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Quantum correlations for the metric

C. Wetterich”

Institut fiir Theoretische Physik, Universitit Heidelberg,
Philosophenweg 16, D-69120 Heidelberg, Germany
(Received 22 April 2016; published 20 June 2017)

We discuss the correlation function for the metric for homogeneous and isotropic cosmologies. The
exact propagator equation determines the correlation function as the inverse of the second functional
derivative of the quantum effective action. This formulation relates the metric correlation function
employed in quantum gravity computations to cosmological observables as the graviton power spectrum.
In the Einstein-Hilbert approximation for the effective action the on-shell graviton correlation function can
be obtained equivalently from a product of mode functions which are solutions of the linearized Einstein
equations. In contrast, the product of mode functions, often employed in the context of cosmology, does not
yield the correlation function for the vector and scalar components of the metric fluctuations. We divide the
metric fluctuations into “physical fluctuations,” which couple to a conserved energy momentum tensor, and
gauge fluctuations. On the subspace of physical metric fluctuations the relation to physical sources
becomes invertible, such that the effective action and its relation to correlation functions no longer needs to
involve a gauge fixing term. The physical metric fluctuations have a similar status as the Bardeen
potentials, while being formulated in a covariant way. We compute the effective action for the physical

metric fluctuations for geometries corresponding to realistic cosmologies.
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I. INTRODUCTION

The correlation function for the metric is a central
quantity in classical and quantum gravity. It permits us
to compute the (linear) response of the metric to a source,
e.g., a moving body. The equal time correlation function
contains the information on the power spectrum of fluc-
tuations in the Gaussian approximation. The (two-point)
correlation function or propagator for the metric plays
also a central role for any computation in quantum gravity.
A typical loop contribution from the metric fluctuations
involves a trace over powers of the metric propagator, with
appropriate vertices inserted. Within functional renormal-
ization the exact flow equation for the effective average
action Iy,

O,T =3 Te{ (DRy)Gi ) (1

involves the propagator G, in presence of the infrared
cutoff R, [1-3].

While the metric correlation in flat space can be
computed rather easily for a simple form of the effective
action, much less is known for the metric correlation in
curved space. For the linear response of the metric to some
sources as galaxies, stars or other moving bodies one needs
the metric propagator in some “background cosmology,”
i.e., for an appropriate homogeneous and isotropic solution
of the gravitational field equations. The same holds for the
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determination of the fluctuation spectrum. The metric
correlation in a background is needed if one wants to
explore the dependence of the effective action on the
metric, e.g., in Eq. (1). Particularly interesting are back-
grounds that obey the field equations.

Indeed, functional methods in quantum field theory work
best if the “background field,” for which expressions as (1)
are evaluated, is close to an appropriate extremum of the
action. For example, the functional renormalization group
for scalar fields gives excellent results in simple truncations
if one expands around the minimum of the effective
potential [4—8]. In contrast, expansions with few couplings
around the origin in field space, ¢ = 0, fail to provide good
results in case of spontaneous symmetry breaking. For
quantum gravity computations often only a few couplings
are kept. One therefore would like to evaluate the effective
action in the vicinity of characteristic solutions of the
cosmological field equations. Typically, these may be
geometries close to de Sitter space as relevant for inflation.
This is also the region in field space for which knowledge
of the effective action I' is most useful. The exact field
equations follow from the first functional variation of I" and
employ therefore knowledge about its form in the vicinity
of the relevant solution.

In gravity, the metric propagator evaluated for a back-
ground that solves the field equations (“on shell propaga-
tor”) shows particular properties that do not hold for
general background geometries. One may define gauge
invariant fluctuation quantities (Bardeen potentials [9]). If
the background obeys the field equations only the graviton
mode corresponds to a propagating wave or particle,
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whereas the gauge invariant scalar and vector modes
contained in the metric play the role of “auxiliary fields”
that do not describe propagating waves or particles.
Nevertheless the correlation function for the scalar and
vector parts of the physical metric fluctuations does not
vanish.

The consequences of the nonpropagating character of
scalar and vector modes for quantum gravity calculations
are not much explored. The auxiliary field property does
not hold away from solutions of the field equations. It is not
easily visible on the level of the metric fluctuations in
general covariant gauges, for which the difference between
background geometries obeying the field equations or not
is not very apparent at first sight. We clarify in this paper
the relation between the nonpropagating Bardeen potentials
and the nontrivial metric correlation function in the vector
and scalar sector.

More generally, it is the aim of the present paper to
constitute a bridge between concepts typically used in
cosmology, such as mode functions and particular assump-
tions about “vacua” on one side, and functional integral
approaches for a quantum field theory of gravity on the
other. For background geometries obeying the field equa-
tions the metric correlation contains directly the information
about the power spectrum of cosmic fluctuations. For
example, the amplitude and spectrum of the tensor fluctua-
tions can be extracted directly from the equal time corre-
lation function for the graviton component of the metric.
The situation is similar for an additional scalar (inflaton)
field for which amplitude and spectrum can be obtained
from the (gauge invariant) scalar correlation. Since sub-
stantial work has been invested in the computation of the
cosmic fluctuation spectrum for various interesting cosmo-
logical solutions [10-16], one may use this knowledge in
order to gain information about the metric correlation for
realistic cosmological solutions. In the other direction, a
computation of the quantum correlation for the metric
translates directly to important cosmological observables.

While the connection between existing computations of
the cosmic fluctuation spectrum and the metric correlation
is rather direct for the propagating graviton fluctuations (or
an additional inflaton), this is no longer the case for the
scalar and vector modes contained in the metric. First of all,
the standard approach of using commutation relations for
operators of free fields for the definition of a *“vacuum
correlation” is only meaningful for the fields describing
propagating waves or particles. Second, the linearized field
equations (mode equations) admit for the gauge invariant
scalar fields or gravitational potentials @, ¥ (Bardeen
potentials) only the solution ® =¥ = 0 in the absence
of additional matter fluctuations. The usual prescription for
obtaining the correlation function as a product of mode
functions (solutions of the mode equation) would then
imply that the metric correlation in the scalar sector
vanishes. This is, however, not the case.
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For the gauge invariant vector fluctuation €, the
situation is similar. The only solution of the mode equation
is Q,, = 0, while we find a rotation invariant correlation
function in Fourier space

215(’7 - 77/) kmkn
QF Q / = 7 _
< n(k’ 77) m(kv n )>c Mzkzaz(n) 6mn k2

x (21)383 (k — ). 2)

Here 7 is conformal time, a(n) the scalar factor, M the
Planck mass and k the comoving wave number. This
correlation function is “instantaneous,” i.e., ~&(n —17'),
and reflects the role of Q,, as an auxiliary field. It cannot
be written as a product of mode functions.

The different properties of correlation functions in the
graviton sector on one side, and the vector and scalar sector
on the other side, seem related to the difference between
“propagating” and “auxiliary” fields in the operator for-
malism. While the computation of the correlation functions
for the propagating tensor mode is rather straightforward in
the operator formalism, a computation for the scalar and
vector correlations is presumably a rather involved exercise
in this formalism. (See Ref. [17] for structural aspects.)

For the computation of the metric correlation or Green’s
function we need a method that goes beyond mode
functions for free quantum fields. We will directly employ
the defining equation for the Green’s function G

r®G =E, (3)

with I'?) involving a suitable differential operator and E the
unit matrix in the appropriate space of fields. Here G is
considered as a matrix with internal and space or momen-
tum indices, and similar for I'®). For the quantum effective
action I the matrix IT'® is the second functional derivative,
and Eq. (3) is an exact identity that follows from the basic
definition of the effective action. The use of this identity for
the computation of primordial cosmic fluctuations has been
demonstrated in Refs. [18—20]. One recovers known results
as special solutions, but also can discuss the most general
solution as an initial value problem for a differential
equation. Starting from the defining equation (3) we will
discuss the conditions under which the correlation function
can be represented as a product of mode functions.

The metric fluctuations around a given background
metric can be divided into physical and gauge fluctuations.
Only the propagator for the physical metric fluctuations
matters for the response of the metric to a covariantly
conserved energy-momentum tensor. Similarly, only the
correlation function for the physical metric fluctuations
leads to observable quantities such as the primordial
fluctuation spectrum. An important aspect of the present
paper is the clear separation between physical and gauge
fluctuations of the metric. This can be achieved by
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imposing a constraint on the metric fluctuations which
eliminates the gauge fluctuations. Alternatively, one can
employ a particular “physical” gauge fixing.

This paper is organized as follows: we present the basic
concepts in Sec. II. Section III deals with the distinction
between physical metric fluctuations and gauge fluctua-
tions. In Sec. IV, we introduce the quantum effective action
for the physical metric fluctuations. It contains all the
information needed for the computation of the quantum
field equations and the correlations for physical metric
fluctuations. Section V turns to the correlation function for
the metric and the defining propagator equation. The on-
shell metric correlation in flat space is addressed in Sec. VI.
This demonstrates several issues as projectors on physical
modes, irreducible representations of the rotation group,
connection to Bardeen potentials, time dependence and
gauge fixing in an explicit form, employing a language that
can be directly used in the following sections. Section VII
extends this discussion to the off-shell propagator for the
metric fluctuations which is needed in quantum gravity
computations.

In Sec. VIII we turn to homogeneous and isotropic
geometries and discuss, in particular, the role of mode
functions, the linearized Einstein equations, projectors on
physical fluctuations, and the connection to gauge fixing.
Section IX proceeds to a decomposition of the physical
metric fluctuations into representations of the rotation
group. We obtain propagator equations for the individual
modes which can be the basis for a future explicit
computation of the correlation function for all components
of the physical metric fluctuations. In Sec. X we focus on
the graviton correlation which is technically simplest. This
makes a direct connection to the observable tensor modes
in the primordial cosmic fluctuation spectrum. The results
agree with the well-known results obtained in the operator
formalism [15,16]. This section mainly serves the demon-
stration of equivalence of methods for the case of propa-
gating fluctuations in a background solving the field
equations, where the operator formalism is straightforward.

We specialize to de Sitter space in order to underline the
equivalence by the explicit form of the graviton propagator.
The full metric correlation has been discussed extensively
for a de Sitter geometry [21-28]. The results of Ref. [27]
include the physical gauge fixing advocated here. Still, some
work needs to be done to extract the explicit form of the
propagator for physical scalar and vector fluctuations from
the general structure described in Ref. [27]. Geometries
close to de Sitter space may avoid the singular behavior of
propagators in de Sitter space, cf. [28] for a discussion. Only
little is known [29] about the full metric propagator in
general homogeneous and isotropic cosmologies.

Our conclusions are found in Sec. XI. Several more
technical points, as the explicit connection to the Bardeen
potentials or a more general mode decomposition can be
found in the appendices.
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For an effective action of gravity which is invariant under
general coordinate transformations (diffeomorphisms) the
second functional derivative is not invertible in the function
space of arbitrary metric fluctuations. The local gauge
symmetry implies that there are “gauge modes” for which
' vanishes. There are two possible ways to cope with this
issue. The first reduces the field space for G and T'® to
“physical fluctuations” by projecting out the ‘“gauge
fluctuations™. In this case the inhomogeneous term £ on
the r.h.s. of Eq. (3) is a projector on the space of physical
fluctuations. The second functional derivative becomes
invertible on this restricted space if suitable boundary
conditions are specified. (For massless fields the zero
momentum mode may need a special regularization).
The second alternative employs gauge fixing in a standard
way. In the presence of gauge fixing I" is no longer gauge
invariant. Thus I'® becomes invertible on the full space of
metric fluctuations and E is the unit matrix in this space.

We will concentrate in this paper on the projection to
physical metric fluctuations. We show that this is equivalent
to a particular gauge fixing. For local gauge theories as
gravity the source for the metric field is related to the
energy momentum tensor 7#*. A central point of our
formalism is the restriction to sources that reflect the most
general covariantly conserved energy momentum tensors,
™., =D,T" =0, with D, a covariant derivative. Such
sources couple only to covariantly conserved metric fluc-
tuations, such that the quantum effective action will only
involve these “physical fluctuations” of the metric.

A quantum field theory for gravity can be formulated as a
functional integral over the “fluctuating metric” g,,. We
decompose the metric g, as

g//w = g/w + h;w = g;w + a;w/ + a/v;w (4)
with “background metric” g,, and

g;w = g/w +f;w’ ;/w;y =Y. (5)
Here semicolons denote covariant derivatives that are
formed with the background metric g,, such that g,,.,=0.
Similarly, an arbitrary symmetric second rank contravariant

tensor B* is decomposed as
B =T + Th.Y + T X, ™., =0. (6)

For a source term (with g = detg,,)

1 _
=) [ Vi

1 =N v v v
=3 [ VBT (- T 1YY ()
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one finds indeed that only the physical metric g, couples to
T#. Restricting the source to Ty = 0, the argument of the
effective action I" will be restricted to

f;w = <f;/w>9

In order to avoid explicit constraints for the metric we
may extend the argument of I" formally to arbitrary metrics
9w €& T[gu] = Tg,]. The fact that T' actually only
depends on g, is then reflected by the local gauge
symmetry of I'. The local gauge symmetry corresponds
to the statement that I' does not depend on the gauge
fluctuations of the metric

?]yv = g;w + f}ll/’ fm/;y =0. (8)

Ay = <a;4;v + a;§ﬂ>‘ )

In a gauge fixed version of gravity the metric correlation
depends, in general, on the choice of the gauge. For a
general gauge, this often obscures the relation between the
effective action and the propagator for the physical metric
fluctuations. Having identified the physical metric fluctua-
tions it will be natural to choose for the fluctuating metric
in the functional integral a gauge a;, =0 or h,,," =0,
corresponding to ¢, = §,,. For the functional integral
defining quantum gravity one may therefore employ a
corresponding gauge fixing with the associated ghosts. For
this type of gauge fixing the propagator equation (3)
becomes block diagonal, decaying into separate sectors
for the physical fluctuations and the gauge fluctuations. We
can therefore compute the correlation function for the
physical metric fluctuation on a restricted function space
with appropriate projector E in Eq. (3). On the level of the
relation between the effective action and the correlation
function for the metric the gauge fixing and ghost terms are
not needed if G is restricted to the correlation function for
physical metric fluctuations and FE is the appropriate
projector. We can work directly with a diffeomorphism
invariant quantum effective action I and do not have to
worry about gauge fixing and ghosts.

The physical metric fluctuations f,, are “gauge invariant”
in the same sense as the Bardeen potentials. We explicitly
construct the relation between the physical metric fluctua-
tions and the Bardeen potentials, which turn out to be rather
involved. In contrast to the Bardeen potentials the projection
on f,, can be done in a manifestly covariant way. This is
important for quantum gravity and flow equations where
diffeomorphism invariance plays a crucial role in order to
restrict the form of the effective action. There is, however, a
price to pay for the covariant formulation. While the relation
of the Bardeen potentials to metric fluctuations is simple in
certain gauges as the Newtonian gauge, it gets more complex
in a covariant setting.

The propagator equation (3) is a differential equation,

DG =E, (10)
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with differential operator D = I'®). This makes it manifest
that G is given by an initial value problem [30-39], and is
not a priori fixed for a given cosmological solution and a
given time. As a simple condition for a possible scaling
solution [18] we employ here the condition that the high
momentum tail of the metric correlation is already at some
early time given by the Lorentz invariant correlation
function in flat space. This generalizes the Bunch-Davies
initial condition [40] to interacting fields, arbitrary geo-
metric backgrounds and nonpropagating modes. It selects
a particular correlation among several proposed ones
[41-44]. The complete discussion of the physical metric
correlation function in flat space presented in this paper is
therefore not only a very explicit example how the
projection on physical fluctuations operates, but also sets
the initial conditions for the solution of Eq. (10).

The correlation function G for the metric is an important
quantity beyond its crucial role for quantum gravity
computations on one side and the cosmic fluctuation
spectrum on the other side. For example, it enters directly
the computation of the bispectrum B from the third func-
tional derivative of the effective action I'®)| that we may
symbolically express as B =I')G3. In this paper we
discuss G in the Einstein frame. The determination of G
by the propagator equation (3) makes transformations
between different frames straightforward [20].

Besides the development of the formalism for computing
G from the propagator equation, and the direct relation
between cosmological fluctuation observables and the
covariant correlation for physical metric fluctuations that
may be extracted from quantum gravity calculations, our
paper also contains practical progress: we derive the
explicit form of the propagator equation for the physical
metric fluctuations for a homogeneous and isotropic
cosmological background.

ITI. PHYSICAL AND GAUGE PART OF METRIC

We formulate quantum gravity as a functional integral
for the partition function

2] = [ Depeeso{ =Sl + [ duore | ()

The regularization of this functional integral as, for
example, gauge fixing and ghost terms, are here formally
included in the functional measure f Dg;,a. The action §
is supposed to be invariant under general coordinate
transformations or diffeomorphisms

559;111 = yépg;w - aygpg;/m - él)apg;/tu‘ (12)

The source K*¥ = K** transforms as a contravariant tensor
density
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5:KM = 0,8 K + 9, KM — 28, KM — 9,8 K™, (13)

such that the source term is diffeomorphism invariant. For
the functional measure we will employ a background field
formalism such that the measure is invariant under a
simultaneous diffeomorphism transformation of the back-
ground metric and the fluctuations, see below. Therefore Z
is invariant under this combined transformation.

We write the action in terms of a scalar function L,

S:/QQ@MJ g = det(g],).
5:L = =&, L. (14)

For the example of Einstein gravity with reduced Planck
mass M and cosmological constant V one has

M2
with R the curvature scalar of the metric gj,. For purposes
of analytic continuation we will admit complex values of
G- While coordinates remain fixed. For Minkowski sig-

nature g, is real and one has \/E = iy/—det(g,,),

accounting for the factor i in the weight factor e™5 of
the functional integral.

As mentioned in Sec. II, we split the metric g, into a
“physical metric” 7, and a “gauge part” a,, which can be
obtained by covariant derivatives of a vector aj,,

g;w = g;w + a;wv a//u/ = a[’d;l/ + allz;ﬂ’ (16)
Covariant derivatives, denoted by semicolons, are formed
with the connection I',,” of a background metric g,,,

a,, = D,a, = 0,a, - T,/ a,. (17)
In principle, the background metric is arbitrary. We will
focus later on solutions of the field equations.

General sources K*(x) are introduced in order to
construct generating functionals as in Eq. (1). This allows
us to probe the response of the metric expectation value to
any given particular source, as the energy momentum
tensor for radiation and matter in cosmology. We use the
background metric g, to relate the source K** to the energy
momentum tensor 7+,

KM — %Q%T’”’,

g = det(gy)- (18)
Again, T* is considered here as general source, with
possible a posteriori specification of a “physical source” if
appropriate.

For the effective action I' the source term in Eq. (11) is
reflected in the quantum field equation (for details see
Sec. IV)
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or 2 or
— = K", — = THy. 19
Gy VG Oog,v (19)

Identifying g,v and g,v, such that I" depends only on g,v,
the second equation (19) is the usual defining equation for
the energy momentum tensor. (See Ref. [45] for a dis-
cussion and modifications of the identification g,v = g,v.)
If one considers extended field theories, for example with
an additional scalar inflaton field, the metric variation of the
effective matter action would contribute (with negative
sign) to T*v. The precise nature of K*v and T#v will not be
important for our discussion. We only will employ the
structural aspect of a conserved energy momentum tensor.
We will focus on sources K#v corresponding to a
conserved energy momentum tensor, 7+¥;,. They obey

K" +T,,rK = 0. (20)

These sources couple only to the physical metric, motivat-

ing the naming,
[ aurr = [ e e
X X

Indeed, partial integration and the relation (20) imply

[ i = [ o+ at e
=-2 / a,(9,K" +T,K™) =0. (22)
X

The constraint (20) is invariant under simultaneous gauge
transformations of K** and g,, .

With respect to diffeomorphisms all three objects §,,,,, G,
and a,,, transform as tensors according to Eq. (12). Writing

g;w = f_};w + f;w’ (23)
and observing
6&_};41/ = _(fﬂ;l/ + ‘fv;y)’ (24)

one sees that the transformation of g, can also be realized
for a fixed background metric g, if the transformation of
a,,, obtains an additional inhomogeneous part,

Séa;w = 5inha;w + 5501,”/,
_(fu;v + 51/;/4)' (25)

A
5inh a/w -

For a, — 0 the inhomogeneous part dominates and
becomes

Sinny = =&y (26)
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This identifies infinitesimal a,, with the infinitesimal
change of the background metric g,, under a diffeomor-
phism transformation. By a suitable gauge transformation
one can always achieve a;, = 0. This justifies the naming of
a,, as the gauge part of the metric gj,,.

Strictly speaking, the classification of physical and
gauge fluctuations is exact only on the linear level, e.g.,
for infinitesimal fj, and a,,. Beyond, the nonlinear
construction of the notion of a “physical metric” g,, is
more involved [46]. Beyond the linear level one would also
like to replace l_“,,p” in Eq. (20) by the connection formed
with the macroscopic metric g,v. Then this equation,
together with the first equation (19), guarantees invariance
of the effective action with respect to gauge transformations
acting only on g,v [46]. Linear fluctuations are sufficient
for the computation of propagators and field equations. We
therefore stick to the linear definition (16) and (17), leaving
nonlinear extensions aside.

Formally, we can obtain the physical metric fluctuations
by applying a suitable projector P\/),

fow = PO R,

h;w = g;w - gﬂll’ (27)

where the product includes a product in position space
fuls) = [ P ). @9
y

The projector P,%)” * is symmetric in 4 — v and p <> 7 and
obeys

P PO — P,
prPd) =0,  PY"D, =0. (29)

We discuss this projector in more detail in Sec. A as well as
in Secs. VI and VIII The properties (29) guarantee that f),,
is divergence free

D, =0, (30)

and invariant under the inhomogeneous gauge transforma-

tion &;yy. Indeed, applying P\) on the transformed fluc-
tuations yields again f),

PP('];)/)T(flpf+a;71_Dpéf_Drgp) :f;w (31)

The regularization of the functional integral is done by

using only the objects g, and a,, preserving the gauge

v
transformation 6; which acts on both objects. It will not be

invariant under the inhomogeneous transformation 35. We
note that 6; and 35 can be related by a “split transformation”

830w = Su» 050y, = —5,,, for the particular case

PHYSICAL REVIEW D 95, 123525 (2017)

Sy = &y + &y The split symmetry of objects formed
only with g,,, is broken by the regularization which involves
G, and a,,, separately. The regularized functional integral
employs gauge fixing

Z[Kﬂy;gﬂv] - /Dg;w][a//tuv g;/w] exp{_ng[a;”” %l’]}

x exp{—smnexp{ / a;ww}, (32)

X

with S, a gauge fixing term in the action and J{a;,, 7, ] the
associated Faddeev-Popov determinant. As usual, J can be
represented by a functional integral over ghost degrees of
freedom.

In the setting of the present paper we form covariant
derivatives and the source constraint (20) with the back-
ground metric g,,. For a fixed g, this maintains the
discussion of metric fluctuations within the standard
approach. In particular, the source term remains linear in
the fluctuating metric g,,. As a shortcoming of this formal-
ism T is covariantly conserved only with respect to the
background of the metric g,,, and not with respect to the
macroscopic metric g,, as one would like it to be.

One may wish to find a formulation where Egs. (18) and
(20) employ the macroscopic metric g,, which is the
argument of the effective action, such that for all g, the
energy momentum tensor is covariantly conserved. This
possibility is described elsewhere [45]. In this case g, may
be replaced by a dynamical macroscopic field g, e.g.

~_ OlnZz
I = g -

(33)

The source term is then no longer linear since g,v depends
implicitly on Z. As a consequence, Eq. (8) holds only for
infinitesimal f,,, while the general form of the physical
metric g,, receives corrections. In this paper we keep a
fixed g, different from g,,, and the present setting can be
viewed as an approximation to the formulation which uses
the macroscopic metric.

IV. QUANTUM EFFECTIVE ACTION

For the construction of the effective action we have
two options. The first one restricts the sources to those
obeying the constraint (20). In consequence, the effective
action will only depend on fields that couple to the
constrained source, i.e.,

g/w = <.@//4v> . (34)

These fields will be constrained according to

._a;u/ = gﬂl/ +f;4w f;w = < //,w>’ f/,w;” =0. (35)

123525-6



QUANTUM CORRELATIONS FOR THE METRIC

In this formulation the effective action contains no gauge
modes such that the second functional derivative I'®) is
typically invertible once projected on the appropriate space
of physical fluctuations. If a possible gauge fixing term
vanishes for g,, = §,,, it needs not to be included on the
level of the effective action. This is the option we will
mainly pursue in this paper. The second option considers
instead of the constrained sources K*¥ arbitrary sources
L*, and therefore arbitrary g,,. Then typically a gauge
fixing term is present in I'. One can subsequently project on
the space of physical metric fluctuations. If the gauge fixing
term is projected out by this procedure, it no longer appears
in the projected quantities. In our case we will see that the
two options are equivalent.

A. Effective action for constrained fields

Let us now formulate the effective action in the presence
of constraints on sources and fields. Our starting point is the
partition function (32) where we have indicated explicitly
that Z depends on the background metric g,,. This
dependence arises from the constraint (20) for K** which
involves the connection formed with g,,. Also the definition
of the split of g, into g, and a, involves g,,. It is
worthwhile to note, however, that for our construction the
background metric only enters indirectly through the pro-
jections on physical sources and fields, i.e., K* and
G = PL{/)PT% .- By construction, Z[K*; g, ] is diffeomor-
phism invariant if both K*” and g, are transformed
simultaneously. The invariant partition function is the basis
for the construction of the quantum effective action.

We first define the generating functional for the con-
nected correlation functions

W[Klw;g;w] - an[KW;g;w]? (36)
with
ow . .
W = <g;w> = Y- (37)

The second functional derivative W defines the con-
nected two-point correlation function (Green’s function,
propagator)

W (60y) = (Foel@) 5, (0)e
— (P (0, 00) = PN (L, 00). (38)

[Note that the background metric g,v in Eq. (23) drops out
in the connected correlation function.] Below we will
identify the correlation function W with the propagator
for the physical metric fluctuations.

In Eq. (37) the expectation value g,, obeys the same
constraint as J,,, namely
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.@/u/:y =0. (39)

(Recall that this constraint is not trivial since covariant
derivatives are formed with g,, ). Due to the presence of the
constraint (39) we can invert Eq. (37) and obtain the
constrained source K* as a functional of g,,.

We can make the constraint (38) more explicit by
employing the general decomposition

_ I _
9w = G + bm/ + Zagﬂl/ + Vuw + Vup + 27;/41/' (40)

With

1
b)Y =-—-0,0,

H w 4/4

bt=0, v, =0, (41)

the constraint (39) is realized for
7=0. (42)

Indeed, we have chosen the basis (40) such that for v, = 0,
7 = 0 one has g,,.” = 0, according to Eq. (39). Due to the
restriction (20) for the sources, which corresponds to a
conserved energy momentum tensor, no “gauge part” of g,
is present. The metric §,, contains therefore only the
“physical excitations” around the background, namely
b,, and o, while v, and 7 are set to zero,

1
f;w = b;w + Zag;w' (43)

The effective action obtains by a Legendre transform

C[93 Gu] = =WIK*: g + / gukK",  (44)
X
with K*[g,,; g,,] obtained by solving Eq. (37). As usual,
one has the exact quantum field equation

or
Gy

— Km = %\/ET””. (45)

Our setting is realized by considering I as a functional of
S (as well as g, ), while W depends on sources K*v that
correspond to 7# in the general decomposition (6). We will
work within an approximation where I is a gauge invariant
functional only of the metric g,v. This can formally be
achieved by setting g,v = g,v in Eq. (44). Gauge invari-
ance permits us to drop the explicit constraint on g,v since
the I' is independent of the gauge fluctuations. We can
therefore consider well-known approximations to the
effective action as the Einstein-Hilbert action. A justifica-
tion of our approximation and a detailed discussion of the
issue of diffeomorphism invariance can be found in Sec. B.
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B. Expansion around a cosmological background

Let us consider some particular “physical source” K*v,
that corresponds to a homogeneous and isotropic energy
momentum tensor 7*v,. Examples are radiation or dust in
cosmology. We choose the background metric such that for
the physical source Kj" the field equation is obeyed if

9w = Guv»

or
A—gvzgv =Ky, 46
(0= 1) = K (6

General (inhomogeneous) sources can be written as an
expansion around K*v,

K'v = K'vg + AK . (47)

We consider small AK*v such that linearization is valid. We
may expand W around Kj,

W =wo ¢ / G, (X) AK™ ()
1
by [ ARG )AR ) e (48)
x Jy

with W and W depending on K}". Equation (37) reads

ow

m = gﬂl/ + f'ul/ (49)

and comparison with Eq. (48) yields
Fulx) = / Wiipa (x. ) AKP (y) 4= (50)
)7

This equation expresses the response of the metric to
sources in the linear approximation. It involves the metric

correlation function W),
As an example we may consider Einstein gravity in flat
space with K¥vy =0 and g,v = n,v. A small

AKY(y) = S m5'(y) (51)

may represent a static test mass m or a star at position
y = 0, with 7% = m&*(y). For the component f, Eq. (50)
reads

i
Foolt.x) = 5m / Wigo(r.x:7.0). (52)
t

Thus the correlation function Wé%))oo is related to the
Newtonian potential

PHYSICAL REVIEW D 95, 123525 (2017)
m
8xM?|x|’
(53)

1 im 2
P =—3In= __/ Wono (1. %: 10) = —
2 4 ),

The linear relation (50) accounts for the response of the
metric to arbitrary small “perturbations” or inhomogeneous
sources AK*v. For this purpose the cosmological back-
ground K*v; and g,v is arbitrary. The relation (50) encodes
one of the central properties of the metric propagator.

C. Expansion in physical metric fluctuations

For a given background metric g,, we can expand the
effective action in terms of the physical metric fluctuations
fuw- Expanding in second order in

G (54)

yields

r=ro / O (), (x)
1 / (TR ) f () - (55)
2 )y uv ’ po

with T©, M), and T depending on g, and obeying
I (x) = K5 (x). (56)

An expansion of the quantum field equation (45),
combined with Eq. (46), yields in linear order

/ T (3 (3) + - = K9(x) — K2(x)
y

= AK™(x). (57)

Comparison of Eq. (50) with Eq. (57) shows already that
the metric correlation function is related to an appropriately
projected inverse of I'?). This relation will be discussed in
the next section.

Both K" and AK* obey separately Eq. (20). Thus

Eq. (57) yields a constraint on I'®),

/ (82” ]"(2)/41400(x7 y) + f‘wﬂ (X)F(Z)n/pa(x’ y)>fpa(y) =0,
y
(58)

where higher orders in f,, are omitted.

The formulation of the effective action in terms of
“physical metrics” obeying a constraint, due to the use
of constrained physical sources, may seem somewhat
unfamiliar. In Sec. A we relate this formulation to the
more common approach with gauge fixing. It corresponds
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to the limit of an infinite gauge parameter f that enforces
the constraint f,,.” = 0.

V. CORRELATION FUNCTION

In this section we discuss the defining equation for the
correlation function, namely the exact propagator equa-
tion (3) based on the second functional derivative of the
effective action. For the Einstein-Hilbert action with a
cosmological constant we display the inverse propagator
both for unconstrained metric fluctuations h,, and for
physical metric fluctuations f,, .

A. Propagator equation

We may interpret the second functional derivatives I'?)

and W® as matrices. They obey the usual matrix identity
rowe =i, (59)

that follows directly from the defining relations for I'. In
position space this reads

/ P (x W, (y.2) = B¥y(x,2),  (60)
|

where E*; is the unit matrix in the space of appropriate
functions. For unconstrained #,; the unit matrix reads
EW = %(8:64 + 8,84)5(x — z), while in the presence of a
constraint for f,, it becomes the projector P, which
obeys the defining relations (29). Equation (59) is the exact

“propagator equation” for the Green’s function

2
G e (x.7) = W2 (x,y). (61)

In the presence of a constraint on physical sources and
fluctuations we recall the connection (38) to the two-point
correlation function.

If '@ contains time-derivatives Eq. (60) is an evolution
equation which describes the time dependence of the
Green’s function. Typically, I'® is of the form

PHYSICAL REVIEW D 95, 123525 (2017)
T@wr7 (i, y) = 5(x — y)T@Here (y), (62)

where ["(2mre (v) contains derivatives with respect to y. The
resulting propagator equation reads

LB (X)G (X, ¥) = By (x, ). (63)

B. Inverse propagator for unconstrained
metric fluctuations

We will next assume a simple form of I" based on an
expansion in the number of derivatives. The first two lowest
invariants are given by

v [ va(v-"5 kg (64)

Expanding an unconstrained metric g,, = g,, + h,, in
second order in /,, one has

| a1 1
(P =7 (§ h? — Zhﬁhﬁf), (65)

L (=/1, 1 _
(9°R) ) = 3 _%{R <1 =3 hﬁhﬁ) — R*hhy,

+ hh., — hhi, + 2R } (66)
with
Rioy = Rhy Hy + Wy, + WRLP
g+ W) = 5 % e+
— W H, + B b, — % hth,,. (67)

For unconstrained 4, the second functional derivative of
the effective action (64) is given by

2
DO = 20 G5 + PG - 254D + G (DDP + DIDY) + g (DAD 4 DDA
— (#D*D* + FPD*D* + FEDPD¥ + 3FDPDH) + R(G5* - 703 - 3°3”)

+ 2(RPGT + R g™ + R + Rg) — 2(R™ ™ + R g™)} + % Vi@ gy -gvgd  —-g"g7).  (68)

Applying a suitable projection of this operator in Eq. (63)
constitutes the basic equation of this paper. Correlation
functions are obtained as solutions to this differential
equation with appropriate initial values.

We can take account of the constraint to physical metrics
in different equivalent ways. One method projects the

|
second functional derivative (68) onto the space of physical
metrics. A second one inserts the constraint fy., =0
already into the expansion of I'. If the physical metric
fluctuations f,, are expressed in terms of independent

fields one can directly obtain I'® in the space of these
fields by functional variation. While the second method is
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often technically simpler, we will also use occasionally the
first method in order to make the role of projections
apparent.

C. Physical metric fluctuations

According to the second method we directly investigate
the effective action (64) in quadratic order in the physical
metric fluctuations f,,, f5., =0, i.e.,

1 M2 1
I, = / {V(gi)(z) - (QER)(z)} =1 +1. (69)

In Sec. C we decompose I'; into parts from the trace and
traceless metric fluctuations. This decomposition simplifies
considerably if we restrict the background geometries to the
ones with a vanishing Weyl tensor,

1%

F(2V) _ R/ 91/2(62 _ 4b’wbw),

M? 2 3
FéR) = ?/ g]%{bﬂ” <—D2 +§R> b/w -+ ZUDZG}, (70)

where D> = D,D* and

_ I _
sz;wg/w’ b,uu :f;w_zagﬂw
v v 1
b, =0, by, = —Zaﬂa. (71)

Due to the last relation the trace ¢ and the traceless part b,
are not independent.

A decomposition of f,, into independent fields can be
done as

f;w = [/w + S (72)
where 7, is traceless and divergence free
t,7" =0, ty, =0, (73)
while s, is a linear function of &

Sy = S‘Wo, (74)

with

>
|
>

S,7" =1, D*S,, =0,

©v

This entails the relation

I T (76)

Hv nv

with

PHYSICAL REVIEW D 95, 123525 (2017)

1

_ y 1
= S — Zogm,, Sy = —Zaﬂa. (77)

Ut

Hv

The construction of the operator S 4w needs, however, some
care due to the noncommuting properties of the covariant
derivatives. It is not unique, since we can always add a
divergence free and traceless tensor to s,,. A

For important simple cases we can easily find S,,.
Consider geometries with a constant curvature scalar,
6”1_6 = 0. In this case we can choose

S = (§,D*-D,D,+R,)3D*+R)"". (78)
Indeed, one has

D*§,, = ([D,. D*| + D,RY) (3D + R)~!
— (D,R! —R!D,)(3D* + R)™!
= Rl,(3D* +R)™' =0, (79)

where we use the commutator relation (acting on a scalar)
[D,,D? = —RﬁDM. (80)
The Bianchi identity R}, — d,R/2 = 0 implies R}, for

geometries with constant R. The other two relations (75)
are easily verified. One infers

N (.
S =— DMDV_ZD G

_ (RW - %Rgﬂy)} 3D+ R)lo.  (81)

D. Inverse propagator for physical metric fluctuations

The inverse propagator for the physical metric fluctua-
tions can be extracted directly from the expansion of the
effective action in second order in f,,. We therefore
compute I'; in terms of the independent fields 7, and o,

=Ty +1 1. (82)
For the transversal traceless tensor 7,, one finds

2
o M, 2. 2V
0 =-= g\ (D2—§R+W fu.  (83)

X

while F(;) and tha) are computed in Sec. C, given expli-

citly by Egs. (C25) and (C26). The mixed term T\ is
proportional to
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/gl/Zﬂwgﬂy _ /gl/ZtMvRMD(3D2 +R)—16. (84)

X

It vanishes for R,, = ¢, .
o

For the computation of I';” we need

D% :—{D DD —1D4g —i—lRng
)24 " v 4 y7% 12 Uy

1- - _ _
—ERDI,D,,—2RWD2—|—2RﬁDpDU—|—RL’DpD”
B _ 54 » 15 2. py-1
—-R DpD,lg,w—ERm Dp—Q—ER,,;,,Dp (3D*+R)'o.
(85)
Here we use the commutator relation
[D?, Dﬂ]Dy = RﬁDpr - 2Rﬂp/DpD,1 - Rﬂpyﬁ;le (86)
and assume a vanishing Weyl tensor.

E. Propagator equation for maximally
symmetric spaces

We next specialize to geometries with

1._ -
R, = ZRgW, 9,R =0, (87)

where the r.h.s of eq. (84) vanishes and

D%, = {lD‘*g - D,D,D? +1RD2g
)74 4 v u“v 6 %

2 i}
- gRD”D,,}(_%Dz +R) o, (88)

We conclude that for such spaces the fluctuations #,, and o

decouple
r{” =o. (89)

Geometries with vanishing Weyl tensor and obeying
Eq. (87) are maximally symmetric,

R ,_ _ _
Rﬂpyﬂ = E (gﬂvgpi - gﬂlgbp)' (90)

They describe de Sitter, anti-de Sitter, or flat space.
For maximally symmetric spaces s, simplifies

- | —
Sﬂu = _<D/4DU _ZngﬂU> (3D2 + R) lG. (91)

One finds

PHYSICAL REVIEW D 95, 123525 (2017)
1 _
/Q%EWEW = 1/ §'?6D*(3D*> +R)"'e  (92)
X X

and

| 2 .
/gl/ZgﬂDDZEMU:Z/gl/ZUDZ <D2 _|_§R) (3D2+R>_10'.

X

(93)

This yields the scalar part of the quadratic part of the
expansion of the effective action,

2
0 M -1/2 2, 35\ 2 4 2, 1

Iy =— D-+—-R |D*+— | D-+=R
2 4[9 "{( T3 tae\P s

x (3D? + R)"'o. (94)

For background geometries that solve the field equa-
tions, e.g., R = 4V /M?, this simplifies further

0 _ M gl/za(D2 +3R)’

ri? — 5.
2 T ), D2+1iR ¢ (93)

1
3

Correspondingly, F&”

M? 1.
r{) = -5 / g'/2 <D2 —8R> Ly (96)

The corresponding second functional derivative T') is
block diagonal in the fields 7,, and o.

For maximally symmetric geometries obeying the field
equations the correlation functions for 7, and o,

takes the form

Gittv/)r(xv y) = <t/w(x)tp1(y)>cv
G7(x,y) = (o(x)a(y)) (97)

obey the propagator equations

M?> R
_T\/.a(Dz _g) GLtDpT(X, y> = P;(ttu)/n(xay),

U

(98)

where D? acts on the variable x and the first two indices
(uv) of Gj,,.. Here P projects on i
1 (¥) = PR (X)),
P plrr — plre. (99)

124 aff

The full Green’s function obtains as
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Gﬂ]/p‘[ (x7 y) = G;ltl/p‘[(x’ y) + S}ll/ (X)S',DT (y)Gaa (‘x’ y) ° (100)

The projector P;(fp)p “ obeys the defining relations

DR =0, P =o. (101)
In terms of the projector P\/) given by Eqs. (27) and (29) it

obtains as

pLr = P _ Pl (102)
with
o)pT o =a flpt
Pﬁw)p =Owd ﬂPé[J?p
P h, = 3,0 (103)

One verifies the conditions (101), while the projector
property of P follows from the projector properties of

PY) and P©. (For the latter we use P S,e=38,

VI. METRIC CORRELATION IN FLAT SPACE

In this section we discuss the metric correlation function
in a flat space background. This has the advantage that all
projections can be made in a simple explicit form, and D?
becomes a block-diagonal differential operator. The flat
space correlation function describes the limiting high
momentum or short distance behavior of the metric corre-
lation in an arbitrary background geometry. This holds in the
range where terms involving the curvature tensor can be
neglected as compared to the squared momentum.

For a noncompact space as Minkowski space a unique
specification of the Green’s function involves boundary
conditions. They are typically set at some initial time, that
may go to minus infinity. We do not discuss here the general
solution of the evolution equation for the propagator [18].
We rather impose Lorentz symmetry on the correlation
function which fixes it uniquely, if the effective action is
taken to be the Einstein-Hilbert action, cf. Ref. [18]. We
concentrate in this section on the “on-shell propagator” for
which the background metric obeys the field equations. Fora
flat background the cosmological constant V in Eq. (64) is
therefore set to zero. The off-shell propagator in flat space,
with V # 0, will be discussed in the next section.

In cosmology one is often interested in the time evolution
of the propagator which we display explicitly. For more
general geometries the correlation functions are best
formulated in dependence on conformal time 7, i.e.,
G = G(n,1'). The flat space conformal time 5 coincides
with Minkowski time z. For easy comparison with the
following sections we use # as time argument. The propa-
gator equation amounts to a differential equation for the time
evolution. The explicit form of the time-dependent metric
correlation function (200) in three-dimensional Fourier

PHYSICAL REVIEW D 95, 123525 (2017)

space constitutes for arbitrary geometries the “initial value”
for n > —c0, 7' & —oc0 and small |y —#/|. Indeed, for
geometries close to de Sitter space, as appropriate for
inflationary cosmology, the flat space correlations describe
the limiting behavior of the metric correlations for |kn| > 1,
|kn'| > 1, |k(n—1n')| < 1, with k the comoving wave
number. For fixed k and initial values set at minus infinity,
the flat space correlations are therefore well suited as initial
conditions for the evolution toward larger # or 7. For the
propagating modes these initial conditions are equivalent to
the Bunch Davies vacuum in the operator formalism for free
quantum fields.

The Lorentz invariant flat space metric propagator is
known since a long time, see for example Ref. [47]. We
describe it nevertheless in some detail in this section. The
reason is that several important characteristic features of
our approach to compute the correlation function of the
physical metric fluctuations from the inversion of the
second functional derivative of the effective action can
be seen very explicitly in flat space. A first point concerns
the use of “mode functions” as familiar in cosmology.
Mode functions are solutions of the linearized field
equations for fluctuations. In cosmology, the propagator
is often constructed as the “square of mode functions.” We
discuss the applicability of this procedure in Sec. VIII and
find that the on-shell correlation for the propagating modes
can indeed be expressed in terms of mode functions. For the
metric, this applies to the graviton, i.e. the traceless
divergence free tensor mode. For the scalar and vector
parts of the physical metric fluctuations the mode functions
vanish while the propagator differs from zero. It is therefore
important to understand the origin of the scalar and vector
parts of the metric correlation. In flat space this can be done
in a straightforward way. Related to this issue is the role of
the gauge invariant Bardeen potentials. For this purpose we
display explicitly the propagator for the different repre-
sentations of the rotation group.

A second issue concerns the relation between the use of
constrained physical metric fluctuations and a procedure
with unconstrained metric fluctuations and explicit gauge
fixing. For a particular “physical gauge fixing” the two
approaches are equivalent. This can be seen rather explic-
itly in flat space. Functional variation for unconstrained
fields and the corresponding evolution equation for the
propagator have to take the constraints properly into
account. This can be facilitated by the use of representa-
tions of the rotation group for which the physical scalar
fluctuations are unconstrained, while the constraints for the
graviton and vectors take a time independent form.

A. Inverse propagator
For Einstein gravity [V = 0 in Eq. (64)] the expansion
of the effective action in second order in the
metric fluctuations is given in flat space, g,, =n,, =
diag(-1,1,1,1), by
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iM2 uv N2 2 uv P uv
Iy = ——g | (#“D?hy, — hD*h = 20 Ry, + 201",

X

(104)

In four-dimensional Fourier space we can replace
Ay = iqy, g, = (—0.k), g, = (0.k), D* =—¢* =—q"q, =
®* — k2, such that

1

! / by ()T ()R, (q). (105

r, =
272

where [, = [d*q/(2x)*. The second functional derivative
reads
[ri(q, q') =T (g)(g - ¢').  (106)

with

A g2
r@wert(g) = % {(n" 0™ + 0™ = 20" ) g
+ 207 g+ 2 P g
- q"q" + g q" + " q " + 0" q'q’)}.
(107)

and 6(q —¢') = (27)*6*(q, — q},)- Acting on the gauge part
of the metric fluctuation, a,, = i(¢,a, + q,a,), one has
rmweg, = 0. (108)

We introduce the projector on “transversal components”,

= 99"
Pﬂp:&ﬁ_ﬂ—z’ (109)
q
obeying
Pﬂpql) =0, Q”P;/) =0,
Pl/’Pp” = Pﬂ”, P, =P, P, =3. (110)

We can write I'@ in Eq. (107) in terms of this transversal
projector as

M2 q2

r@wer = 24 g PP PP 2P (11)

B. Projector on physical metric fluctuations

In flat space we may define the projector on the physical
part of the metric

PHYSICAL REVIEW D 95, 123525 (2017)
Fuw =P Ry,
¢'P" =0, Piq. =0,

Pl(lf/l)pf — Pl(/i)pf — /(lf)rp‘ (1 12)

T Ao Ao
P PR = P

The projector is diagonal in momentum space,

P (q.4) = P (@)d(a—q),  (113)
and we will often omit the S-function for simplicity of
notation. The projector on physical metric fluctuations has
a simple expression in terms of the transversal projector,

P = (PP, + P, D). (114)

N[ =

The orthogonal projector P,(Z)/” projects on the gauge

fluctuations and obeys

P h, = ay,. (115)
It is given by
a)pt 1 T T ) pt
Pl =L oo ooy i
=—4NSG+puov)+(por). (116
where
1 1
N/ ===8+>759,9". (117)
¢ 24"
With
i 9.9
a,=-— 6 -5 )@y (118)
7 ( 2612> ’
and
Auy = i(Qﬂazx + qua/l)
1 . . 499"
) (qﬂéu + qua/l - 2 qphpf (1 19)
q q
one easily verifies Eq. (115).
The explicit form of P(@ reads
a)pt 1 T T T T
Pl — 7 (9.9°6; + 9,95, + 4,975, + 4,976,)
1
~ AW (120)

From there the explicit form of PY) obtains easily as

123525-13



C. WETTERICH

PUVT = (8055 + &580) - P (121)

| =

C. Correlation function

The Green’s function for the physical metric fluctuations
takes the form

Gpm/l(q7 q/> = <pr(Q)fa/1(_q/)>c
= PR (@) e () (=4) PY ™ ().
(122)

It vanishes when contracted with ¢”, g%, ¢'° or ¢'*. The
defining propagator equation (63) reads

F(Z)/wpr P(f)ﬂl/

prod —

oy (123)
The propagator on the r.h.s of Eq. (123) corresponds to the
unit matrix in the space of the physical metric fluctuations

fuw(q). From Egs. (123) and (111) we infer the propagator
equation

iM?

TAMDPT(Q)Gpral(q7 q/) - P<f)lw6/1<Q)5(q - q/)? (124)

where
T s Hut F Huv F
A;wpr(q) — ? (PM/IPM + PﬂrPV/) _ 2PMDP/)7) (125)
obeys
PO, (q)Am(q) = A%P"(q).  (126)
We impose translation symmetry in space and time

G/)‘mﬂ (Q7 q/> = G/)‘mﬂ(Q)é(q - q/)’ (127)

such that for every g we have the matrix-type equation
AMDPT(C])G/)T{)’/I((']) = (128)

The solution reads

2 ~ o~ - - .
G/)mﬂ = _Mqu (P/JGPT/I + P/)APm - Pptpaﬂ)
2%
== que, q (7],06771'/1 + NpiMee — np1’70/1>

- qz(’?,m‘]f‘h + Ne24p496 + Mp149:96 + NMeedp4

—~ Npelod) = No29pq:) + qpqrqm}- (129)

It is manifestly Lorentz covariant, with both sides of
Eq. (129) transforming as appropriate tensors. The
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ingredient that makes the inversion of I'® unique is
four-dimensional translation invariance.
The components of G are

Co 2k
0000 M2q6 P
2iwk’k
G000 = ——5—F—»
000 M2q6
2i [k? Kk, k
Gnono = _12 {_45mn - rg n}’
M= \q q
G2 {k25m,, ~ ks kzkmk,,}
mn00 M2 q4 q6 ’
2iw 1 k k,k
G = =" 8k + Sk — Opnky) — ——L 5
mnp0 M2 {q4( mp™n + np™m mn ) q(, }
2i (1
Gmnpq = _W ? (5mp5nq + 5mq5np - 5mn5pq)
1
= 1 Onpkaky + Ougknky + Oy + Bpkink,
k, ek, k
- 5mnkpkq - 5qumkn) + qu}’ (130)

with all other components obtained by appropriate index
permutations using the symmetries of G. For fixed k,, we
observe that the divergence for > — k> can be up to g~°.

D. Irreducible representations of Lorentz symmetry

In flat space the irreducible representations of the
Lorentz group are given for f,, by a scalar ¢ and a
traceless divergence free tensor 7,,,

1 -
fﬂl/ = t;w + Zanﬂu + Suv

~ 1 9uqy
S, = (E”’“’ - 3”q2>0, (131)

with 7, traceless and divergence free,

6= fu

#h =0, gty = 0. (132)
This is a special case of Eq. (91). Using
1~

fuw =ty + S =ty + nga (133)

one has S‘W = i’ﬂy/3. Contractions with the transversal
projector obey the simple properties
P*t,, =0, P“f,, =o. (134)
The metric correlation (129), (130) can be decomposed
into contributions from the different irreducible Lorentz
representations. For the scalar part we infer
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1
G/u//rr = §PﬂDP[)TG ’

G = P'"P"G = MéTiqz ~(o0)..  (135)
Here (00), symbolizes the relation
(0(q)o(=q))c = G"6(q = q). (136)
The mixed term vanishes
G!7 = G ppy P — %IBI,TG”" =0, (137)

and similar for G§;. The transversal traceless correlation
function therefore reads

1~ =~
G/tttup‘r = G/wpr - §P;wppr(m
2i ~ S 2. -
:_Mqu ﬂvar+PﬂfPVP_§Pﬂvaf )

~ (Gl - (138)
These Lorentz invariant Green’s functions correspond to
particular solutions of the propagator equation (98).

We may employ the projector on the traceless and
divergence free part of the metric fluctuations,

Py, = %(iﬂ”ﬂi)w +P,.P,) - %PWP,,T. (139)
It obeys
Py = 1,
PPy = Pl (140)

In terms of this projector the Green’s function reads

4 o
Gl o =———=Pup. 141
17 MR (141)
We also use the projector on the o-mode
o 1~ -
P/(ll/)p‘t' = gp;wppr (142)
with
P/SB)T - /(fy)p‘r + P/(l{:—/,)(n (143)
and
P/(d?pfhpr = Syy' (144)
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In terms of this projector one has

oo 2i (o)
G;wpr = quz P/wpr- (145)
We observe the relations
P"(lty)/)rp'sjé)ﬂ(r _ P;(gty)}m,
Pl(;l)'/)pr/()j;)ﬁa _ P,(ZMU,
PP = 0. (146)

The metric correlation function (129) can be written in
terms of the projectors P) and P(%) as

- 4 (o0 1o
Guvpr = Grupr + Glipe = — M3 <P uept = EP ppt | -
(147)

Similarly, the second functional derivative (107) obeys

iqur2

T @uepr —
4

( pOupr _ o p(v)/wpr).

(148)

Using the projector properties (146) one verifies easily that
Egs. (148) and (147) obey the propagator equation.

E. Irreducible representations of rotation symmetry

With respect to the subgroup of space-rotations the trace
o transforms as a scalar. The part 7,, can be reduced to
tensor, vector and scalar components, y,,,, W,, and «,

wk,,
top = K, tmo = W BRPRLS
@
Lun = Ymn — p (kan + knWm)
2 2 2
q 5mn 2k — 3q
k,k , 149
+<2k2 T Kk Jre o (199)
with
8" =0, K"y =0, k"W, =0. (150)

We further decompose the metric correlation function into
contributions from different representations of the rotation
symmetry. This will be useful for the matching with more
general geometries that represent homogeneous and iso-
tropic cosmologies, but no longer exhibit Lorentz symmetry.

For the scalar part of the transversal correlation function
we define

G = Gy = Gy = — oK (151)
0000 0000 3M2q6

~ (KK) .-
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The scalar contribution to other index combinations of the
transversal traceless correlation function (138) can be
obtained by employing relations of the type

Ghooo = (fir’:())tg)l(())% = <’;(1:())’<>c

(152)

with t% the part in ¢, proportional to k. This yields

- wky, . Biwk’k,,
Ghiooo = T2 = W’
" @’k k, - 8iw’k,,k,
mon0 — k4 = 3M2q6 5
2 2 2
q 5mn 8k” — 3q
KK 0 = kk, |G, 153
mn00 ( 2k2 + 3k4 mtn ( )
and similarly for the other components.
The transverse vector component obtains as
G%}Zo = Ghom0 = Ghono = G
2i
= MTq;; (kzémn - kmkn> ~ <WmWn>c’ (154)
while
ww @ ww ww
Gonpg = = (kyk, Gy + kyk, G,
+ k,,kpG,"XqW + knqu,v,‘l’I‘,’V)
2ik?
= MTq4 (Bmean + BmBanp
and
Gl =BGl + B,GHY
2ik?
:W(B,nan + B, Qnp)- (156)
Here we employ the three dimensional projector
kﬂlk}’l
Omn = 5mn - 77
Zanan = Qmp?

We also introduce the shorthand
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wk,,
-

B, = (158)

For the objects carrying only space indices as Q,,, or B,
we will raise indices with 6™, such that QU =2,
OB, =0 etc.

We can write the decomposition of 7,,
and B,

in terms of Q,,,

tmo = Wm + BmK',

q2

Lan = Ymn + BmWn + BnWm + (W

an + BmBn> K.
(159)

This simplifies the explicit representation of particular
components, as

2

4
KK — q q
Chinpa = {4k4 QnnCpq + 22 (QunBpBy + BBy Qpy)
T BmBanBq}GKK‘ (160)

The transversal tensor part can now be extracted as

vy — ot ww KK
Gmnpq - Gmnpq - Gmnpq - Gmnpq
2i

= _Mqu(quan + quan - anqu)
~ <7mn7pq>c' (161)
We observe that G, vanishes if at least one of the indices
equals zero, and G, is nonzero only for the index
combinations (uvpr)=(m0n0),(mOnp),(mpn0),(mpnq),
with permutations according to the symmetries y — v,
p <> 7,and (uv) < (pr). All mixed terms vanish, such that
Gupe = Gogpe + Gt e + Gl + Gl (162)

It is straightforward to verify this by a direct computation.
The different pieces of the Green’s function can also be
obtained from Eq. (141) by the use of suitable projectors,

Pyl = Pl + Piagk + P, (163)
with
4i
Gﬂllz T = _—P(J:/)T’
Hwp PEPER
4i (W)
G,%%VT = _quz Puupe,
KK 4i (x)
G/wpr = - quz P;wpr- (164)
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The projector on the graviton mode

PP =

(0RO + 010 — 0, Q") (165)

N[ =

obeys
Py, = v PP = P (166)
and

PIOQ,, =0, POk, =0.  (167)
As for Q,,,, the indices of Py pq are raised and lowered with
8", 8. All components pf P") with at least one index
equal to zero vanish.

The projector on the vector part obeys

2

Plonpg = —2k—q2 (BB, vy + BB, Oy
+ BB pQmg + BuByQup)s (168)
and
(W) K>
Prnpo = s (B Qnp + ByOup) (169)

with similar components obtained by index-symmetries.
One also has

(W) W) _

k2
PmOnO = _2_qumn’ PE,mOQ =0, (170)

while the components of P") with three of four indices
zero vanish. One verifies the relations

Pty = W,
POt = B, W, + B,W,, (171)
as well as the projector property
PP 4 P (172)
and the orthogonality
PP —0, PP —0.  (173)

Finally, the projector P®) can be extracted from Eq. (163),
employing Egs. (168), (169), (170), (166), and (140). It is
orthogonal to P} and P(") and obeys P*))> = p(¥),
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F. Effective action for physical metric fluctuations

So far we have computed the correlation function by first
deriving the form (107) of r® for arbitrary metric
fluctuations 4, and subsequently inverting it on the space
of functions f,,. The resulting Green’s function was then
decomposed into irreducible representations of the sym-
metry groups. One may also proceed more directly by
inserting h,, = t,, + s,, directly in I';, decomposing into
irreducible representations, taking functional derivatives
with respect to these independent representations and
performing the inversion at the end. We briefly show here
that the two procedures are equivalent.

We first employ that the pieces for 7,, and ¢ decouple
in Fz,

r,=ry +1%, (174)
with (t,,(=q) = 1,,(q))
iM?
) =5 [ o
q
iM?
-5 [ e coraa 07)
q
and
s IM?
rf =5 [ @ sul-05(0) = o-0ata
q
iM?
~ -5 [ det-ata) (176)
12/,

Variation with respect to the independent fluctuations 7,
and o yields

'MZ 2
rg =-=4 (177)
6
and
o 'M2 2
T = =4 plowr (178)

These expressions are easily inverted. The corresponding
correlation functions G°” and Gj,,, coincide with
Egs. (135) and (138).

For comparison it is also instructive to decompose f,,
into a trace and traceless part

1
h/,w = bm/ + 10-7//41/ =+ Ay = f;w + Qs

1
buq" =—~0q,. (179)

nﬂ”bﬂy = O, ]
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One finds

T @)uepr By = T @)uepr (bm 4 %an7>

iM? 3
=E 8+ (g =S oy (180)
4 4
and therefore

r= 5 [ @ [putop o - Jat-ge@)]. 81

One should recall, however, that b,w is not unconstrained,
cf. Eq. (71), such that the o-propagator cannot be obtained
by variation of Eq. (181) at fixed b, .

G. Effective action for scalar, vector,
and graviton modes

We can further decompose Fg) into pieces corresponding

to the irreducible representations of the rotation group,

ry =ry + " +ry. (182)
With
v mn 2q2 m 3q4
tﬂutﬂ =7 Vmn _FW Wm +2_]€2K2 (183)
one obtains
o _ M @) g
== ar (=q)Pmnpar™(q),
q
W iM? " .
Y = -0 [ W mwiia)
q
g2
(x) 3IM / 6
' = q°k(=q)x(q). (184)
16k* J,

The corresponding pieces of the second functional deriva-
tive are

a2 2
[‘i,lz,)m”l’q = _lM q PrJmnpq

'MZ 4
FE}‘%)‘)";’" — _l q an
2k?
2 3iM2q6
ey = o (185)
The Green’s functions G, GV, and G"” follow by simple

inversion and coincide with Egs. (151), (154), and (161).
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H. Gauge invariant Bardeen potentials

The physical metric fluctuations f,, ory,,,, W,,, k, and ¢
are “gauge invariant” in the same sense as the well known
Bardeen potentials, i.e., that they are not affected by an
infinitesimal diffeomorphism transformation of g,,. It is
instructive to express the scalars ¢ and « in terms of the
“gauge invariant” Bardeen potentials [9] @ and W, and to
employ the gauge invariant vector fluctuation

Ty, (186)

The correlation function for €,,,
4 .
oo _ 4 sww _ 2

Gmn _chn - M2k2

is independent of . This shows that €, is not a

propagating degree of freedom, but rather a constrained
field.

The Bardeen potentials are given by (cf. Sec. D)

Qun ~ <ngn>c (187)

7 1
(D:WK—’_EG’
2012 2
g (k" =3¢°) 1
‘“P:4—k4K+60, (188)
such that
4%
K_—4((I)—lP),
3q
2
6=— [kz‘I’ + (3q2 - k2)®]. (189)
q

The correlation functions for the Bardeen potentials read

bb q* 1
G :16k4G +%G =0

Yy _ q4(k2 - 3q2)2 GKx + iGaa
16k8 36

i 347 i 3w?
e\ o) T T )

4(k2 = 3¢7) 1 i
Gd)‘P — G‘P‘l) — q ( G*x — G = .
16k° * 36 2M%k?
(190)

G

Again, the propagator matrix in the (®,¥)-space has no
pole for k # 0 such that ® and ¥ are not propagating.

The fact that the Bardeen-potentials are not propagating
implies that their mode functions vanish in the absence of
sources. This does not imply that the correlation function of
the metric in the scalar and vector channel vanishes, as
obvious from our explicit computations. This simple
finding tells us that correlations functions cannot always
be constructed as products of mode functions.
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I. Time-dependent correlation functions

For cosmology one needs the metric correlation as a
function of time. More precisely, the correlation function is
bilinear in the fields and therefore involves two time
arguments. The power spectrum of primordial fluctuations
is given by the equal-time correlation function where the
two time arguments coincide. In general, geometries
relevant for cosmology do not show time translation
invariance. Correlation functions are specified by initial
conditions. Under many circumstances these initial values
can be given by the Lorentz-invariant correlation function
in flat space. This holds if the relevant momentum of the
mode is much larger than all geometric scales given by
curvature etc.

For the time translation invariant correlation in flat
space G only depends on the difference of the two time
arguments. Starting from the Green’s function in four-
dimensional Fourier space derived previously, the depend-
ence of the correlation function on time obtains by a Fourier
transform

GM—#k%=/”@%%mw>

oo 2T

G(w.k). (191)

Here we use the symbol # for conformal time in view of
later comparison with a homogeneous and isotropic back-
ground. (For flat space with @ = 1 one has t = 5.) The time
translation symmetry is reflected by a time dependence
only involving the difference # — . Analytic continuation
replaces @ — (1 + ie), ¢*> — k* — w* — 2iew?, and the
determinant /g = i(1 + ie). We define the w-integration
as the limit ¢ — 0 of the analytically continued integra-
tion. This fixes the integration contour around the poles
of the propagator. (See Ref. [18] for a motivation of this
procedure for the context of cosmology.) For example,
one has

i 0
_/_ze—zw(n—n’) — —lim/
w{q e—0 P

1
— _ o—iklp—1|
2% ’

dwi(1 + ie)e~ =)
2n k* — 0* = 2iew?

(192)

where [ = [dw/27 and k > 0. We infer from Eq. (161)
the flat space graviton propagator

vy ()
Gmnpq - GgraVPmnpq7

(193)

2 i /
Ggrav<k, ;77 ’1/) - me"k\ﬂ—ﬂ ‘.
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The Fourier transforms of ¢~* and ¢~° follow from

_/%g—lw(r/ ") — 1 8/ e~io-n')
09 " 2k0k Juq

1
4/{%[ + ikl —n/|Je=*n=11,(194)
and
i 10
_ —iw(n—n') — —iw(n—-1')
/uq66 4kak/ ¢
3 k2 )
1+ ik = o=ikin=1|
16k5[ +ik|n—1'| (n i)
(195)

(We omit in these results a factor exp(—e|n — #/|) that will
be needed for a well defined transformation from three-
dimensional Fourier space to position space.) We infer the
scalar correlation functions

3
GO = ———_ —ik|n— 17\
M2k
G** = 1 1 k k2 N2 | ,—iklp—n'|
e +ikln =il =5 =) |e .
(196)
and the vector correlation
G — = Lo 11 ikl — e M. (197)

- 2M%k

We observe the negative value of the equal time correlation
functions G°* and G"V.
We also may employ the relation

/ of (o, k)e7 1) = ig, / flw, k)e~®0=1)  (198)
One infers the Fourier transforms

D iwln—n (77_’7/) —ikln—n
A?e (n 11):_76 Kln=n'|
[ Gt =D g (199)
v’ 16k3

This allows us to compute all components of the full metric
correlation (129) and (130), e.g.,
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8M%k
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3 . k2 ' /
Goooo = 55 {1 + ikl — ' - ?<’1 — ') | e~ ki,

ik, (n—1n' , ikl

Gnooo = _S(Tk) [0+ ikl — '[Je~ %=,
| , 1k, k,

Gono = _W{Q”’"[l + ikl — '] T

1 , k, k,
GmnOO = M{(l + lk|’1 - 77/|)6mn - 4k2

i(n—n')

GmnpO = m {5mpkn + 5npkm - 5mnkp -

1 1
Gmnpq = m 6mp6nq + 5mq6np - 6mn5pq - 27](2

- 5mnkpkq - 6qumkn)(1 + lk|’7 - 77/|) +

As a check, we may compute the Newton potential from
Goooo = W((J?OO according to Eq. (53). From Eq. (200) one
obtains

2i

T (201)

/, Goooo(n —1'. k) =
n

The three dimensional Fourier transform yields indeed the
familiar form (53). We can also relate the Newton potential
to the correlation functions for the Bardeen potentials using

22, 5
and Eq. (190),
4k6 2 ~PY 2 ~PY
GOOOO = 3 (k G —2w°G ) (203)
q

This demonstrates in a simple way that the correlation
function for the Bardeen potentials cannot vanish.
The equal time correlation Gy is positive,

3
Goooo (k. 1, 11) = 5+ (204)

SM%k’

while we observe negative values of the equal time
correlation in the vector channel, e.g.

9

- 2

5mnGm0nO(k7 n, ’7) =

The correlation functions (200) show discontinuities at
n = n'. Applying n-derivatives may produce singular terms

14 K=o+ 20y = ] e
[5(1 + ikln —n/]) + (n - n’)zl}e‘”‘”‘”/,

kik,k . ikl
4k2 £ (l +lk|’7_77/|)}€ Kin ’7|,

(Ompknky + Opgkmky, + Spmgknk, + 8,pknk,

3k, kk ke, K2

el 1k = = (=) e 200

|
~6(n —n'). For first and second derivatives one finds that
the only such term arises from

sin, 2i
al%G'(;"Pg; == W <5mp5nq + 5mq5np - 5mn5pq)5(’7 - ’7/)'

(206)

We also note the “secular” increase of G for increasing
| — #'|. This is essentially due to the presence of projectors.
Equation (123) is an inhomogeneous second order differ-
ential equation. The projector on the r.h.s. shows itself
secular behavior.

Indeed, the projector on the physical metric fluctuations
does not vanish for # # 7,

PO (k,n,n) = / emwt=) P (w,k).  (207)

[0

For example, the component P/)% is the Fourier trans-
form of k*/q*, e.g.,

'k o
P(f)OOOO _ lz[l + ikly — n/ue—zk\rl—fl I (208)

It shows a secular increase for large | —#'|. For n > %/
one has

ik?

(02 + k2) PO = > e~ ik(n=1')

(82 + k2)2P)%, = 0. (209)

Only expressions as (95 + k%)(97, + k*) PO (') or
(82 + k*)2PU)% (1, 1") are proportional to 8(17 —17').
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J. Propagator with gauge fixing

So far we have discussed the correlation function for the
metric by restricting to the physical metric fluctuations and
employing the corresponding projector P/) in the propa-
gator equation. An equivalent description of this correlation
function can be found in a gauge fixed version if the gauge
fixing enforces vanishing gauge fluctuations, a,, = 0.
(This does not hold for arbitrary gauge fixing.) For our
purpose we may employ the gauge fixing

1 [_
Lyp = 2ﬂ/ 91/2hZ;uh’”’;p

:i /q 44" (@) e (q). (210)
and take the limit f — 0 at the end.

In the presence of gauge fixing we can consider uncon-
strained metric fluctuations #,,. The metric correlation is
defined for arbitrary £, and depends, in general, on the
gauge fixing. The gauge fixing (210) adds to I'® in
Eq. (107) a term

i
" = A AR K

(211)

The propagator equation has now the unit matrix on the
r.h.s. and no longer a projector

1
2 2)\uvpr _ T T o
(F;h) + F}(;f) )ﬂ ’ G/)mﬂ - 5 (5;/:51/ + 5,452) (212)

Here Ff}? is given by Eq. (107) or (111). The operator
ré = F(z}g +F(? can be inverted on the full space of

p g
arbitrary metric fluctuations.

For the solution of Eq. (212) we make the ansatz

— Pl gf
G/}‘mﬁ - Gpnrﬂ + ﬂ G/)‘m’l7

(213)
with GP" given by Eq. (129). With

rycr =0 (214)
Eq. (212) becomes

i

T T 2)uvpt f
5 (@@ +q"q" ) + AT | G

pToA

B8 + 8'8y) — PUm,, — plaw

N =
—~

‘ -

(44,85 + 49,6, + 4" q;65 + 4" 4,85)

[\
[S)

q

_4"9"9,9;
6]4

(215)
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The solution reads

f i
Grgs = — 7 <qpqafm + ooy + 4y 20

3
440 = qquqm) : (216)
and obeys
2 ~
;)G =o. (217)

In the limit # — 0 the contribution from G#' to the metric
correlation (213) vanishes. We recover the result based on a
formulation in terms of constrained physical metric
fluctuations.

We can decompose a,, into two representations of the
Lorentz group, a divergence free vector ¢, and a scalar d,

a,=c,+ a,,d, a”cﬂ =0,
Auy = i(QﬂcD + qvcy) - qﬂql/d' (218)

For this purpose we may employ projectors

1
d .
P = ?qﬂqpq”q :

P/(jzi/)prhpr = _QyQud’ (219)
and

L1
PR = o (9,9"6; + 4.9, + 4,9°5 + 4,475,

2
Al 79"
P hye = i(guc, + 4,6,)- (220)
They obey
plorepldic o plarr = plorr 4 plder (201
In terms of these projectors we may write
)
F;?)/wm _ % (P(Owpr 4 pldppr), (222)
and
G4 = —; (P,S‘;%T + %P,S‘iﬁ) ) (223)

Using the orthogonality of the projectors the propagator
equation (212) decays into four separate equations for the
Lorentz representations #,,, 6, ¢, and d. For arbitrary f the
propagator equation for G, is given by Eq. (123).
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VII. OFF-SHELL METRIC PROPAGATOR

In quantum gravity one needs the effective action for
arbitrary values of the metric, at least in the vicinity of the
final cosmological solution. This permits to get the
response to arbitrary conserved sources by Eq. (45).
Functional derivatives of the effective action yield field
equations, inverse propagator, and interactions. It is not
sufficient to evaluate I" only for a given cosmological
solution. A computation of the effective action for quantum
gravity is an off-shell problem, and one therefore needs the
off-shell propagator for the metric fluctuations.

If one employs the exact flow equation (1) one may use a
given cosmological solution for the background metric that
is used in the definition of the constraint on physical metric
fluctuations or the physical gauge fixing, as well as in the
definition of the IR-cutoff R;. This cosmological solution
refers to k = 0 or some fixed value k(. Evaluating the flow
of I', for metrics equal to the background metric will
involve the on-shell propagator only if k = kj. During the
flow with k # k, the propagator G, will be off-shell. For
k # ky the on-shell propagator would correspond to sol-
utions of the field equations derived from I'y + AI';, where
AT’ contains the cutoff term [1]. These solutions differ
from the solutions of the field equations derived from I’y .
The flow equation therefore involves the off-shell propa-
gator even if we evaluate it for a solution of the field
equations derived from I’y .

At the end one is interested in on-shell quantities as the
power spectrum of fluctuations which can be extracted
from the on-shell propagator. It is therefore interesting
to understand how the particular properties of on-shell
propagators arise within the extended space of off-shell
propagators. Our approach treats off-shell propagators and
on-shell propagators on equal footing. In this section we
explicitly discuss the off-shell metric propagator in flat
space. It obtains by admitting V # 0 in the action (64).

Expanding around a flat background in the presence of a
nonvanishing cosmological constant V adds to I, in
Eq. (104) a term

1,1
") = iV/ <§ - Zh,’jh}ﬁ) .

In turn, this supplements a constant piece to the second
functional derivative

(224)

'V
F(Z)Mupr _ lZ (’/Iﬂl/n[)T — gyt — ;71”;7”/’)_ (225)

V)
In momentum space this piece adds to Eq. (107).
Applying the inverse propagator on the gauge fluctua-
tions yields

Vv

) Gpr = E(Q”a” +q'a =g an"). (226)
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In contrast to Eq. (108) the off-shell inverse propagator is
therefore no longer acting only in the space of physical
fluctuations. For constraint physical metric fluctuations, or
for a “physical gauge fixing” with @ — 0, we therefore have
to project on the physical fluctuations. This is most easily
done by insertion of the decomposition

h/w = f;w + Ay

I - .
= t/w —+ gaP/w + l(‘]uay + LL/”#) (227)
into Eq. (224),
v) ot 1, u
F2 =iV ﬂ_ztﬂb—i_Av s (228)
with
1 , o 1,
Ay = Z(qﬂa”) + 561#61” + 4 a,a". (229)

The projection on the physical metric fluctuations elimi-
nates Ay. In the gauge fixed version this is achieved by
enforcing g,a, + q,a, = 0 through the gauge condition.
The projection on physical fluctuations replaces 4, by f,,

in Eq. (224). This results in multiplication of F§,2> in
Eq. (225) by PY) from left and right.

Combining the part for 7,, in Eq. (228) with Eq. (175)
one recovers Eq. (83). Correspondingly, the second func-
tional derivative (178) is extended to

2
(Quvpr _ M 2 2V vpT

F” H = T <q _W P<I>” P . (230)

Similarly, the combination of the o-dependent part in

Eq. (228) with Eq. (176) is consistent with Eq. (94).

This modifies the second functional derivative (177),

.M2
== <q2 v > (231)

6 T 2M?

For the representations of the rotation group Eq. (230)
can be taken over by using the decomposition (163) of the
projector P(). Correspondingly, the off-shell correlation
functions G77, GV, and G** obtain from their on-shell
counterparts (151), (154), and (161) by multiplication with
q*/(q* —2V/M?). For G°° the multiplicative factor is
q*/(q* — V/2M?). The index structure and k-dependence
arising from the projectors remains unchanged.

These simple observations have important consequences
for quantum gravity. For V < 0 the negative cosmological
constant acts like a mass term for the graviton, with mass

given by \/—2V/M?. Tt provides for an infrared cutoff
for the graviton fluctuations. In contrast, a positive
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cosmological constant V > 0 makes the graviton fluctua-
tions tachyonic. The negative mass term —2V /M? leads to
a strong infrared instability. This concerns the momentum
modes with ¢> ~ 2V /M?>.

One infers that the on-shell metric propagator has a very
special place in the space of metric propagators. It is located
at the boundary between stable and unstable behavior. The
particular property that the graviton is massless is realized
only on-shell.

The case of a positive cosmological constant is
of particular interest. We concentrate on the graviton
propagator, where for GV = Ggra\,P(}’> one has now in

Fourier space
4i (, 2V\-!
"\ Tm2)

The Fourier transform (191) to position space in time,

Ggrav = (232)

e_i(” (n=")

4i
G - /7k = "7 ?
grav(rl n ) M2 L k2 _ 2V/M2 - 0)2 — 2i€0)2

(233)
obeys
2 =ik(V)ln—n| 22V
o {Mlk(v)e for k= > e 234
grav 2i _r o ) oy’
R € W=l for k* < 2%

where
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k(V) = y/|k* =2V /M?|.

One may check that G, obeys the propagator equation,
which reads for k> < 2V /M?

(235)

iM?> -
M52 RV G () = 80— ).

) (236)

The solution (234) is not the only solution of the
propagator equation (236). For k*> < 2V /M? another sol-
ution is

2i

_ V)=l
M?k(V)

Ggrav = (237)

This solution grows exponentially with | — #/|, instead of
the exponential decay in Eq. (234). The general solution
can be constructed from mode functions w* that obey for
k* <2V/M?

(05 + K (V))wo(n) = 0. (238)
We normalize the mode functions according to
wit(n) = [2k(V)]~1/2eFinl4 £k Vn, (239)

Taking into account the symmetry of the propagator one
finds for the general solution to the propagator equa-
tion (236) (for k* < 2V/M?),

Goray (k. 1.1') = Gopay (ko' 1) = % {cx wi w0 =n') +wi ™ (m)wi ()00 = n)]

+ e g mwi ()0 = 1) +wir (mw ()00 = )] + di [wi ()w™ () + wi™ (m)wi (n')]

+ d [wi (Mwi () +wit (mwi ()] + e wil (w (') + e~wi (mwi* (') }.

The inhomogeneous term on the r.h.s of Eq. (236) yields a
constraint for the coefficients,
cp Fef =1 (241)
The other coefficients are free. Time translation symmetry is
obeyed for e™=e¢~=0. The solution (234) corresponds to
¢, = 1, with all other coefficients vanishing, while Eq. (237)
is realized for ¢;” = 1 as the only non-vanishing coefficient.
Finding the ‘“correct propagator” amounts to an initial
value problem [18], with Gi,, (k) an “initial correlation”,
typically given for’ — —co, 7 = —oo, with 77 close to 7. In
the approximation (64) for the effective action the coef-
ficients ¢, di, ef do not depend on 7 or 77'. Realizing the
correlation function (234) requires a particular initial value

(240)

|
for which only c¢; =1 differs from zero. In a more
complete treatment one expects that the propagator equa-
tion no longer remains linear [18]. For V <0 this may
induce an approach to the correlation function (234) for
rather general initial conditions. For V > 0, k* < 2V/M?,
however, the nonlinearities typically induce nonzero dif.
Even if ¢;; remains one (and c,j therefore zero), the parts
~di are exponentially growing and will overwhelm the
exponentially decaying part ~c; . At the end the exponen-
tially growing parts will win. For nonzero exponentially
growing parts no Fourier transform to momentum space
exists—this is the reason why the growing parts do not
appear in the Fourier transform of Eq. (232).

In a quantum gravity computation an exponentially
growing unstable propagator would lead to huge uncon-
trollable effects. It seems therefore plausible that quantum
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fluctuations act in a way such that the quantum effective
action does not lead to this type of unstable propagator.
This may be achieved by strong renormalization effects
for V.

VIII. MODE FUNCTIONS IN HOMOGENEOUS
AND ISOTROPIC COSMOLOGY

In this section we turn to the discussion of the metric
correlation function in cosmology. We assume a homo-
geneous and isotropic background geometry with vanishing
spacial curvature. For the propagating graviton the general
solution of the propagator equation can be described in terms
of mode functions. The normalization of the correlation
function is only restricted by the inhomogeneous term in the
propagator equation—no explicit quantum field operators
and associated commutation relations are needed [19,18].
The mode functions coincide with the solution of the
linearized Einstein equations only in the case where the
background geometry obeys the field equations. For
the vector and scalar modes contained in the metric the
propagator equation cannot always be solved by mode
functions.

A. Metric fluctuations for homogeneous
and isotropic cosmology

A homogeneous and isotropic background metric with
zero spatial curvature can be written in the form

Hn) = Olna(n) ’

o (242)

G = @ ()1

with 7 conformal time and a(#) the scale factor. Analytic
continuation can be easily implemented by admitting a
complex phase factor for 7y, such that 5y, = —1 for
Minkowski signature and 7, = 1 for Euclidean signature.
We will assume that # extends from —oo to +o0, as typical
for realistic cosmologies. We also assume that boundary
terms can be neglected in the sense that partial integration
for #-dependent functions can be performed.

For certain limiting cases as de Sitter space the scale
factor may diverge at finite 7, e.g.

(243)

In this case one may formally patch a de Sitter geometry
with increasing a” for 7 < 0 to one with decreasing a? for
n > 0 by taking the limit ¢ — 0 for

1 1
2:7 H:—
a H?(n —ie)?’

e (244)

Since the propagator equation is local in # and the correlation
function is fixed by initial values for a differential equation,
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this formal continuation does not matter for the correlation
function for arguments 7, 1’ obeying |n/e| > 1, |’ /e| > 1.

It is convenient to perform a Fourier transformation in
the three space dimensions, e.g.,

3

) = fulnx) = [ 55

eikxf;w(”]?k)’ (245)

and similar for other fields. We assume space-translation
symmetry of the correlation functions. The propagator
equation can then be decomposed into separate equations
for each k-mode.

For a homogeneous and isotropic cosmology the scalar
covariant Laplacian reads explicitly

D?6 = —a™%(9; + 2HO, + k*)o, (246)

with k* = §""k,,k, = a*k"k,,. For the components of o,
one finds

o0 = (05 = HO,)o, GOm0 = ik (0, — H)o,

C.onn — _(kmkn + H(Smnan)o-' (247)

For a symmetric traceless tensor b,, one has Dzbw =

PR
b,/ . with

1
Dzboo == —? ((9% —_ ZHE),, - 28”7'{ - 8H2 + k2)b00
+4iH8 kb },
1
D?b,,o = - (92 = 2HD, — 20, H — 6H> + k)b,

+ 2iHk, b + 2iHE kb, ),
1

D*b,,, = - (02 = 2HO, — 20, H — 2H* + k)b,

— 2H28,unbo0 + 2H(ikyybyo + ik, b))}, (248)

The constraint f,,.” = 0 translates to the relations

1
(0, +4H)bY) + ik, by = —4—18”5, (249)

or

2
. i a

lkj(‘)‘]lbﬂl = —Zaﬂﬂ + (6,7 + ZH)bﬂo (250)
This can be inserted into the first two equations (248).
Relations for the action of D? on traceless divergence free
tensors 7, can be computed from Eq. (248), cf. Sec. IX.

The nonvanishing components of the curvature tensor,
Ricci tensor and curvature scalar read
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__n
ROmOn - a2 9009mn»

HZ
Rmnkl = ? (gmkgnl - gmlgnk)’

Ry = _3871H’ Ry = (ZHZ + aﬂH)émn’

6
R :;(HQJF&,H). (251)
Equipped with these relations one may try to solve the
propagator equation for homogeneous isotropic geom-
etries. The complications of this task arise from the mixing
of different components, e.g., in Eq. (248).

B. Mode functions

In cosmology correlation functions are often assumed to
be a product of mode functions. These mode functions are
solutions of the linearized Einstein equations or suitable
generalizations. The normalization is then provided by free
quantum fields in an appropriate vacuum. Given our basic
formulation of the correlation function as a solution of the
propagator equation we can investigate systematically the
conditions for this ansatz to work or fail.

Space-translation invariant Green’s functions take in
Fourier space the form

Gp‘m/l (777 k; 7]/1 k/) - G/Jrﬁ/l(k’ , '7/)5(k - k/)’ (252)
where
Gpm/l(rl?k; ﬂ/,k/> - / e_i(kx_k/y)Gpm/l(nﬂx;n/’y) (253)
Xy

and 6(k — k') = (27)*8*(k — k'). Similarly, for a homo-
geneous background metric g, (1,x) = g,, (1) the operator

I'® is diagonal in momentum space,
ey K'sn. k) = T (ke n)d(k — k). (254)

For our purposes it can be written as a differential operator
D, acting on n [cf. Eq. (68)]

F(2)Mvo6(k, n.n) = 8(n— W/)D’(‘:)M(k). (255)
The propagator equation (59) takes then the form
Dzl'l;)pr(k) G/’To'/l (kv n, 77/) = E”Do'/l (k, n, ;7/)7 (256)

where the Fourier transform of E*;(x,y) is given by
E* ., (k,n,n)5(k — k). This is a system of independent
differential equations for each value of k. Rotation sym-
metry imposes further constraints on D, and G.

If the inhomogeneous term in the propagator equation is
proportional 5( —#’) we can solve this equation in terms
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of mode functions, as we will see below. For the physical
metric fluctuations E*,(k,n,n’) is given by the projector
PUYm (k,n,n'), which does not necessarily vanish for
n # 1, cf. Eq. (208). (An exception is the graviton mode.)
If the homogeneous term is not proportional to 5(n — ') an
expression of the propagator as a sum of products of mode
functions is, in general, not possible. Examples are the
correlation functions (200) in Minkowski space which
cannot be represented as simple products of mode functions.

For solving the propagator equation in terms of mode
functions we have two options. Either one works with
unconstrained metric fluctuations and includes in D, a
gauge fixing term as described in Sec. A. In this case the
mode equation reads

uvpt
Dy by

=0, (257)

where the definition of D, in Eq. (255) includes the
contribution to I'® from the gauge fixing term. As an
alternative, one may decompose the physical metric fluc-
tuations into unconstrained representations of the rotation
group. For some representations, the propagator equation
may take the form
D, (k)G(k,n.n') = 8(n—1'). (258)

Here D,y and G are N x N matrices with N the dimension
of the representation, and we have not written explicitly the
unit matrix on the r.h.s.. For rotation symmetric correlation
functions different irreducible SO(3)-representations do
not mix and can be treated separately. (There may be,
however, several representations of the same type.) The
dependence ~&(n—1n') of the inhomogeneous term in
Eq. (258) does not follow from the decomposition itself
but needs particular properties.

We next construct the solution of the propagator equation
in terms of mode functions. For this purpose we assume a
propagator equation of the type (258). For n ## the
differential equation (258) is homogeneous. The (general-
ized) mode functions w(®(k,5) are a set of linearly
independent solutions of the homogeneous equation

D, (k)w® (k,n) = 0, (259)

such that the most general solution to the mode equation
D, (k)w(k,nn) =0 (260)
can be written in the form

wilkn) =D cq(k)w (k.n). (261)

A given mode function w(® is a N-component vector and
Egs. (259) to (261) are vector equations. For purely real or
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imaginary D, the functions w(@* also obey Eq. (259) and
we can equally well expand the general solution of
Eq. (260) in terms of w(®*,

We will next show that the general solution of the
propagator equation (258) can be expressed in terms of
the mode functions as

Gulk.n.if) =3 {das (k)i (e p)w!" (k. ) O(n = ')
ap

+ d (k)W e, )w? (e, ) O = 1)}
—iFg(k,n)6(n—1n"). (262)

From Eq. (259) one infers D, G(n,n') =0 for n #n'.
(This shows that the mode function ansatz (262) cannot
work if the inhomogeneous term in Eq. (256) differs from
zero for n # n'.) The coefficients d,z(k) will be constrained
by the inhomogeneous term in Eq. (258) and by sym-
metries. They can be viewed as a Hermitian matrix

5 (k) = dop (k). (263)
The Green’s function is symmetric,
Gk, n,n') = G (k.. n). (264)

For n # 1 it can be written as

Glk.n.n') = G (k.n.n')
+ G (k,n.n) (0 —n') — 0 —1n)). (265)

with G¢) and G@) symmetric and antisymmetric, respec-
tively. Furthermore, the reality condition implies that for
Minkowski signature both G*) and G® are Hermitian.
Thus G is real and G'®) purely imaginary. This implies
eq. (263). For 5 # 1 both G**) and G(@) obey separately the
homogeneous equation

D, (k)G**(k,n,n') = 0. (266)
Using Eq. (264) this implies a similar equation for the
dependence on %’

Dy (k)G (k. n.1') = 0. (267)

It is now straightforward to show Eq.
Equations (266), (260), and (261) imply for n > #’

(262).

Gylk,n,n) = Equlle )W\ (kom),  (268)

where ¢,, are N-component vectors for each a. Using
Eq. (267) we infer from Egs. (260) and (261)
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Caslloon) = dygl)w (kof).  (269)
p

This establishes Eq. (262) for 7 > 7. The behavior for ' <
n follows by Eq. (264). With Eq. (263) we conclude for
F = 0 that the real part of G is continuous at 7 = 7/, while
the imaginary parts jumps.

We next turn to the inhomogeneous term in the propa-
gator equation (256). We concentrate first on Fi = 0. The

operator D, contains a factor /g = ia* and can be written

as D,y = iD(R), with p® a real differential operator. The
(n) () )

inhomogeneous term on the r.h.s of Eq. (256) is real. It is
therefore related to the behavior of the purely imaginary
part of G, as given by G'?). Indeed, this imaginary part
shows a discontinuity at # = 7/, cf. Eq. (265), which can
produce the inhomogeneous term. In contrast, the propa-
gator equation for the real part G*) is homogeneous for all
n and /. We conclude that G and G'*) obey separate
propagator equations

D,G =0,

D, {G“sign(n —1')} = 8(n —1). (270)
The linear equation for G*) does not fix its amplitude,
allowing typically for a large variety of solutions of the
propagator equation. The correlation function will therefore
be uniquely determined only once boundary conditions are
specified. The issue has been discussed extensively
in Ref. [18].
As an example we consider an operator of the form

D, = iA)[D2 +2C(n)d, + B()),  (271)

with real functions A(n), B(#),C(n). The equation

D {G 9 (n,n)0(n—n") =00 =)} = 8(n—n') (272)
is obeyed for

i

(9,1G(“) (7]”7/)"7:'7/ = —m (273)

Differential equations of this type apply for operators of the
type (68), whereby the functions .4, B, C may differ for the
different SO(3)-representations contained in £, (see later).
For the graviton the normalization of d,; inferred from
Eq. (273) corresponds to the normalization following from
the commutator relations for free quantum fields. On the
level of the quantum effective action it is a direct conse-
quence of the basic identity (59) and only involves proper-
ties of “classical fields.” No operators and commutation
relations are involved in our formalism.

For an operator D, containing two n-derivatives the
general solution of the mode equation (260) involves two
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linearly independent mode functions for each component of
the vector w,. They can be related by complex conjugation.
For irreducible representations of the rotation group the
solutions are degenerate and related by symmetry. Our
boundary conditions, that can be related to properties under
analytic continuation [18], typically admit only one inde-
pendent mode function for each irreducible representation.
If we restrict the setting to the physical metric fluctuations
the differential operator D, will typically admit more than
one independent mode function for a given irreducible
representation. The sum (262) can no longer be written as a
product of a given mode function w(i7)w*(1’). An exception
is the graviton for which D(,) remains second order.

The most general solution of the propagator equation
may also contain a term —iFy5(n —n'). This does not
contribute for  # #/, but it can contribute to the solution of
the inhomogeneous equation. A simple example is

1

Fst:m

5st7 (274)

where A(n) contains no n-derivatives, e.g. A(n) = k°.
If A(n) has no zero, the mode equation D(y)w =0
has only the trivial solution w = 0 such that for # # %’
GY) = G@ =0. The propagator (262) therefore only
involves the term —iFy6(n —#'). It cannot be written as
a product of mode functions or a sum of such products.
More generally, the contribution of F to the inhomo-
geneous term is
—iD)[Fo(n—n')] = f(n.n)é(n —n').  (275)
We conclude that the use of mode functions for the
correlations of the physical metric fluctuations is more
involved than for a single scalar field (or the graviton).
Mode functions can only be employed if the inhomo-
geneous term is ~5(y — '), as realized for unconstrained
fields. Expressing the propagator equation in terms of
constrained physical fluctuations typically leads to higher
order differential operators D(,. Due to the appearance of
projectors the inhomogeneous term is often no longer
proportional 6( — 7). As a consequence, it is not possible
to use mode functions directly for constrained fluctuations.
An alternative possibility for the use of mode functions
may be the explicit use of gauge fixing. Once a solution for
the propagator equation is found in terms of mode functions
for unconstrained fields, the projection onto constrained
physical fluctuations is responsible both for the higher
derivative terms and the deviation of the inhomogeneous
term from the J-distribution due to the appearance of a
projector. Still, the issue remains rather involved. The
operator I'® mixes the different components of h,, and
one expects the presence of a large number of different
mode functions in the sum (262).
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Finally, even for an inhomogeneous term ~&(n —1#')
sums of products of mode functions are not the only
possible solution of the propagator equation. There can be
additional terms in G which are proportional to 5(i — ')
themselves. These terms (~F) cannot be expressed as
products of mode functions. For nonderivative forms of
D, without zero eigenvalues, the solution G ~ 6(17 — /') is
the only solution of the propagator equation.

C. Mode functions with gauge fixing

One possibility for constructing the correlation function
from solutions of the mode equation employs an explicit
gauge fixing term

l = 14
Ly = ﬁ[ gl/zhu;uhﬂp;p- (276)
This adds to T'® as given by Eq. (68) a term

2)uvpt 1 =L Ap DV DT —up T

Féf)ﬂ pT —@\/5_]{9’”1) D' + ¢*D"D
+#TDYDP + FDEDP), (277)

= 2

re =re 4+ (278)

In the limit # — O the second functional derivative I'? is

. 2
dominated by ngf).

For and understanding of the structure of the mode
equation T®#rep =0, we split

h/w = f/w + a;w

fut =0, a,’ =A (279)
For our choice of a physical gauge fixing the leading order
mode equation

F(Z)MD/)Tfpf =0

of (280)

is obeyed for arbitrary physical metric fluctuations. For the
“gauge modes” a,, the leading order mode equation

r a, =0 (281)
implies
Ay + Ay, =0, (282)
or
4,0, + !, = 0. (283)

For a homogeneous and isotropic background one has in
Fourier space
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1 sk

Ay =——5 (0, +H)ay + 2 (ikjary — Hajy),
1 51](

Aj = ——2(8,1 + 2H)Clj0 + i?k,ajk.

Q

(284)

IS

The condition (282) reads

(8,7 - H)AO — 0,

The first Eq. (285) is solved by

Ay = a(n)co(k), (286)

while for A; one has

(8,7—27'[)14 +A0 :07

Combining Egs. (286) and (287) one obtains for k # 0

Discarding the special case k = 0 we conclude that the only
solution is

A, =0. (289)

The remaining leading order mode equation for the
vector a,,

D?*a, + D*D,a, =0, (290)
obtains from Eq. (284) by insertion of a,, = a,., + a,.,.
By virtue of Eq. (280) the full mode equation becomes

=0,  (291)

= 2)uvpt
T @nvpr ( f/ﬂ +a pT) + I_‘éf)l‘l// Apr

with T®#7 given by Eq. (68). One set of solutions
corresponds to the physical modes f # 0, a =0,

r@f=o, (292)
while the gauge modes, f = 0, a # 0, obey
2 | P2y, —
(Fgf +T¥)a =0. (293)

The most general solutions are linear combinations of the
solutions of Eq. (292) with solutions of Eq. (293). For small
f we can solve Eq. (293) iteratively
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a:a0+ﬂa1+---, Fg)ao:o,
[®ay + priya, =0. (294)

With Fg) ~ 1/ one infers that a; and a, have the same

scaling with . For f — 0 one can neglect the term ~fa; in
the solutions of Eq. (293) and we recover the leading
expression given by Egs. (281) and (290). For  — 0 the
general solution of the mode equation combines physical
modes w, obeying Eq. (292) with gauge modes w,
obeying Eq. (281).

Assume now that the propagator can be represented as a
product of mode functions,

G(n.n') =w=(mw* ()0 —n'") +wr(m)w= ()0 —n).
(295)

with

w(n) = wy(n) +wa (). (296)

Here wt and w™ are vectors in the space of mode functions
and G is therefore a matrix in this space, cf. Eq. (262). (An
extension to a sum of such products will be straightfor-
ward.) The propagator equation

T (m)Gnn') = 8(n—1) (297)

requires that w* has nonvanishing components w; and w; .

Multiplying from left and right with P\/) yields

PO 4 r?)(p(f) + P@YGPY) = PO, (298)
or, using P(f)l“g) =0,
PNT@ pANGIH + pT@ plagef = pif), (299)
with
G/ = PGP, G = POGPY).  (300)

The projected pieces G// and G involve appropriate
factors of wy and w, in the products (295), according to

Py, =0, Py, =w,. (301)
For  — 0 the part w, in Eq. (296) has to be ~f'/2 or

)
of
divergent contribution multiplying &(n — 7). Therefore
G“ < /P, and we end for f — 0 with the propagator

equation for constrained physical fluctuations

smaller, since otherwise the piece ~I',7 G would yield a
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(2) _ (2) _
;' =py Ty =P TOP,.  (302)
[This corresponds in the more abstract discussion of Sec. A
to Eq. (A15).] As a consequence, the propagator for the
physical fluctuations is expressed in terms of the mode

functions w ras

Gy = G (') = wi(mwi ()0 —n') + (n < ')
(303)

The mode functions w} are solutions of the homogeneous

equation (292), with T'® involving up to two derivatives
with respect to #. The higher derivatives in the inverse

propagator for constrained fields F}z) act on the product of

mode functions such that the inhomogeneous term of the
propagator equation for constrained fields,

o (304)
equals the projector PU/).

D. Linearized Einstein equations

The mode functions are usually associated to the
solutions of the linearized Einstein equations. If the back-
ground metric g, is a solution of the “background” field
equation this indeed coincides with the more general
definition (259). For background geometries not obeying
the field equations this simple coincidence is no longer
valid. We compute here the mode equations for the (con-
strained) physical fluctuations, assuming the effective
action (64). We recall however, that the resulting mode
functions in the scalar and vector channel cannot be used
for the construction of the correlation function.

For the effective action (64) the expansion of the Einstein
equation,

Ry =3 R0 =Ty (305)
reads in linear order in £,
Giyw = Ry — % (Rgw) 1y = #T(l)w,
Gy = %{hz;w + hgéﬂ/) - huv;p,, —hy,
- Rh,, — (0", — h?,— R"h,.)g,}. (306)

For the action (64) and in the absence of any further
contributions to 7, one has

Ty = =V (307)

Solutions of the background field equation relate I_{W to V.
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We may evaluate the mode equation (257) for physical
metric fluctuations f,,,

/ T (x, )£ () = 0. (308)

y

with T'® given in Eq. (68). This may be compared to the
solution of the linearized FEinstein equations (306) and
(307), also evaluated for h,, = f,,. We show in Sec. D that
the two equations for f,, only coincide if the background
metric obeys the field equations. Otherwise, the solution of
the mode equation (308) differs from the solution of the
linearized Einstein equation. The origin of this difference
arises from the relation of the first functional derivative
o'/ 8g,, and the Einstein equation, which involves a factor
g'?¢#?¢¥*. The linearization of the first functional deriva-
tive has to take this factor into account.

For a homogeneous and isotropic background (242) we
may further elaborate the linearized Einstein equation. For
a vanishing Weyl tensor C,,,,,, = 0 one has for the physical
metric fluctuations f,

L[> _ _ 4 _
G(l);w = 5 {2RZfzzp + 2R£fﬂ/) - R/wf - ngm/

1. _
+ ngg;w - fyv;pp - f;;w + f;ppg;w}' (309)

We next split f,,, = b,, + 63,,/4, according to Eq. (71).

3 1 1

Gy = §6§pp§/ﬂ/ - EGWV 5 by, »
_ _ 2 _
+ Rﬁbvﬂ + R'%W - gRb/w’ (310)
with
1
Glyo =5 5 (92 + 2HD, + 20, H — 8H? + k?)byo
1
+g (=05 + 6HO, + 3k*)o,
1
G(l)mO — z—az (5‘% - 28,77‘{ - 6H2 + kz)bmo
. by 1 1
+lkm <H? 53,70—5—17'[0),

1
Gty =53 {(92 = 2HD, — 60, H — 2H? + k?)b,p,
- 2H25mnb00 + 2/]—ll(kmbno + knme)}

1 1
- g (38% + 2H8,, + 3k2)5mn6 + Ekmkna' (311)

Here we recall that the covariant derivatives of b, and o are
related by Eq. (71).
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For the trace Eqgs. (311) and (250) yield

aZG,SL)Q”” = G1)mnd™" = G1)00
4
= ; <H2 - 8nH)b00 - ((9% + ZHan + kz)a.

(312)
In particular, for a de Sitter background one has 8,17{ =H?

such that Eq. (312) only involves 6. Also the trace of T ),
depends only on o

a*T (1), 3" = —a*Vo. (313)
For a solution of the background field equation,
a*Vv
the mode equation for ¢ therefore becomes
(07 +2HO, — 3H?* + k*)o = 0. (315)

The mode equations for the other components of the
metric are somewhat more involved. One first uses the
relation b,, =1t,, +5,,, Eq. (76), in order to combine
Egs. (306), (307), and (311) into a coupled system of
differential equations for 7,, and . Finding solutions of this
linearized Einstein equation will be facilitated if we
decompose the metric fluctuations into irreducible repre-
sentations of the rotation group.

E. Projectors

Projectors are needed for the definition of the constrained
fluctuations or for the projection of unconstrained fluctua-
tions onto the physical fluctuations. The projectors P/) and
P(@) on physical or gauge fluctuations are in Fourier space
functions of k,,, and involve a unit matrix §(k — k). They
depend on two time arguments 7 and 7/, e.g.,

/ PO (Vi) = an (). (316)
n
For P\@ we write, similar to Eq. (116),
P (1) = 2 DN, (1.1) DY,
p ; 2 PN )
fpontpon (1)

where Dy, acts on n and D,y on 1i'. The projector property

a)pt a)lo a)lo
[ P Bt = P ) (319

'7/

is realized if N,/ obeys
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(D2, + D*D,IN = &n—n).  (319)

Here the covariant derivatives act on 77 and are taken as acting
only on the index v, since p and 7 are contracted with 4,
in Eq. (316).

We can view N as the inverse of the derivative operator
D84 + D¥D,. In flat space one has

1 1
Ny ===
2D

7 D’D,,

(320)

but this form gets modified once covariant derivatives no
longer commute.

The projector on the physical metric fluctuations P/) is
determined by

NT 1 a)pt
P = 5 (850 + 5380) = P (321)
One verifies
Dtf,, = D*PL)"h,,
— (a)pz
= D*h,, — D*Py)""h,,
= hy, — (D8 + D'D,)A h,.* =0.  (322)

Finding the explicit form of the projectors is not expected to
be an easy task.

IX. MODE DECOMPOSITION

The solution of mode equations or the expression of the
effective action in terms of unconstrained fields is facili-
tated if we decompose the metric fluctuations into repre-
sentations of the rotation group. We proceed here to a
separate decomposition of the physical metric fluctuations
and the gauge fluctuations. The connection to other,
perhaps more familiar decompositions is established in
Sec. E. In this appendix we also display the relation
between the vector and scalar parts of the physical metric
fluctuations to the Bardeen potentials.

A. Decomposition of physical metric fluctuations
into SO(3)-representations

Similar to flat space, we decompose the physical metric
fluctuations into irreducible representations of the rotation
group SO(3),

fuw =ty + 8,6 =t,, + 5, (323)

with

123525-30



QUANTUM CORRELATIONS FOR THE METRIC

tOO = (12/(',

ik
Io = 2 |:Wm - lk_zm (871 + 4H)K:| s

Ln = 612 |:ymn - é (811 + 4H) (km Wn + knWm)

1 3k, k,
+ W ((9,7 + 4H)2 <6mn - T)K
1 k,, k
_ __mn 24
1 ()] -
and
YOt =0, K™ un = 0, KW, =0. (325)

This decomposition is consistent with 7, =0, 7, = 0,
b = 0,ifs,, = S’Wa is symmetric and obeys, cf. Eq. (75),

s 4 s8 =0,
(0, +4H)sh + ik,sf = Ho,

(0, + 4H)sS, + ik,sz = 0. (326)

The physical metric fluctuations contain a traceless diver-

gence free tensor y,,,, a divergence free vector W,, and two

scalars ¢ and k. The decomposition in the scalar sector is

not unique, since Eq. (326) has no unique solution.

Different solutions correspond to different definitions of o.
Two possible simple choices for s, are

ik
s(:)) =0, sfnlg) = —lk—;”azHa,
2
ny _a 3k, k,
Smn = ﬁ |:2kmkn + (5mn ;2
x (k* +HO, + 0,H + 4’H2)] o,  (327)
and
ik
s(()%)) =—d’o, s% = lk;z a*(9,+3H)o,
2
2 a 3kmk,,
S:(m)z = 52 ( mn T2 ) (8,1 +4H) (8,7 +3H)o. (328)
They differ by a traceless divergence free tensor
As = si) = 53 (329)

with
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ik
As,p= _’k_;"aZ(an +4H)o,

2 kn.k 3k, k 0, +4H
o=tk (5, Ve G0,

Asyy = a’o,

2 k? k? k>
(330)
which has the same properties as ¢, e.g.,
Ash, =0, Asp, = 0. (331)

The general solution of Eq. (326) involves an arbitrary
scalar field e with

S = st + s,

€ € km
=t o= S0, an
2 0, +4H)?
SE:), _ a_{é B kpk, | <5 _ 3kmkn) (  + H) }6.
2 mn k2 My k2 k2

(332)

The freedom in the choice of the decomposition associated
to € can be used in order to simplify the effective action. We
have already discussed in Sec. V a choice for maximally
symmetric spaces that makes I'®) diagonal. This choice
amounts to

(K2 +3H0, - 3H2)(3D> + R)'s,  (333)

1
€=—
a2

which entails for de Sitter space the relation

(k* + 02 + 6HO, + 12H*)e = —% (k* + 3HO, + IH?)o.
(334)

B. Effective action for graviton, vector,
and scalars in de Sitter space

Let us concentrate on the background geometry of de
Sitter space,

_ R_ vV 3HA_
R;w = Z ww — Wg;w = 79}41/’
1
H=-—=Ha, 0H=H- (335)
n

Here we have assumed that the background metric obeys
the field equations. For de Sitter space we will use the
definition (77), (91) for s,,. For a background geometry
solving the field equation the quadratic effective action
= th) +F§U) is then given in momentum space by
Eq. (96),
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MZ
ri) = - / at <D2——> fu.  (336)
8 o 6
and Eq. (95)
o M2 D> +1R)?
i == / a40*(2741_)0. (337)
12 s D> +1R

For the scalar ¢ the covariant Laplacian is given by
Eq. (246) and R is constant.
From Eq. (248) we infer the relation

R 1
<D2 - E) oo == (95 +2HO, + k*)too

= —(02 + 6HO, + 10H> + K*)x, (338)
and similarly
2 R 1 2 2
D —g tm() = —;(8,, +2Ha’7 ‘|‘k )(an)
ik
2350y (05 + 2HD, ) oo
=—(07 +4HO, +4H* + KW,
ik
+’k—;"(a,7+zm(ag+6ﬂa,,+ 10H2 4 k),
(339)

5mn
=—(07 +2H0, 4+ k)Y yun — 32 (05 +2HO, + k* )t
+ 1 kmkn 6mn
2a2k* \ k2 3
i

+—3(0, + H) (05 +2H0, +K)[a(ky W, + ki, W)

) (307 4 k*) (03 +2HO, + k*) 190

(340)

Solutions of the equation

R
<D2 —g> tﬂU — 0

imply that the three mode functions ty,, W,, = aW,,, and
Y. Obey all the same mode equation

(341)

(02 +2HO, + k*)w = 0. (342)

In the presence of a gauge fixing the vector and scalar mode
equations will have an additional source term according to
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Eq. (291). This will permit additional solutions with
a,, #0.

We next compute for a de Sitter geometry the effective
action for the physical modes. Inserting the expressions
(338)—(340), Eq. (336) decomposes as

ry =1+ 3" + 1y (343)
The graviton part reads
iM?
ng) 8 /k LY pg = O snOy¥ pg } PP
2
iM? .
_ ’? / @2y Dy POMP4 (344)
Here we use the shorthand
D =02+ 2H0, + k> (345)

The projector P is given by Eqgs. (165) and (157).
For the vector part one finds

.M2
r" = - 2reana,0mn, (346)
4 nk
with
1 .
Q, = 1 D(aW,) (347)

the gauge invariant vector fluctuation. Finally, the scalar
part obtains as

0 3iM? [ 1
R
16 Jyxa
where
D
p= P (aZK)‘ (349)

Comparing these results with flat space we find
correspondence with Eq. (184) if we set @ = 1 and replace

q2—>0%+27'l8,7+k2:ﬁ.

C. Decomposition for gauge fluctuations

The gauge fluctuations a,, = a,,, + a,., can be obtained
from a vector a,. We decompose a,, into two scalars a, and
r and a divergence free vector U,

a,, =ik, r+U,,

kmU,, = 0. (350)

This yields for a,,
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agy = 2Dgay = 2(&7 - H)do,
Ao = iky[ag + (0, = 2H)r] + (0, = 2H)U,,.
apn = i(k, U, + k,U,,) =2k, k,r — 2H8,,,a0,

"a,,, = —2k*r — 6Hay. (351)
The leading order mode equations for a,, r and U,
follow from Eq. (284) with A, =0,

(202 — 8H2 — 20, H + k*)ag + (9, — 4H)K2r = 0,
(0, +4H)ag + (95 — 4H* = 20,H + 2k*)r = 0,
(92 — 4H? = 20,H + k*)U,, = 0. (352)

X. GRAVITON CORRELATION

In this section we discuss the on-shell graviton propa-
gator in a de Sitter geometry. The graviton corresponds to
the traceless and divergence free metric fluctuations y,,,. If
the background obeys the field equations we recover the
standard results of perturbation theory for linear cosmic
fluctuations. This section therefore links directly the formal
concepts developed in the present paper to cosmological
observation and earlier theoretical work. The graviton
correlation can be constructed from mode functions.

The metric component corresponding to the graviton
obtains from a general metric fluctuation by a particularly
simple projection

h) = PY"h,,. (353)
The projector P7) is given by Eq. (165) if all indices are
spacelike and vanishes for all other index combinations. Its
time dependence is a simple unit matrix (s — #’). Indeed,
one has for arbitrary metrics of the form (242) the relations

D*hl}) = ik™hil),

D R = ~Hh". (354)
By virtue of the relations
kmpIPt =0, smpirt =, (355)
or
kmhi) =0,  &mhi) =0, (356)

one establishes that h,%, belongs to the physical metric

fluctuations, D"h,%) = 0. Furthermore, h,(ﬁ,?, is divergence

free and traceless. We can therefore identify h%}, = a*Y

The simple time dependence of the graviton projector P(*)
is the reason why the graviton contribution to the metric
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correlation is much simpler than those from vector and
scalar modes.

A. Evolution equation for graviton propagator

We first derive the general propagator equation for the
graviton correlation. The most general graviton correlation
is specified by initial values for the solution of this
differential equation. The effective action (344) for y,,,
involves only two time derivatives and one finds directly
the propagator equation for the graviton fluctuations

iM2a?

(3 + 2HD, + k) Gllupg = Plihpgd(n —11).  (357)

Rotation symmetry implies for a traceless and divergence
free symmetric tensor (k = |k|)

G}’/'{"PQ(k’ , 77/) = PSIZ)!PngraV(k’ , ’7/)' (358)
The function Gg,, obeys the evolution equation
i
(8,% + 2H8,7 + kz)Ggrav(k’ n.n') = —MTaz(S(’? -1).
(359)

It is the same as for a massless scalar. [This holds up to an
overall normalization factor 4/M? on the r.h.s. of eq. (359)
which could be absorbed by a rescaling of G,y

The propagator equation (357) can also be found by
projecting the inverse propagator (68) on the tensor
structure of the graviton. In Sec. C we decompose I'?)
into a traceless and trace parts. The graviton y,,, does not
contribute to the trace of the metric, = g**h,, = 0, nor
does it contribute to the divergence, hy., = 0. The relevant

part of I'® is given by the last equation (C16), e.g.
iM?a* R

r@mer _ - <D2 - g) POwre - (360)

with projector on the traceless part

o 1
P =g+ ) - L

. (361)

For the graviton only the space components contribute,
such that the operator D> from Eq. (248) reads

1
a*(n)

For the graviton propagator we employ h,,, = a’¥,,,» such
that

D? = —

(02 —=2HO, —20,H - 2H* + k*).  (362)

(R 0KV (0 K)o = @2 (1)@ (1) (P (0. K) Vg (0 K.
(363)

123525-33



C. WETTERICH

The differential operator acting on y,, is given for a de
Sitter geometry by

_<DZ - g) a?> =D =02 +2H0, + k. (364)

Projecting on the traceless part of b,,, replaces a* P(")rrt
in Eq. (360) by P#)mra_ with projector

» 1
Pman - (6mp5nq + 5mq5np) - _6mn5pqﬁ

: (365)

N[ =

and indices of P/ raised with 5",
We finally have to project on the transversal part of b,,,

by imposing k"b,,,, = 0. This replaces the projector P,(f,l pq
by P}, as given by Eq. (165), with Q,,, given by
Eq. (157). The projector P") obeys

PiinpaQd = Pilups,  Piiapg Q7 =0, (366)
and
P PEL PO ) = Py, (367)

The various projections of I'®) result in the differential
operator
[@mpg o _ M

v pmnpg fy

(368)

(Here a factor a* is absorbed by our index convention for
P().) The propagator equation for G becomes
2)mn mn

1" e ()a () Glgrs (/) = PE™. - (369)

With PGl = Gilwrs Eq. (369) coincides with
Eq. (357).

B. General solution for graviton correlation
in de Sitter space

The general solution of Eq. (359) has been discussed
extensively in Refs. [19,18]. For n > # it reads

Gl = XX o)
2l 1)
M2

Ot i)+

+ wi (mwi ()

LB, wi ).

M2 k
(370)

+

with mode functions given by the solution of the mode
equation
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(07 +2HO, + kK*)wiE(n) = 0. (371)

For de Sitter space, H = —1/#, one has

" = (wi *:¥ _i e iu
7l = 0 ) =~ (1= ) o72)

and

k k

I T ) et

(373)

For Bunch-Davies initial conditions [40], which corre-
spond to the scaling correlation of Ref. [18], one has
a(k) =1,{(k) = 0, such that

4
Ggrav (k, n, 77/) = WW]: (”)W: (77/) (374)
In the limit u, v’ — —oco(n, 7’ — —o0) the graviton corre-
lation becomes
G rav (k’ , 7],) = # e—ik(n—n’)' (375)
¢ M?ka(n)a(n')
For a(n) = a(n') =1 this coincides with the flat space

correlation (193). In the opposite limit u,u’ — 0 the
graviton propagator reaches a constant amplitude

2H2 —ik‘ _ /|
2k3 e n=ml,
M

Ggrav(kv m, ’]’) = (376)

/

The equal time correlation (' = 7) reads

4
Ggrav(k7 ’7) = Ggrav (k’ 1, ’7) = W |WI: (7]) |2

=~ 2 (14 )
- M*d*k Kn*)

For a de Sitter geometry this becomes

(377)

2H?

G =35

(1+ k). (378)

This yields the tensor power spectrum which is defined by

3

k
A%(k’ 77) = p Ggrav (k’ 77)' (379)
Correspondingly, the tensor spectral index obeys
Oln A2
np = (380)

For modes far outside the horizon, k’;?><1, the spectral
index vanishes and the tensor spectrum is proportional
to H3,
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2H?

A2 =T
T M2

(381)

nTZO.

(For geometries neighboring de Sitter space the mode
functions and therefore the power spectrum and n; are
modified.) As long as k/a remains much smaller than H the
time independent power spectrum

2H?

Ggrav = W (3 82)
remains unmodified. Once a given k-mode ‘“‘enters the
horizon,” k/a > H, it starts again the damped oscillation
(375). The resulting tensor power spectrum is accessible to
observation if the amplitude is large enough.

The formulas after Eq. (374) are the standard ones used
in cosmology. We have displayed them here in order to
demonstrate that for appropriate initial conditions the
graviton correlation, as obtained by a solution of the exact
propagator equation (3), coincides with the one obtained
from the normalization of a free quantum field in a Bunch
Davies vacuum. The vector and scalar part of the metric
correlation has no such simple interpretation in terms of
free quantum fields.

The explicit form of the vector and scalar propagator for
the physical metric fluctuations in a de Sitter geometry still
need to be worked out. They may be inferred from the
general results for the metric correlator in de Sitter space in
Ref. [27]. Alternatively, explicit knowledge of the projec-
tors would be useful for an extraction from Eq. (98) by use
of Eq. (163).

XI. CONCLUSIONS

This paper addresses mainly the conceptual issues of the
metric correlation function in quantum gravity and cosmol-
ogy. The recipe mainly employed in cosmology, namely the
construction of the correlation function as a product of
mode functions or a sum of such products, cannot be
applied in general. There are simple cases where the mode
functions vanish in the vector and scalar channel, while the
correlation function differs from zero. We therefore have to
build our discussion from a more basic level, using the
defining differential equation for the Green’s function. The
differential operator in this equation is given by the second
functional derivative of the quantum effective action I'?).
The relation between I'®) and the correlation function G is
exact. Approximations only concern the precise form of the
effective action.

The first question to address concerns the physical
meaning of the metric correlation function. In a gauge
fixed version of quantum gravity this correlation function
depends manifestly on the chosen gauge fixing. One may
therefore question to which extent the metric correlation is
a meaningful physical object. We propose here to distin-
guish between physical metric fluctuations that couple to a
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conserved energy momentum tensor, and gauge fluctua-
tions that are generated by gauge transformations of a given
cosmological solution. The physical metric fluctuations
are conceptually similar to the Bardeen potentials, in the
sense that they are invariant with respect to infinitesimal
diffeomorphism transformations of the “background met-
ric.” The physical metric fluctuations are directly formu-
lated on the level of the metric in a covariant way. This
differs from the Bardeen potentials. We establish the formal
relations between the physical metric fluctuations and the
Bardeen potentials.

The object of our interest is the correlation function for
the physical metric fluctuations. It can be obtained by
restricting in the functional integral the sources to “physical
sources” that correspond to a conserved energy momentum
tensor. The argument of the effective action involves then
only the physical metric fluctuations, not the gauge
fluctuations. As a result, the relation between physical
sources and physical metric fluctuations is invertible and
the effective action can be constructed in a standard way.
No gauge fixing is needed for the inversion of the second
functional derivative I'®), The correlation function for the
physical metric fluctuations can also be found using a
standard procedure with gauge fixing. The gauge fixing is
not arbitrary, however. It has to enforce the condition for
physical metric fluctuations, 4}, = 0. We show explicitly
the equivalence between the restriction to physical sources
and fields on one side, and the appropriate gauge fixed
formalism on the other side.

With all quantities well defined the metric correlation
function G obtains as a solution of the propagator equa-
tion (3). Conceptually, its computation amounts to the
inversion of the differential operator I'>). We are interested
to solve this inversion problem for geometries correspond-
ing to realistic cosmologies. Even for a rather simple form
of the effective action, as given by the Einstein-Hilbert
action with a cosmological constant, the inversion of I'? is
a complex task. The operator I'®) contains only up to two
time derivatives 8,7. It is, however, a matrix in the space of
physical metric fluctuations. Making it block diagonal
involves projections.

In quantum gravity computations the inversion of I'?) is
a standard task. It is usually done for some particular gauge
fixing (unfortunately often not compatible with the pro-
jection on physical metric fluctuations) and for simple
Euclidean geometries as the sphere or flat space, or
geometries close to those [48]. We are interested to obtain
the metric correlations for geometries close to de Sitter
space, as relevant for cosmology. This needs a computation
with Minkowski signature, for which the solution of the
propagator equation becomes an initial value problem. One
may think of obtaining the metric propagator in de Sitter
space by analytic continuation from a corresponding
Euclidean geometry. This corresponding geometry is the
maximally symmetric space with negative curvature [18],
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and one needs the metric correlation in such a hyperbolic
space. (The analytic continuation of the sphere is anti-de
Sitter space, both having a discrete spectrum differing
qualitatively from the continuous spectrum in de Sitter
space.)

The present paper provides a formalism for the compu-
tation of the metric correlation in homogeneous and
isotropic cosmologies. The extensive discussion of the
metric correlation in flat space establishes several important
features in an explicit way. The scalar and vector part of the
metric correlation function does not vanish despite the fact
that the solution of the linearized Einstein equation leads to
vanishing scalar and vector Bardeen potentials. The vector
and scalar part of the metric correlation cannot be found
from solutions of the linearized Einstein equations. They
rather involve the inversion of operators with up to four
(vector) or up to six (scalar) derivatives. This results in a
secular behavior (200). For realistic cosmologies we will be
interested in initial values of the metric correlations for
which the high momentum tail is given by the time-
translation invariant correlations in flat space. Our dis-
cussion of the flat space correlation functions provides
those initial conditions.

For realistic homogeneous and isotropic cosmologies the
graviton part of the on-shell metric correlation is rather well
understood. The remaining task concerns the scalar and
vector parts of the metric correlation. For this purpose
several different, but equivalent, strategies may be fol-
lowed. One may derive the propagator equation for W,, and
k from Egs. (346) and (348). This is straightforward, and
the unit operator in the corresponding function space is
~8(n —1'). (In the case of W,, it involves a k-dependent
projector.) The complexity in this approach arises from the
fact that the differential operators to be inverted involve up
to four (W,,) or six (k) derivatives. As an alternative, one
may compute the explicit form of projectors and solve
Eq. (98). The inhomogeneous term on the right-hand side
involves now projectors that depend on # and 7’ in the case
of vector and scalar modes. Finally, one may employ a
gauge fixed version and solve Eq. (291). The complexity
arises here from the high number of coupled modes—two
vectors and four scalars.

The merit of such a calculation will be to shed light on
the infrared structure of the physical metric propagator in
realistic cosmologies. This should help to understand better
several important issues in quantum gravity, as related to
locality, anomalies or the possible existence [49] of an
infrared fixed point. Quantum gravity computations of the
quantum effective action, from which the field equations
and correlation functions can be derived, involve the off-
shell propagator for the metric fluctuations. It will be
interesting to learn the impact of the particular properties of
on-shell propagators for physical fluctuations as one
approaches solutions of the field equations in the space
of configurations.
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APPENDIX A: PROJECTORS
AND GAUGE FIXING

In this appendix we recall a few general features of
projectors and gauge fixing that are useful for our dis-
cussion. Let us consider two matrices D and G obeying

DG = 1. (A1)
Here D corresponds to I'® and G to the correlation
function. Assume further the existence of a projector P,

P2=P, (1-P)*=(1-P), P(1-P)=0. (A2)
We may then decompose
D=D_,+D, +D_,+D__, (A3)
with
D, =P'DP, D, _=P'D(1-P),
D_.=(1-P")DP, D__=(1-P")D(1-P), (A4)
and similarly for G
G., = PGP,
G._ = PG(1 - P"),
G_. = (1-P)GP",
G__=(1-P)G(1-P"). (A5)

Insertion into Eq. (Al) and multiplying Eq. (Al) with
suitable factors P and (1 — P) from left and right yields the
relations
D..G..+D. G_. =P,
D_G_+D_,G,_=1-P,
D,.G,_+D, G__=0,

D__G_, +D_.G,, =0. (A6)

For our discussion two simple cases are of importance.
For the first D is block diagonal, D,_ =D_, =0,

D=D, ., +D__. (A7)
Then G, , and G__ obey

DG,y = PT,

D_G__=1-P" (A8)
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If D, is invertible once projected on the appropriate
subspace, the projected propagator G . is its inverse. The
remaining equations

D, . G,_=0, D_G_, =0 (A9)
have the solution
G,_ =0, G_, =0, (A10)

for which G is block diagonal. If D is regular and therefore
G is unique, the solution (A9) is the only solution. In
contrast, if D is a differential operator for which a unique
solution of Eq. (Al) requires the specification of initial
values or boundary conditions, Eq. (A10) does not neces-
sarily hold.

For a second important case we consider a family
of matrices Dy for which D__ is multiplied by a factor
%. We keep the notation G, _, G__ etc. for the solutions of

Eq. (A1) for # = 1, and denote the solutions for arbitrary /3
with G@, G(_ﬁl etc.. Consider now small . The compo-
nents G) and G@r have to scale ~f (or they vanish). In the

limit # — 0 we can neglect them, resulting in

D..GY, =P, (A11)

and

D,.G” =o. (A12)

If G¥) is unique the second equation implies that G@
vanishes. One ends with

G# =G¥. (A13)

The correlation function differs from zero only in the
subspace of eigenvalues of P with unit eigenvalue.
In a gauge fixed version of the effective action one adds

to I'® a gauge fixing term (1/ ﬂ)fg). Let us assume for

simplicity that I®) = T2 4 (1/ /)’)l_“g is regular. We fur-

)

ther assume that I can be written in terms of a projector

gf
_(n ~
Y =0-pPD__(1-P). (A14)
In the limit f — O one therefore arrives at
G=G,,,D..G =P (A15)

In other words, the nonvanishing part of the correlation
function involves only the modes with eigenvalues one of
P. They can be viewed as fluctuations obeying a constraint.

The operator D, corresponds to I'? subject to this
constraint, and G, , is the inverse of '@ on the subspace
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of the constrained fluctuations. The formulation in terms of
the physical metric fluctuations f,, obeying the constraint
S = 0, that we employ in this paper, is equivalent to a
gauge fixed version in the limit f — 0. In case where the
projector P) on f v 18 not known explicitly (or in case of
ambiguities) we will define the correlation function G, , by
the limit f — 0 of a gauge fixed version.
In more detail we consider

1 _
Ty :ﬁ / g'\2hy h . (A16)

It adds to I'® a term of the type discussed before, e.g.,

1 .
AT = 5 (1—=POND__(1—PW),

with PU) the projector on covariantly conserved metric
fluctuations f,,,

(A17)

/I;;u = 07 P/S{/)prhpf - fﬂl/‘ (Alg)
In the presence of the gauge fixing the second functional

derivative I'® is invertible if suitable boundary conditions
are imposed. (We discard here the zero-momentum modes

k = 0 which would need a separate discussion.) Also D__
is invertible on the subspace of “longitudinal fluctuations,”
defined by the modes with zero eigenvalues of P{/). We can
then take the limit f — 0 and obtain the correlation
function G, for the “physical fluctuations” f,,. The
“gauge parts” of the correlation function vanish in this
limit, justifying the restriction to the physical fluctuations.
These general considerations can easily be followed
explicitly in flat space. In momentum space P = P\/) is

real, with
(PT)

=P =pr (A19)

uv

APPENDIX B: LOCAL GAUGE SYMMETRIES

In this appendix we discuss the precise implementation
of the gauge symmetry of general coordinate or diffeo-
morphism transformations. This will justify the use of a
gauge invariant effective action in the main text.

The source term

/.a/wK”U:/gvaﬂv—"_/fva’w
x x x

is invariant under a simultaneous diffeomorphism trans-
formation of g,,, the source transformation (13), and a
transformation of f,, as a tensor,

(B1)

5§f/41/ = _8M§pf/)l/ - 8D§pf'u/) - ‘fpapfyv- (B2)
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Since the relation (45) between sources and fields is
covariant (6I'/8g,, = 6I'/f,,) we conclude that the effec-
tive action (44) is invariant under simultaneous trans-
formations of g,, and f,,.

Furthermore, we may multiply the source constraint (20)
with &, = g,,&” and integrate over x,

/ £,(0,K" + T, K") = 0. (B3)

By partial integration this yields
[ K =0 (B4)

Insertion of Eq. (45) results in
(G5 3e=0 Bu=-lGuté,) B9

Formally, this can be interpreted as invariance under a local
gauge transformation of f,,, with infinitesimal transforma-
tion 6f,, = 6,y - y 5

The transformation 6f,, = 9,, is, howezver, not compat-
ible with the constraint (35), since D"5,, # 0. We can
extend the effective action to be a functional of uncon-
strained metric fluctuations h,, by replacing f,, by h,,
Ulfuw:Guw) = Tl g, The extended effective action
depends now on two unconstrained metrics g,, and

9w = g,uu + hﬂw (B6)

1.e.

F[guw gﬂb} - F[f;w - h/un g/w]- (B7)

By virtue of Eq. (BY) it is invariant under the infinitesimal
gauge transformation

Sh/w = _(6/4;1/ + fv;y) = 559/41/- <B8)
The transformation (B8) is taken at fixed g,, . It expresses
the fact that I' depends actually only on f,, and not on the

gauge fluctuations a,,.
The two local transformations,

ol or
5hy+_5gy>=0. B9
[c <5g;wg S 69/4”}, S ( )
and
or
—— 8:9,, =0, (B10)
[cag/wg !
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imply the invariance of I" under simultaneous diffeomor-
phism transformations of g,, and g,,,

or or
[ <6.g/wg g (sgm/‘h .

(Recall 6I'/ég,, |, = 6T/5h,,[;.)
Instead of the variables h,,, and g,, it is convenient to use
9w and hy,,

I [g/un h;w] = F[hﬂw g/w = 9w — h/xu]

=9 G = G — ] (B12)
With
o oJr ar
Ohuyy Oy Gy,
or’ _ 8_1“ ’ (B13)
Oy Oy
the symmetry relations (B9) and (B10) read
/ /
A <6871;yh§§gﬂ,, +§Tl;y|g(3§hw> —0. (Bl4)
and
/ /
: ;Tl;yg(éégﬂ,, —26:h,,) = : %hééhw (B15)

We may expand I” in powers of h,

= T 1 opT
Clg.l = Tlgl + | Mgl +5 [ b gl 4.

(B16)

with M, typically involving derivative operators.
Nonvanishing M;, M, reflect the residual dependence of
I" on the background metric g, for fixed g,, . The symmetry
(B14) of simultaneous diffeomorphism transformations of
gy and hy, is obeyed if I'[g] is a gauge invariant functional
of g, and M,, M, transform as appropriate tensor
densities. The local gauge symmetry (B15) constrains
the possible form of M; and M,, but is not sufficient to
enforce that these quantities vanish.

In the presence of gauge fixing the term ~M, can be made
to diverge in an appropriate limit of zero gauge fixing
parameter @ — 0. (This corresponds to Landau gauge in
quantum electrodynamics, see Refs. [45,46].) For an appro-
priate choice of the gauge this divergent part will only
involve a,v, and not f,v. Typically, this is the only divergent
part for ¢ — 0, with M remaining finite. The insertion into
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I" eliminates all terms involving a,v, such that i,v — f,vin
Eq. (B16). The residual terms ~M, M, reflect the explicit
background field dependence through the projectors. In our
approximation they are neglected. By a modified choice of
the covariant derivatives in the projectors one can achieve
that the projection of M, on the physical metric fluctuations
vanishes [45,46]. In this case one has I"®) = ') asused for
our practical computations.

In the formulation with constrained fields and sources
the effective action I'[g,,; g, | depends on g,, directly, and
further on g,, which enters the constraints for the physical
sources K** and the physical metric g,,. Due to the source
constraint I" actually only depends on physical metric
fluctuations and g,,. Replacing g,, by §,, = g, + [ we
can write I'[b,, .0, g,,], where the decomposition (40) is
performed for fixed g,, . We recall that no “gauge part” of g,,,
appears due to the restriction to physical sources, i.e. v, = 0,
7=0. This will allow for an invertibility of I'® on an
appropriate space of functions and for appropriate boundary
conditions.

Consider next the transversal split transformation
G = G + W [y = fr =y, With uy,, = 0. (This is
complementary to the longitudinal split transformation
Sy = &y + &y discussed in Sec. 1V.) The transversal
split symmetry is violated only by the constraints on K*¥
and §,,. If we neglect effects of this explicit breaking the
effective action becomes invariant under the split trans-
formation g,, — g, + . [y = fu — . It is then a
gauge invariant functional of the unique metric
9w = G + [ The transversal split symmetry implies
M,, =0 in the expansion (B16). Extending again the
argument of I' to arbitrary metric fluctuations h,,,
9w = G + hy,, the effective action becomes a diffeomor-
phism invariant functional of g,,, corresponding to I'[g] in
Eq. (B16). We will adopt this approximation, neglecting
corrections due to the explicit g,,-dependence of the
constraints.

APPENDIX C: DECOMPOSITION OF METRIC
FLUCTUATIONS INTO TRACE AND
TRACELESS PARTS

In this appendix we decompose the metric fluctuations
into a trace and traceless part, and correspondingly the
inverse propagator I'® and the correlation function G. This
is done both for unconstrained metric fluctuations 4, and
for the physical metric fluctuations f,. In the second case
one has to keep track that the constraint f,,.” = 0 mixes
trace and traceless parts.

1. Decomposition of unconstrained metric fluctuations

The unconstrained metric fluctuations /,,, can be decom-
posed into the trace i and a traceless part b,

PHYSICAL REVIEW D 95, 123525 (2017)

~ 1
hy = by, + Zhgﬂy, d*b,, = 0. (C1)

For the physical metric fluctuations, with v, =0, 7 = 0 in
Eq. (40), one has IZW =b,,, h = 0, and we will turn to this

124
case later. According to the decomposition (C1) we write

s FG T T T, ()
where
I =0, i, =0
gLl =0, 1075, =o. (C3)
Similarly, we define the correlation functions
Gﬁfpr = <b;w<x)bpf(y)>u
G;% (x» y) = <bu1/(x)h(y)>c’
Gt (x.y) = (h(x)b,, (y)). = Gl (y. x),
G"(x,y) = (h(x)h(y))., (C4)
such that the propagator decomposes as
1
2 _
Gope(x.3) = Gllpe(x.3) + 7 G (2. )5e(y)
1_
+ Zg/w(x)GZf(x’ y)
| - -
+ = G (X, ¥) G (%) Fpe () (Cs)

16
The propagator equation reads
1
2
TR Ghl 4+ T G = 0,

ng})ﬂvﬂabe

2)uv v v 1 UV 7
poTd + 1—‘(bh)” Gil/% = (5’;5/1 + 5155) - Zg” 9za

Ko, + Ty o

(2) (2) _
)G+ 1, G =1, (C6)
where we have omitted the coordinates and associated
5(x — z) factors.

The projection on the traceless part can be performed by
using the projection operator

b)pt 1 T 1 = =0T
P/(w)/ = E (&0/465 + 5/,15/;) - Zg;wg/ . (C7)
It obeys
b)pt_ —wwpb)pr
P;(w)p Gpe =0, g P/(w)p =0,
Bl = B, o8
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such that
P, = b, (C9)
The corresponding projection on the trace reads
h)pt 1 T 3 b)pt
P = 5 (B; -+ 538%) = P’
1 s ~PT

The different pieces of the inverse propagator are
computed as projections from Eq. (68), supplemented
by contributions from the gauge fixing term. We display
here only the physical part corresponding to Eq. (68).
One finds

|

PHYSICAL REVIEW D 95, 123525 (2017)
y 1

2 _ - - vt
th = 1_69}”/9/”_1—‘(2)/4 P
3IM? 1%
=" \/gD* + —\/3 Cl11
5 VD 4V (1)
and
v 1 -
th)M — Zl"(z)ﬂv/)f Upe — gﬂyrfh)
M2
= 55 VAlD2g = 2(DD* 4 DYDY,
@pr _ M
[ =—=\/g|D*3* —2(D’D" + D*D")]. (C12)

32

The pure traceless part obtains by subtracting these
pieces from I'®),

2
T = — 1;1—2 VH[B@3 + 73) — 3§ §7|D? + 25" (D*D? + DPD¥) + 2 (D*D¥ + D*D*)
—4(g*"D'D¥ 4+ g D'D* 4+ §"D’D* + #*D’D*) + 4R(3“ 5" — ¢ 3" — 3" *)

+ 8(RM G + R + R + Rg) — SRy + R} + % VEF R - 2305 + 7737)). (C13)

Equation (C13) simplifies for a vanishing Weyl tensor

Cuvpr = Ryupe + ék(aﬂpaf = Gueup) = 5 GuoRoe + GoeRip = GueRop = GipRyic) = 0. (C14)
Using appropriate commutators for covariant derivatives yields
Fﬁ)ﬂvﬂf _ _%\/@{[4@#/)91/1 + §g’) — 3gﬂv§/)r]D2 +23(D*D’ + D?D*) + 23" (D* D" + D*DV)
—4(g"”D'D" + g*D'D* + ¢*"D*D" 4+ g”"D*D’) + gR[gﬂ”ng —2(g"g" + Q’”g’}”p)]}
o VHPT - 255+ 7). (15)

When applied on the traceless field B/n the terms ~g’* in
Eq. (C15) do not contribute.

When acting on physical metric fluctuations the pieces
~D? or ~D7 do not contribute, such that the different pieces
(C11), (C12), and (C15) read

(2)73M2 _ 4H?
Uin =733 \/E’<D2+7 ’

, M
T =35 V(@D = 2D"D* = 2D D),

Iy =0,
R

vpT M2
Ffb)” T — e NG QL <D2 - E) . (Cl16)

2. Decomposition of physical metric fluctuations

The decomposition into trace and traceless parts remains
valid if we impose the constraint %, = 0 for the metric

|
physical fluctuations. This replaces in Eq. (C1) h,, — f,,,
by = by, h — o, with b, = P f,.. The fields b, and
o are no longer independent, however, due to the rela-
tion by, = —0,6/4.

We first insert the decomposition h,, = b,, + 67,,/4,
d*b,, =0, directly inside the effective action. Taking
account of the constant h;,,, = 0 one finds

M2 M1 3
_[T(ﬁR)(Z) :KT\/{]{Zby ’pb;w;/)_ﬁa:”o-;y

1. 1
+ g Rbu b ~ S Rib"b,,

1
-3 RW,Wb””b/’”} (C17)

and
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/x(\@v)(z) = V/}C ﬁ(%rﬁ—lb b””). (C18)

4"
With
— _ — 1-
R, 0" b = C, b P — Rub™ D, +6Rb"”bﬂy (C19)
one obtains for a vanishing Weyl tensor CW,W =0 the
simple expression
M? 2 2V
r,= g8 —b"(-D*+=R—-"5|b
2 /; \/g{ 8 < + 3 M2> v
3M? 2V
oD+ . C20
+ 2 0( +3M2>U} (C20)
We next write
by =ty + Sy to, =0, =0, (C21)

where 5, is a function of ¢ as given by Egs. (77) and (74),
and 7,, is the independent traceless and divergence free
tensor field. The part 5, obeys

- 1
Sho = —Zaﬂa (C22)
We decompose
r, =T 41 41l (C23)
with transversal traceless part
M? _ 2. 2V
=" / Vi <_D2 +3R- W) fue  (C24)
trace part
2
(6) M = 2V
Iy’ = 32K \/§{o<3D2 +1\42>6
o 2. 2V\.
+4st (—D2 + §R - W) sﬂ,,}, (C25)
and mixed term
o M [ 2. 2V
iy = - [C NG (—02 +3R- W) 5..  (C26)

In comparison, we can employ I'®, as given by
Egs. (C11), (C12), and (C13) or (C15) and apply it to
the physical metric fluctuations f,,,

PHYSICAL REVIEW D 95, 123525 (2017)

1
F2 =35 f;w (x)l"(Z);u/p‘r (X, y)fp‘r (y)
x.y

2
1 2)uvpt
=5 | {bu@T" " (e 3)bye(y)

X,y

+ b (T (2. y)0(y) + o (X)L (2, ¥)be ()
+ o) (v, y)o(y)}. (€27)

Employing again the decomposition (C21) we observe

that the mixed terms ~F§,2h),l“§12h> only contribute to parts

involving s,,, and not ¢,,. The part Fg) for the traceless
divergence free tensor can be extracted from Eq. (C14) by
omitting all terms where D? or D* act on the right. The
resulting expression reads

vptT M2 2 R 2V
e — _ VP <D2 —3R+ W) . (C28)

such that I'") coincides with Eq. (C24).

The trace part I’ obtains contributions from Fzzh), as
well as from ng)), th) and Fglzb), with b, replaced by 5.
The sum of all contributions equals indeed Eq. (C25), and
we see that the off-diagonal terms are necessary for this
result. While the inverse ¢ — t-propagator (C28) can be
directly extracted from Eq. (C24), the inverse ¢ —o
propagator needs the term ~§*“F5,,. The inverse propa-

gator for ¢ does not coincide with the inverse propagator
th) for the unconstrained field % in Eq. (C11).

3. Scalar fluctuations

The scalar part of the physical metric fluctuations
involves the trace ¢ and a second scalar contained in 7,,.
Their precise definition involves the contribution of ¢ to
b,,, i.e. the form of §,,. In Sec. V we have discussed the
form of 5, for background geometries with constant
curvature scalar. Alternatively, we may try the ansatz

- 1 _
Sy = Dys, + Dys, —=DFs,g,,. (C29)

2

The vector s, has to be chosen such that Eq. (C22) is
obeyed. Combining Eqs. (C29) and (C22) one has

Fy

1
DSU = —Zaﬂa,
1
F, = D8, + D'D, =5 D,D*

_ 1
= D8, + R, +-D,D".

5Dy (C30)

Here we have used the commutator relation
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[D¥.D,]s, = Rys,. (C31)
We need the inverse of the operator F,”
C/'F," =3,
s, = — % C}to,0. (C32)

For a general background geometry the explicit computa-
tion of C * is not easy due to the noncommuting properties
of the covariant derivatives.

Let us consider first the ansatz C,/' = C'p”,

_ 1
C = D78~ D7*D,DD". (C33)
which implies
I B
5, = = D2Dy0 (C34)
and
5, =1 D,D™*D,+ D,D*D L D’D™2D
S/w__g u »+D, y_ig;w p |O-
(C35)

For flat space this solves Eq. (C32), and the result (C35)
is in accordance with Eq. (131). For more general geom-
etries we observe
C,/F: =68+ DR,

1 _ _
-3 D™2D,D7*([D*, D*| + R\D* + R4.*)

: 20 - - -
=8 +D 2(55 -3D,D 2D”> Ry, =D7A,",

(C36)
where we employ
[D¥,D?]s, = R*D,s, + R s,. (C37)
The solution for C is therefore
C}l = (A‘l)p”D2C‘U"
= (At <5f; - %Pﬁ”") : (C38)
where
A = D8 + B,'RY,
B} =& — %P,(,U”. (C39)
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The longitudinal propagator P(),

P* = p,p~2D, (C40)
obeys
PP =P, P"D,F=D,F.  (C4l)
We infer
e-lunee  cn)

such that the operator A~! replaces D2 in Eq. (C34). The
task is now the inversion of A.
For making contact with Sec. V we can specialize to

R, = | R5,. (C43)
with constant R. We employ
v 2 e\ e L ppor
A) = <D +ZR>5" _ERP’) . (C44)
The inverse is found easily
R\ -1
A,y = <D2 +Z> 8
+ g D> + g) B <D2 + %) TR (cas)
such that
5, = —é (D2+%>_laﬂo (C46)

Using the commutator relation

- R R\ ! -
[D,,(3D>+ R)™'| = n <02 +E> (3D*+R)"'D,

(C47)

one has

_ 1 R\!
D,(3D*>+ R)™'6 = 3 <D2 + E) d,0 = =2s,. (C48)

This establishes that 5,,, as computed from Eq. (C29),
indeed coincides with Eq. (91). Equations (C29) and (C42)

can be used for an expansion in the vicinity of maximally
symmetric geometries.

APPENDIX D: MODE EQUATION AND
LINEARIZED EINSTEIN EQUATION

We show in this appendix that the mode functions obey
Einstein’s field equations for small fluctuations around a
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background field, provided that the background field is
itself a solution of the field equations. If not, the mode
functions do not obey the linearized Einstein equations. We
restrict here the metric fluctuations to the physical fluctua-
tions f,, and we do not include contributions to the field
equations from possible gauge fixing terms.

We start with the defining equation (259) for the mode
functions, with D, related to the second functional
derivative I'® by Eq. (255). The equivalence of the field
equation (57) for AK* = 0, i.e., the mode equation,

[ @)uepr fpe =0, (D1)

with the linearized field equation around a background that
solves the field equation is not restricted to a homogeneous
and isotropic situation. We therefore keep general f,. and
the general form (68) for I'®). Since in Eq. (D1) I'® acts on
f . the terms involving D? or D positioned at right do not
contribute. Furthermore, one can use the general commu-
tator relation

(D7, DMA,, = RWA,. — R A ;. (D2)

For the mode equation (D1) one therefore has

2
P, = 2 x@{f"”f’,, — £ I
1. - - - -
+5 RFGFY — R+ Rfy + RO f) — RS
- RﬂTprgﬂD + ZR”prpr}

VLR -2 =0, (D3)

In comparison, we next evaluate the linearized Einstein
equations (306) and (307) for the physical metric f,,. With
h,,." =0 Eq. (306) simplifies to

(-, — - =
Guyw = 2 {Rf‘fvp + R’//)fﬂl’ = 2Ry pucf”" = Rf

+ Rprfprgﬂu - f/w;pp - f;;w + f;ppg;w} . (D4)
Comparing with Eq. (D3) one finds for the difference

between the linearized Einstein equation and the mode
equation (D1)
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2
M>\/g
- 12 \% -, 1 %

v 2)pr
G +Wfﬂ” - T’ Joe

1/~ 1-_ Vv
If the background metric obeys the field equation,
- 1-_ vV _
Rﬂl/ - ERgm/ + ng/ =0, (D6)

the r.h.s. of Eq. (D5) vanishes, such that Eq. (D3) indeed
yields the linearized Einstein equation for small deviations
from the background solution.

We emphasize, however, that for background metrics not
obeying the field equation (D6) the linearized Einstein
equations (306) should not be used for the definition of the
mode functions. The correct equation, which also carries
the information on the partial normalization of G, is the
propagator equation (256) which entails Eq. (259) or
Eq. (D1). The difference results from the fact that the first
functional derivative of the effective action is given by

or M? 1 1%
=—— g 2gvg*(R,_—~Rg,+-—=g, ). (D7
59 5 979"y ( e = 5RO+ 40 gp1> (D7)

The linearization of this expression yields the mode
equation (D1) or (D3). The linearized Einstein equation
only involves the linearization of the last factor. Away from
background geometries that solve the field equations the
linearization of

I

(92”9 ) ) = it - g2y — frg g (D8)

contributes additional terms that account for the rh.s.
of Eq. (D3).

A simplification of the mode equation (D3) occurs for
background geometries with a vanishing Weyl tensor. For
this purpose we express R in terms of the Weyl tensor
C

Hpvo>

Hpvo

| - - _ _
RM/)I/T = Cupur + E (g;wR/)‘r + g/)‘rR/w - g;n'Rzz/) - gb/)R;M:)

Lo,
- ER(gﬂl/ng - gﬂrgup)'

(D9)

For a vanishing Weyl tensor, C,,,, =0, we can then

Hpvo
replace in Eq. (68)
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G*DPDH — g* RHP — RHpVE

N QDTRW) _ 1 (gﬂvk/)r + g/)rk}ux _ g;n'Rv/) _ gu/)R/rr)
2
1-
+5R(§””?f’—!7’”§””), (D10)
where the contribution ~DKD” is omitted. With this
simplification the action of T'® on f » becomes

mM* o o
rmrr = — 3 Vi{(@° g + g g™ — 29 g’") D?

+@*(D*D* + D*D*)
1.
+3R@ - 2077 - 297"

2V
— o @G =9 7)) (D11)

APPENDIX E: DECOMPOSITION OF
UNCONSTRAINED METRIC FLUCTUATIONS
INTO SO(3) REPRESENTATIONS

For a homogeneous and isotropic background geometry
(242) the unconstrained metric fluctuations A, decompose
with respect to the SO(3)-rotation group as four scalars,
two divergence free vectors and the graviton. We have
discussed in Sec. IX the decomposition of the physical
metric fluctuations (two scalars, one vector, and the
graviton) and the gauge fluctuations (two scalars and
one vector) separately. In this appendix we display more
familiar decompositions of /,,, and establish the connection
to the decomposition employed in the present paper. We
also describe the Bardeen potentials within the familiar
decomposition and establish their connection to the physi-
cal metric fluctuations in the scalar and vector sector.

1. Decomposition

We start from the familiar decomposition of general
metric fluctuations /;, with respect to the rotation group. In
Fourier space it is given by

h8 - 2Aa
hl = @ (yl + iV, + ik,VJ — 2k;kIB) + 2C5)
hy=a(W/ +ik/D), ) =—(W;+ik;D),  (El)

with

yi=0. kyl=0, kVi=0, kW =0. (E2)
A restriction to fluctuations obeying Ay, =0 will be
done later.

For an explicit relation between the four scalars A, B, C,

D and the metric components one may use the relations

PHYSICAL REVIEW D 95, 123525 (2017)

) = 24, ik, hl = —k*D,
ny=6C-2k*B,  @*k"k;hj, = 2k*(C—k*B), (E3)
such that

VSN <
C:Z(hm—az—kzlhin)

1 K"k
B —(hm—3a2 ’h{n>. (E4)

T K
In particular, one has

3 K?

h =2A +6C — 2Kk*B, 138:5(A—c)+33. (E5)

In order to identify the “gauge invariant part” of the
decomposition (E1) we consider the inhomogeneous part of
the gauge transformation

5inhh; = _(fygy + gl/;y)’ (E6)
which amounts to
6inhh8 — —28,750 - 2H§0,
Sunhfy = =0, — iki&,
Sunh] = —i(ki& + kIg;) — 2HS/E. (E7)
Comparison with Eq. (E1) yields

SA = —(9, + H)&,
6D = 50 - 8}7€La

6C = —HE,
5B - _gLa

SVi= =&, Wi =—(0,+2H)E, =0, (ES)
with
~kj§j i (g i J
§L:—177 §=a*(&p+ik'éy), kiér=0. (E9)
Writing

A=W+ (9, +MH)(,B-D),
C=®+H(d,B-D),

W/ =Q/ + (9, + 2H)V/ (E10)

one observes that the Bardeen potentials [9] ¥ and ®,
as well as Q; = W; — 0,V; and y], are invariant under the
inhomogeneous gauge transformations.

2. Einstein equation

In terms of these fields the linearized Einstein equa-
tions (306) involve the first variation of the Einstein tensor
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G(I)OO = 2k2¢ + 67’((9,7 C,
1
G(l)mO :Ekzgm - 2lkm(ar]¢_HLP)
- (20,H+H*)W,, —ik,,[2(0,H—H?)9,B+3H*D],

1
G 1ymn =7 (05 +2H0,y =40, H =212 +K)1

i
_5(8n+2H)(kan+anm)
- l<2aﬂH+H2) (kan +knvm) +gl5mn +92kmkn7
(E11)
with
g1 = (2HO, + 40, H + 2H* — )Y
— (207 + 4HO, + 40, H + 2H* + k)¢
+2(2H + MO, H)(D — 0,B),
9 =¢+¥+2(20,H+ H?)B. (E12)

For a background geometry obeying the field equations
[cf. Egs. (D6) and (251)]

4V _ 6
——R:?(H2+8HH)

= (E13)

the linearized Einstein equation becomes [cf. Eq. (307)]

Vv

3 _
G“)ﬂy = _Whﬂy = —2—612(H2+(9,1H)gw,hﬁ. (E14)
The different components read
Gyoo — 3(H* + 9,H)A = 0, (E15)
3
Gao +35 (H2 + 0, H) (W, + ik, D) =0, (E16)
3
G(l)mn + E <H2 + 8117_{) (ymn + ikmvn + iknvm (E17)
—2k,,k,B +2C5,,,) = 0. (E18)
The first equation (E15) yields
2k + 6HO,p — 3(H? + 0, H)¥
+ 3(H* - 0,H)(0, — H)(0,B—D) =0. (E19)

For V>0 the solution of the field equation (D6) is
de Sitter space for which 9,’H = H?2. For a background
metric obeying the field equation the linearized
Einstein equation (E15) involves only the invariant
Bardeen potentials,
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2k + 6H (0, — HY) = 0. (E20)

Also Eq. (E16) involves only ‘“gauge invariant
fluctuations,”
1

EkZQm - 2ik,,(0,¢ — HY¥) = 0, (E21)

and similarly for Eq. (E18),

(02 + 2HD, + K2y — % (0, + 2H) (k@0 + kn Q)
+ [(2HO, + 6H? — k)Y — (202 + 4HO,, + k*)]5nn
+ (qb + ‘P)kmk,, =0. (E22)

N =

The solution of this system of equations is rather simple.
(We only consider k,, # 0 here.) Multiplying Eq. (E21)
with & yields

0, =HY, (E23)
such that Eqgs. (E20) and (E21) require
$=0, ¥ =0, Q, =0. (E24)

The only nonvanishing mode is the graviton y,,, which
obeys the standard field equation for massless excitations

(02 +2HO, + k*)Ypun = 0. (E25)

This mode equation is the same as for a massless scalar
field and has been discussed extensively in the literature
[11-16].

3. Physical metric fluctuations

For the “physical degrees of freedom” we impose
hy., = 0. The components of the constraints for f,, are

fs,y:anf8+lkn1f(r)”+3Hf(0)_Hfz11

= 20,A + 6H(A - C) + 2HKB — kK*D,  (E26)

and

Ly = 0y +3H)f) + ik 7 = HEjf5
= 2ik;(C — kK*B) — k*V; — (9, + 4H)(W, + ik,D).

(E27)
This yields two constraints for the scalar fields
(0, +4H)D =2(C — k*B)
(0, +3H)A =3HC - k22 (2HB-D). (E28)
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Together with the two defining equations (E10) for ¢ and ¥
they allow us to express A, B, C, and D in terms of ¢» and V.
The vector constraint from Eq. (E26) reads

K*V;=—(0, +4H)W,,

K*Vi = —(0, + 6H)W/. (E29)

This expresses the gauge invariant vector fluctuation €; in
terms of W I3

1

Q] k2

K2 + 0,(9, + 4H)|W,. (E30)

The relation between the Bardeen potentials and the
scalar metric fluctuations A, B, C, D is rather complex for
the constraint /;,, = 0. One has to eliminate two of the
fields by using the constraint, and subsequently establish
the relation between the two remaining scalar fluctuations
and the gauge invariant potentials @ and V.

In the presence of the constraints (E28) we can relate D
to A and C as

D =2[k* +2H(9, + 4H)]'[(0, + 3H)A — 2H(],
(E31)
and similar for B,
1
B:P[k2+2H8,7+8H2+28,7H}" {[k*+6(9,+4H)H]C
—2(,+4H) (9, +3H)A}. (E32)

Inversely, C and A can be expressed in terms of B and D,
— 12 1 o
C=k B+§( , +4H)D
1
A= (0,+3H)"! {2Hk235 [k* +3H(9, + 4’H)]D}.
(E33)

Using these expressions we can write the potentials ® and
Y as functions of B and D, e.g.,

1
® = (k* = 'HO,)B + 3 (0, + 6H)D, (E34)

with W a more lengthly expression.
Perhaps the most convenient setting keeps A and B as
independent variables, with

D =2[k* +3H(8, + 4H)]"'{(d, + 3H)A — 2HK*B}
(E35)

and
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C = [k* +3H(d, +4H) +30,H]™
x {(0, +4H) (0, +3H)A + [kK* + (0, + 4H)H]K*B}.
(E36)

We can then express the Bardeen potentials @ and ¥ in
terms of the metric components A and B,

® = [k* +3H(D, + 4H) +3(9,H)]™"

x {(0, + 6H)(0, +3H)A

+ [k* + (0, H)k* — 3H?0; — 6H(9,H + 2H?*)0,|B}

(E37)

and
¥ = [k* +3H(9, +4H) + 3(0,H)]™

x {[k? + 202 + 11'HO, + 18H? + 9(9,H)]A

— [K*(0, + H) (0, + 4H) + 3{HI2 + (5H> + 0,H)D,

+4H* + 2HO,H}0,|B}. (E38)
These equations can be inverted in order to obtain A and B,
and consecutively also C and D as functions of ® and V.
In contrast to longitudinal or Newtonian gauge, where
B=D=0, ®=C, ¥ =A, the relation between the
metric components and the gauge invariant Bardeen poten-
tials is rather complex since inversions of differential
operators are needed. This makes the reconstruction of

the metric correlation from the correlations of @ and ¥
rather cumbersome for the covariant gauge hj., = 0.

4. Relation between decomposition of physical metric
fluctuations and unconstrained metric fluctuations

The relation with the decomposition of the physical
metric in Sec. VII can be made by the identifications

foo = —2a*A = @®[x + €],
me = az(Wm + lkmD)

[ ik 'k
—a|w, —’k—;"(a,, FAH) (k + ) — ’k;" Ha],

fmn = az(ymn + ikmvn + lknvm - kaknB + 2‘Smnc)

— @ | Yy =5 (B, + 4H) kW, + K, W)

i k
1 3k, k,
+ ﬁ (8,7 + 47’02 <5mn - k2 ) (K + 6)
1 Kk
+5<5mn— k2 )(K+€)

1 3k,.k
— | |2k,,k Oy — ——
+2k2<|: mn+<mn k2 >

x (k* + HO, + 0,H + 4H2)> ,,] , (E39)
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We infer

1
Vi = 2 (0 +4H)W,,, (E40)

while in the scalar sector one has

1

B =${[kz+3(a,7+4n)2](1<+e)+[k2+3(an+4H)H]a},
CZﬁ{["”(@nHH)Z](HeH[k2+(a,,+4H)H]a},

D:—%{(&,—I—4H)(K+e)+7—[6}. (E41)

One can verify that Eq. (E41) obeys the constraints (E28).
For the computation of the Bardeen potentials ® and ¥
and one needs the combination
1
8, B - D - m {[38,7(8,7 + 4H)2
+4k*(9, + 4H) + k20, )(x + €)
+ [30,(0, + 4H)YH + K*(0, + 4H)]o}. (E42)

The relation between ® and ¥ and the fields « and o
depends on the choice of e,

1
D= pTE: {[k* + K*(0,H) + k*0,(0, + 3H)
- 3H,(8, + 4H)*|(x +¢€)
+ [k + K2 (9, H) — 3HD, (0, + 4H)H]o}, (E43)
and
1
Y= ‘W{W + k*(9, + H) (50, + 16H)

+3(9, + H)9,(0, + 4H)?*|(x + €)
+ (9, + H)[30, (0, + 4H)H + K2(8, + 4H)]o}.
(E44)

For maximally symmetric spaces we may use the choice
(333) for € and employ the relation (334). In any case, the
relation between the Bardeen potentials and the metric
components k and ¢ remains rather involved.

APPENDIX F: SECOND FUNCTIONAL
DERIVATIVE AND PROPAGATOR EQUATION

In this appendix we recall a few properties of second
functional derivatives that are useful for the derivation of
the propagator equation. In particular, we address the
effects of a change in the field basis for the propagator
equation.
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For a given complex field ¢,(n,k) in Fourier space the
quadratic effective action takes the general form

r, = / L) Ay () K). (F1)

1,

The k-integral comprises for every k both contributions
from ¢ (k) and ¢(—k), and we have to remember that these
fields are not independent, i.e., ¢, (n, —k) = ¢*(n,k). As a
consequence, the second functional derivative reads

2
@ g 0T,
F ’k’ ’k - *
a1 K ) = e ) ()

= 5(k = K)[Au(kin. i) + Apa(—ks ' ).
(F2)

For A,,(—k,n,n") = A, (k,n,1’) only the symmetric part
of A contributes to I'®). This is realized in our case where
A only involves even powers of k,, through projectors on
the modes y,,,, W,,, k and o, multiplied with operators that
depend on k2.

Furthermore, A,, turns out to be a purely imaginary
differential operator,

A(k’ l’]l, ’7) = 15(”[ - n,)Dab(kv 7//’ 811) (FS)
Writing
D,,(k.n.0,)=DY % DY (k.o
a(k.n.0,) w (k.n) + D (k,n)0,
+ D) (e )O3+ -+ (F4)
one infers
L% (n.kn &) = i6(n — 1/ )8(k — K)Dp(k.m.n').  (F5)

with

Doy(le.n.11) = [DL) (k.n) + D) (. 7))
+ DS} (k. ) = D) (k. )]0, — 9,D},) (k.n)
+ [DG) (k) + DY) (k.n)] 02
+28,D) (k, )0, + 2DV (k) + - -

(Fo)

This structure can be most easily visualized as a result of
partial integration of the terms involving ¢} (—k)g,(—k).
For example, one has the following associations
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D =a*d} — D= a?(92 + (0, + 2H)?),
D =2Ha*d, —» D = —a*(4H> + 20, H),
D = a*(02 + 2H0,) » D =2a*(3% +2H9,).  (F7)
The propagator equation I'?)G = E can be solved in an
arbitrary field basis. Consider unconstrained fields ¢,
where E = 62,
T
— e =62 F8
aq)ua¢b <¢b¢c>c c ( )

For a linear regular transformation

Do = AubWb (Fg)
this translates to

o

_a — 50
awaawb <l//bl//6>c c

(F10)
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We will encounter field transformations

pa(k.n) = Bac(k.n. 0, )y (k.n) (F11)

that are not necessarily regular. We still can first evaluate
the correlation function in the y-basis and subsequently use

Gy (n. b K
= (@a(n. k) (' . k)),
= By (k. n, 0,) B (k.1 0y ) (we(n. k)wiy(nf K)),

= Bk, n,0,)B;, k.0, 0,)GY) (. ks k). (F12)

This situation is realized if we want to compute the metric
correlation from the propagators of the physical fluctua-
tions y,,,, W, k and o. The latter are represented here by y,
while the relation between the metric components ¢ and y
is given by h,, =t,, + s,, and the expansion (324).
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