαðkÞþ1Þ

M2
w−
k ðηÞwþ

k ðη0Þ

þ2ðαðkÞ−1Þ
M2

wþ
k ðηÞw−

k ðη0Þ

þ4ζðkÞ
M2

wþ
k ðηÞwþ

k ðη0Þþ
4ζ�ðkÞ
M2

w−
k ðηÞw−

k ðη0Þ;
ð370Þ

with mode functions given by the solution of the mode
equation

ð∂2
η þ 2H∂η þ k2Þw�

k ðηÞ ¼ 0: ð371Þ

For de Sitter space, H ¼ −1=η, one has

w−
k ðηÞ ¼ ðwþ

k ðηÞÞ� ¼
1

aðηÞ ffiffiffiffiffi
2k

p
�
1 −

i
u

�
e−iu; ð372Þ

and

u ¼ kη ¼ −
k

HðηÞ ¼ −
k

aðηÞH : ð373Þ

For Bunch-Davies initial conditions [40], which corre-
spond to the scaling correlation of Ref. [18], one has
αðkÞ ¼ 1; ζðkÞ ¼ 0, such that

Ggravðk; η; η0Þ ¼
4

M2
w−
k ðηÞwþ

k ðη0Þ: ð374Þ

In the limit u; u0 → −∞ðη; η0 → −∞Þ the graviton corre-
lation becomes

Ggravðk; η; η0Þ ¼
2

M2kaðηÞaðη0Þ e
−ikðη−η0Þ: ð375Þ

For aðηÞ ¼ aðη0Þ ¼ 1 this coincides with the flat space
correlation (193). In the opposite limit u; u0 → 0 the
graviton propagator reaches a constant amplitude

Ggravðk; η; η0Þ ¼
2H2

M2k3
e−ikjη−η0j: ð376Þ

The equal time correlation ðη0 ¼ ηÞ reads

Ggravðk; ηÞ ¼ Ggravðk; η; ηÞ ¼
4

M2
jw−

k ðηÞj2

¼ 2

M2a2k

�
1þ 1

k2η2

�
: ð377Þ

For a de Sitter geometry this becomes

Ggrav ¼
2H2

M2k3
ð1þ k2η2Þ: ð378Þ

This yields the tensor power spectrum which is defined by

Δ2
Tðk; ηÞ ¼

k3

π2
Ggravðk; ηÞ: ð379Þ

Correspondingly, the tensor spectral index obeys

nT ¼ ∂ lnΔ2
T

∂ ln k : ð380Þ

For modes far outside the horizon, k2η2≪1, the spectral
index vanishes and the tensor spectrum is proportional
to H2

0,
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Δ2
T ¼ 2H2

πM2
; nT ¼ 0: ð381Þ

(For geometries neighboring de Sitter space the mode
functions and therefore the power spectrum and nT are
modified.) As long as k=a remains much smaller thanH the
time independent power spectrum

Ggrav ¼
2H2

M2k3
ð382Þ

remains unmodified. Once a given k-mode “enters the
horizon,” k=a ≫ H, it starts again the damped oscillation
(375). The resulting tensor power spectrum is accessible to
observation if the amplitude is large enough.
The formulas after Eq. (374) are the standard ones used

in cosmology. We have displayed them here in order to
demonstrate that for appropriate initial conditions the
graviton correlation, as obtained by a solution of the exact
propagator equation (3), coincides with the one obtained
from the normalization of a free quantum field in a Bunch
Davies vacuum. The vector and scalar part of the metric
correlation has no such simple interpretation in terms of
free quantum fields.
The explicit form of the vector and scalar propagator for

the physical metric fluctuations in a de Sitter geometry still
need to be worked out. They may be inferred from the
general results for the metric correlator in de Sitter space in
Ref. [27]. Alternatively, explicit knowledge of the projec-
tors would be useful for an extraction from Eq. (98) by use
of Eq. (163).

XI. CONCLUSIONS

This paper addresses mainly the conceptual issues of the
metric correlation function in quantum gravity and cosmol-
ogy. The recipe mainly employed in cosmology, namely the
construction of the correlation function as a product of
mode functions or a sum of such products, cannot be
applied in general. There are simple cases where the mode
functions vanish in the vector and scalar channel, while the
correlation function differs from zero. We therefore have to
build our discussion from a more basic level, using the
defining differential equation for the Green’s function. The
differential operator in this equation is given by the second
functional derivative of the quantum effective action Γð2Þ.
The relation between Γð2Þ and the correlation function G is
exact. Approximations only concern the precise form of the
effective action.
The first question to address concerns the physical

meaning of the metric correlation function. In a gauge
fixed version of quantum gravity this correlation function
depends manifestly on the chosen gauge fixing. One may
therefore question to which extent the metric correlation is
a meaningful physical object. We propose here to distin-
guish between physical metric fluctuations that couple to a

conserved energy momentum tensor, and gauge fluctua-
tions that are generated by gauge transformations of a given
cosmological solution. The physical metric fluctuations
are conceptually similar to the Bardeen potentials, in the
sense that they are invariant with respect to infinitesimal
diffeomorphism transformations of the “background met-
ric.” The physical metric fluctuations are directly formu-
lated on the level of the metric in a covariant way. This
differs from the Bardeen potentials. We establish the formal
relations between the physical metric fluctuations and the
Bardeen potentials.
The object of our interest is the correlation function for

the physical metric fluctuations. It can be obtained by
restricting in the functional integral the sources to “physical
sources” that correspond to a conserved energy momentum
tensor. The argument of the effective action involves then
only the physical metric fluctuations, not the gauge
fluctuations. As a result, the relation between physical
sources and physical metric fluctuations is invertible and
the effective action can be constructed in a standard way.
No gauge fixing is needed for the inversion of the second
functional derivative Γð2Þ. The correlation function for the
physical metric fluctuations can also be found using a
standard procedure with gauge fixing. The gauge fixing is
not arbitrary, however. It has to enforce the condition for
physical metric fluctuations, hνμ;ν ¼ 0. We show explicitly
the equivalence between the restriction to physical sources
and fields on one side, and the appropriate gauge fixed
formalism on the other side.
With all quantities well defined the metric correlation

function G obtains as a solution of the propagator equa-
tion (3). Conceptually, its computation amounts to the
inversion of the differential operator Γð2Þ. We are interested
to solve this inversion problem for geometries correspond-
ing to realistic cosmologies. Even for a rather simple form
of the effective action, as given by the Einstein-Hilbert
action with a cosmological constant, the inversion of Γð2Þ is
a complex task. The operator Γð2Þ contains only up to two
time derivatives ∂η. It is, however, a matrix in the space of
physical metric fluctuations. Making it block diagonal
involves projections.
In quantum gravity computations the inversion of Γð2Þ is

a standard task. It is usually done for some particular gauge
fixing (unfortunately often not compatible with the pro-
jection on physical metric fluctuations) and for simple
Euclidean geometries as the sphere or flat space, or
geometries close to those [48]. We are interested to obtain
the metric correlations for geometries close to de Sitter
space, as relevant for cosmology. This needs a computation
with Minkowski signature, for which the solution of the
propagator equation becomes an initial value problem. One
may think of obtaining the metric propagator in de Sitter
space by analytic continuation from a corresponding
Euclidean geometry. This corresponding geometry is the
maximally symmetric space with negative curvature [18],
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and one needs the metric correlation in such a hyperbolic
space. (The analytic continuation of the sphere is anti-de
Sitter space, both having a discrete spectrum differing
qualitatively from the continuous spectrum in de Sitter
space.)
The present paper provides a formalism for the compu-

tation of the metric correlation in homogeneous and
isotropic cosmologies. The extensive discussion of the
metric correlation in flat space establishes several important
features in an explicit way. The scalar and vector part of the
metric correlation function does not vanish despite the fact
that the solution of the linearized Einstein equation leads to
vanishing scalar and vector Bardeen potentials. The vector
and scalar part of the metric correlation cannot be found
from solutions of the linearized Einstein equations. They
rather involve the inversion of operators with up to four
(vector) or up to six (scalar) derivatives. This results in a
secular behavior (200). For realistic cosmologies we will be
interested in initial values of the metric correlations for
which the high momentum tail is given by the time-
translation invariant correlations in flat space. Our dis-
cussion of the flat space correlation functions provides
those initial conditions.
For realistic homogeneous and isotropic cosmologies the

graviton part of the on-shell metric correlation is rather well
understood. The remaining task concerns the scalar and
vector parts of the metric correlation. For this purpose
several different, but equivalent, strategies may be fol-
lowed. One may derive the propagator equation forWm and
κ from Eqs. (346) and (348). This is straightforward, and
the unit operator in the corresponding function space is
∼δðη − η0Þ. (In the case of Wm it involves a k-dependent
projector.) The complexity in this approach arises from the
fact that the differential operators to be inverted involve up
to four (Wm) or six (κ) derivatives. As an alternative, one
may compute the explicit form of projectors and solve
Eq. (98). The inhomogeneous term on the right-hand side
involves now projectors that depend on η and η0 in the case
of vector and scalar modes. Finally, one may employ a
gauge fixed version and solve Eq. (291). The complexity
arises here from the high number of coupled modes—two
vectors and four scalars.
The merit of such a calculation will be to shed light on

the infrared structure of the physical metric propagator in
realistic cosmologies. This should help to understand better
several important issues in quantum gravity, as related to
locality, anomalies or the possible existence [49] of an
infrared fixed point. Quantum gravity computations of the
quantum effective action, from which the field equations
and correlation functions can be derived, involve the off-
shell propagator for the metric fluctuations. It will be
interesting to learn the impact of the particular properties of
on-shell propagators for physical fluctuations as one
approaches solutions of the field equations in the space
of configurations.
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APPENDIX A: PROJECTORS
AND GAUGE FIXING

In this appendix we recall a few general features of
projectors and gauge fixing that are useful for our dis-
cussion. Let us consider two matrices D and G obeying

DG ¼ 1: ðA1Þ

Here D corresponds to Γð2Þ and G to the correlation
function. Assume further the existence of a projector P,

P2 ¼P; ð1−PÞ2¼ð1−PÞ; Pð1−PÞ¼ 0: ðA2Þ

We may then decompose

D ¼ Dþþ þDþ− þD−þ þD−−; ðA3Þ

with

Dþþ ¼P†DP; Dþ− ¼P†Dð1−PÞ;
D−þ ¼ ð1−P†ÞDP; D−− ¼ð1−P†ÞDð1−PÞ; ðA4Þ

and similarly for G

Gþþ ¼ PGP†;

Gþ− ¼ PGð1 − P†Þ;
G−þ ¼ ð1 − PÞGP†;

G−− ¼ ð1 − PÞGð1 − P†Þ: ðA5Þ

Insertion into Eq. (A1) and multiplying Eq. (A1) with
suitable factors P and (1 − P) from left and right yields the
relations

DþþGþþ þDþ−G−þ ¼ P†;

D−−G−− þD−þGþ− ¼ 1 − P†;

DþþGþ− þDþ−G−− ¼ 0;

D−−G−þ þD−þGþþ ¼ 0: ðA6Þ

For our discussion two simple cases are of importance.
For the first D is block diagonal, Dþ− ¼ D−þ ¼ 0,

D ¼ Dþþ þD−−: ðA7Þ

Then Gþþ and G−− obey

DþþGþþ ¼ P†;

D−−G−− ¼ 1 − P†: ðA8Þ
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If Dþþ is invertible once projected on the appropriate
subspace, the projected propagator Gþþ is its inverse. The
remaining equations

DþþGþ− ¼ 0; D−−G−þ ¼ 0 ðA9Þ

have the solution

Gþ− ¼ 0; G−þ ¼ 0; ðA10Þ

for which G is block diagonal. If D is regular and therefore
G is unique, the solution (A9) is the only solution. In
contrast, if D is a differential operator for which a unique
solution of Eq. (A1) requires the specification of initial
values or boundary conditions, Eq. (A10) does not neces-
sarily hold.
For a second important case we consider a family

of matrices Dβ for which D−− is multiplied by a factor
1
β. We keep the notation Gþ−; G−− etc. for the solutions of
Eq. (A1) for β ¼ 1, and denote the solutions for arbitrary β

with GðβÞ
þ−, G

ðβÞ
−þ etc.. Consider now small β. The compo-

nentsGðβÞ
−− andGðβÞ

−þ have to scale ∼β (or they vanish). In the
limit β → 0 we can neglect them, resulting in

DþþG
ðβÞ
þþ ¼ P†; ðA11Þ

and

DþþG
ðβÞ
þ− ¼ 0: ðA12Þ

If GðβÞ is unique the second equation implies that GðβÞ
þ−

vanishes. One ends with

GðβÞ ¼ GðβÞ
þþ: ðA13Þ

The correlation function differs from zero only in the
subspace of eigenvalues of P with unit eigenvalue.
In a gauge fixed version of the effective action one adds

to Γð2Þ a gauge fixing term ð1=βÞΓ̄ð2Þ
gf . Let us assume for

simplicity that Γð2Þ ¼ Γ̄ð2Þ þ ð1=βÞΓ̄ð2Þ
gf is regular. We fur-

ther assume that Γ̄ð2Þ
gf can be written in terms of a projector

Γ̄ð2Þ
gf ¼ ð1 − P†Þ ~D−−ð1 − PÞ: ðA14Þ

In the limit β → 0 one therefore arrives at

G ¼ Gþþ; DþþGþþ ¼ P†: ðA15Þ

In other words, the nonvanishing part of the correlation
function involves only the modes with eigenvalues one of
P. They can be viewed as fluctuations obeying a constraint.
The operator Dþþ corresponds to Γð2Þ subject to this
constraint, and Gþþ is the inverse of Γð2Þ on the subspace

of the constrained fluctuations. The formulation in terms of
the physical metric fluctuations fμν obeying the constraint
fνμ;ν ¼ 0, that we employ in this paper, is equivalent to a
gauge fixed version in the limit β → 0. In case where the
projector PðfÞ on fμν is not known explicitly (or in case of
ambiguities) we will define the correlation functionGþþ by
the limit β → 0 of a gauge fixed version.
In more detail we consider

Γgf ¼
1

2β

Z
x
ḡ1=2hνμ;νhμρ∶ρ: ðA16Þ

It adds to Γð2Þ a term of the type discussed before, e.g.,

ΔΓð2Þ ¼ 1

β
ð1 − PðfÞ†Þ ~D−−ð1 − PðfÞÞ; ðA17Þ

with PðfÞ the projector on covariantly conserved metric
fluctuations fμν,

fνμ;ν ¼ 0; PðfÞ
μν

ρτhρτ ¼ fμν: ðA18Þ

In the presence of the gauge fixing the second functional
derivative Γð2Þ is invertible if suitable boundary conditions
are imposed. (We discard here the zero-momentum modes
k ¼ 0 which would need a separate discussion.) Also ~D−−
is invertible on the subspace of “longitudinal fluctuations,”
defined by the modes with zero eigenvalues of PðfÞ. We can
then take the limit β → 0 and obtain the correlation
function Gþþ for the “physical fluctuations” fμν. The
“gauge parts” of the correlation function vanish in this
limit, justifying the restriction to the physical fluctuations.
These general considerations can easily be followed

explicitly in flat space. In momentum space P ¼ PðfÞ is
real, with

ðPTÞμνρτ ¼ Pρτ
μν ¼ Pμν

ρτ: ðA19Þ

APPENDIX B: LOCAL GAUGE SYMMETRIES

In this appendix we discuss the precise implementation
of the gauge symmetry of general coordinate or diffeo-
morphism transformations. This will justify the use of a
gauge invariant effective action in the main text.
The source termZ

x
ĝμνKμν ¼

Z
x
ḡμνKμν þ

Z
x
fμνKμν ðB1Þ

is invariant under a simultaneous diffeomorphism trans-
formation of ḡμν, the source transformation (13), and a
transformation of fμν as a tensor,

δξfμν ¼ −∂μξ
ρfρν − ∂νξ

ρfμρ − ξρ∂ρfμν: ðB2Þ
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Since the relation (45) between sources and fields is
covariant (δΓ=δĝμν ¼ δΓ=δfμν) we conclude that the effec-
tive action (44) is invariant under simultaneous trans-
formations of ḡμν and fμν.
Furthermore, we may multiply the source constraint (20)

with ξμ ¼ ḡμνξν and integrate over x,

Z
x
ξμð∂νKμν þ Γ̄νρ

μKνρÞ ¼ 0: ðB3Þ

By partial integration this yields

Z
x
Kμνξμ;ν ¼ 0: ðB4Þ

Insertion of Eq. (45) results in

Z
x

∂Γ
∂fμν

~δμν ¼ 0; ~δμν ¼ −ðξμ;ν þ ξν;μÞ: ðB5Þ

Formally, this can be interpreted as invariance under a local
gauge transformation of fμν, with infinitesimal transforma-

tion ~δfμν ¼ ~δμν.
The transformation ~δfμν ¼ ~δμν is, however, not compat-

ible with the constraint (35), since Dν ~δμν ≠ 0. We can
extend the effective action to be a functional of uncon-
strained metric fluctuations hμν by replacing fμν by hμν,
Γ½fμν; ḡμν� → Γ½hμν; ḡμν�. The extended effective action
depends now on two unconstrained metrics ḡμν and

gμν ¼ ḡμν þ hμν; ðB6Þ

i.e.

Γ½gμν; ḡμν� ¼ Γ½fμν → hμν; ḡμν�: ðB7Þ

By virtue of Eq. (B5) it is invariant under the infinitesimal
gauge transformation

~δhμν ¼ −ðξμ;ν þ ξν;μÞ ¼ δξḡμν: ðB8Þ

The transformation (B8) is taken at fixed ḡμν. It expresses
the fact that Γ depends actually only on fμν and not on the
gauge fluctuations aμν.
The two local transformations,

Z
x

�
δΓ
δgμνjḡ

δξhμν þ
δΓ
δḡμνjh

δξḡμν

�
¼ 0: ðB9Þ

and

Z
x

δΓ
δgμνjḡ

δξḡμν ¼ 0; ðB10Þ

imply the invariance of Γ under simultaneous diffeomor-
phism transformations of gμν and ḡμν,Z

x

�
δΓ
δgμνjḡ

δξgμν þ
δΓ
δḡμνjh

δξḡμν

�
¼ 0: ðB11Þ

(Recall δΓ=δgμνjḡ ¼ δΓ=δhμνjḡ.)
Instead of the variables hμν and ḡμν it is convenient to use

gμν and hμν,

Γ0½gμν; hμν� ¼ Γ½hμν; ḡμν ¼ gμν − hμν�
¼ Γ½gμν; ḡμν ¼ gμν − hμν�: ðB12Þ

With

∂Γ0

∂hμνjg
¼ ∂Γ

∂hμνjḡ
−

∂Γ
∂ḡμνjh

;

∂Γ0

∂gμνjh
¼ ∂Γ

∂ḡμνjh
; ðB13Þ

the symmetry relations (B9) and (B10) read

Z
x

� ∂Γ0

∂gμνjh
δξgμν þ

∂Γ0

∂hμνjg
δξhμν

�
¼ 0; ðB14Þ

and

Z
x

∂Γ0

∂hμνjg
ðδξgμν − 2δξhμνÞ ¼

Z
x

∂Γ0

∂gμνjh
δξhμν: ðB15Þ

We may expand Γ0 in powers of h,

Γ0½g; h� ¼ Γ̄½g� þ
Z
x
Mρτ

1 ½g�hρτ þ
1

2

Z
x
hλσM

λσρτ
2 ½g�hρτ þ � � � ;

ðB16Þ

with M2 typically involving derivative operators.
Nonvanishing M1, M2 reflect the residual dependence of
Γ on the background metric ḡμν for fixed gμν. The symmetry
(B14) of simultaneous diffeomorphism transformations of
gμν and hμν is obeyed if Γ̄½g� is a gauge invariant functional
of gμν and M1, M2 transform as appropriate tensor
densities. The local gauge symmetry (B15) constrains
the possible form of M1 and M2, but is not sufficient to
enforce that these quantities vanish.
In the presence of gauge fixing the term∼M2 can bemade

to diverge in an appropriate limit of zero gauge fixing
parameter α → 0. (This corresponds to Landau gauge in
quantum electrodynamics, see Refs. [45,46].) For an appro-
priate choice of the gauge this divergent part will only
involve aμν, and not fμν. Typically, this is the only divergent
part for α → 0, withM1 remaining finite. The insertion into
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Γ0 eliminates all terms involving aμν, such that hμν → fμν in
Eq. (B16). The residual terms ∼M1;M2 reflect the explicit
background field dependence through the projectors. In our
approximation they are neglected. By a modified choice of
the covariant derivatives in the projectors one can achieve
that the projection ofM2 on the physical metric fluctuations
vanishes [45,46]. In this case one hasΓ0ð2Þ ¼ Γ̄ð2Þ, as used for
our practical computations.
In the formulation with constrained fields and sources

the effective action Γ½gμν; ḡμν� depends on gμν directly, and
further on ḡμν which enters the constraints for the physical
sources Kμν and the physical metric gμν. Due to the source
constraint Γ actually only depends on physical metric
fluctuations and ḡμν. Replacing gμν by ĝμν ¼ ḡμν þ fμν we
can write Γ½bμν; σ; ḡμν�, where the decomposition (40) is
performed for fixed ḡμν.We recall that no “gauge part” of gμν
appears due to the restriction to physical sources, i.e. vμ ¼ 0,
τ ¼ 0. This will allow for an invertibility of Γð2Þ on an
appropriate space of functions and for appropriate boundary
conditions.
Consider next the transversal split transformation

ḡμν → ḡμν þ uμν; f0μν → f0μν − uμν, with uνμ;ν ¼ 0. (This is
complementary to the longitudinal split transformation
sμν ¼ ξμ;ν þ ξν;μ discussed in Sec. IV.) The transversal
split symmetry is violated only by the constraints on Kμν

and ĝ0μν. If we neglect effects of this explicit breaking the
effective action becomes invariant under the split trans-
formation ḡμν → ḡμν þ uμν; fμν → fμν − uμν. It is then a
gauge invariant functional of the unique metric
ĝμν ¼ ḡμν þ fμν. The transversal split symmetry implies
M1;2 ¼ 0 in the expansion (B16). Extending again the
argument of Γ to arbitrary metric fluctuations hμν,
gμν ¼ ḡμν þ hμν, the effective action becomes a diffeomor-
phism invariant functional of gμν, corresponding to Γ̄½g� in
Eq. (B16). We will adopt this approximation, neglecting
corrections due to the explicit ḡμν-dependence of the
constraints.

APPENDIX C: DECOMPOSITION OF METRIC
FLUCTUATIONS INTO TRACE AND

TRACELESS PARTS

In this appendix we decompose the metric fluctuations
into a trace and traceless part, and correspondingly the
inverse propagator Γð2Þ and the correlation functionG. This
is done both for unconstrained metric fluctuations hμν and
for the physical metric fluctuations fμν. In the second case
one has to keep track that the constraint fμν;ν ¼ 0 mixes
trace and traceless parts.

1. Decomposition of unconstrained metric fluctuations

The unconstrained metric fluctuations hμν can be decom-
posed into the trace h and a traceless part ~bμν,

hμν ¼ ~bμν þ
1

4
hḡμν; ḡμν ~bμν ¼ 0: ðC1Þ

For the physical metric fluctuations, with vμ ¼ 0, τ ¼ 0 in

Eq. (40), one has ~bμν ¼ bμν, h ¼ σ, and we will turn to this
case later. According to the decomposition (C1) we write

Γð2Þμνρτ ¼ Γð2Þμνρτ
bb þ Γð2Þμν

bh ḡρτḡμνΓð2Þρτ
hb þ ḡμνΓð2Þ

hh ḡ
ρτ; ðC2Þ

where

ḡμνΓ
ð2Þμνρτ
bb ¼ 0; Γð2Þμνρτ

bb ḡρτ ¼ 0

ḡμνΓ
ð2Þμν
bh ¼ 0; Γð2Þρτ

hb ḡρτ ¼ 0: ðC3Þ

Similarly, we define the correlation functions

Gbb
μνρτ ¼ h ~bμνðxÞ ~bρτðyÞic;

Gbh
μνðx; yÞ ¼ h ~bμνðxÞhðyÞic;

Ghb
μνðx; yÞ ¼ hhðxÞ ~bμνðyÞic ¼ Gbh

μνðy; xÞ;
Ghhðx; yÞ ¼ hhðxÞhðyÞic; ðC4Þ

such that the propagator decomposes as

Gð2Þ
μνρτðx; yÞ ¼ Gbb

μνρτðx; yÞ þ
1

4
Gbh

μνðx; yÞḡρτðyÞ

þ 1

4
ḡμνðxÞGhb

ρτ ðx; yÞ

þ 1

16
Ghhðx; yÞḡμνðxÞḡρτðyÞ: ðC5Þ

The propagator equation reads

Γð2Þμνρσ
bb Gbb

ρστλ þ Γð2Þμν
bh Ghb

τλ ¼ 1

2
ðδμτ δνλ þ δντδ

μ
λÞ −

1

4
ḡμνḡτλ;

Γð2Þμνρσ
bb Gbh

ρσ þ Γð2Þμν
bh Ghh ¼ 0;

Γð2Þμν
hb Gbb

μντλ þ Γð2Þ
hh G

hb
τλ ¼ 0;

Γð2Þμν
hb Gbh

μν þ Γð2Þ
hh G

hh ¼ 1; ðC6Þ

where we have omitted the coordinates and associated
δðx − zÞ factors.
The projection on the traceless part can be performed by

using the projection operator

PðbÞ
μν

ρτ ¼ 1

2
ðδρμδτν þ δτμδ

ρ
νÞ − 1

4
ḡμνḡρτ: ðC7Þ

It obeys

PðbÞ
μν

ρτḡρτ ¼ 0; ḡμνPðbÞ
μν

ρτ ¼ 0;

PðbÞ
μν

ρτPðbÞ
ρτ

σλ ¼ PðbÞ
μν

σλ; ðC8Þ
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such that

PðbÞ
μν

ρτhρτ ¼ ~bμν: ðC9Þ
The corresponding projection on the trace reads

PðhÞ
μν

ρτ ¼ 1

2
ðδρμδτν þ δτμδ

ρ
νÞ − PðbÞ

μν
ρτ

¼ 1

4
ḡμνḡρτ: ðC10Þ

The different pieces of the inverse propagator are
computed as projections from Eq. (68), supplemented
by contributions from the gauge fixing term. We display
here only the physical part corresponding to Eq. (68).
One finds

Γð2Þ
hh ¼ 1

16
ḡμνḡρτΓð2Þμνρτ

¼ 3M2

32

ffiffiffī
g

p
D2 þ V

8

ffiffiffī
g

p ðC11Þ

and

Γð2Þμν
bh ¼ 1

4
Γð2Þμνρτḡρτ − ḡμνΓð2Þ

hh

¼ M2

32

ffiffiffī
g

p ½D2ḡμν − 2ðDμDν þDνDμÞ�;

Γð2Þρτ
hb ¼ M2

32

ffiffiffī
g

p ½D2ḡρτ − 2ðDρDτ þDτDρÞ�: ðC12Þ
The pure traceless part obtains by subtracting these
pieces from Γð2Þ,

Γð2Þμνρτ
bb ¼ −

M2

32

ffiffiffī
g

p f½4ðḡμρḡντ þ ḡμτḡνρÞ − 3ḡμνḡρτ�D2 þ 2ḡμνðDτDρ þDρDτÞ þ 2ḡρτðDμDν þDνDμÞ
− 4ðḡμρDτDν þ ḡνρDτDμ þ ḡμτDρDν þ ḡντDρDμÞ þ 4R̄ðḡμνḡρτ − ḡμρḡντ − ḡμτḡνρÞ

þ 8ðR̄μρḡντ þ R̄νρḡμτ þ R̄μτḡνρ þ R̄ντḡμρÞ − 8ðR̄μνḡρτ þ R̄ρτḡμνÞg þ V
8

ffiffiffī
g

p fḡμνḡρτ − 2ðḡμρḡντ þ ḡμτḡνρÞg: ðC13Þ

Equation (C13) simplifies for a vanishing Weyl tensor

C̄μνρτ ¼ R̄μνρτ þ
1

6
R̄ðḡμρḡντ − ḡμτḡνρÞ −

1

2
ðḡμρR̄ντ þ ḡντR̄μρ − ḡμτR̄νρ − ḡνρR̄μτÞ ¼ 0: ðC14Þ

Using appropriate commutators for covariant derivatives yields

Γð2Þμνρτ
bb ¼ −

M2

32

ffiffiffī
g

p �
½4ðḡμρḡντ þ ḡμτḡνρÞ − 3ḡμνḡρτ�D2 þ 2ḡμνðDτDρ þDρDτÞ þ 2ḡρτðDμDν þDνDμÞ

− 4ðḡμρDνDτ þ ḡνρDμDτ þ ḡμτDνDρ þ ḡντDμDρÞ þ 4

3
R̄½ḡμνḡρτ − 2ðḡμρḡντ þ ḡμτḡνρÞ�

�

þ V
8

ffiffiffī
g

p fḡμνḡρτ − 2ðḡμρḡντ þ ḡμτḡνρÞg: ðC15Þ

When applied on the traceless field ~bρτ the terms ∼ḡρτ in
Eq. (C15) do not contribute.
When acting on physical metric fluctuations the pieces

∼Dρ or ∼Dτ do not contribute, such that the different pieces
(C11), (C12), and (C15) read

Γð2Þ
hh ¼ 3M2

32

ffiffiffī
g

p �
D2 þ 4H2

a2

�
;

Γð2Þμν
bh ¼ M2

32

ffiffiffī
g

p ðḡμνD2 − 2DμDν − 2DνDμÞ;

Γð2Þρτ
hb ¼ 0;

Γð2Þμνρτ
bb ¼ −

M2

4

ffiffiffī
g

p
PðbÞμνρτ

�
D2 −

R̄
6

�
: ðC16Þ

2. Decomposition of physical metric fluctuations

The decomposition into trace and traceless parts remains
valid if we impose the constraint hνμ;ν ¼ 0 for the metric

physical fluctuations. This replaces in Eq. (C1) hμν → fμν,
~bμν → bμν; h → σ, with bμν ¼ PðbÞ

μν
ρτfρτ. The fields bμν and

σ are no longer independent, however, due to the rela-
tion bνμ;ν ¼ −∂μσ=4.
We first insert the decomposition hμν ¼ bμν þ σḡμν=4,

ḡμνbμν ¼ 0, directly inside the effective action. Taking
account of the constant hνμ;ν ¼ 0 one finds

−
Z
x

M2

2
ð ffiffiffi

g
p

RÞð2Þ ¼
Z
x

M2

2

ffiffiffī
g

p �
1

4
bμν;ρbμν;ρ −

3

16
σ∶

μσ;μ

þ 1

4
R̄bμνbμν −

1

2
R̄ρ
μbμνbνρ

−
1

2
R̄μρνσbμνbρσ

�
ðC17Þ

and
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Z
x
ð ffiffiffi

g
p

VÞð2Þ ¼ V
Z
x

ffiffiffī
g

p �
1

16
σ2 −

1

4
bμνbμν

�
: ðC18Þ

With

R̄μρνσbμνbρσ ¼ C̄μρνσbμνbρσ − R̄ρ
μbμνbνρþ

1

6
R̄bμνbμν ðC19Þ

one obtains for a vanishing Weyl tensor C̄μρνσ ¼ 0 the
simple expression

Γ2 ¼
Z
x

ffiffiffī
g

p �
M2

8
bμν

�
−D2 þ 2

3
R̄ −

2V
M2

�
bμν

þ 3M2

32
σ

�
D2 þ 2V

3M2

�
σ

�
: ðC20Þ

We next write

bμν ¼ tμν þ ~sμν; tνμ;ν ¼ 0; tμμ ¼ 0; ðC21Þ

where ~sμν is a function of σ as given by Eqs. (77) and (74),
and tμν is the independent traceless and divergence free
tensor field. The part ~sμν obeys

~sνμ;ν ¼ −
1

4
∂μσ: ðC22Þ

We decompose

Γ2 ¼ ΓðtÞ
2 þ ΓðσÞ

2 þ ΓðσtÞ
2 ; ðC23Þ

with transversal traceless part

ΓðtÞ
2 ¼ M2

8

Z
x

ffiffiffī
g

p
tμν

�
−D2 þ 2

3
R̄ −

2V
M2

�
tμν; ðC24Þ

trace part

ΓðσÞ
2 ¼ M2

32

Z
x

ffiffiffī
g

p �
σ

�
3D2 þ 2V

M2

�
σ

þ4~sμν
�
−D2 þ 2

3
R̄ −

2V
M2

�
~sμν

�
; ðC25Þ

and mixed term

ΓðtσÞ
2 ¼ M2

4

Z
x

ffiffiffī
g

p
tμν

�
−D2 þ 2

3
R̄ −

2V
M2

�
~sμν: ðC26Þ

In comparison, we can employ Γð2Þ, as given by
Eqs. (C11), (C12), and (C13) or (C15) and apply it to
the physical metric fluctuations fμν,

Γ2 ¼
1

2

Z
x;y

fμνðxÞΓð2Þμνρτðx; yÞfρτðyÞ

¼ 1

2

Z
x;y
fbμνðxÞΓð2Þμνρτ

bb ðx; yÞbρτðyÞ

þ bμνðxÞΓð2Þμν
bh ðx; yÞσðyÞ þ σðxÞΓð2Þρτ

hb ðx; yÞbρτðyÞ
þ σðxÞΓð2Þ

hh ðx; yÞσðyÞg: ðC27Þ

Employing again the decomposition (C21) we observe

that the mixed terms ∼Γð2Þ
bh ;Γ

ð2Þ
hb only contribute to parts

involving ~sμν, and not tμν. The part ΓðtÞ
2 for the traceless

divergence free tensor can be extracted from Eq. (C14) by
omitting all terms where Dρ or Dτ act on the right. The
resulting expression reads

Γð2Þμνρτ
bb ¼ −

M2

4

ffiffiffī
g

p
PðbÞμνρτ

�
D2 −

2

3
R̄þ 2V

M2

�
; ðC28Þ

such that ΓðtÞ coincides with Eq. (C24).
The trace part ΓðσÞ

2 obtains contributions from Γð2Þ
hh , as

well as from Γð2Þ
bb ;Γ

ð2Þ
bh and Γð2Þ

hb , with bμν replaced by ~sμν.
The sum of all contributions equals indeed Eq. (C25), and
we see that the off-diagonal terms are necessary for this
result. While the inverse t − t-propagator (C28) can be
directly extracted from Eq. (C24), the inverse σ − σ
propagator needs the term ∼~sμνF~sμν. The inverse propa-
gator for σ does not coincide with the inverse propagator

Γð2Þ
hh for the unconstrained field h in Eq. (C11).

3. Scalar fluctuations

The scalar part of the physical metric fluctuations
involves the trace σ and a second scalar contained in tμν.
Their precise definition involves the contribution of σ to
bμν, i.e. the form of ~sμν. In Sec. V we have discussed the
form of ~sμν for background geometries with constant
curvature scalar. Alternatively, we may try the ansatz

~sμν ¼ Dμsν þDνsμ −
1

2
Dρsρḡμν: ðC29Þ

The vector sμ has to be chosen such that Eq. (C22) is
obeyed. Combining Eqs. (C29) and (C22) one has

Fμ
νsν ¼ −

1

4
∂μσ;

Fμ
ν ¼ D2δνμ þDνDμ −

1

2
DμDν

¼ D2δνμ þ R̄ν
μ þ

1

2
DμDν: ðC30Þ

Here we have used the commutator relation

QUANTUM CORRELATIONS FOR THE METRIC PHYSICAL REVIEW D 95, 123525 (2017)

123525-41



½Dν; Dμ�sν ¼ R̄ν
μsν: ðC31Þ

We need the inverse of the operator Fμ
ν

Cρ
μFμ

ν ¼ δνρ;

sρ ¼ −
1

4
Cρ

μ∂μσ: ðC32Þ

For a general background geometry the explicit computa-
tion of Cρ

μ is not easy due to the noncommuting properties
of the covariant derivatives.
Let us consider first the ansatz Cρ

μ ¼ C̄ρ
μ,

C̄ρ
μ ¼ D−2δμρ −

1

3
D−2DρD−2Dμ; ðC33Þ

which implies

s̄μ ¼ −
1

6
D−2Dμσ ðC34Þ

and

s̄μν ¼ −
1

6

�
DμD−2Dν þDνD−2Dμ −

1

2
ḡμνDρD−2Dρ

�
σ:

ðC35Þ

For flat space this solves Eq. (C32), and the result (C35)
is in accordance with Eq. (131). For more general geom-
etries we observe

C̄ρ
μFν

μ ¼ δνρ þD−2R̄ν
ρ

−
1

3
D−2DρD−2ð½Dν; D2� þ R̄ν

μDμ þ R̄ν
μ;
μÞ

¼ δνρ þD−2
�
δμρ −

2

3
DρD−2Dμ

�
R̄ν
μ ¼ D−2Aρ

ν;

ðC36Þ

where we employ

½Dν; D2�sν ¼ R̄μνDμsν þ R̄μν
;μsν: ðC37Þ

The solution for C is therefore

Cρ
μ ¼ ðA−1ÞρνD2C̄ν

μ

¼ ðA−1Þνρ
�
δμν −

1

3
PðlÞμ
ν

�
; ðC38Þ

where

Aρ
ν ¼ D2δνρ þ Bρ

μR̄ν
μ;

Bρ
μ ¼ δμρ −

2

3
PðlÞμ
ρ : ðC39Þ

The longitudinal propagator PðlÞ,

PðlÞ
ν

μ ¼ DνD−2Dμ; ðC40Þ
obeys

PðlÞρ
ν PðlÞμ

ρ ¼ PðlÞμ
ν ; PðlÞμ

ν DμF ¼ DνF: ðC41Þ

We infer

sμ ¼ −
1

6
ðA−1Þμν∂νσ; ðC42Þ

such that the operator A−1 replaces D−2 in Eq. (C34). The
task is now the inversion of A.
For making contact with Sec. V we can specialize to

R̄ν
μ ¼

1

4
R̄δνμ; ðC43Þ

with constant R̄. We employ

Aρ
ν ¼

�
D2 þ 1

4
R̄

�
δνρ −

1

6
R̄PðlÞν

ρ : ðC44Þ

The inverse is found easily

ðA−1Þμν ¼
�
D2 þ R̄

4

�−1
δνμ

þ R̄
6

�
D2 þ R̄

4

�−1�
D2 þ R̄

12

�−1
PðlÞν
μ ðC45Þ

such that

sμ ¼ −
1

6

�
D2 þ R

12

�
−1∂μσ: ðC46Þ

Using the commutator relation

½Dν; ð3D2 þ R̄Þ−1� ¼ R̄
4

�
D2 þ R̄

12

�−1
ð3D2 þ R̄Þ−1Dν

ðC47Þ

one has

Dνð3D2 þ R̄Þ−1σ ¼ 1

3

�
D2 þ R̄

12

�−1∂νσ ¼ −2sν: ðC48Þ

This establishes that ~sμν, as computed from Eq. (C29),
indeed coincides with Eq. (91). Equations (C29) and (C42)
can be used for an expansion in the vicinity of maximally
symmetric geometries.

APPENDIX D: MODE EQUATION AND
LINEARIZED EINSTEIN EQUATION

We show in this appendix that the mode functions obey
Einstein’s field equations for small fluctuations around a
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background field, provided that the background field is
itself a solution of the field equations. If not, the mode
functions do not obey the linearized Einstein equations. We
restrict here the metric fluctuations to the physical fluctua-
tions fμν and we do not include contributions to the field
equations from possible gauge fixing terms.
We start with the defining equation (259) for the mode

functions, with DðηÞ related to the second functional
derivative Γð2Þ by Eq. (255). The equivalence of the field
equation (57) for ΔKμν ¼ 0, i.e., the mode equation,

Γð2Þμνρτfρτ ¼ 0; ðD1Þ

with the linearized field equation around a background that
solves the field equation is not restricted to a homogeneous
and isotropic situation. We therefore keep general fρτ and
the general form (68) for Γð2Þ. Since in Eq. (D1) Γð2Þ acts on
fρτ the terms involving Dρ or Dτ positioned at right do not
contribute. Furthermore, one can use the general commu-
tator relation

½Dρ; Dμ�Aρτ ¼ RμρAρτ − Rμρ
τ
λAρλ: ðD2Þ

For the mode equation (D1) one therefore has

Γð2Þμνρτfρτ ¼ −
M2

4

ffiffiffī
g

p �
fμν;ρρ − f;ρρḡ

μν þ f;μν

þ 1

2
R̄fḡμν − R̄fμν þ R̄μρfνρ þ R̄νρfμρ − R̄μνf

− R̄ρτfρτḡμν þ 2R̄μρντfρτ

�

þ V
4

ffiffiffī
g

p ffḡμν − 2fμνg ¼ 0: ðD3Þ

In comparison, we next evaluate the linearized Einstein
equations (306) and (307) for the physical metric fμν. With
hμν;ν ¼ 0 Eq. (306) simplifies to

Gð1Þμν ¼
1

2

�
R̄ρ
μfνρ þ R̄ρ

νfμρ − 2R̄μρντfρτ − R̄fμν

þ R̄ρτfρτḡμν − fμν;ρρ − f;μν þ f;ρρḡμν

�
: ðD4Þ

Comparing with Eq. (D3) one finds for the difference
between the linearized Einstein equation and the mode
equation (D1)

Gð1Þμνþ
V
M2

fμν−
2

M2
ffiffiffī
g

p Γð2Þρτ
μν fρτ

¼
�
R̄ρ
μ−

1

2
R̄δρμþ V

M̄2
δρμ

�
fρνþ

�
R̄ρ
ν−

1

2
R̄δρνþ V

M2

�
fρμ

−
1

2

�
R̄μν−

1

2
R̄ḡμνþ

V
M2

�
f: ðD5Þ

If the background metric obeys the field equation,

R̄μν −
1

2
R̄ḡμν þ

V
M2

ḡμν ¼ 0; ðD6Þ

the r.h.s. of Eq. (D5) vanishes, such that Eq. (D3) indeed
yields the linearized Einstein equation for small deviations
from the background solution.
We emphasize, however, that for background metrics not

obeying the field equation (D6) the linearized Einstein
equations (306) should not be used for the definition of the
mode functions. The correct equation, which also carries
the information on the partial normalization of G, is the
propagator equation (256) which entails Eq. (259) or
Eq. (D1). The difference results from the fact that the first
functional derivative of the effective action is given by

δΓ
δgμν

¼ −
M2

2
g1=2gμρgντ

�
Rρτ −

1

2
Rgρτ þ

V
M2

gρτ

�
: ðD7Þ

The linearization of this expression yields the mode
equation (D1) or (D3). The linearized Einstein equation
only involves the linearization of the last factor. Away from
background geometries that solve the field equations the
linearization of

ðg1=2gμρgντÞð1Þ ¼
f
2
ḡμρḡντ − fμρḡ1=2ḡντ − fντḡ1=2ḡμρ ðD8Þ

contributes additional terms that account for the r.h.s.
of Eq. (D5).
A simplification of the mode equation (D3) occurs for

background geometries with a vanishing Weyl tensor. For
this purpose we express R̄μρνσ in terms of the Weyl tensor
C̄μρνσ,

R̄μρντ ¼ C̄μρντ þ
1

2
ðḡμνR̄ρτ þ ḡρτR̄μν − ḡμτR̄νρ − ḡνρR̄μτÞ

−
1

6
R̄ðḡμνḡρτ − ḡμτḡνρÞ: ðD9Þ

For a vanishing Weyl tensor, C̄μρνσ ¼ 0, we can then
replace in Eq. (68)
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ḡντDρDμ → ḡντR̄μρ− R̄μρντ

→ ḡντR̄μρ−
1

2
ðḡμνR̄ρτþ ḡρτR̄μν− ḡμτR̄νρ− ḡνρR̄μτÞ

þ1

6
R̄ðḡμνḡρτ− ḡμτḡνρÞ; ðD10Þ

where the contribution ∼DμDρ is omitted. With this
simplification the action of Γð2Þ on fρτ becomes

Γð2Þμνρτ ¼ −
M2

8

ffiffiffī
g

p fðḡμρḡντ þ ḡνρḡμτ − 2ḡμνḡρτÞD2

þ ḡρτðDμDν þDνDμÞ

þ 1

3
R̄ðḡμνḡρτ − 2ḡμρḡντ − 2ḡμτḡνρÞ

−
2V
M2

ðḡμνḡρτ − ḡμρḡντ − ḡμτḡνρÞg: ðD11Þ

APPENDIX E: DECOMPOSITION OF
UNCONSTRAINED METRIC FLUCTUATIONS

INTO SOð3Þ REPRESENTATIONS

For a homogeneous and isotropic background geometry
(242) the unconstrained metric fluctuations hμν decompose
with respect to the SOð3Þ-rotation group as four scalars,
two divergence free vectors and the graviton. We have
discussed in Sec. IX the decomposition of the physical
metric fluctuations (two scalars, one vector, and the
graviton) and the gauge fluctuations (two scalars and
one vector) separately. In this appendix we display more
familiar decompositions of hμν and establish the connection
to the decomposition employed in the present paper. We
also describe the Bardeen potentials within the familiar
decomposition and establish their connection to the physi-
cal metric fluctuations in the scalar and vector sector.

1. Decomposition

We start from the familiar decomposition of general
metric fluctuations hνμ with respect to the rotation group. In
Fourier space it is given by

h00 ¼ 2A;

hji ¼ a2ðγji þ ikjVi þ ikiVj − 2kikjBÞ þ 2Cδji

hj0 ¼ a2ðWj þ ikjDÞ; h0j ¼ −ðWj þ ikjDÞ; ðE1Þ

with

γjj¼ 0; kjγ
j
i ¼ 0; kjVj ¼ 0; kjWj¼ 0: ðE2Þ

A restriction to fluctuations obeying hνμ;ν ¼ 0 will be
done later.
For an explicit relation between the four scalars A, B, C,

D and the metric components one may use the relations

h00 ¼ 2A; ikmhm0 ¼ −k2D;

hmm ¼ 6C − 2k2B; a2kmkjh
j
m ¼ 2k2ðC − k2BÞ; ðE3Þ

such that

C ¼ 1

4

�
hmm − a2

kmkj
k2

hjm

�

B ¼ 1

4k2

�
hmm − 3a2

kmkj
k2

hjm

�
: ðE4Þ

In particular, one has

h ¼ 2Aþ 6C − 2k2B; ~b00 ¼
3

2
ðA − CÞ þ k2

2
B: ðE5Þ

In order to identify the “gauge invariant part” of the
decomposition (E1) we consider the inhomogeneous part of
the gauge transformation

δinhhνμ ¼ −ðξμ;ν þ ξν;μÞ; ðE6Þ

which amounts to

δinhh00 ¼ −2∂ηξ
0 − 2Hξ0;

δinhh
j
0 ¼ −∂ηξ

j − ikjξ0;

δinhh
j
i ¼ −iðkiξj þ kjξiÞ − 2Hδjiξ

0: ðE7Þ

Comparison with Eq. (E1) yields

δA ¼ −ð∂η þHÞξ0; δC ¼ −Hξ0;

δD ¼ ξ0 − ∂ηξL; δB ¼ −ξL;

δVi ¼ −ξiT ; δWi ¼ −ð∂η þ 2HÞξiT ; δγji ¼ 0; ðE8Þ

with

ξL ¼−i
kjξj

k2
; ξi¼ a2ðξiT þ ikiξLÞ; kjξ

j
T ¼ 0: ðE9Þ

Writing

A ¼ Ψþ ð∂η þHÞð∂ηB −DÞ;
C ¼ ΦþHð∂ηB −DÞ;

Wj ¼ Ωj þ ð∂η þ 2HÞVj ðE10Þ

one observes that the Bardeen potentials [9] Ψ and Φ,
as well as Ωj ¼ Wj − ∂ηVj and γji , are invariant under the
inhomogeneous gauge transformations.

2. Einstein equation

In terms of these fields the linearized Einstein equa-
tions (306) involve the first variation of the Einstein tensor
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Gð1Þ00¼2k2ϕþ6H∂ηC;

Gð1Þm0¼
1

2
k2Ωm−2ikmð∂ηϕ−HΨÞ

−ð2∂ηHþH2ÞWm−ikm½2ð∂ηH−H2Þ∂ηBþ3H2D�;

Gð1Þmn¼
1

2
ð∂2

ηþ2H∂η−4∂ηH−2H2þk2Þγmn

−
i
2
ð∂ηþ2HÞðkmΩnþknΩmÞ

−ið2∂ηHþH2ÞðkmVnþknVmÞþg1δmnþg2kmkn;

ðE11Þ

with

g1 ¼ ð2H∂η þ 4∂ηHþ 2H2 − k2ÞΨ
− ð2∂2

η þ 4H∂η þ 4∂ηHþ 2H2 þ k2Þϕ
þ 2ð∂2

ηHþH∂ηHÞðD − ∂ηBÞ;
g2 ¼ ϕþ Ψþ 2ð2∂ηHþH2ÞB: ðE12Þ

For a background geometry obeying the field equations
[cf. Eqs. (D6) and (251)]

4V
M2

¼ R̄ ¼ 6

a2
ðH2 þ ∂ηHÞ ðE13Þ

the linearized Einstein equation becomes [cf. Eq. (307)]

Gð1Þμν ¼ −
V
M2

hμν ¼ −
3

2a2
ðH2 þ ∂ηHÞḡνρhρμ: ðE14Þ

The different components read

Gð1Þ00 − 3ðH2 þ ∂ηHÞA ¼ 0; ðE15Þ

Gð1Þm0 þ
3

2
ðH2 þ ∂ηHÞðWm þ ikmDÞ ¼ 0; ðE16Þ

Gð1Þmn þ
3

2
ðH2 þ ∂ηHÞðγmn þ ikmVn þ iknVm ðE17Þ

−2kmknBþ 2CδmnÞ ¼ 0. ðE18Þ

The first equation (E15) yields

2k2ϕþ 6H∂ηϕ − 3ðH2 þ ∂ηHÞΨ
þ 3ðH2 − ∂ηHÞð∂η −HÞð∂ηB −DÞ ¼ 0: ðE19Þ

For V > 0 the solution of the field equation (D6) is
de Sitter space for which ∂ηH ¼ H2. For a background
metric obeying the field equation the linearized
Einstein equation (E15) involves only the invariant
Bardeen potentials,

2k2ϕþ 6Hð∂ηϕ −HΨÞ ¼ 0: ðE20Þ

Also Eq. (E16) involves only “gauge invariant
fluctuations,”

1

2
k2Ωm − 2ikmð∂ηϕ −HΨÞ ¼ 0; ðE21Þ

and similarly for Eq. (E18),

1

2
ð∂2

η þ 2H∂η þ k2Þγmn −
i
2
ð∂η þ 2HÞðkmΩn þ knΩmÞ

þ ½ð2H∂η þ 6H2 − k2ÞΨ − ð2∂2
η þ 4H∂η þ k2Þϕ�δmn

þ ðϕþΨÞkmkn ¼ 0: ðE22Þ

The solution of this system of equations is rather simple.
(We only consider km ≠ 0 here.) Multiplying Eq. (E21)
with km yields

∂ηϕ ¼ HΨ; ðE23Þ

such that Eqs. (E20) and (E21) require

ϕ ¼ 0; Ψ ¼ 0; Ωm ¼ 0: ðE24Þ

The only nonvanishing mode is the graviton γmn which
obeys the standard field equation for massless excitations

ð∂2
η þ 2H∂η þ k2Þγmn ¼ 0: ðE25Þ

This mode equation is the same as for a massless scalar
field and has been discussed extensively in the literature
[11–16].

3. Physical metric fluctuations

For the “physical degrees of freedom” we impose
hνμ;ν ¼ 0. The components of the constraints for fμν are

fν0;ν ¼ ∂ηf00 þ ikmfm0 þ 3Hf00 −Hfmm

¼ 2∂ηAþ 6HðA − CÞ þ 2Hk2B − k2D; ðE26Þ

and

fνj;ν ¼ ð∂η þ 3HÞf0j þ ikmfmj −Hδjmfm0

¼ 2ikjðC − k2BÞ − k2Vj − ð∂η þ 4HÞðWj þ ikjDÞ:
ðE27Þ

This yields two constraints for the scalar fields

ð∂η þ 4HÞD ¼ 2ðC − k2BÞ

ð∂η þ 3HÞA ¼ 3HC −
k2

2
ð2HB −DÞ: ðE28Þ

QUANTUM CORRELATIONS FOR THE METRIC PHYSICAL REVIEW D 95, 123525 (2017)

123525-45



Together with the two defining equations (E10) for ϕ andΨ
they allow us to express A, B,C, andD in terms of ϕ andΨ.
The vector constraint from Eq. (E26) reads

k2Vj ¼ −ð∂η þ 4HÞWj;

k2Vj ¼ −ð∂η þ 6HÞWj: ðE29Þ

This expresses the gauge invariant vector fluctuation Ωj in
terms of Wj,

Ωj ¼
1

k2
½k2 þ ∂ηð∂η þ 4HÞ�Wj: ðE30Þ

The relation between the Bardeen potentials and the
scalar metric fluctuations A, B, C, D is rather complex for
the constraint hνμ;ν ¼ 0. One has to eliminate two of the
fields by using the constraint, and subsequently establish
the relation between the two remaining scalar fluctuations
and the gauge invariant potentials Φ and Ψ.
In the presence of the constraints (E28) we can relate D

to A and C as

D ¼ 2½k2 þ 2Hð∂η þ 4HÞ�−1½ð∂η þ 3HÞA − 2HC�;
ðE31Þ

and similar for B,

B¼ 1

k2
½k2þ2H∂ηþ8H2þ2∂ηH�−1f½k2þ6ð∂ηþ4HÞH�C

−2ð∂ηþ4HÞð∂ηþ3HÞAg: ðE32Þ

Inversely, C and A can be expressed in terms of B and D,

C ¼ k2Bþ 1

2
ð∂η þ 4HÞD

A ¼ ð∂η þ 3HÞ−1
�
2Hk2B

1

2
½k2 þ 3Hð∂η þ 4HÞ�D

�
:

ðE33Þ

Using these expressions we can write the potentials Φ and
Ψ as functions of B and D, e.g.,

Φ ¼ ðk2 −H∂ηÞBþ 1

2
ð∂η þ 6HÞD; ðE34Þ

with Ψ a more lengthly expression.
Perhaps the most convenient setting keeps A and B as

independent variables, with

D ¼ 2½k2 þ 3Hð∂η þ 4HÞ�−1fð∂η þ 3HÞA − 2Hk2Bg
ðE35Þ

and

C¼ ½k2 þ 3Hð∂η þ 4HÞ þ 3∂ηH�−1
× fð∂η þ 4HÞð∂η þ 3HÞAþ ½k2 þ ð∂η þ 4HÞH�k2Bg:

ðE36Þ
We can then express the Bardeen potentials Φ and Ψ in
terms of the metric components A and B,

Φ ¼ ½k2 þ 3Hð∂η þ 4HÞ þ 3ð∂ηHÞ�−1
× fð∂η þ 6HÞð∂η þ 3HÞA
þ ½k4 þ ð∂ηHÞk2 − 3H2∂2

η − 6Hð∂ηHþ 2H2Þ∂η�Bg
ðE37Þ

and

Ψ ¼ ½k2 þ 3Hð∂η þ 4HÞ þ 3ð∂ηHÞ�−1
× f½k2 þ 2∂2

η þ 11H∂η þ 18H2 þ 9ð∂ηHÞ�A
− ½k2ð∂η þHÞð∂η þ 4HÞ þ 3fH∂2

η þ ð5H2 þ ∂ηHÞ∂η

þ 4H3 þ 2H∂ηHg∂η�Bg: ðE38Þ
These equations can be inverted in order to obtain A and B,
and consecutively also C and D as functions of Φ and Ψ.
In contrast to longitudinal or Newtonian gauge, where
B ¼ D ¼ 0, Φ ¼ C, Ψ ¼ A, the relation between the
metric components and the gauge invariant Bardeen poten-
tials is rather complex since inversions of differential
operators are needed. This makes the reconstruction of
the metric correlation from the correlations of Φ and Ψ
rather cumbersome for the covariant gauge hνμ;ν ¼ 0.

4. Relation between decomposition of physical metric
fluctuations and unconstrained metric fluctuations

The relation with the decomposition of the physical
metric in Sec. VII can be made by the identifications

f00 ¼ −2a2A ¼ a2½κ þ ϵ�;
f0m ¼ a2ðWm þ ikmDÞ

¼ a2
�
Wm −

ikm
k2

ð∂η þ 4HÞðκ þ ϵÞ − ikm
k2

Hσ

�
;

fmn ¼ a2ðγmn þ ikmVn þ iknVm − 2kmknBþ 2δmnCÞ

¼ a2
�
γmn −

i
k2

ð∂η þ 4HÞðkmWn þ knWmÞ

þ 1

2k2
ð∂η þ 4HÞ2

�
δmn −

3kmkn
k2

�
ðκ þ ϵÞ

þ 1

2

�
δmn −

kmkn
k2

�
ðκ þ ϵÞ

þ 1

2k2

��
2kmkn þ

�
δmn −

3kmkn
k2

�

× ðk2 þH∂η þ ∂ηHþ 4H2Þ
�
σ

�
; ðE39Þ
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We infer

Vm ¼ −
1

k2
ð∂η þ 4HÞWm; ðE40Þ

while in the scalar sector one has

A¼−
1

2
ðκþϵÞ;

B¼ 1

4k4
f½k2þ3ð∂ηþ4HÞ2�ðκþϵÞþ½k2þ3ð∂ηþ4HÞH�σg;

C¼ 1

4k2
f½k2þð∂ηþ4HÞ2�ðκþϵÞþ½k2þð∂ηþ4HÞH�σg;

D¼−
1

k2
fð∂ηþ4HÞðκþϵÞþHσg: ðE41Þ

One can verify that Eq. (E41) obeys the constraints (E28).
For the computation of the Bardeen potentials Φ and Ψ

and one needs the combination

∂ηB −D ¼ 1

4k4
f½3∂ηð∂η þ 4HÞ2

þ 4k2ð∂η þ 4HÞ þ k2∂η�ðκ þ ϵÞ
þ ½3∂ηð∂η þ 4HÞHþ k2ð∂η þ 4HÞ�σg: ðE42Þ

The relation between Φ and Ψ and the fields κ and σ
depends on the choice of ϵ,

Φ ¼ 1

4k4
f½k4 þ k2ð∂ηHÞ þ k2∂ηð∂η þ 3HÞ

− 3H∂ηð∂η þ 4HÞ2�ðκ þ ϵÞ
þ ½k4 þ k2ð∂ηHÞ − 3H∂ηð∂η þ 4HÞH�σg; ðE43Þ

and

Ψ ¼ −
1

4k4
f½2k4 þ k2ð∂η þHÞð5∂η þ 16HÞ

þ 3ð∂η þHÞ∂ηð∂η þ 4HÞ2�ðκ þ ϵÞ
þ ð∂η þHÞ½3∂ηð∂η þ 4HÞHþ k2ð∂η þ 4HÞ�σg:

ðE44Þ

For maximally symmetric spaces we may use the choice
(333) for ϵ and employ the relation (334). In any case, the
relation between the Bardeen potentials and the metric
components κ and σ remains rather involved.

APPENDIX F: SECOND FUNCTIONAL
DERIVATIVE AND PROPAGATOR EQUATION

In this appendix we recall a few properties of second
functional derivatives that are useful for the derivation of
the propagator equation. In particular, we address the
effects of a change in the field basis for the propagator
equation.

For a given complex field φaðη; kÞ in Fourier space the
quadratic effective action takes the general form

Γ2 ¼
Z
η;k

φ�
aðη; kÞAabðk; η; η0Þφbðη0; kÞ: ðF1Þ

The k-integral comprises for every k both contributions
from φðkÞ and φð−kÞ, and we have to remember that these
fields are not independent, i.e., φaðη;−kÞ ¼ φ�ðη; kÞ. As a
consequence, the second functional derivative reads

Γð2Þ
ab ðη; k; η0; k0Þ ¼

∂2Γ2

∂φ�
aðη; kÞ∂φbðη0; k0Þ

¼ δðk − k0Þ½Aabðk; η; η0Þ þAbað−k; η0; ηÞ�:
ðF2Þ

For Aabð−k; η; η0Þ ¼ Aabðk; η; η0Þ only the symmetric part
of A contributes to Γð2Þ. This is realized in our case where
A only involves even powers of km through projectors on
the modes γmn;Wm; κ and σ, multiplied with operators that
depend on k2.
Furthermore, Aab turns out to be a purely imaginary

differential operator,

Aðk; η0; ηÞ ¼ iδðη − η0ÞDabðk; η; ∂ηÞ: ðF3Þ

Writing

Dabðk; η; ∂ηÞ ¼ Dð0Þ
ab ðk; ηÞ þDð1Þ

ab ðk; ηÞ∂η

þDð2Þ
ab ðk; ηÞ∂2

η þ � � � ðF4Þ

one infers

Γð2Þ
ab ðη; k; η0; k0Þ ¼ iδðη − η0Þδðk − k0Þ ~Dabðk; η; η0Þ; ðF5Þ

with

~Dabðk; η; η0Þ ¼ ½Dð0Þ
ab ðk; ηÞ þDð0Þ

ba ðk; ηÞ�
þ ½Dð1Þ

ab ðk; ηÞ −Dð1Þ
ba ðk; ηÞ�∂η − ∂ηD

ð1Þ
ba ðk; ηÞ

þ ½Dð2Þ
ab ðk; ηÞ þDð2Þ

ba ðk; ηÞ�∂2
η

þ 2∂ηD
ð2Þ
ba ðk; ηÞ∂η þ ∂2

ηD
ð2Þ
ba ðk; ηÞ þ � � �

ðF6Þ

This structure can be most easily visualized as a result of
partial integration of the terms involving φ�

bð−kÞφað−kÞ.
For example, one has the following associations
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D ¼ a2∂2
η → ~D ¼ a2ð∂2

η þ ð∂η þ 2HÞ2Þ;
D ¼ 2Ha2∂η → ~D ¼ −a2ð4H2 þ 2∂ηHÞ;
D ¼ a2ð∂2

η þ 2H∂ηÞ → ~D ¼ 2a2ð∂2
η þ 2H∂ηÞ: ðF7Þ

The propagator equation Γð2ÞG ¼ E can be solved in an
arbitrary field basis. Consider unconstrained fields φa

where E ¼ δba,

∂2Γ
∂φa∂φb

hφbφcic ¼ δac: ðF8Þ

For a linear regular transformation

φa ¼ Aabψb ðF9Þ

this translates to

∂2Γ
∂ψa∂ψb

hψbψcic ¼ δac: ðF10Þ

We will encounter field transformations

φaðk; ηÞ ¼ Bacðk; η; ∂ηÞψcðk; ηÞ ðF11Þ

that are not necessarily regular. We still can first evaluate
the correlation function in the ψ-basis and subsequently use

GðφÞ
ab ðη; k; η0; k0Þ
¼ hφaðη; kÞφ�

bðη0; kÞic
¼ Bacðk; η; ∂ηÞB�

bdðk; η0; ∂η0 Þhψcðη; kÞψ�
αðη0; k0Þic

¼ Bacðk; η; ∂ηÞB�
bdðk; η0; ∂η0 ÞGðψÞ

cd ðη; k; η0; k0Þ: ðF12Þ

This situation is realized if we want to compute the metric
correlation from the propagators of the physical fluctua-
tions γmn;W; κ and σ. The latter are represented here by ψ,
while the relation between the metric components ϕ and ψ
is given by hμν ¼ tμν þ sμν and the expansion (324).
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