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Cosmological defects result from cosmological phase transitions in the early Universe and the dynamics
reflects their symmetry-breaking mechanisms. These cosmological defects may be probed through weak
lensing effects because they interact with ordinary matters only through the gravitational force. In this
paper, we investigate global textures by using weak lensing curl and B modes. Nontopological textures are
modeled by the nonlinear sigma model (NLSM) and induce not only the scalar perturbation but also vector
and tensor perturbations in the primordial plasma due to the nonlinearity in the anisotropic stress of scalar
fields. We show angular power spectra of curl and B modes from both vector and tensor modes based on the
NLSM. Furthermore, we give the analytic estimations for curl and B-mode power spectra. The amplitude of
weak lensing signals depends on a combined parameter ϵ2v ¼ N−1ðv=mplÞ4 where N and v are the number
of the scalar fields and the vacuum expectation value, respectively. We discuss the detectability of the curl
and B modes with several observation specifications. In the case of the CMB lensing observation without
including the instrumental noise, we can reach ϵv ≈ 2.7 × 10−6. This constraint is about 10 times stronger
than the current one determined from the Planck. For the cosmic shear observation, we find that the signal-
to-noise ratio depends on the mean redshift and the observing number of galaxies as ∝ z0.7m and ∝ N0.2

g ,
respectively. In the study of textures using cosmic shear observations, the mean redshift would be one of the
key design parameters.
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I. INTRODUCTION

Current cosmological observations confirm that the
Universe begins with extremely high temperature, what
we call the hot big bang model. As the Universe expands
adiabatically, it cools down from the hot initial condition.
Therefore, it is natural to expect that cosmological
phase transitions occur in the history of the Universe.
Cosmological phase transitions result in various cosmo-
logical defects depending on the symmetry of the phase
transitions, e.g., cosmic strings, domain walls, and textures,
which were first discussed by T.W. B. Kibble [1]. We can
examine the nature of the phase transition that happened
in the early Universe through the resulting defects by
using cosmological observations since these defects affect
various observables; in the case of cosmic strings, see
e.g., Ref. [2].
The global OðNÞ symmetry breaking results in

domain walls (N ¼ 1), cosmic strings (N ¼ 2), monopoles
(N ¼ 3), textures (N ¼ 4), and nontopological textures
(N > 4). Effects of the defects such as cosmic strings
and textures can be seen at the horizon scale at that time,
which corresponds to the correlation length of the strings
or the textures. According to this fact, defects could
affect several cosmological observables in the various
scales through the metric perturbations, which include,

for example, gravitational waves [3–8], weak gravitational
lensings [9,10], generation of magnetic fields [11], the
cosmic microwave background (CMB) angular power
spectrum [12,13] and the CMB lensing [14–16].
In this paper, we focus on the nontopological texture

with large-N limit N ≫ 4 [17–19]. The dynamics of
nontopological textures is exactly described by the non-
linear sigma model (NLSM). Effects of textures on the
cosmological observations, such as the large-scale structure
[17,20], cosmic microwave background fluctuations
[21–25], gravitational waves [26–28], and generation of
magnetic fields [29], have been studied in many articles.
Some cosmological defects including textures induce not
only the scalar, but also the vector and tensor modes
originated from the anisotropic stress of scalar fields such
as [3–16,21–29]. These vector and tensor modes are good
tracers of cosmological defects since the vector and tensor
modes do not arise from the standard cosmology in the
linear order. It is possible to bring information of the phase
transition that happened in the early stage of the universe
through studying the vector and tensor modes induced from
the cosmological defect.
We focus on the weak lensing from the vector and tensor

modes induced by the nontopological texture. Photons
emitted from the CMB last scattering surface and galaxies
are deflected by the foreground scalar, vector, and tensor
perturbations, called the CMB lensing and the cosmic
shear, respectively [30,31]. We can decompose these*saga.shohei@nagoya‑u.jp
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deflection patterns into the parity-even and parity-odd
signatures. The parity-even signal emerged from the scalar,
vector, and tensor modes. On the other hand, the parity-odd
mode is induced only from the vector and tensor modes
[32–34]. Therefore, the parity-odd mode of the CMB
lensing and the cosmic shear, that is, the curl mode and
the cosmic shear B mode, respectively, are a good probe
for the cosmological defects such as the texture. The parity-
even modes of the CMB lensing and the cosmic shear
which are induced from the first-order scalar mode have
been detected with a high signal-to-noise ratio by e.g.,
the Planck [35], the Canada-France Hawaii Telescope
Lensing Survey (CFHTLenS) [36–38], and the Dark
Energy Survey (DES) [39,40]. In previous studies, many
parity-odd models have been studied and discussed, e.g.,
cosmic (super) strings [14–16], primordial gravitational
waves [41,42], or the second-order perturbation [43–45].
Although the parity-odd mode has not been detected, the
prediction of the parity-odd mode for possible sources must
become one of the important observable in the future high
sensitivity observations.
In this paper, we study the parity-odd signals from the

nontopological texture governed by the NLSM with
large-N limit. The outline of this paper is as follows.
In Sec. II, we review and summarize the NLSM with
large-N limit. The NLSM has N-component real scalar
fields and the nonlinearity of these scalar fields induces
the vector and tensor modes. The vector and tensor
modes from the NLSM with large-N limit can be
determined by solving Einstein equation. In addition,
we give an analytical estimation of the vector and tensor
modes. In Sec. III, we present the formulation of weak
lensing signals. As mentioned above, we focus on the
parity-odd signatures, that is, the curl mode for the CMB
lensing and the B-mode for the cosmic shear. In Sec. IV,
we provide results and discussions. We also give ana-
lytical estimates of the lensing signal and discussions of
the detectability of the nontopological texture. In Sec. V,
we provide our conclusion.

II. NONLINEAR SIGMA MODEL

In this section, we review the nonlinear sigma model
(NLSM), which has the vector and tensor modes originated
from the anisotropic stress of scalar fields. The NLSM can
accurately describe cosmological defects with the global
OðNÞ symmetry in the case of N > 2 [17,18]. Throughout
this paper, we assume the background metric is given by the
Friedman-Robertson-Walker metric as

ds2 ¼ aðηÞ2½−dη2 þ dx2�; ð1Þ

where η and aðηÞ are the conformal time and the scale
factor, respectively.
We focus on the dynamics of real N-scalar fields with the

Lagrangian which satisfies the global OðNÞ symmetry:

L ¼ −
1

2
ð∇μΦtÞð∇μΦÞ − λ

4
ðΦtΦ − v2Þ2 þ LT; ð2Þ

where we define the array of real N-scalar fields as
Φ ¼ ðϕ1;ϕ2;…;ϕNÞ. Moreover, v and λ are the vacuum
expectation value (VEV) and the dimensionless self-cou-
pling parameter, respectively. The interaction with the
thermal environment having the temperature T is repre-
sented as LT ∼ T2ΦtΦ. In the case of low temperature,
T ≪ v, the globalOðNÞ symmetry breaks spontaneously to
OðN − 1Þ symmetry with the condition ΦtΦ ¼ v2.
According to this constraint, the equation of motion for
scalar fields is determined from Eq. (2) as

∇μ∇μβa þ
XN−1

b¼1

ð∇μβbÞð∇μβ
bÞβa ¼ 0; ð3Þ

where βa is scalar fields normalized by the VEV, namely,
βa ≡Φa=v. The normalized scalar fields obey the con-
dition

P
N
a¼1 βaβ

a ¼ 1. The above equation (3) is called the
nonlinear sigma model.
By taking the large-N limit in Eq. (3), the solution of

Eq. (3) in the Fourier space is given as [29]

βaðk; ηÞ ¼
ffiffiffiffiffi
Aν

p �
η

ηini

�
3=2 JνðkηÞ

ðkηÞν βaðk; ηiniÞ; ð4Þ

where ν≡ d ln a=d ln ηþ 1 and Aν ≡ 4Γð2ν − 1=2Þ×
Γðν − 1=2Þ=ð3Γðν − 1ÞÞ. We assume that βaðk; ηiniÞ are
random gaussian variables. During the radiation- and
matter-dominated eras, the parameter ν takes νrad ¼ 2
and νmat ¼ 3, respectively. Although the solution of scalar
fields βa depends on the phase transition time ηini, the
power spectrum of scalar fields is independent of this time
[29]. The dimensionless power spectrum for normalized
scalar fields can be given as

hβaðk; ηÞβ�bðk0; ηÞi ¼
2π2

k3
Pβðk; ηÞδabð2πÞ3δ3dðk − k0Þ; ð5Þ

Pβðk; ηÞ ¼
3Aν

N
ðkηÞ3

�
JνðkηÞ
ðkηÞν

�
2

; ð6Þ

where the initial power spectrum is determined as (see e.g.,
Ref. [27])

hβaðk; ηiniÞβ�bðk0; ηiniÞi

¼
� 6π2η3ini

N δabð2πÞ3δ3dðk − k0Þ ðkηini ≪ 1Þ
0 ðkηini ≳ 1Þ:

ð7Þ

The amplitude of the solution is determined to satisfy the
condition

P
N
a¼1 βaβ

a ¼ 1. Note that the configuration of
scalar fields is not correlated on subhorizon scales, i.e.,
kηini ≳ 1. In other words, as expressed in the above
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equation, the correlation of scalar fields vanishes in these
scales. From Eq. (6), we can see that the power spectrum of
scalar fields does not depend on the initial time. Therefore,
we have omitted the initial time ηini from the argument of
the power spectrum. The energy momentum tensor for
scalar fields is written as

Tϕ
μν ¼ v2

X
a

�
ð∂μβaÞð∂νβ

aÞ − 1

2
gμνð∂λβaÞð∂λβaÞ

�
: ð8Þ

The anisotropic stress of scalar fields corresponds to the
ði; jÞ component of the energy momentum tensor.
From here, we derive evolution equations for the vector

and tensor metric perturbations with the anisotropic stress
of self-ordering scalar fields. In our study, we work in the
Poisson gauge given by

ds2 ¼ a2ðηÞ½−dη2 þ 2σidηdxi þ ðδij þ hijÞdxidxj�; ð9Þ

where we drop the scalar metric perturbation since we are
interested in the vector σi and tensor hij perturbations. Due
to the gauge conditions, the vector and tensor perturbations
satisfy σi;i ¼ hij;i ¼ 0.
The Einstein equations for the vector σV and tensor hT

perturbations in the Fourier space are given as

k½ _σVðk; ηÞ þ 2HσVðk; ηÞ� ¼
8π

m2
pl

πϕVðk; ηÞ; ð10Þ

ḧTðk; ηÞ þ 2H _hTðk; ηÞ þ k2hTðk; ηÞ ¼
8π

m2
pl

πϕTðk; ηÞ; ð11Þ

where a dot denotes the derivative with respect to the
conformal time. Anisotropic stresses for the vector and
tensor modes can be given by the product of scalar fields as

πϕVðk; ηÞ ¼
Z

d3q
ð2πÞ3

Z
d3p
ð2πÞ3 δ

3
dðk − q − pÞ

�
v2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
qðk − 2qμÞ

�X
a

βaðq; ηÞβaðp; ηÞ; ð12Þ

πϕTðk; ηÞ ¼
Z

d3q
ð2πÞ3

Z
d3p
ð2πÞ3 δ

3
dðk − q − pÞ½v2ð1 − μ2Þq2�

X
a

βaðq; ηÞβaðp; ηÞ; ð13Þ

where we define μ≡ k̂ · q̂. In order to predict the weak lensing signal, we define the dimensionless unequal-time power
spectra for the vector and tensor modes which are defined as

hξXðk; ηÞξ�Xðk0; η0Þi ¼ ð2πÞ3δ3dðk − k0Þ 2π
2

k3
PXðk; η; η0Þ; ð14Þ

where ξX denotes the vector (ξX ¼ σV) and tensor (ξX ¼ hT) modes. We can solve evolution equations for the vector and
tensor modes in Eqs. (12) and (13) straightforwardly. By using solutions of the vector and tensor modes, we can write down
the dimensionless unequal-time power spectrum during the matter-dominated era (ν ¼ 3) as

PXðkη; kη0Þ ¼ A
Z

∞

−∞
d ln qk

Z
1

−1
dμFXðqk; μ; kηÞFXðqk; μ; kη0Þ; ð15Þ

A ¼ 144π2A2
3ϵ

2
v;

≈ 1.22 × 107ϵ2v; ð16Þ

FVðqk; μ; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
ð1 − 2qkμÞq5=2k

1

x4

Z
x

0

dx1x71
J3ðqkx1Þ
ðqkx1Þ3

J3ðpkx1Þ
ðpkx1Þ3

; ð17Þ

FTðqk; μ; xÞ ¼ 2ð1 − μ2Þq7=2k
1

x3

Z
x

0

dx1½xx1Gðx; x1Þ�x41
J3ðqkx1Þ
ðqkx1Þ3

J3ðpkx1Þ
ðpkx1Þ3

; ð18Þ

where qk ≡ q=k, pk ≡ p=k, x≡ kη, andGðx; x1Þ ¼ xx1ðj1ðx1Þn1ðxÞ − j1ðxÞn1ðx1ÞÞ is the Green function for the evolution
equation of the tensor mode (11), and JνðxÞ, jνðxÞ, and nνðxÞ are the Bessel function, the spherical Bessel function, and the
spherical Neumann function, respectively. The shape of the unequal-time power spectrum does not depend on the
theoretical parameters such as N and v. These parameters change only the amplitude of the power spectrum and appear
through a special combination of N−1v4. Therefore, in this paper, we define a new parameter through the combination of
theoretical parameters as
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ϵ2v ≡ N−1ðv=mplÞ4: ð19Þ

In this paper, for simplicity, we evaluate the weak lensing
signal by using the power spectrum during the matter-
dominated era. The correction to the radiation component
should be small since lensing signals are mainly contributed
from the perturbations at late times of cosmic evolution.
We depict the dimensionless equal-time power spectrum

for the vector and tensor modes in Fig. 1. We can see that on

super (sub) horizon scales, the vector (tensor) mode is
greater than the tensor (vector) mode. In the following
section, in order to discuss the angular power spectra of the
curl and B modes, we evaluate the asymptotic power on
small scales. From here, we estimate the asymptotic power
of the dimensionless equal-time power spectrum on sub-
horizon scales as follows. At first, let us see the vector
mode. By integrating Eq. (17), we obtain the notation of
FVðqk; μ; xÞ exactly as

FVðqk; μ; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
q−1=2k p−3

k x−3ðqkJ2ðqkxÞJ3ðpkxÞ − pkJ3ðqkxÞJ2ðpkxÞÞ: ð20Þ

Using the approximations for the Bessel function, Jνðx ≪ νÞ ∝ xν and Jνðx ≫ νÞ ∝ x−1=2 cos x, and assuming a cutoff scale
1=x, we can integrate the auto-power spectrum for the vector mode as

PVðx; xÞ ∝ x−6
Z

1=x
dqk½p−6

k J23ðpkxÞJ22ðqkxÞ

− 2p−5
k q−1k J2ðpkxÞJ3ðpkxÞJ2ðqkxÞJ3ðqkxÞ þ p−4

k q−2k J22ðpkxÞJ23ðqkxÞ�
∼ α1x−8 þ α2x−7 þ α3x−6

∝ x−6; ð21Þ

where α1, α2 and α3 are constants. Therefore, the kη dependence of PVðkη; kηÞ is ∝ ðkηÞ−6. Next, we see the tensor
mode. Here we find the most dominant term of FTðqk; μ; xÞ, that is, the highest power of x and x1, by considering the
integrand as

FTðqk; μ; xÞ ∼ p−3
k q−1=2k x−3

Z
x
dx1½ðx1 − xÞ cosðx − x1Þ þ ð1þ xx1Þ sinðx − x1Þ�x−21 J3ðqkx1ÞJ3ðpkx1Þ

∼ p−3
k q−1=2k x−2

Z
x→1=qk

dx1x−11 sinðx − x1ÞJ3ðqkx1ÞJ3ðpkx1Þ

∼ p−3
k q−1=2k x−2qkJ3ðpk=qkÞ; ð22Þ

where we have assumed pk > qk and we can obtain the
expression for the case pk < qk in the same way. Now we
are able to calculate the kη dependence of PTðx; xÞ as

PTðx; xÞ ∝
Z

dqkq−1k ½p−3
k q−1=2k x−2qkJ3ðpk=qkÞ�2

∝ x−4 ∝ ðkηÞ−4: ð23Þ

Here we have obtained the kη dependence of the dimen-
sionless equal-time power spectrum for vector and tensor
modes as PVðkη; kηÞ ∝ ðkηÞ−6 and PTðkη; kηÞ ∝ ðkηÞ−4,
respectively. These spectra leave various trails on physical
values and these estimations enable us to predict their
analytic forms.

III. WEAK LENSING

In this section, we give a review about the relation
between weak lensing signals and vector and tensor
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FIG. 1. Power spectra Pðkη; kηÞ for the vector and tensor
modes from the NLSM. For the presentation purpose, we set
A ¼ 1 in this figure. Due to the convolution of scalar fields in
Eqs. (12) and (13), the peak moves to smaller scales than the
horizon scale where kη ¼ 1.
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perturbations from the textures following Refs. [14,34]. We
pull parity-odd signals from the CMB lensing and the
cosmic shear which are called the curl and B modes,
respectively. In the following subsection, we present details
about the curl and B modes.

A. CMB lensing curl mode

CMB photons are deflected by foreground scalar, vector,
and tensor perturbations. We decompose the deflection
angle of CMB photons projected on the celestial sphere
Δaðn̂Þ into the gradient (ϕðn̂Þ) and curl (ϖðn̂Þ) modes as

Δaðn̂Þ ¼ ∇aϕðn̂Þ þ ð∇bϖðn̂ÞÞϵba; ð24Þ

where ϵba is the covariant dimensional Levi-Civita
tensor. Note that latin characters started from a; b; � � � in
the above relation denote the azimuthal and polar angles
denoted as θ and ϕ, respectively. From here, we drop the
gradient mode since, in this paper, we are interested in the
curl mode.
In order to relate the curl mode and the angular power

spectrum, we solve the geodesic equation in the perturbed
spacetime. By solving the perturbed geodesic equation, the
curl mode can be expressed by using the metric perturba-
tions of the vector and tensor modes as

ϖ∶a
∶a ¼ −

Z
χS

0

dχ
χS − χ

χχS

�
d
dχ

ðχΩa
∶bϵ

b
aÞ
�
; ð25Þ

where χ is the comoving distance measured from the
observer at the origin and χS is the comoving distance at
the sources. Ωa in Eq. (25) includes the vector and tensor
perturbations as

Ωa ¼ ð−σi þ hije
j
χÞeia; ð26Þ

where eiχ and eia are the orthogonal spacelike basis along
the light ray. We expand the curl mode by using the
spherical harmonics and define the angular power spectrum
for the curl mode as

ϖðn̂Þ ¼
X
l;m

ϖl;mYl;mðn̂Þ; ð27Þ

Cϖϖ
l ¼ 1

2lþ 1

Xl
m¼−l

hϖl;mϖ
�
l;mi: ð28Þ

Finally, we obtain the angular power spectrum of the curl
mode in terms of the vector (X ¼ V) and tensor (X ¼ T)
perturbations as

CðXÞϖϖ
l ¼ 4π

Z
∞

0

dk
k

Z
χS

0

kdχ
Z

χS

0

kdχ0SðXÞ
ϖ;lðkχÞSðXÞ

ϖ;lðkχ0ÞPXðk; η0 − χ; η0 − χ0Þ; ð29Þ

where PXðk; η; η0Þ denotes the dimensionless unequal-time

power spectrum of metric perturbations. SðXÞ
ϖ;lðkχÞ is the

weight function defined as

SðVÞ
ϖ;lðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þ!
ðlþ 1Þ!

s
jlðxÞ
x

; ð30Þ

SðTÞ
ϖ;lðxÞ ¼

1

2

ðl − 1Þ!
ðlþ 1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
jlðxÞ
x2

: ð31Þ

In the case of the CMB lensing, the comoving distance to
the source χS corresponds to that to the CMB last scattering
surface.
We assume that the curl-mode lensing potential is

reconstructed by using the quadratic estimator [46,47].
In this case, the CMB lensing noise arises from the lensing
reconstruction noise from the cosmic variance of the lensed
CMB fluctuations. We assume an ideal experiment for the
CMB lensing throughout this paper and neglect instrumen-
tal noise. Consequently, the noise of the CMB lensing is
limited by the reconstruction noise due to the quadratic
estimator.

B. Cosmic shear B mode

The intrinsic shape of galaxies is deformed by fore-
ground perturbations. The deformation pattern is charac-
terized by the reduced shear [31,48]. The geodesic
deviation equation describes the deformation of the shape
of galaxies. By solving the geodesic deviation equation, we
can relate the reduced shear and the vector and tensor
perturbations as [14,34]

g ¼ −
1

2

Z
χS

0

dχ
χS − χ

χχS

�
∇a∇bϒ −

d
dχ

ðχ∇bΩaÞ
�
eaþebþ

−
1

4
½habeaþebþ�χS0 ; ð32Þ

where ϒ contains the scalar, vector, and tensor modes as

ϒ ¼ −ðΨþΦÞ − σieiχ þ
1

2
hijeiχe

j
χ : ð33Þ

Note that ϒ does not appear in the cosmic shear B mode
but in the cosmic shear E mode. Therefore, we do not
focus on ϒ when we study the cosmic shear B mode.
Because the reduced shear is a spin-2 variable, we can
expand the reduced shear according to the spin-2 spherical
harmonics as
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gðn̂Þ ¼
X
l;m

ðElm þ iBlmÞþ2Ylmðn̂Þ; ð34Þ

where we split multipole coefficients into E and B modes
by using the parity. Hereafter, we focus on the cosmic shear
B mode and drop the E mode. In addition to the CMB
lensing, the angular power spectrum of the B mode is
defined as

CBB
l ¼ 1

2lþ 1

Xl
m¼−l

hBlmB�
lmi: ð35Þ

By solving the perturbed geodesic deviation equation, we
can relate the angular power spectrum of the B mode and
the vector or tensor metric perturbations as

CðXÞBB
l ¼

�
1

4

ðlþ 2Þ!
ðl − 2Þ!

�
4π

Z
∞

0

dk
k

Z
∞

0

kdχ

×
Z

∞

0

kdχ0SðXÞ
B;lðk; χÞSðXÞ

B;lðk; χ0Þ

× PXðk; η0 − χ; η0 − χ0Þ; ð36Þ

where weight functions are defined as

SðVÞ
B;lðk; χÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þ!
ðlþ 1Þ!

s Z
∞

χ
dχS

NðχSÞ
Ng

jlðkχÞ
kχ

; ð37Þ

SðTÞ
B;lðk;χÞ ¼

1

2

ðl− 1Þ!
ðlþ 1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl− 2Þ!

s �Z
∞

χ
dχS

NðχSÞ
Ng

jlðkχÞ
ðkχÞ2

�

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl− 2Þ!
ðlþ 2Þ!

s
NðχÞ
Ng

�
j0lðkχÞ þ 2

jlðkχÞ
kχ

�
:

ð38Þ

To investigate the cosmic shear signals, we need the
distribution of galaxies NðχÞ, which should be determined
by observations. Here we assume the following form,

NðχÞdχ ¼ Ng
3

2

z2

ð0.64zmÞ3
exp

�
−
�

z
0.64zm

�
3=2

�
dz; ð39Þ

where zm is the mean redshift, and Ng is the number of
galaxies per square arc-minute. In our study, we assume
three ongoing and forthcoming survey designs, that is, the
Subaru Hyper-Suprime Cam (HSC) [49], the Square
Kilometer Array (SKA) [50], and the Large Synoptic
Survey Telescope (LSST) [51]. Individual experimental
specifications are summarized in Table. I. We assume that
the noise of the cosmic shear is the shot noise originated
from the intrinsic shape of galaxies written as

NBB
l ¼ hγ2inti

3600Ngð180=πÞ2
; ð40Þ

where hγ2inti1=2 is the root-mean square ellipticity of
galaxies, which is determined about 0.3 in Ref. [52].
Note that without the dependence of the distribution of

galaxies, i.e., NðχÞ ¼ const, there is the relation between
the CMB lensing curl-mode and the cosmic shear B-mode
power spectra as [34]

Cϖϖ
l ¼ 4

ðl − 2Þ!
ðlþ 2Þ!C

BB
l : ð41Þ

We use this relation in the following section to obtain the
asymptotic scaling of the angular power spectra.
Before closing this section, we mention our treatment

about the unequal-time power spectrum. To calculate weak
lensing signals, we need to use the unequal-time power
spectrum for the vector and tensor modes. For simplicity, to
perform the multiple integration, we assume the case of the
totally coherent model [14,53–55] throughout this paper.
In other words, we can write the unequal-time power
spectrum as PXðkη;kη0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PXðkη;kηÞPXðkη0;kη0Þ

p
. This

assumption makes the computation of the angular power
spectrum easy. From Eqs. (29) and (36), the unequal-time
power spectrum is multiplied by the weight functions,
which correspond to the spherical Bessel functions. The
dominant contributions of the integrands on the angular
power spectrum would be l ∼ kη since the spherical Bessel
function jlðxÞ rapidly decays at x > l. We will show that it
is sufficient to assume the totally coherent model on small
scales by using the small-angle approximation, i.e., the
Limber approximation. Therefore, the totally coherent
model is a good approximation on small scales but not
on large scales. We will discuss the details of the effect of
the totally coherent model in the next section.

IV. RESULTS AND DISCUSSIONS

In this section, we present our main results and give
discussions. In Fig. 2, we show weak lensing signals from
the global texture modeled by the NLSM. We can find that
the contribution to the lensing signal is dominated by the
tensor mode. This is because the spherical Bessel function
in Eqs. (29) and (36) projects on the angular power
spectrum around l ∼ kη which corresponds to subhorizon
scales. In Fig. 1, the tensor mode has larger amplitude than

TABLE I. The experimental specifications of the HSC, SKA,
and LSST.

fsky zm Ng [arcmin−2]

HSC 0.05 1.0 35
SKA 0.75 1.6 10
LSST 0.5 1.5 100
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the vector mode on subhorizon scales. Therefore, the
angular power spectra of the curl and B modes are
dominated by the tensor mode. Moreover, the difference
between the vector and tensor contributions on the lensing
signal is greater at low redshift observation. Note that the
CMB B-mode polarization from the tensor mode of the
texture has almost the same amplitude [24].
The CMB lensing curl mode from the texture has a

broken power at l ≈ 200 which is smaller scale compared
with the standard peak of the scalar lensing potential or the
lensing from the primordial gravitational waves [34,44].
This is because the peak of the power spectrum from the
NLSM does not correspond to the horizon scale but slightly
smaller scale due to the nonlinearity (see Fig. 1 or
Ref. [25]). On large scales (l≲ 200), the power of the
angular power spectra from the vector and tensor modes is
proportional to l−2.
Moreover, we can obtain the analytic power on small

scales ðl ≫ 1Þ by using the small-angle approximation as
follows,

CðXÞϖϖ
l ∝

Z
∞

0

dk
k

Z
χS

0

kdχ
Z

χS

0

kdχ0SðXÞ
ϖ;lðkχÞSðXÞ

ϖ;lðkχ0Þ

× PXðk; η0 − χ; η0 − χ0Þ

∝
1

l5

Z
χS

0

dχ
1

χ
PXðlðη0 − χÞχ−1;lðη0 − χÞχ−1Þ;

ð42Þ

where we assume the large-l limit to provide the above
relation and we use the so-called Limber approximation. In
the above equation, when the multipole is quite large, the
contribution from the power spectrum is mainly coming
from the subhorizon power, that is, kη ≫ 1. From Sec. II,
we find that the power spectrum on large multipoles
ðl ≫ 1Þ for the vector and tensor modes is therefore
proportional to ðkηÞ−6 and ðkηÞ−4, respectively. We can
derive the asymptotic power of the weak lensing curl mode

as l4CðVÞϖϖ
l ∝ l−7 and l4CðTÞϖϖ

l ∝ l−5. From Eq. (41),

angular power spectra of the CMB lensing and cosmic
shear are related as Cϖϖ

l ∝ l−4CBB
l , the asymptotic power

of the B-mode cosmic shear can be given as l2CðVÞBB
l ∝

l−5 and l2CðTÞBB
l ∝ l−3. We can see these asymptotic

powers from Fig. 2. Note that observed lensing signal
is the sum of the vector and tensor modes, i.e.,

CðtotÞ
l ¼ CðVÞ

l þ CðTÞ
l .

From here, we discuss the detectability of the texture
by using the weak lensing signals. In the case of the
CMB lensing, we consider the noise spectrum that is due
to the cosmic variance of the CMB, so called the CMB
reconstruction noise, assuming a noiseless instrument
following Ref. [47]. The CMB reconstruction noise mainly
depends on the number of available multipoles. Throughout
this paper, we use the lensed and unlensed CMB angular
power spectrum up to lmax ¼ 3000 when computing the
reconstruction noise. On the other hand, the noise spectrum
of the cosmic shear observations is determined by the shot
noise given by Eq. (40).
We estimate the signal-to-noise ratio as

�
S
N

�
<l

¼
�Xl
l0¼2

�
Cl0

ΔCl0

�
2
�1=2

; ð43Þ

ΔCl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð2lþ 1Þfsky

s
ðCl þ NlÞ: ð44Þ

In Fig. 3, we show the relation between the signal-to-noise
ratio and the theoretical parameter ϵv. We can find that
the ultimate experiment of the CMB lensing without
including the instrumental noise can set an upper limit
on the theoretical parameter related to the VEV as
ϵv ∼ 2.7 × 10−6.
Constraints from the cosmic shear are much weaker than

those from the CMB lensing. This is because signals of the
cosmic shear are strongly suppressed on small scales.
However, contrary to the CMB lensing observation, the
signal-to-noise ratio of cosmic shear experiments depends
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FIG. 2. Left: The angular power spectrum of the CMB lensing curl-mode from vector- and tensor-modes of the texture. Right: The
angular power spectrum of the cosmic shear B mode from vector and tensor modes of the texture by assuming the observation as LSST.
For the same reason, in Fig. 1, we set the theoretical parameter set A ¼ 1 in both figures.
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on parameters of the experimental specification.
Fortunately, the theoretical parameter ϵv changes only
the amplitude of the angular power spectrum, namely,
Cl ∝ ϵ2v. From the definition of the signal-to-noise ratio
(43) and (44), the signal-to-noise ratio therefore depends on
the special combination ϵ2vNg. In Fig. 4, we show the
relation between the signal-to-noise ratio and ϵ2vNg and the
mean redshift. From this result, we can give a rough
estimation of the signal-to-noise ratio as the function of
ϵ2vNg and zm, such as S=N ∝ f1=2sky ½ϵ2vNg�0.2z0.7m for the

cosmic shear observation. According to this estimation,
in order to improve the detectability, we need to push zm to
higher redshift rather than adding the number of galaxies
Ng since the signal-to-noise ratio is sensitive to the mean
redshift rather than the observing number of galaxies.
Before closing this section, we discuss the validity of the

assumption, that is, the totally coherent model. Under the
Limber approximation presented in Eq. (42), the power
spectrum on small scales is determined by the equal-time
power spectrum, which is the same as the totally coherent
model. Therefore, the totally coherent model is valid on
small scales.
In Fig. 2, we can see that the Limber approximation can

explain the cosmic shear B mode on almost all scales. On
the other hand, the angular power spectrum of the curl
mode does not correspond to the power of the Limber
approximation on large scales, i.e., l≲ 100. We can
conclude that the totally coherent model works in the case
of the cosmic shear B mode. Contrary to this, the totally
coherent model is not reliable in the case of the CMB
lensing curl mode at l ≲ 100.
Here, we show the rough estimate for the signal-to-noise

ratio in the case of the CMB lensing curl mode. In the worst
case, when the contribution from l≲ 100 on the signal-to-
noise ratio is negligible, we find that ϵv decreases as
ϵv ∼ 1.8 × 10−5. Although this value is the most pessimistic
constraint on the theoretical parameter of the texture by
using the CMB lensing curl mode, it is comparable to the
LSST case in the cosmic shear B-mode observation.
Therefore, the constraint on the theoretical parameter is
at least ϵv ≲ 1.8 × 10−5 by using the CMB lensing
curl mode.

V. SUMMARY

In this paper, we investigate weak lensing effects from
nontopological textures accurately governed by the non-
linear sigma model. The phase transitions of the Universe
induce cosmological defects, e.g., monopoles, strings, or
textures. These defects imprint characteristic signatures on
cosmological probes such as the CMB fluctuations or the
large-scale structure. We can give the constraint on cos-
mological defects from various observations. Moreover, we
can pull information indirectly about cosmological phase
transitions which would have happened in the early
Universe.
In this paper, we examine weak lensing effects. We can

decompose weak lensing effects into two types of the
signature by using the parity. The parity-odd signal in weak
lensing effects is induced from only the vector and tensor
modes. The dynamics of the nontopological texture is well
described by the nonlinear sigma model which induces not
only scalar but also vector and tensor modes. In order to
estimate the weak lensing signal, we need to calculate the
unequal-time power spectrum for the vector and tensor
modes. Throughout this paper, to proceed with the
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FIG. 3. The signal-to-noise ratio by varying the theoretical
parameter ϵv. In the case of the CMB lensing denoted as “CV”
in this figure, the noise spectrum is assumed the CMB
reconstruction noise [47]. In the cosmic shear case denoted as
HSC, SKA, and LSST, we assume the shot noise originated from
the intrinsic shape of galaxies in Eq. (40). In the case of the CMB
lensing, we assume the lensing reconstruction noise without the
instrumental noise, namely, the cosmic-variance limited noise
denoted as CV in this figure. Moreover, for the cosmic shear
experiment, we show the signal-to-noise ratio resulting from the
HSC, SKA, and LSST experiments. We also show the vertical
solid line which corresponds to S=N ¼ 1.
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FIG. 4. The signal-to-noise ratio with the factor f−1=2sky as the
function of two parameters ϵ2vNg and zm. This figure shows

contours which corresponds to f−1=2sky ðS=NÞ ¼ 1, 10, 30, and 50.
We set the maximum multipole to estimate the signal-to-noise
ratio as lmax ¼ 1000.
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numerical calculation, we restrict the totally coherent
model for the texture, which gives the unequal-time power
spectrum written by the separable form. We leave to future
work the consideration of any other models of the unequal-
time power spectrum.
We present the CMB lensing curl-mode and cosmic

shear B mode from the nontopological texture with the
large-N limit. In both observables, we newly find that the
tensor mode dominates over the angular power spectrum of
the curl and B modes. We estimate the signal-to-noise ratio
as a function of the theoretical parameter ϵv. The parameter
ϵv represents the energy scale of the VEV. In the current
observations, the upper bound of ϵv is roughly obtained
from the CMB anisotropies observed by the Planck as
ϵv ≲ 1.3 × 10−5 [56]. Furthermore, the cosmic defects
including the texture also induce the CMB spectral dis-
tortion [57]. The CMB spectral distortion constrained by
the COBE FIRAS [58] also imposes the upper bound as
ϵv ≲ 1.29 × 10−5, which is almost the same upper bound as
the CMB anisotropies. Note that, if we naively convert the
tension of cosmic strings into the parameter ϵv, ϵv for
cosmic strings reads as ϵv ≲Oð10−4Þ [56,59]. The explicit

bound depends on the kind of cosmic strings. From our
analysis, we find that the CMB lensing measurement, by
using the quadratic estimator without the instrumental
noise, would give an upper limit as ϵv ∼ 2.7 × 10−6. In
the cosmic shear measurement, we give a relation between
the signal-to-noise ratio and the survey design parameters.
From this result, improving the mean redshift is effective
for studying the nontopological texture in the cosmic shear
experiment.
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