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A non singular cosmological bounce in the Einstein frame can only take place if the null energy
condition (NEC) is violated. We explore situations where a single scalar field drives the NEC violation and
derive the constraints imposed by demanding tree level unitarity on a cosmological background. We then
focus on the explicit constraints that arise in PðXÞ theories and show that constraints from perturbative
unitarity make it impossible for the NEC violation to occur within the region of validity of the effective
field theory without also involving irrelevant operators that arise at a higher scale that would enter from
integrating out more massive degrees of freedom. Within the context of PðXÞ theories we show that
including such operators allows for a bounce that does not manifestly violate tree level unitarity, but at the
price of either imposing a shift symmetry or involving technically unnatural small operator coefficients
within the low-energy effective field theory.
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I. INTRODUCTION

Describing the earliest moments of our Universe remains
one of the greatest challenges of physics. The singularity
theorem states that if the Universe is described by general
relativity (GR) with a Friedmann-Lemaître-Robertson-
Walker (FLRW) metric and matter that respects the null
energy condition, then extrapolating backwards in time, our
present understanding must break down and “new physics”
has to become important. This can happen in one of two
ways: (i) Either the Hubble parameter reaches Planckian
values at very early times, and the effects of quantum
gravity become important (“big bang singularity”), (ii) or
the null energy condition (NEC) is violated and the
Universe underwent a cosmological bounce. While theories
of quantum gravity are still in development, scenario
(ii) may be amenable to current QFT techniques. A great
deal of recent work has focused on constructing an early
Universe cosmology that takes advantage of (ii) in order to
have a nonsingular bounce, some of which can even
provide an alternative to inflation (see for instance [1–17]).
In addition to modeling the very early Universe, violat-

ing the NEC in a stable, unitary way can be useful in other
contexts [18]. It has been proposed as a mechanism for
quintessence [19], solving the cosmological constant prob-
lem [6,20,21], and is also required in theories with
traversable wormholes [22–24].
Whether NEC violation can ever be stable (free of ghosts

and gradient instabilities) has been the subject of much
discussion [25–28]. In [29], it was for instance shown that
within the context of “kinetic gravity braiding” (see also

[30]) one can reach a NEC violating phase while remaining
free of ghosts and gradient instabilities. In the context of the
most general single scalar degree of freedom coupled to
gravity (so-called “Horndeski gravity” [31] or “generalized
Galileons” [32]), it is known that there is always a ghost or
gradient instability in any bouncing solution as was first
pointed out in [33] and further in [34–37]. However this
instability can be made to occur long before or after the
NEC violation as was already constructed in the context of
G bounces in [33] and more recently in a cubic Galileon
bounce in [38], or in some cases removed by imposing
particular asymptotic conditions [39].
Within the context of single scalar field PðΦ; XÞ theories

[denoted as simply PðXÞ in this work unless we wish to
emphasize the distinction], it is well known that the bounce,
or the onset of the NEC violation, is necessarily linked with
a vanishing speed of sound, and potentially classical
instabilities. A way out is to include higher derivative
operators in the effective field theory (EFT), which may
naturally capture the effect of high-energy degrees of
freedom without needing to commit to a particular UV
completion of the scalar effective field theory considered.
Such additional higher derivative operators were previously
used in an attempt to regulate the sound speed in the
simplest scalar field PðXÞ theories [6], for example, by
adding higher spatial derivatives and arranging for the
instability to be much slower than the Hubble rate [28].
In addition to potential classical stability issues linked

with a vanishing speed of sound in a relativistic field theory,
we emphasize here that there are strong coupling issues
associated with it that signal the breakdown of the quantum
effective field theory. This can be seen intuitively by noting
that the non-Gaussianities typically scale as fNL ∼ c−2s . A
vanishing of the sound speed therefore directly implies that
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the effect from the higher order operators dominates and
hence there is a breakdown of perturbative unitarity. To
make this statement more concrete and quantify it, we
consider the scattering amplitude of high frequency fluc-
tuations on a given bouncing background and determine the
energy scale at which perturbative unitarity is violated.
Strong coupling effects from cubic operators in PðXÞ
cosmological bounces were previously discussed in [40].
Here we explore all the operators that enter the EFT (cubic
and beyond) and fully investigate the effect that a small
sound speed has on the validity of the EFT. In particular, we
show that a vanishing sound speed inexorably leads to a
vanishing of the strong coupling scale, which is unaccept-
able, and which agrees with the well-known results of
[41,42]. Our conclusion on the fate of the strong coupling
issue in any pure1 PðXÞ cosmological bounce [including a
PðΦ; XÞ bounce] therefore departs from some other pre-
vious analysis, but agrees with [41,42].
However, by including irrelevant operators that enter

from high-energy effects, we show that it is possible to
restore perturbative unitarity throughout the bounce in
PðXÞ theories. This was for instance proposed in [9,28]
to avoid any gradient instabilities. We show explicitly here
how these operators affect the strong coupling scale. In
particular, we show that for these high-energy irrelevant
operators to “save” perturbative unitarity their associated
scale needs to be chosen carefully: It must be low enough to
restore unitarity, but high enough so as to decouple the low-
energy effective field theory from specific high-energy
completions.
In what follows we focus our attention on the require-

ments set by perturbative unitarity (and particularly tree
level unitarity) within the vicinity of a NEC violating
region, so as to determine whether a classical NEC
violation can be trusted. We provide an example where
this NEC violation leads to a cosmological bounce, but do
not incorporate this bounce within a full cosmological
scenario. The model considered here does not attempt to
circumvent the no-go mentioned in [34–37]. Rather, the
approach of this manuscript is that our PðXÞ theory ought
to successfully capture the duration of the bounce, but that
this low-energy effective field theory will likely break
down (and new physics ought to be included) if followed
sufficiently far in the past (well before the bounce or the
start of the NEC violating region).
With this approach in mind, we begin with a general

discussion of EFT consistency conditions in Sec. II, which
makes a few assumptions on the details of the scalar field
theory considered. This involves considering a precisely
defined decoupling limit of the gravity/scalar effective
field theory, and establishing the constraints arising from
the requirement of a (at least perturbatively) unitary S

matrix. We then turn our attention in Sec. III to the high-
energy effects that can help regulate the classical gradient
instabilities as well as the violation of unitarity at the onset
of a NEC violation. Keeping track of those effects, we
derive the full bound, bearing in mind that the high-energy
effects have to occur at a sufficiently low scale to restore
unitarity, but at a sufficiently large scale to decouple the
high-energy states from the low-energy effective field
theory. This provides a restricted window of possibility.
After having derived the formal requirements set by
perturbative unitarity, we focus our attention in Sec. IV
to PðXÞ models that violate the NEC. We show that a level
of tuning is required for those models that may call into
question their naturalness, but show that, in principle, a
violation of the NEC could occur while maintaining
classical stability and perturbative unitarity once a par-
ticular (albeit technically unnatural) tuning is chosen. We
illustrate this result by providing an explicit covariant
example of a PðΦ; XÞ model that can allow for a bouncing
solution while preserving perturbative unitarity. Our
results are then summarized in Sec. V. In Appendix A
we analyze the well-known ghost-condensate model and
show that NEC violation in this model cannot preserve
unitarity unless the irrelevant operators coming from high-
energy effects take a particular form that breaks the shift
symmetry.

II. SINGLE SCALAR EFT

To set the stage, we start by considering the theory of a
single scalar field Φ coupled to a metric gμν, with no
mention of any additional high derivative operators. The
consistency of this EFT requires absence of gradient and
ghost instabilities as well as unitarity (in the sense that any
n-point scattering amplitude should satisfy the optical
theorem).

A. Decoupling limit

Throughout this manuscript we focus on a decoupling
limit of the full theory, which is designed to focus on the
leading interactions that determine the strong coupling
scale of the theory, i.e., the scale at which perturbative
unitarity is broken. The existence of this decoupling limit
comes from the assumption of a hierarchy of scales
Λ ≪ MPl, where Λ is the typical interaction scale for the
scalar field. Any stability and unitarity bounds determined
in that limit represent necessary conditions that must be
satisfied by the full theory. In other words, it is sufficient to
use the decoupling limit to infer the strong coupling
physics, even if not the full cosmological predictions
(e.g., power spectrum, bispectrum, etc.). Crucially, this
limit continues to allow for bouncing solutions that
temporarily violate the null energy condition.
To derive the decoupling limit, we begin with an action

of the form
1Here by pure we mean without the inclusion of high-energy

irrelevant operators.
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S½gμν;Φ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ Lðg;ΦÞ

�
: ð2:1Þ

We then expand this action around the cosmological back-
ground describing the bouncing solution (γ̄μν and ϕ), defin-
ing the perturbations in an arbitrary gauge (hμν and φ) via

gμν ¼ γ̄μν þ hμν and Φ ¼ ϕþ φ: ð2:2Þ

The physical action for the perturbations is (schematically)

S½hμν;φ� ¼
Z

d4x
ffiffiffiffiffiffi
−γ̄

p ð−M2
PlB̄ðγ̄Þð∂hÞ2 − R̄ðγ̄Þh2

þM2
Plf1ðγ̄Þhð∂hÞ2 þ � � � − Zðγ̄;ϕÞð∂φÞ2

−m2ðγ̄;ϕÞφ2 þ f2ðγ̄;ϕÞφð∂φÞ2 þ f3ðγ̄;ϕÞφ3

þ � � � þ f4ðγ̄;ϕÞh∂2φþ f5ðγ̄;ϕÞhφ
þ f6ðγ̄;ϕÞh2∂2φþ � � �Þ; ð2:3Þ

where the last line represents all the potential mixing
between h and φ. All the functions B̄, R̄, Z, and fi depend
on the background (and of course carry indices); however,
their exact expressions are irrelevant for the rest of the
scaling argument. The scale of the background naturally
enters all these functions—for instance, R̄ðγ̄Þ is related to
the background curvature. In principle, the linear kinetic
mixing between h and φ could be taken care of by
performing an appropriate field redefinition and absorbing
the function f3=M2

Pl in the expression of Z. In practice
however such a shift is irrelevant in the decoupling limit we
consider below as it is suppressed by the Planck scale.
Our working assumption is that the scalar field contains

interactions at the scale Λ, such that Lðg;ΦÞ ∼ Λ4, and that
there is a large hierarchy Λ ≪ MPl. If this is the case then we
typically expect _H ∼ Λ4=M2

Pl. The leading interactions that
determine the strong coupling physics are determined princi-
pally by the scalar field, with those that arise from the mixing
with gravity being MPl suppressed. As such we may take a
decoupling limit MPl → ∞, keeping Λ fixed. In the explicit
bouncing solutions we construct in Sec. IV C, the time scale
for the null energy violation is set by the scale of the scalar
interactions Δt ∼ Λ−1. This in turn implies an even stronger
suppression for theHubble rateH∼Λ3=M2

Pl, sinceH∼ _HΛ−1.
This is borne out by the explicit solutions of Sec. IV C.
The first step in dealing with this effective field theory of

hμν and φ is to properly canonically normalize the fields. In
this case, the appropriate canonical normalization of the
field is2

~hμν ∼
1ffiffiffiffī
B

p
MPl

hμν and ~φ ∼
1ffiffiffiffi
Z

p φ; ð2:4Þ

and the action is (again symbolically)

S½ ~hμν; ~φ�¼
Z

d4x
ffiffiffiffiffiffi
−γ̄

p �
−ð∂ ~hÞ2− R̄

B̄
~h2−ð∂ ~φÞ2−m2

Z
~φ2

þ f2
Z3=2 ~φð∂ ~φÞ2þ

f3
Z3=2 ~φ

3þ���

þ 1

MPl

f1
B̄3=2

~hð∂ ~hÞ2þ f4
MPl

ffiffiffiffiffiffiffi
B̄Z

p ~h∂2 ~φ

þ f5
MPl

ffiffiffiffiffiffiffi
B̄Z

p ~h ~φþ f6
M2

PlB̄
ffiffiffiffi
Z

p ~h2∂2 ~φþ���
�
: ð2:5Þ

Then taking a limit where MPl → ∞, while maintaining
the scales that enter the scalar field background fixed, we
see that all of the whole second line becomes unimportant,
and the scalar field fluctuations ~φ entirely decouple from
the metric fluctuations (which become a trivial free theory).
A significant virtue of this decoupling limit is that the
gauge degrees of freedom remain in h and decouple. This
procedure is thus insensitive to any gauge issues. For this
reason it is unnecessary to work with the comoving
curvature perturbation ζ, or similar gauge invariant varia-
bles (this point is discussed in more detail at the end of this
subsection).
The relevant effective action in this limit is hence solely

that of the scalar field fluctuations

Sdec ¼
Z

d4x
ffiffiffiffiffiffi
−γ̄

p �
−ð∂ ~φÞ2 −m2

Z
~φ2 þ f2

Z3=2 ~φð∂ ~φÞ2

þ f3
Z3=2 ~φ3 þ � � �

�
; ð2:6Þ

where the ellipses carry operators to all orders in φ (and
potentially ∂φ and even ∂2φ and higher order in deriva-
tives). Although gravity has decoupled, this is not the same
as the scalar theory on Minkowski spacetime. Information
about the background is carried through the process, and
we are effectively looking at a scalar field on curved
background. In the explicit solutions given in Sec. IV C,
ϕðtÞ remains finite in the limit MPl → ∞, with a time
dependence at the scaleΔt ∼ 1=Λ. In other words the scalar
field is varying at a time scale 1=Λ that is much faster than
the naive background scale 1=H; similarly _H=H ∼ Λ ≫ H.
Before proceeding, it is worth noting that a decoupling

limit of this form is not always appropriate; for example, in
slow roll inflation, the flatness of the potential means that
the interactions coming from the mixing with gravity are
actually the dominant ones, and it is incorrect to perform
the above limit. Another example would be if the inter-
actions with the metric were made artificially large, for
instance in the following example,

2In practice the tensors B̄ and Z are usually not conformal with
respect to the background metric and the rescaling should be
taken with slightly more care as is performed in Sec. II B;
however, those subtleties do not affect the essence of the
decoupling limit.
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

PlRþMPl

Λ
RΦ2 −

1

2
ð∂ΦÞ2 þ 1

Λ4
Φ4

�
;

ð2:7Þ

where Λ ≪ MPl. In this case the mixing term between the
metric and the scalar field fluctuations ought to be taken
into account for background configurations with ϕ ∼ Λ. Of
course in this case, we can simply remedy this issue by first
going to the Einstein frame, which automatically accounts
for the scalar/gravity mixing. When dealing with generic
scalar-tensor theories there is not necessarily a covariant
definition of the Einstein frame; however, the appropriate
procedure is simply to first go to the relevant Einstein frame
at the perturbed level about the cosmological background
and then perform the appropriate decoupling limit. In the
present case, the decoupling limit we have defined is
justified by the existence of a large class of explicit
solutions, which we discuss in Sec. IV C, which have
the property that H ∼ Λ3=M2

Pl and _H ∼ Λ4=M2
Pl.

We emphasize that our concern here is about the
consistency of the effective action, and the scale at which
perturbative unitarity breaks down. This is a very different
question than that of say, the precise form of the power
spectrum or bispectrum. For precise questions of this sort,
performing a decoupling limit and focusing on the scalar
field effective action would not provide an accurate answer;
however, for the question of perturbative unitarity we
address in this manuscript, focusing on the scalar field
decoupling limit on the appropriate background gives
necessary conditions that must be satisfied.

1. Gauge issues

Before analyzing this decoupling limit we briefly com-
ment on the gauge issues that have been highlighted in the
literature (see for instance Ref. [40] for a recent discussion).
In particular, if we first chose a gauge where the scalar part
of hij vanishes we would find that the constraints for the
shift and the lapse would impose them to scale as
ðM2

PlHÞ−1. The resulting Lagrangian (before taking any
decoupling limit) would then involve inverse powers
of M2

PlH. Since in the explicit solution we provide in
Sec. IV C H ∼ Λ3=M2

Pl, such a behavior, if generic, would
invalidate the decoupling limit arguments. Moreover there
would seem to be an “apparent” singularity at the bounce
itself (i.e., when H ¼ 0). This should come as no surprise
since it is impossible to fix the gauge hscalarij ¼ 0 when
H ¼ 0, so the previous apparent singularity is simply a
gauge artefact and so is the scaling found in that gauge.
Switching to comoving gauge however does not help

with the previous issue either since in that gauge the kinetic
coefficient of the curvature perturbation does itself then
scale as H−1, which makes it impossible to properly
normalize the field. Rather than focusing on any of these
two gauges (or any standard “local” gauges), the problem at

hand can be entirely dealt with by going for instance to de
Donder gauge or any other gauge of that form (or at leading
order by going to harmonic gauge as performed in [43]).
The appropriate way to perform this is to consider
the action (2.1) and add the appropriate Fadeev-Popov
gauge fixing terms so that they combine with the Einstein
curvature term to give kinetic terms for the metric
fluctuation that take the remarkably simple form
M2

Plh
μν
□̄ðhμν − 1

2
hγ̄μνÞ in addition to higher order fluctua-

tions (and where □̄ is the d’Alembertian with respect to the
background metric γ̄μν). In this language there is no
constraint to solve for since the gauge fixing terms are
precisely there to break gauge invariance. The absence of
constraints ensures that at no point would one need to
perform an inversion of the Hubble parameter and the
appropriate canonical normalization follows the same
behavior as in (2.4) (where B is manifestly finite and is
trivial in the flat space limit). The breaking of gauge
invariance from the gauge fixing terms comes at the price of
including other spurious degrees of freedom but it is well
understood how to introduce the Fadeev-Popov ghosts to
deal with those and they only contribute to loops. All the
tree level amplitudes computed with these de Donder gauge
fixing terms are therefore the same as that of the original
theory. In this formulation the decoupling limit can there-
fore be taken precisely as discussed previously. For the
questions we are interested in (namely the size of the strong
coupling scale, whether or not the theory preserves tree
level unitarity, etc.), we can therefore safely perform this
decoupling limit and work with the low-energy effective
field theory for the scalar field φ on the cosmological
background.
In the case of the specific example that is provided in

Sec. IV C, we can compute (at least to a given order) the
corrections that arise beyond the decoupling limit. By
performing a complementary analysis to that described
above, and keeping track of the corrections that arise due to
the mixing with the metric, we have checked that we obtain
a correction to the effective mass for the scalar field that is
suppressed by six orders of magnitude, which is precisely
what one would have expected in our example.

B. Scalar on FLRW

Since the main interest of this manuscript is cosmology
(and the potential description of cosmological bounces), the
following analysis takes place on a flat FLRW background
with scale factor aðtÞ. The effective metric for the scalar
field fluctuations then takes the form

Zμν∂μφ∂νφ ¼ −AðtÞ _φ2 þ BðtÞ
a2

ð∂iφÞ2; ð2:8Þ

where A and B depend on the background behavior
(here and in what follows dots represent the physical time
derivatives and ∂i designate spatial gradients). The
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corresponding sound speed is c2s ¼ B
A. The absence of a

ghost (in the scalar sector) then implies A > 0, while the
absence of gradient instabilities implies B > 0.
For the rest of the analysis we assume that we are within

the WKB regime, meaning that we consider frequencies
well above the scale set by the background time variation,
Eback, with

Eback ¼ MaxðH;
ffiffiffiffi
Ḣ

p
; m; ϕ̇=ϕ; ϕ̈=ϕ̇; � � �Þ: ð2:9Þ

Indeed to probe unitarity violation we are interested in
analyzing the interactions of modes close to the strong
coupling scale, which should be much larger than the
background scale for the effective field theory to make
sense. In the explicit models given later, the scale of
variation of the background solution is 1=Λ, i.e.,
Eback ∼ Λ, and so to ensure the validity of the WKB regime
we require ω ≫ Λ.

1. Canonical normalization

Before going through the formal unitarity bounds arising
from the optical theorem, it is useful to first estimate the
strong coupling scale by simply analyzing the scale of the
operators present in the scalar field theory (on the FLRW
background). Since Lorentz invariance is spontaneously
broken by the FLRW background, the effective metric Zμν

is not conformally flat, so before canonically normalizing
the field, it is useful to perform the following coordinate
rescaling,3

~t ¼
Z

csðtÞdt and ~xi ¼ xi; ð2:10Þ

so that in this system of coordinates the effective metric is
conformally flat,

Z
dtd3xa3

�
−
1

2
Zμν∂μφ∂νφ

�

¼
Z

d~td3 ~xa3
B
2cs

��∂φ
∂~t

�
2

−
1

a2

�∂φ
∂ ~xi

�
2
�
; ð2:11Þ

and we can simply canonically normalize the field by
setting

φ ¼
ffiffiffiffiffi
cs
B

r
~φ ¼ ðABÞ−1=4 ~φ ð2:12Þ

(the derivatives of AB are then simply absorbed into the
mass term).

2. Irrelevant operators

Now consider an EFT on the FLRW background that
contains an irrelevant operator of the form

SNML ¼
Z

dtd3x
a3−2L

ΛNþ2Mþ4L−4
NML

φN _φMð∂iφÞ2L; ð2:13Þ

where N,M, and L are arbitrary positive integers with N þ
2M þ 4L > 4 and the scale ΛNML depends on the back-
ground and the particular theory one is dealing with. Then
in terms of the rescaled coordinates and the properly
canonically normalized field, this interaction is

SNML ¼
Z

d~td3 ~x
a3−2L

~μNþ2Mþ4L−4
NML

ð ~∂i ~φÞ2L

×
XM
j¼0

�∂tðABÞ
csAB

�
j
~φNþjð∂~t ~φÞM−j; ð2:14Þ

where we have ignored signs and other order one and
combinatory numbers. The scale ~μ is given by

~μNML ¼ A
Nþ3Mþ2L−2

4ðNþ2Mþ4L−4ÞB
N−Mþ2Lþ2

4ðNþ2Mþ4L−4ÞΛNML: ð2:15Þ

Now when rescaling back to the original coordinates, as an
energy scale we have

μNML ¼ ∂~t
∂t ~μNML ¼ cs ~μNML; ð2:16Þ

and so the scale that enters these interactions is

μNML ¼ AnABnBΛNML; ð2:17Þ

with

nA ¼ −
N þM þ 6L − 6

4ðN þ 2M þ 4L − 4Þ and

nB ¼ 3N þ 3M þ 10L − 6

4ðN þ 2M þ 4L − 4Þ : ð2:18Þ

We therefore see that in a situation where A becomes
parametrically large or B is parametrically small, for a fixed
scale ΛNML there are typically operators that enter at a
parametrically small scale μNML ≪ ΛNML and therefore
spoil the validity of the effective field theory at a low scale.
For these arguments to be valid one should have

∂tðABÞ
AB ∼ Eback ≲MinðμNMLÞ [where MinðμNMLÞ is the low-

est of all the possible scales derived in (2.17) for any non-
negative integers N, M, L with N þ 2M þ 4L > 4]. This
allows us to ignore the contributions from ∂tðABÞ

csAB
in (2.14). If

3As we see, as soon as B, or the speed of sound, approaches
small enough (positive) values, the whole EFT runs out of control
and the classical background is not to be trusted; therefore, there
is no sense in which B or the speed of sound actually ever
vanishes, and even less became negative in the first place. The
rescaling performed in this section is thus well defined.
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∂tðABÞ
AB ∼ Eback was larger than any of those scales μNML, then

by definition the background would be varying faster than
the time scale set by the strong coupling scale of the
effective theory and it would no longer be possible to trust
the validity of the background solution.

3. Marginal and relevant operators

For the relevant Λ300=3!φ3 and marginal λ=4!φ4 oper-
ators, the previous rescaling can also be performed and
leads to

μ300 ¼
Λ300

ðABÞ3=4 ; ð2:19Þ

μ400 ¼
λ

ðAB3Þ1=2 ; ð2:20Þ

where of course μ400 does not represent an actual scale but
rather a dimensionless coupling constant. Remaining in the
perturbative regime requires the dimensionless coupling
constant to be μ400 ≪ Oð16πÞ and the scale of the marginal
operator to be μ300 ≲ Eback. However since these operators
are renormalizable, we can deal with them in the strong
coupling regime and we therefore do not necessarily need
to impose that these couplings are small to preserve
unitarity.

C. Optical theorem

The previous section provided a generic scaling argument
to determine the typical interaction scale of an operator on a
FLRW background. We now provide more substance to this
argument by showing how it relates to the optical theoremby
computing a precise scattering amplitude.
Going back to the effective metric (2.8) in its original

formulation on FLRW (before any canonical normaliza-
tion), in the WKB regime the quantized modes can be
decomposed in the following way:

φ̂ðt; xiÞ ¼
Z

d3ki
ð2πÞ3a3

1ffiffiffiffiffiffiffiffiffiffiffi
N ðkÞp

�
â†ðkiÞeiðk

R
csðtÞ
aðtÞ dt−kix

iÞ

þ âðkiÞe−iðk
R

csðtÞ
aðtÞ dt−kix

iÞ
�
: ð2:21Þ

To derive the normalization N ðkÞ we go back to the well-
known definition of the Klein-Gordon norm along a three-
dimensional surface Σ with unit normal vector nμ and
induced metric γμν,

jφ̂j2 ¼ −i
Z
Σ
d3x

ffiffiffi
γ

p
nμðφ̂ ∂μ

↔
φ̂†Þ: ð2:22Þ

Choosing a spacelike surface t ¼ const, the unit normal
vector is nμ ¼ ffiffiffiffi

A
p

δμ0 and the induced volume element isffiffiffi
γ

p ¼ B−3=2, leading to the Klein-Gordon norm,

jφ̂j2 ¼ −i
ffiffiffiffi
A

p

B3=2

Z
d3xa3ðφ̂ ∂t

↔
φ̂†Þ: ð2:23Þ

We can therefore infer the field normalization,

N ðkÞ ¼ ∂F
∂ω ¼ 2Aω ¼ 2ðABÞ1=2 k

a
; ð2:24Þ

where we evaluated the mode on shell, ω ¼ csk=a, and
where the function F determines the dispersion relation,

F ¼ Aω2 − B
k2

a2
¼ 0: ð2:25Þ

In other words the speed of sound is given by c2s ¼ B=A.
The operators â and â† that appear in (2.21) are the creation
and annihilation operators for one-particle states of
definite momentum that obey the usual commutation
relations.
In the high-energy WKB regime, it is meaningful to talk

about an approximate S-matrix for scattering of quanta,
provided it is defined over a time scale shorter than the
background variation Δt ≪ 1=Eback. The constraints from
unitarity on this approximate S-matrix are many; however,
it is useful to focus on the special case of n to n scattering,
between states of equal momenta, jii ¼ jfi ¼ jk1…kni.
This gives a unitarity bound for every integer n ≥ 2,

2ImðhijTjiiÞ ¼
X
N

hijT†jq1…qNihq1…qN jTjii

≥ jhq1…qnjTjiij2; ð2:26Þ

so that the scattering amplitudes A2n (with momentum
conserving delta function removed) should satisfy the
following relation:

2ImA2nðkj;kjÞ

≥
Z

d3q1
ð2πÞ3N ðq1Þ

� � � d3qn
ð2πÞ3N ðqnÞ

jA2nðkj;qjÞj2

×

�
ð2πÞ4δ

�
c2s
a2

�X
k2j −

X
q2j
��

δð3Þ
�X

kj−
X

qj
��

:

ð2:27Þ

The scattering amplitudes may be computed using standard
Feynman diagrams using the WKB form for the propagator
for scattering at time intervals shorter than Δt ≪ 1=Eback.

1. Four-point function

In the case of n ¼ 2, the two-body phase space factor on
the right-hand side of (2.27) can be evaluated simply in
terms of a center of mass energy,

ffiffiffi
s

p
, and scattering angle,

θ, giving the well-known optical theorem for the 2 to 2
scattering amplitude A4ðs; θÞ. For our dispersion relation
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ω2 ¼ c2sk2=a2, a partial wave expansion yields the follow-
ing bound for every l ≥ 0,

jA4;lðsÞj ≤ 8π2
ω

k=a
AB ¼ 8π2ðAB3Þ1=2; ð2:28Þ

with

A4;lðsÞ ¼
Z

1

−1
d cos θPlðcos θÞA4ðs; θÞ: ð2:29Þ

Now consider a cubic operator of the form given in (2.13)
with N þM þ 2L ¼ 3 (keeping in mind we are still
dealing with an irrelevant operator, N þ 2M þ 4L > 4).
Taking into account the proper normalization of the
propagator, such a cubic operator leads to a contribution
to the four-point function scaling as (at fixed angle)

AðcubicÞ
4 ∼

k4L−2ω2M

BΛ2ðNþ2Mþ4L−4Þ
NML

∼
A2L−1

B2L

� ffiffiffi
s

p
ΛNML

�
2ðMþ2L−1Þ

ð2:30Þ
(keeping in mind that N ¼ 3 −M − 2L). We have ignored
any combinatory factor in this estimation since we are
mainly after a scaling argument. However once a particular
amplitude is diagnosed as being potentially problematic the
proper factors are included. Now applying the bound
(2.28), we determine that perturbative unitarity gets broken
at the scale

ffiffiffi
s

p
∼ A

3−4L
4ðMþ2L−1ÞB

3þ4L
4ðMþ2L−1ÞΛNML; ð2:31Þ

which is precisely the scale μNML inferred from the simple
scaling argument in (2.17) when N ¼ 3 −M − 2L. When
dealing with the contribution to the 2 − 2 scattering
amplitude from the cubic vertex φ3, we see that the
amplitude (2.30) is dominated instead by IR effects and
one should go beyond the tree level amplitude when
Λ300 ≳ ðABÞ3=4Eback, as deduced in (2.19).
Similarly, we can consider a quartic irrelevant operator

of the form given in (2.13) with N þM þ 2L ¼ 4
(N þ 2M þ 4L > 4), which leads to a contribution to the
four-point function going as (at fixed angle)

AðquarticÞ
4 ∼

k2LωM

ΛNþ2Mþ4L−4
NML

∼
AL

BL

� ffiffiffi
s

p
ΛNML

�
Mþ2L

: ð2:32Þ

From the perturbative unitarity bound (2.28) we see that
such a quartic operator is responsible for breaking pertur-
bative unitarity at the scale

ffiffiffi
s

p
∼ ΛNMLA

1−2L
2Mþ4LB

3−2L
2Mþ4L; ð2:33Þ

which is again precisely the scale μNML derived in (2.17)
for a quartic operator N ¼ 4 −M − 2L. When dealing with
the marginal operator λφ4=4!, its contribution to the

previous amplitude simply goes as λ and remaining in
the perturbative regime then requires λ ≪ ðAB3Þ1=2, which
is once again precisely the requirement deduced previously
in (2.20), although breaking this bound does not yet imply
breaking unitarity since that operator is renormalizable.
One obvious worry is that cancellations could occur for

instance between different cubic operators or between the

contributions from AðcubicÞ
4 and AðquarticÞ

4 . If that were the
case, it would simply imply that a field redefinition could
be performed to remove such operators (or part of them).
For the simple scalar field effective theory we are dealing
with this is fortunately relatively straightforward to monitor
and provided we are not dealing with an unnecessarily
complicated formulation of the effective theory the strong
coupling scale is indeed given by the smallest of the scales
μNML provided in (2.17). A more complete discussion of
this aspect is given in Sec. II D.

2. 2n-point function

To complete the perturbative unitarity requirement as
directly imposed from the optical theorem, we provide here
the bounds from higher n-point functions. In that case the n-
bodyphase space factor is a complicated integral over several
momenta and scattering angles, but those do not affect the
overall scaling of the bound and we obtain the following
perturbative unitarity bound for the 2n-point functions,

jA2nj≲ Að3−nÞ=2B3ðn−1Þ=2s2−n; ð2:34Þ

where we have ignored order one numerical factors. We can
again compare this bound with the strong coupling scale we
infer from an operator (2.13) with N þM þ 2L ¼ 2n and
we see that we infer precisely the same scaling for the strong
coupling scale in terms of A and B as was found in (2.17).

D. Field redefinitions and redundant operators

The previous arguments to deduce the strong coupling
scale and the breaking of perturbative unitarity implicitly
assumed that any operator of the form (2.13) leads to a
contribution to the tree level scattering amplitude. There are
of course cases where this assumption fails.

(i) First, it may be possible that the contribution of an
operator to a scattering amplitude accidentally can-
celed at tree level. If the cancellation only occurs at
tree level but the operator still contributes to loops
with an order of magnitude comparable to what is
estimated in for instance (2.32) or (2.30), then the
argument remains unaffected as the loops still lead to
a violation of perturbative unitarity (even though this
may occur at higher order in the loop expansion).

(ii) Second, the contribution of an operator to any
scattering amplitude may exactly cancel (to all
orders in loops). This simply means that this
operator is actually not present and in a single scalar
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field theory (where there is no gauge issue) this can
only happen if that operator is simply removable by
integrations by parts. This case is of course trivial.

(iii) Finally the particular contribution of an operator
may not cancel by itself but may be canceled by the
contributions of other operators. If this cancellation
does not occur for scattering amplitudes and to all
orders in loops, then the previous arguments on the
breaking of perturbative unitarity are effectively
unaffected. On the other hand, if this set of operators
was simply removable by an appropriate field
redefinition without leading to other new higher
order operators, then in practice these operators are
redundant and superficial to the description of any
physics. In practice when analyzing a scalar field
effective theory we ought to take care of all such
redundancies in the first place.

Besides these previous special cases, the arguments pre-
sented here are robust in diagnosing the potentially danger-
ous operators and applicable to any scalar field effective
field theory that carries operators of the form (2.13). Once a
diagnosis has been established one can directly compute
the amplitude with the appropriate combinatory factors to
fully determine the fate of unitarity.
The main motivation of this work is to apply these

bounds to PðXÞ models that can, in principle, allow for a
violation of the NEC and potentially allow for a cosmo-
logical bounce. Within the context of pure PðXÞ theories
(coupled) to gravity, it is well known that the speed of
sound turns negative at the onset of the NEC violation and
thus leads to gradient instabilities; this agrees with previous
literature such as [41,42]. This can potentially be remedied
by considering new irrelevant operators that arise at a
higher scale and regulate this instability. For instance
considering the irrelevant operator ð□ΦÞ2=Λ2

c it can allow
for a stable bounce [9,28]. In what follows we therefore
explore the effects of such an irrelevant operator on the
unitarity bound considered previously, before focusing on
PðXÞ models endowed with such an operator.

III. INCLUSION OF HIGH-ENERGY EFFECTS

We now consider the inclusion of high-energy effects
that naturally enter any EFT. For concreteness, we can
imagine that the next massive particle enters with a mass
Λc, and integrating out such a massive particle leads to an
operator for the form4 ð□ΦÞ2=Λ2

c in the low-energy
effective action for Φ. To see this more precisely, we could

for instance consider the two-scalar field example coupled
to gravity,

S½gμν;Φ; χ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ Lðg;ΦÞ − 1

2
ð∂χÞ2

−
Λ2
c

2
χ2 þ 1

2
χ□Φ

�
; ð3:1Þ

where we assume no ghosts or other types of pathologies in
Lðg;ΦÞ. Note that at this level the model is entirely free of
any type of ghost. If the field χ is sufficiently massive [i.e.,
the scale Λc is sufficiently large as compared with the other
scales in Lðg;ΦÞ], the field χ is frozen and its dynamics
decouple, and we can integrate it out. At leading order,

χ ¼ −
□

□ − Λ2
c
Φ ¼ □Φ

Λ2
c
þ � � � ; ð3:2Þ

and we are left with irrelevant operators in the low-energy
effective field theory for Φ,

S½gμν;Φ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ Lðg;ΦÞ

þ 1

2Λ2
c
ð□ΦÞ2 þ � � �

�
; ð3:3Þ

where the ellipses designate higher order corrections in
□=Λ2

c. As mentioned in footnote 4, the irrelevant operator
we have included ð□ΦÞ2 seems to carry higher derivatives
and one could be worried about the associated
Ostrogradsky ghost; however, in this context, when reach-
ing the scale Λc, it is no longer appropriate to integrate out
the dynamics of χ and one should go back to (3.1) for the
appropriate description, which is clearly free of ghosts.
In general we could expect the scale Λc to also be

background dependent (e.g., throughΦ), and hence to carry
a time dependence within this cosmological setup, but
within the WKB approximation (keeping in mind that we
interested in energy scales much smaller thanΛc) we ignore
any possible time dependence of Λc for the rest of the
manuscript.
Since ð□ΦÞ2=Λ2

c is a higher derivative operator, it leads
to inevitable unitarity violation at the scale Λc (or possibly
a background redressed version Λ0

c). Consequently this sets
an upper bound on the cutoff of the effective theory
Λcutoff ≤ Λ0

c. This cutoff scale is not necessarily the same
as the strong coupling scale Λs, which signals the breaking
of perturbative unitarity of the theory (see Refs. [47,48] for
a clear distinction between these two scales). New physics
may not necessarily be required at the scale of the breaking
of perturbative unitarity; however, the classical background
can no longer be trusted in that case. So if a classical
violation of the NEC occurred at a scale Eback beyond the
strong coupling scale, there would be no reason to believe

4Even though the operator considered here carries more
derivatives, the would-be Ostrogradsky ghost associated with it
is not present since its mass lies above the cutoff of the EFT, by
construction. In what follows we take great care in making sure
that in the regime of validity of the cosmological bounce, the
would-be ghost is not present; see Refs. [44–46] for a discussion
of this point.
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the NEC violation actually took place. Putting this together,
then overall consistency of our EFT description requires
Eback ≪ Λs ≤ Λcutoff ≤ Λ0

c.

A. Dispersion relation

At first sight, the inclusion of the operator ð□ΦÞ2=Λ2
c,

suppressed by the large scale Λc, would appear to have a
negligible effect on the theory. Furthermore, if it does have
an effect, one would worry that it would be necessary to
include the infinite number of higher order operators that
enter at the scale Λc, such as ðΦ□nþ2ΦÞ=Λ2þ2n

c . The reason
that this is not the case is that in the absence of this operator,
for the NEC violating solutions we consider, cs passes
through 0 and temporarily becomes negative. The inclusion
of the operator ð□ΦÞ2=Λ2

c then creates a large correction
(relative to 0), which must be included, while at the same
time higher order operators like ðΦ□

nþ2ΦÞ=Λ2þ2n
c are

negligible. To see how this works, we note that on
including the irrelevant operator ð□ΦÞ2=Λ2

c in the scalar
field effective theory on the curved background, the
quadratic action for φ is then

Sð2Þ ¼
Z

d4x
a3

2

�
A _φ2 − B

ð∂iφÞ2
a2

−m2φ2

þ 1

Λ2
c

�
φ̈ −

∂2
iφ

a2

�
2
�
; ð3:4Þ

where A, B, and m are determined by the background
behavior and we still use the notation c2s ¼ B=A. The
expression for the function F that provides the equation for
the dispersion relation in (2.25) is therefore now promoted
to

F ¼ Aω2 − B
k2

a2
−

1

Λ2
c

�
ω2 −

k2

a2

�
2

¼ 0; ð3:5Þ

where we work with modes well above the background and
hence the mass, so the mass term is safely ignored in
the previous expression. The previous equation can be
solved as

ω2ðkÞ ¼ c2s
k2

a2
þ ðA − BÞ2

A3

k4

a4Λ2
c
þOðk6=Λ4

cÞ: ð3:6Þ

In general the first term dominates in the naive region of
validity of the EFT k=a ≪ Λc. However, for the bouncing
solutions c2s could become very small, potentially passing
through 0 and becoming negative, and the second term then
regulates any instability that may occur, while the higher
order corrections Oðk6=Λ4

cÞ remain small in comparison.
Interestingly in our explicit solutions, we find that the
inclusion of the operator ð□ΦÞ2=Λ2

c also modifies the
background solution in such a way that c2s remains positive

throughout the bounce. Again this is achieved while terms
like ðΦ□

nþ2ΦÞ=Λ2þ2n
c remain negligible.

In addition to the dispersion relation (3.6), there is a
second solution, which is the Ostrogradsky ghost mode

ω2
ghost ∼ AΛ2

c

�
1þO

�
k2

Λ2
c

��
: ð3:7Þ

These nonunitary degrees of freedom must be excluded
from the EFT, and since they enter at an energy scaleffiffiffiffi
A

p
Λc, this sets the maximal value of the energy cutoff of

the theory on this background,

Λcutoff ≤ Λ0
c ¼

ffiffiffiffi
A

p
Λc: ð3:8Þ

In addition to Λcutoff , it is useful in what follows to
introduce the scale μc, which is the energy scale at which
the dispersion relation transitions from the relativistic form
ω ¼ csk to the nonrelativistic form dominated by the
operator ð□ΦÞ2=Λ2

c,

μc ¼ c2s
A3=2

ðA − BÞΛc: ð3:9Þ

Because of the background redressing, μc may differ
significantly from the scale Λc and from the cutoff of
the theory. For instance if we were in a situation where
B ≪ 1 ≪ A, then μc ∼ B=

ffiffiffiffi
A

p
Λc ≪ Λc ≪ Λ0

c. In practice,
the situations where the irrelevant operator has an effect on
the dispersion relation arise because the speed of sound
c2s ¼ B=A is small, which implies that B ≪ A. In what
follows we slightly simplify the notation by making that
assumption and hence write

μc ∼ c2s
ffiffiffiffi
A

p
Λc ¼

Bffiffiffiffi
A

p Λc: ð3:10Þ

From the quadratic action (3.4) [or the dispersion relation
(3.6)], it is clear that when considering modes k=a≫μc=cs,
or equivalently when looking at energy scales ω ≫ μc, the
irrelevant operator takes over from the standard gradient
term. There are now therefore two different regimes to
consider when checking perturbative unitarity of the theory.

B. Intermediate energy modes with E2
back ≪ s ≪ μ2c

For modes with energy well below the scale μc (yet well
above any of the background scales) the high-energy effects
are irrelevant and we can perform the analysis in the same
way as we did in the previous section in the absence of the
irrelevant operator ð□ΦÞ2=Λ2

c. We can therefore infer the
following.

(i) If any of the energy scales μNML derived in (2.17)
happened to be smaller than the energy scale μc, then
the smallest of those scales would be the maximal
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value of the strong coupling scale and perturbative
unitarity would break down at that scale.

(ii) If on the other hand all the energy scales μNML
derived in (2.17) are larger than μc then higher
energy effects (which are still below the cutoff)
ought to be taken into account to properly diagnose
the scale of perturbative unitarity breaking and the
scales computed in (2.17) should then be ignored.

C. High-energy modes with μ2c ≪ s ≪ Λ2
cutoff

For the high-energy modes, μ2c ≪ s ≪ Λ2
cutoff , as we

have seen already at the quadratic level, the irrelevant
operator k4φ2=Λ2

c takes over from the standard gradient
term. At those energy scales, the second contribution in
(3.6) dominates the dispersion relation, which hence
becomes

ω ∼
1

A1=2Λc

k2

a2
∼
c2s
μc

k2

a2
: ð3:11Þ

1. Scaling

The scaling performed in Sec. II B should hence be
reinvestigated. Considering the operator ð∂2

iφÞ2=Λ2
c rather

than the subdominant gradient term Bð∂iφÞ2, the appro-
priate rescaling then corresponds to substituting B by
ðk=aΛcÞ2 ∼ ðAs=Λ2

cÞ1=2. This is a slight abuse of notation;
however, when working in the WKB regime, such a
rescaling can be justified. This means that an operator of
the form (2.13) (with N þ 2M þ 4L > 4) preserves per-
turbative unitarity so long as the energy

ffiffiffi
s

p
satisfies

μc ≲ ffiffiffi
s

p
≪ AnA

�
As
Λ2
c

�
nB=2

ΛNML; ð3:12Þ

where the powers nA and nB are given in (2.18). If nB < 1,
i.e., for N þ 5M þ 6L > 10 this implies that unitarity is
broken above the energy

ffiffiffi
s

p
∼ A

NþM−2Lþ6
2ðNþ5Mþ6L−10Þ

�
ΛNML

Λc

�4ðNþ2Mþ4L−4Þ
Nþ5Mþ6L−10

Λc

for N þ 5M þ 6L > 10: ð3:13Þ

On the other hand for nB ≥ 1, the bound (3.12) is always
satisfied so long as it is satisfied at s ¼ μ2c, i.e., so long as

ΛNML ≫ A− 2Nþ3Mþ6L−4
2ðNþ2Mþ4L−4ÞB

7Nþ11Mþ11L−22
4ðNþ2Mþ4L−4Þ Λc

for N þ 5M þ 6L ≤ 10; ð3:14Þ

(and for N þ 2M þ 4L > 4). For the relevant and marginal
operators φ3 and φ4, this distinction between intermediate
and low-energy modes is unimportant and we can follow
the discussion of Eqs. (2.19) and (2.20).

2. Scattering amplitude

The previous argument required a scaling that itself
depended on momenta. For a more rigorous treatment, one
can instead first directly compute the bounds imposed by
the optical theorem in the presence of the irrelevant
operator and then estimate the 2n-point functions without
the need of ever performing the rescaling of the coordinates
mentioned previously. Just as in Sec. II C, both methods
give the same result, but we sketch the direct bounds from
the optical theorem (without the need of any rescaling) to
solidify the argument and the results.
When including the irrelevant operator, first notice that

the correct normalization of the field in (2.21) is still given
by N ¼ ∂F

∂ω as in the first equality of Eq. (2.24) but where
the function F is now given by (3.5) and where the
dispersion relation ω ¼ 1

A1=2Λc

k2

a2, hence leading to

N ¼ ∂F
∂ω ¼ 2

A5=2Λc

k2

a2
: ð3:15Þ

This change of normalization N affects the momenta
integrals in (2.27), which in turn affects the bounds
provided by the optical theorem. Taking these effects into
account, the perturbative unitarity bound from the 2n-point
functions (2.34) now becomes

jA2nj ≲ Aðnþ3Þ=4
� ffiffiffi

s
p
Λc

�3ðn−1Þ
2

s2−n; ð3:16Þ

again up to numerical factors that have been ignored.
Now if we consider the effect of an operator given in

(2.13), with N þM þ 2L ¼ 2n and N þ 2M þ 4L > 4, it
leads to a contribution to the 2n-point function going as

ANML ∼
k2LωM

ΛNþ2Mþ4L−4
NML

∼ AL=2 Λ
L
c sðMþLÞ=2

ΛMþ2Lþ2n−4
NML

: ð3:17Þ

Of course this is only one contribution to that amplitude,
and this does not account for the very special case where
this contribution happens to be precisely canceled from
another operator. This means that these two (or more)
operators are removable by field redefinition. This requires
a very precise tuning between these operators and simply
means that the original formulation of the theory was
unnecessarily complicated. We deal with this here by
defining the relevant scale ΛNML after all the appropriate
and relevant field redefinitions have been performed. See
Sec. II D for more discussion on this point. We have also
ignored any combinatory factors that ought to be included
when computing the amplitude, just like we have ignored
for now any factorial that enters in the definition of the
operator (2.13) but those can easily be accounted for once
we have diagnosed the potentially dangerous operators and
amplitudes.
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Then from Eq. (3.16), the contribution to amplitude
(3.17) diagnoses a violation of tree level unitarity at the
energy scale

ffiffiffi
s

p
∼ A

3−2Lþ2n
2ð−5þ2Lþ2MþnÞ

�
ΛNML

Λc

�2ð−4þ2LþMþ2nÞ
−5þ2Lþ2Mþn

Λc; ð3:18Þ

for N þ 2M þ 2L > 5 (or N þ 5M þ 6L > 10), which is
precisely the scale inferred from the simple scaling argu-
ment in (3.13) when using N þM þ 2L ¼ 2n. For oper-
ators with N þ 5M þ 6L ≤ 10 on the other hand, they
respect unitarity so long as they satisfy the same bound as
that derived in (3.14).

3. Strong coupling scale

To summarize, we have computed in two different and
yet complementary ways the strong coupling scale asso-
ciated with a class of scalar EFTs on a cosmological
background. We consider any scalar field EFT that takes
the following form on a cosmological background,

S ¼
Z

d4xa3
�
A
2
_φ2 −

B
2

ð∂iφÞ2
a2

−
1

2
m2φ2

þ
X

N;M;L≥0
NþMþ2L≥3

φN _φMð∂iφÞ2L
ΛNþ2Mþ4L−4
NML a2L

þ ð□φÞ2
2Λ2

c

�
; ð3:19Þ

where A, B, m, and the scales ΛNML are all functions of
time and depend on the precise theory one is dealing with
and on the particular cosmological background considered.
The scales ΛNML are the relevant scales of the theory on the
cosmological background after all the appropriate and
relevant field redefinitions have been performed and
typically ΛNML ≪ AΛc. We denote by Eback the scale of
the background.
Then for that theory (modulo the subtleties related to

field redefinitions and redundant operators discussed in
Sec. IV D) perturbative unitarity requires the following
conditions on the scale of the different irrelevant operators.

(i) For any irrelevant operator (N þ 2M þ 4L > 4),

A− NþMþ6L−6
4ðNþ2Mþ4L−4ÞB

3Nþ3Mþ10L−6
4ðNþ2Mþ4L−4ÞΛNML≫μc∼

Bffiffiffiffi
A

p Λc: ð3:20Þ

(ii) For all irrelevant operators with Nþ5Mþ6L>10,

A
NþM−2Lþ6

2ðNþ5Mþ6L−10Þ

�
ΛNML

Λc

�4ðNþ2Mþ4L−4Þ
Nþ5Mþ6L−10

Λc ≫ Eback: ð3:21Þ

(iii) For all the irrelevant operators with N þ 2M þ 4L −
4 > 0 and N þ 5M þ 6L ≤ 10,

A
2Nþ3Mþ6L−4
2ðNþ2Mþ4L−4ÞB−7Nþ11Mþ11L−22

4ðNþ2Mþ4L−4Þ ΛNML ≫ Λc: ð3:22Þ

The strong coupling scale is designated by

Λs ¼ MinN;M;L

�
A

NþM−2Lþ6
2ðNþ5Mþ6L−10Þ

�
ΛNML

Λc

�4ðNþ2Mþ4L−4Þ
Nþ5Mþ6L−10

�
Λc;

ð3:23Þ

where the minimum is taken over all the N, M, L that
satisfy N þ 5M þ 6L > 10 and where we have implicitly
assumed that Eback ≳ μc ∼ B=

ffiffiffiffi
A

p
Λc and the second con-

dition (3.20) is satisfied. If Eback ≲ μc, the last two
requirements are irrelevant and the right-hand side of
(3.20) is simply Eback instead of μc and the strong
coupling scale of interest is instead given by the left-
hand side of (3.20). Once again, these conditions should
be taken as a diagnosis. If any of those was broken one
could go back to computing the explicit contributions to
the scattering amplitudes, which would account for the
proper numerical factors and is independent of field
redefinitions.
When it comes to the relevant and marginal operators,

since those operators are renormalizable, one can, in
principle, deal with those in the strong coupling regime.
Remaining in the perturbative regime requires

μ300 ¼
Λ300

ðABÞ3=4 ≲ Eback and

μ400 ¼
λ

ðAB3Þ1=2 ≲Oð16πÞ ð3:24Þ

(where λ is the coupling constant that enters for the φ4

operator); however, we emphasize that breaking this bound
(3.24) does not directly imply breaking of unitarity but
rather that loops from these operators ought to be
considered.
In the rest of this manuscript, we now use these bounds

to infer if and how a NEC violation can occur in PðΦ; XÞ
theories of gravity and whether a bounce is possible
without violation of unitarity.

IV. VIOLATING THE NEC
IN PðΦ;XÞ THEORY

We focus the discussion of perturbative unitarity on
PðΦ; XÞ theories near a NEC violating region. In that case
the scalar field Lagrangian in (2.1) takes the form

S½gμν;Φ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ PðΦ; XÞ

�
; ð4:1Þ

with

X ¼ −
1

2
gμν∂μΦ∂νΦ; ð4:2Þ
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and as before, we are interested in the effective scalar field
theory for φ on the FLRW cosmological background where
we have set Φ ¼ ϕþ φðt; xiÞ and the background satisfies
the appropriate equations of motion. In particular, the
background energy density is given by

ρ ¼ −P̄þ P̄;Xϕ̇
2; ð4:3Þ

where “bar” quantities are related to the background, i.e.,
X̄ ¼ 1

2
ϕ̇2 and P̄ ¼ Pðϕ; X̄Þ.

The kinetic coefficients and the mass that determine the
quadratic action for φ are given by

A ¼ 2X̄P̄;XX þ P̄;X; B ¼ P̄;X and

m2 ¼ ∂t½P̄;ΦXϕ̇� − P̄;ΦΦ; ð4:4Þ

and stability of the theory requires these three functions be
positive. Note that when accounting for the kinetic factors
A and B, the effective mass scale “perceived” by the
properly normalized scalar field is given by

m2
eff ¼ A−1m2 ¼ A−1ð∂t½P̄;ΦXϕ̇� − P̄;ΦΦÞ: ð4:5Þ

The operators SNML (2.13) of the effective theory on the
cosmological background can be derived for any given
PðΦ; XÞ model, and the scales ΛNML are given by

Λ−ðNþ2Mþ4L−4Þ
NML ¼

XM=2

j¼0

ð−1ÞLϕ̇M−2j

2jþLN!L!j!ðM − 2jÞ! ∂
N
Φ∂MþL−j

X P̄:

ð4:6Þ

Without having more insight on the precise form of the
function P and whether or not it truncates at any order in Φ
or X, there is little more one can say about those scales. In
what follows we hence take into account the fact that the
function P allows for a NEC violation, and even consider
the case where P is such that a cosmological bounce occurs.
We first focus on the case without any higher order effects
before including their effects.

A. Ignoring high-energy effects

When considering a pure PðΦ; XÞ model, without the
inclusion of higher energy effects as mimicked by the
operator ð□ΦÞ=Λ2

c in Sec. III, the background equations of
motion are simply

3M2
PlH

2 ¼ ρ ¼ −P̄þ 2P̄;XX̄; ð4:7Þ

M2
PlḢ ¼ −

1

2
ðpþ ρÞ ¼ −X̄P̄;X: ð4:8Þ

It is well known that in a PðΦ; XÞ theory, at the onset of a
NEC violation5 P̄;X ¼ B ¼ 0. Even more worrisome than
the standard stability issues caused by the gradient terms
vanishing or becoming negative is that we can directly see
that the onset of the NEC violation in any pure PðΦ; XÞ
theory is inexorably linked with a violation of unitarity,
which makes it impossible to trust that the NEC violation
actually occurred in the first place.
Indeed, if B → 0 the strong coupling scale derived in

(2.17) [or in (3.23)] vanishes (hence signaling violation of
perturbative unitarity at an arbitrarily small scale) unless all
the operators with 3N þ 3M þ 10L > 6 vanished (or could
all have been simultaneously removed by a field redefini-
tion), which means there can be no interactions at all, which
of course means there could not have been any operator to
set a NEC violation in the first place. So without including
higher energy effects, even putting aside any stability issue
that may occur at the classical level, there can be no NEC
violation within the regime of validity of a pure PðΦ; XÞ
model. Inwhat followswe therefore include the high-energy
effects that are naturally expected to be present in any
effective field theory. Notice that we still work within the
low-energy effective field theory and therefore should not be
sensitive about the exact details of the UV physics or its
exact realization, but their effect plays the role of a regulator
for the low-energy effective theory that is crucial for the
onset of a NEC violation in PðΦ; XÞ types of theories.

B. Including high-energy effects

When including the operator ð□ΦÞ2=Λ2
c, i.e., when

considering the following action,

S½gμν;Φ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
RþPðΦ;XÞ þ 1

2Λ2
c
ð□ΦÞ2

�
;

ð4:9Þ

the background equations of motion are slightly modified
to

3M2
PlH

2 ¼ −P̄þ 2P̄;XX̄

þ 1

2Λ2
c
½−ϕ̈2 þ 2ϕ̇ ϕ

:::
þ6Ḣ ϕ̇−9H2ϕ̇2�; ð4:10Þ

5From the Raychaudhuri Eq. (4.8) we could try to onset the
NEC by setting _ϕ ¼ 0 rather than P̄;X ¼ B ¼ 0. However, setting
ϕ̇ ¼ 0 also implies Ḧ ¼ 0 at that time, which means that we are
not within the NEC violating region unless one also has H

::: ¼ 0 at
that time, which itself also implies P̄;X ¼ 0 (or ϕ̈ ¼ 0, in which
case the same story continues). So to summarize, starting outside
the NEC region Ḣ < 0, one can never enter within the NEC
region Ḣ > 0 without passing through a point for which P̄;X ¼ 0

in a pure PðΦ; XÞ theory. We can therefore assume that _ϕ ≠ 0 at
the onset of the NEC violation without loss of generality.
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M2
Pl
_H ¼ −X̄P̄;X þ 1

Λ2
c
½ϕ̇ ϕ

:::
þ3 _Hϕ̇2 þ 3Hϕ̇ ϕ̈�: ð4:11Þ

The effect of Λc on the Friedman equation is irrelevant
when working within the regime of validity of the effective
field theory, but it allows for a violation of the NEC at finite
positive B,

B ¼ P̄;X ¼ 2

Λ2
cϕ̇

ðϕ
:::
þ 3Hϕ̈Þ > 0 when _H ¼ 0: ð4:12Þ

As mentioned in (2.9), the scale of the background, Eback, is
given by

Eback ¼MaxðH;
ffiffiffiffi̇
H

p
;m; ϕ̇=ϕ; ϕ̈=ϕ̇; � � �Þ≳ ffiffiffiffi

B
p

Λc; ð4:13Þ

where the last inequality is valid when _H ∼ 0. Preserving
perturbative unitarity requires the background scale to be
smaller that the strong coupling scale derived in (3.23),

Eback ≪ Λs; ð4:14Þ

which requires

ffiffiffiffi
B

p
Λc ≪ Λs: ð4:15Þ

Some of the literature does also require the background
energy density ρ to be much smaller than the strong
coupling scale of the perturbed effective field theory
ρ ≪ Λ4

s . This is certainly a safe requirement to impose
as one would not expect the EFT to be stable under
quantum corrections otherwise. From a pure unitarity-
preserving perspective, however, we are not forced to
impose that condition.
Since we can assume ϕ̇ ≠ 0, and since the derivatives of

the background should be small compared with the scale of
high-energy physics Λc, we can immediately infer the
hierarchy

B ≪ A and B ≪ 1 when Ḣ ¼ 0; ð4:16Þ

which implies that the speed of sound ought to be small in
this model for a NEC violation to occur. A small sound
speed may not necessarily be problematic at the classical
level, especially not when the high-energy effects regulate
any gradient instability that could occur, but as we see it
greatly affects unitarity.
To establish whether or not perturbative unitarity can be

preserved in the vicinity of a NEC violating region we start
by looking at the effect of the intermediate modes as
described in Sec. II B. We therefore consider modes with
energy scale E2

back ≪ s ≪ μ2c. In that regime, if any of the
scales derived in (2.17) happened to be smaller than
μc ∼ BA−1=2Λc ≪ Λc, with now the ΛNML given by (4.6)

(and keeping in mind that B ≪ A ∼ 2X̄P̄;XX), then that
scale would set the strong coupling scale.

1. Breaking the shift symmetry

Let us start by considering a PðΦ; XÞ theory that does not
necessarily preserve the shift symmetry (i.e., has explicit Φ
dependence). We also start by making the very natural
assumption that the fundamental theory does not carry any
hierarchy of scales by which we mean that one can
formulate the function PðΦ; XÞ in terms of just one scale
Λð≪Λc ≪ MPlÞ and order one dimensionless coefficients
cl;m,

PðΦ; XÞ ¼ Λ4
X
l;n

cl;n
Λlþ4n Φ

lXn: ð4:17Þ

We then have ∂4
ΦP̄ ∼ 1 (or ∂4

ΦP̄ ≫ 1 if the back-
ground involves ϕ ≫ Λ or X̄ ≫ Λ4, but we are not
able to have ∂4

ΦP̄ ≪ 1 unless a very specifically tuned
cancellation occurs precisely at the onset of the NEC
violation). Similarly we would never expect to have
ΛNþ4M−4∂N

Φ∂M
X P̄ ≪ 1 unless a very particular tuning was

set to occur precisely at the onset of the NEC violation, or
unless the shift symmetry or another precise type of
symmetry was present. So in a typical theory (4.17) with
no hierarchy of scales, we expect ΛNML ∼ Λ for all
N þ 2M þ 4L ≠ 4.
With this assumption in mind, we can consider the

quintic operator

L500 ¼
φ5

Λ500

with Λ500 ¼ 5!ð∂5
ΦP̄Þ−1 ∼ 5!Λ: ð4:18Þ

As we have seen, to avoid any breaking of unitarity this
operator should satisfy the requirements (3.20) and (3.22),
leading to

Λ≳ ðA3B5Þ−1=4Λc; ð4:19Þ

which further requires A≳ B−5=3ðΛc=ΛÞ4=3 ≫ 1, which is
only possible if some of the coefficients present in (4.17)
are much larger than unity. Once the door is opened for
such a special tuning [i.e., when some coefficients cl;m in
(4.17) are allowed to be parametrically much larger than
others], any vertex can, in principle, dominate the scattering
amplitudes and lead to much stronger bounds than would
be inferred from the other vertices.

2. Preserving the shift symmetry

An obvious way to evade the previous argument is to
keep the shift symmetry and hence avoid any operator that
depends explicitly on φ. We can start by assuming as we
did earlier that the covariant theory contains no large
hierarchies,
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PðXÞ ¼ Λ4
X
n≥1

cn
Λ4n X

n; ð4:20Þ

with all the cn of order 1, with the possibility that some of
them may vanish and that the sum may truncate at order N̄.
In that case one should have Λ4ðn−1Þ∂n

XP̄ ∼ 1 (or ≫ 1) for
any 2 ≤ n ≤ N̄ unless there is particular artificial tuning (or
hierarchy of scales). In this case the most stringent bounds
come from the cubic and quartic operators _φð∂iφÞ2 and
ð∂iφÞ4, which impose the requirement (3.20) Λ≳ c1=4s Λc.
Since cs ≪ 1 at the onset of the NEC violation in these
types of theories, this requirement is not a priori unrea-
sonable, but it does constrain the theory. Once this con-
straint is satisfied, none of the other operators of the theory
break perturbative unitarity so long as no artificially large
coefficient is included in PðXÞ. Expressed as a constraint
on PðXÞ we see that perturbative unitarity requires

1 ≪ Λ4
cP̄;XX ≪ c−1s ð4:21Þ

(where the lower bound is coming from the requirement
thatΛ ≪ Λc). The pure ghost condensate [6,9,28,40] lies in
that category of models and is discussed in more detail in
Appendix A. For that model we see that the unitarity
bounds put severe constraints on the high-energy operators,
which end up needing to break the shift symmetry.
The previous unitarity bound was derived by estimating

the contribution of the cubic and quartic vertices to the 2 − 2
scattering amplitudes. Having identified the potentially
most dangerous vertices, we can go ahead and compute
their actual contributions to the tree level scattering ampli-
tudes to ensure that no “accidental cancellations” occur. The
direct calculation of the 2 − 2 tree scattering amplitude
taking into account both the cubic and quartic vertices is in
complete agreement with the estimations and provides the
following upper bound: Λ4

cP̄;XX ≪ 192π2=ð103csÞ.

3. Summary

To summarize, a NEC violation in shift-symmetric PðXÞ
theory is, in principle, possible so long as higher energy
effects enter at a sufficiently low energy scale to regulate
the scattering amplitudes, but still at sufficiently high
energies so as not to entirely spoil the low-energy EFT.
With these conditions in mind we obtain a limited, but not
necessarily empty, window of possibility.
In practice, however, when it comes to obtaining explicit

bouncing solutions, breaking the shift symmetry may make
the bounce “easier” to model. In the absence of a protecting
shift symmetry, the unitarity bounds are tighter and require
an additional level of tuning of the model. These additional
tunings imply that the 2 − 2 scattering is no longer
necessarily the dominant scattering amplitude and all
processes should be examined with care to determine
whether unitarity is preserved. One should also ensure

that the effective mass and couplings of the marginal and
relevant operators are sufficiently small. This can be done
explicitly, and to illustrate the process we now provide an
explicit model that allows for a stable cosmological bounce
that preserves unitarity at the price of introducing an
unnaturally small parameter.

C. Explicit model

We now present an explicit model of the form

S½gμν;Φ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
RþPðΦ; XÞ þ 1

2Λ2
c
ð□ΦÞ2

�
;

ð4:22Þ

with

PðΦ; XÞ ¼ −Λ4VðΦÞ þ pðΦÞX þ qðΦÞ
Λ4

X2; ð4:23Þ

so the background equations of motion are given by

3M2
PlH

2 ¼ Λ4V þ pX̄ þ 3

Λ4
qX̄2

þ 1

2Λ2
c
½−ϕ̈2 þ 2ϕ̇ ϕ

:::
þ6Ḣ ϕ̇−9H2ϕ̇2�; ð4:24Þ

M2
Pl
_H ¼ −pX̄ − 2

q
Λ4

X̄2

þ 1

Λ2
c
½ϕ̇ ϕ

:::
þ3 _Hϕ̇2 þ 3Hϕ̇ ϕ̈�: ð4:25Þ

We can then explicitly check that the following profile,

ϕ̇ ¼ Λϕ; H ¼ Λ3

M2
Pl

hðϕÞ; ð4:26Þ

is an exact solution of the background equations of motion
if we choose the following potential and functions of Φ,

VðΦÞ ¼ −
1

4
qðΦÞΦ

4

Λ4
þ
�
3
Λ2

M2
Pl

h2ðΦÞ þΦh0ðΦÞ
�

−
Φ2

2Λ2
c

�
1þ 3

Λ2

M2
Pl

hðΦÞ
�

2

; ð4:27Þ

pðΦÞ¼−qðΦÞΦ
2

Λ2
−2

Λ2

Φ
h0ðΦÞ

þ2Λ2

Λ2
c

�
1þ3

Λ2

M2
Pl

hðΦÞþ3
Λ2

M2
Pl

Φh0ðΦÞ
�
; ð4:28Þ

and for any pair of free functions qðΦÞ and hðΦÞ. This
freedom ensures that we can choose a profile that under-
goes a cosmological bounce while preserving unitarity.
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Focusing on the decoupling limit about the FLRW
background as discussed in Sec. II A, the coefficients of
the kinetic matrix are then given by

A ¼ 2qðϕÞ ϕ
2

Λ2
− 2

Λ2

ϕ
h0ðϕÞ

þ 2
Λ2

Λ2
c

�
1þ 3

Λ2

M2
Pl

ðhðϕÞ þ ϕh0ðϕÞÞ
�
; ð4:29Þ

B ¼ −2
Λ2h0ðϕÞ

ϕ
þ 2

Λ2

Λ2
c

�
1þ 3

Λ2

M2
Pl

ðhðϕÞ þ ϕh0ðϕÞÞ
�
;

ð4:30Þ

and so the sound speed is given by

c2s ¼
ϕh0ðϕÞ − ϕ2

Λ2
c

ϕh0ðϕÞ − q ϕ4

Λ4 − ϕ2

Λ2
c

þO
�

Λ
MPl

�
: ð4:31Þ

For example, if we choose

ϕðtÞ ¼ ϕ0eΛt; ð4:32Þ

hðΦÞ ¼ −
Φ
ϕ0

1 −Φ2=ϕ2
0

1þΦ4=ϕ4
0

Φ10=ϕ10
0

1þΦ20=ϕ20
0

; ð4:33Þ

then the Hubble parameter goes through a bounce at t ¼ 0,

HðtÞ ¼ Λ3

2M2
Pl

sinhðΛtÞ
coshð2ΛtÞ coshð10ΛtÞ ; ð4:34Þ

which is a smooth bounce that violates the NEC for a time
Δt ∼ Λ−1 and produces a Hubble rate on the order of Hm ∼
Λ3=M2

Pl on exiting the NEC violating region. This is shown
in Fig. 1. To ensure that the perturbed field on that
background is well behaved, we can for instance choose

qðΦÞ ¼ Λ2

M2
Pl

�
1þ q1

ϕ4
0=Φ4

ð1þΦ=ϕ0Þ
�
: ð4:35Þ

As discussed in Sec. IV B, without a shift symmetry the
model has to involve a hierarchy of scales and the ratio
Λ=MPl is chosen to that effect (hence Hm, q, etc. are
parametrically smaller than naïvely expected). This model
gives the desired bouncing solution for ϕðtÞ; HðtÞ, when
Λc → ∞; however, in that limit fluctuations on this back-
ground have negative sound speed (there is a gradient
instability), and it badly violates unitarity. To remedy this,
we switch on the high-energy effects (i.e., bring Λc to a
finite value) and include the irrelevant operator ð□ΦÞ2 at
that scale. As derived previously, this scale should be in the
appropriate range to save unitarity, but without spoiling the
low-energy effective theory.

For concreteness we plot the behavior of the background
and the strong coupling scale for the following specific
choices of parameters:

Λ ¼ 10−3MPl; ϕ0 ¼ 0.5MPl;

q1 ¼ 6.4 and Λc ¼ 0.028MPl: ð4:36Þ

FIG. 1. The behavior of the specific example provided in
(4.34). The time is given in Planck-scale units. The Hubble
parameter is measured in terms of the scale Hm ¼ Λ3=M2

Pl. The
sound speed is manifestly positive throughout the NEC violating
region. On the lower plot, the relevant scales of the system are
represented relative to MPl. Λ0

c represents the scale at which the
higher energy effects enter, ρ is the energy density of the
background, m is the mass of the perturbed scalar field, and
Eback is the background scale and is manifestly smaller than the
scaleΛs at which perturbative unitarity breaks down. That scale is
dominated by the cubic and quartic operators _φð∂iφÞ2 and
ð∂iφÞ4. For comparison μ500 represents the scale at which the
operator φ5 breaks tree level unitarity. The example (4.34) is
specifically engineered so that the contribution of that operator
and any other operator is subdominant.
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For this choice of parameters, we now have a finite positive
sound speed and satisfy tree level unitarity throughout the
bounce. The strong coupling scale is indeed set by the cubic
and quartic operator _φð∂iφÞ2 and ð∂iφÞ4, while the higher
order effective interaction scales are all much larger than
the strong coupling scale Λs. This example has indeed been
specifically engineered so as to suppress the effect of any
other operator.

1. Strong coupling scale

An explicit calculation shows that within the NEC
violating region, we have A ∼ 2, B ∼ 2 × 10−3 and the
strong coupling scale deduced from the 2 − 2 scattering
amplitude (including all the operators that would affect
that amplitude) is Λs ∼ 10Λ. Then we can check that the
mass of the fluctuations on that background is indeed
small,

m2
eff ∼ Λ2 ∼ 10−2Λ2

s ; ð4:37Þ

and the scale associated with the relevant operator φ3 is
sufficiently small, μ300 ∼ Λ, as is the dimensionless cou-
pling constant in front of the marginal operator φ4,
μ400 ∼Oð1Þ. As for all the infinite number of irrelevant
operators, their respective scales should be at least Λs. A
direct calculation shows that within the region of interest
(i.e., within the NEC violating region), all the requirements
derived from tree level unitarity in (3.24) and (3.22) are
indeed satisfied. For illustration purposes, we represent the
scale μ500 we would have naively derived from where
the quintic operator φ5 breaks unitarity in Fig. 1 and it
indeed lies above Λs throughout the bounce. The same
remains true for all the other operators [other than _φð∂iφÞ2
and ð∂iφÞ4].
We can also directly see that the derivatives of the

background remain small; obviously ϕðnþ1Þ=ϕðnÞ∼Λ≪Λs
(the hierarchy involved in the example is not an important
one, but it simply serves as an illustration of the principle).
Moreover, we can check that the variation of the mass
and the coefficients of the kinetic matrix are small,
_B=B ∼ 10−6MPl, and _A=A ∼ 1.5 × 10−3MPl, which is
actually what sets the scale of the background,
Eback ∼ 1.5Λ.
We have therefore shown how, for couplings given by

(4.28), and solution (4.34), while if one took Λc → ∞ the
bounce would have a classical gradient instability and
would badly violate perturbative unitarity, this can be
remedied by including high-energy effects that are present
at sufficiently high energy (finite Λc) without severely
affecting the predictions of the low-energy EFT. For a
bounce to occur without violating unitarity in a PðΦ; XÞ
theory, the parameters have to be carefully tuned and a
hierarchy of scale has to be introduced already in the
PðΦ; XÞ model.

V. SUMMARY

While solutions that violate the NEC condition are
relatively easy to find classically, they may not be trusted
if they are derived beyond the regime of validity of their
effective field theory. In this work, we have derived the
conditions set by tree level unitarity on NEC violating
effective field theories on a cosmological background. In
PðΦ; XÞ theories minimally coupled to gravity, without
including any higher energy effects, it is impossible to
describe a NEC violation (much less a complete bounce):
Any classical solutions automatically severely violate
unitarity and cannot be trusted. A natural resolution is to
include the high-energy effects, irrelevant operators sup-
pressed by a higher energy scale that are naturally expected
to be present. We have shown that these can regulate not
only the classical instabilities that arise in these classical
NEC violating solutions, but can also regulate scattering
amplitudes, hence providing a much better handle on
unitarity. We have derived the precise requirements set
by tree level unitarity in PðΦ; XÞ models with additional
irrelevant operators, and shown that while the theory should
be very carefully tuned, in principle, there is a open window
of possibility for a stable cosmological bounce that pre-
serves unitarity. To further illustrate the constraints set by
unitarity and level of tuning required, we have presented an
explicit PðΦ; XÞ that generates a stable cosmological
bounce and preserves unitarity within the region of the
bounce, albeit at the price of introducing an unnaturally
small parameter into, and hence finely tuning, the EFT.
The analysis and example provided here was not aimed

at providing a full cosmological framework and we have
only focused on the possibility of violating the NEC while
avoiding any instability and remaining within the regime of
validity of the effective field theory. We have not addressed
the question of particle production throughout the bounce,
which is beyond the scope of this work; however, given that
there is no instability and the scales are under control, there
is a priori no reason to expect a large particle production at
this point. Moreover, the high level of tuning required to
obtain a stable and unitary bounce certainly raises the
question of whether such a model would ever accommodate
the precise cosmology we observe today and be able to
reproduce the precise value of the spectral index (without
an excess of non-Gaussianities, [49]) and the tensor to
scalar ratio to be embedded in a consistent and viable
model for the cosmological history of our Universe.
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APPENDIX: BOUNCING WITH A PURE
GHOST CONDENSATE

In this appendix we review the violation of the NEC in a
pure ghost-condensate model, [6,9,28,40]. Starting with the
particular PðXÞ,

PðXÞ ¼ −pX þ q
Λ4

X2; ðA1Þ

a violation of the NEC is possible if p > 0. In that case the
standard vacuum hϕi ¼ 0 carries a ghost, but no ghost is
present in the ghost-condensate phase (hϕ̇i ≠ 0) where the
quadratic terms X2 become relevant. Just like any other
PðΦ; XÞ theory, this model is unstable and breaks unitarity
even before entering the NEC violating region, unless
higher energy effects are considered as discussed in
Sec. II B and so we have these high-energy effects entering
at Λc in mind throughout this appendix.
The expression for the kinetic coefficients is

A ¼ −pþ 6qX
Λ4

and B ¼ −pþ 2qX
Λ4

; ðA2Þ

so interestingly the variations of A and B are linked,
Ȧ ¼ 3Ḃ, and we have

X ¼ Λ4

4q
ðA − BÞ: ðA3Þ

As a consequence, we therefore have

Ẋ
X
¼ Ȧ− Ḃ
A−B

¼ 2 _B
A−B

and similarly
Ẍ
X
¼ 2B̈
A−B

: ðA4Þ

Now from the Raychaudhuri equation, within the NEC
violating region _H > 0, we have

0 < B < O
�

1

Λ2
c

Ẍ
X

�
; ðA5Þ

where the exact expression on the right-hand side depends
on the very precise operators that enter at Λc (and could

also for instance involve terms of the form H _X=Λ2
cX), but

this analysis is independent of the precise form (as it should
be). We merely use the fact that they involve higher
derivatives as is required if those terms are to cure the
instabilities associated with pure PðXÞ bounce. Then from
(A4) within the NEC violating region we ought to have

A − B < O
�

1

Λ2
c

B̈
B

�
: ðA6Þ

Requiring that the background does not vary faster than
Λ0
c ¼

ffiffiffiffi
A

p
Λc sets B̈=B ≪ AΛ2

c, which therefore implies that

1 − c2s ≪ 1; ðA7Þ

i.e., the speed of sound should be very close to luminal.
Now for a PðXÞmodel with close to luminal speed of sound
the unitarity bound (4.21) cannot be satisfied.
One may be worried that the bound (4.21) is not

technically valid if the speed of sound is not small since
in going from (3.9) to (3.10) we have assumed A ≫ B. It is
straightforward to rederive the bound (4.21) when this
assumption is relaxed and we then find that unitarity
imposes

1 ≪ Λ4
cP̄;XX ≪

ð1 − c2sÞ4
cs

; ðA8Þ

which is even more impossible to satisfy when 1 − c2s ≪ 1.
So we can conclude that a pure ghost-condensate model of
the form (A1) can never give rise to a unitarityNECviolation
(let alone a bounce) evenwhen introducing higher derivative
terms at a higher energy scale. The only way to avoid this
argument in the ghost-condensate model is if the higher
energy effects also involve operators that are not higher
derivatives, i.e., involve terms that break the shift symmetry
at high energy. Instead of trying to maintain a low-energy
EFT that preserves the shift symmetry and only breaks that
symmetry softly at high energy, in this manuscript we
consider instead an explicit model that directly breaks the
shift symmetry at low energy as is described in Sec. IV C.
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