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We introduce a new proposal for the onset of cosmic acceleration based on mass varying neutrinos.
When massive neutrinos become nonrelativistic, the Z2 symmetry breaks, and the quintessence potential
becomes positive from its initially zero value. This positive potential behaves like a cosmological constant
at the present era and drives the Universe’s acceleration during the slow roll evolution of the quintessence.
In contrast to ΛCDM model, the dark energy in our model is dynamical, and the acceleration is not
persistent. Contrary to some of the previous models of dark energy with mass varying neutrinos, we do not
use the adiabaticity condition, which leads to instability.
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I. INTRODUCTION

The origin of the present acceleration of the Universe
[1–7] is not yet known. One can attribute this acceleration
to an exotic matter with negative pressure that permeates
the Universe homogeneously, dubbed dark energy. A
simple candidate for dark energy is a scalar field known
as quintessence, which constitutes nearly 70% of our
present Universe with density ρdark ∼ 10−10 eV4 [8–23].
Structure formation requires that the acceleration begin
after the matter-dominated era. The equation of state (EoS)
parameter of the quintessence is negative, and it dilutes less
quickly than dark and ordinary matter and radiation. Today,
dark energy density has the same order of magnitude as the
sum of other Universe ingredients; hence in the early eras,
its ratio density was negligible. The question of why,
nowadays, dark energy and dark matter densities have
the same order of magnitude is known as the coincidence
problem [24–33]. This can be reexpressed as the question
of why the dark energy density was negligible in the early
time. The present proportion of dark sectors can be
explained by considering the possible interaction of dark
energy with other components [34–51]. Known physical
properties of these components may give some clues to
understand the behavior of dark energy. For example,
quintessence (also dubbed the acceleron in neutrino dark
energy models) and neutrino interactions may be employed
to relate neutrino masses to EoS and the density of dark
energy [52–54]. This interaction makes the mass of
neutrinos a function of the quintessence. Hence the
neutrino mass changes by the evolution of the scalar field.
The transition of mass varying neutrinos from a relativistic
to a nonrelativistic phase deforms the effective potential
such that the quintessence velocity decreases, and it follows
the minimum of the convex effective potential, giving rise

to the Universe’s acceleration [52–60]. In some papers, an
adiabatic evolution for the quintessence is considered
[52,61], such that the quintessence effective mass becomes
larger than the Hubble parameter. This scenario may suffer
from instabilities that result in the formation of neutrino
nuggets [61,62]. These instabilities and the possibility to
have stable neutrino lumps are also discussed in [63], where
lumps are considered as nonrelativistic particles with
effective interactions, and also in [64] for a large neutrino
mass.
In another class of models [65–67], to describe the

screening effect, a coupling between the quintessence and
pressurelessmatter is considered.When the density ofmatter
is greater than a critical value, the quintessence vacuum
expectation value vanishes, leading to zero fifth force. But
when the matter density becomes less than the critical value
(e.g., by the redshift), the Z2 symmetry is broken, and the
quintessence evolves towards the minimum of its effective
potential. This evolution may describe the present acceler-
ation of the Universe. But in the symmetron model, the
quintessence is too heavy to slow roll. Instead, it rolls rapidly
toward the minimum of its effective potential and oscillates
about that point. To remedy this problem, in [68,69], the
symmetron is considered in the teleparallel model of gravity,
which has a de Sitter attractor solution in the late time.
In this article, we try to introduce a new model to explain

the onset of the positive acceleration of the Universe from
the matter-dominated era with zero dark energy density.
Motivated by the mass varying neutrino and the symme-
tron, we introduce a coupled quintessence neutrino model
in which the potential and the neutrino mass have Z2

symmetry. By the evolution of mass varying neutrinos from
the relativistic regime to the nonrelativistic one, the shape
of the effective potential changes and the quintessence
begins its evolution from a constant initial fixed point. This
procedure may provide enough positive potential to drive
the cosmic acceleration via a slow roll evolution from a
decelerated epoch.
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In our model the rise of dark energy and its dominance
over other components depend on the neutrino mass, which
determines the time when the neutrinos become nonrela-
tivistic. So the evolution of the quintessence from zero
density is postponed until the nonrelativistic era of neu-
trinos, after which the equivalence of dark matter and dark
energy densities may occur. In this way, one may relate the
coincidence problem to the neutrino mass. The coincidence
problem also depends on the other parameters of the model,
especially those that determine the dark energy density.
As the adiabaticity condition (i.e., the quintessence

adiabatically traces the minimum of the effective potential)
is not used, the model is free from instabilities encountered
in some of the growing neutrino quintessence models [61].
Besides, in contrast to the symmetron model [65], the
Universe can experience an accelerated phase during a time
greater than the Hubble time in the slow roll regime.
The scheme of the paper is as follows: In the second

section, we study the possibility of the occurrence of
cosmic acceleration triggered by massive neutrinos in a
symmetronlike model, from an epoch with zero dark
energy density. In the third section, the perturbation
equations are obtained, and the stability of the model is
discussed. We illustrate our results with some numerical
examples. In the last section, we conclude the paper.
Throughout this paper we use units ℏ ¼ c ¼ kB ¼ 1 and

metric signature ð−;þ;þ;þÞ.

II. COSMIC ACCELERATION TRIGGERED BY
MASSIVE NEUTRINOS IN QUINTESSENCE

MODELS WITH Z2 SYMMETRY

We use the action [70]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PR −
1

2
∂μϕ∂μϕ − VðϕÞ

�

þ
X
j

Sj½A2
jðϕÞgμν;ψ j�; ð1Þ

where ϕðtÞ is the homogenous quintessence with potential
VðϕÞ, and ψ j denotes other species. The coupling between
the quintessence and ψ j is given by the conformal coupling
A2
jðϕÞgμν, where AjðϕÞ>0. We consider only an interac-

tion between ψ i and the quintessence, such that AðjÞðϕÞ ¼
δijAðϕÞ. MP¼2.4×1018GeV is the reduced Planck mass.
The Universe is taken as a spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) space-time

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð2Þ

where aðtÞ is the scale factor.
Variation of (1) with respect to ϕ gives

ϕ̈þ 3H _ϕþ V;ϕ ¼ −
A;ϕ

A
ðρðiÞ − 3PðiÞÞ; ð3Þ

where ρðiÞ and PðiÞ are the energy density and the pressure
of the ith species respectively and V;ϕ ¼ dV

dϕ. Variation of (1)
with respect to the metric yields the Friedmann equation

H2 ¼ 1

3M2
P

�
1

2
_ϕ2 þ V þ

X
j

ρðjÞ

�
; ð4Þ

and the evolution of the Hubble parameter is given by

_H ¼ −
1

2M2
P

�
_ϕ2 þ

X
j

ðρðjÞ þ PðjÞÞ
�
: ð5Þ

The Universe is positively accelerated provided that
_H þH2 > 0, which yields

2VðϕÞ − 2 _ϕ2 −
X
i

ðρðiÞ þ 3PðiÞÞ > 0: ð6Þ

The continuity equations are given by

_ρðiÞ þ 3HðPðiÞ þ ρðiÞÞ ¼
A;ϕ

A
_ϕðρðiÞ − 3PðiÞÞ; ð7Þ

for interacting ith species, and

_ρðjÞ þ 3HðPðjÞ þ ρðjÞÞ ¼ 0 ð8Þ
for other components. The neutrino-quintessence interac-
tion resulting from (1) can also be considered in the context
of the coupled quintessence model [8,34,35].
By employing the Fermi-Dirac distribution for neutrinos

whose masses mðνÞðϕÞ are ϕ dependent and are also in
thermal equilibrium with temperature TðνÞ, one obtains

ρðνÞ ¼
T4
ðνÞ
π2

Z
∞

0

dxx2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ξ2

p
ex þ 1

PðνÞ ¼
T4
ðνÞ

3π2

Z
∞

0

dxx4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ξ2

p
ðex þ 1Þ

; ð9Þ

where ξ ¼ mðνÞðϕÞ
TðνÞ

. By using (9) one finds

_ρðνÞ þ 3HðPðνÞ þ ρðνÞÞ ¼
mðνÞ;ϕðϕÞ
mðνÞðϕÞ

_ϕðρðνÞ − 3PðνÞÞ: ð10Þ

Therefore (7) is the same as the mass varying neutrino

continuity equation provided that AðϕÞ ¼ mðνÞðϕÞ
M , where M

is a mass scale. For the quintessence we have

ϕ̈þ 3H _ϕþ Veff;ϕ ¼ 0; ð11Þ

where the effective potential is given by

Veff;ϕ ¼ V;ϕ þ
mðνÞ;ϕðϕÞ
mðνÞðϕÞ

ðρðνÞ − 3PðνÞÞ: ð12Þ
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So we take the neutrinos interacting with quintessence via
(1) as mass varying neutrinos. For different kinds of

neutrinos with the same
mðνÞ;ϕðϕÞ
mðνÞðϕÞ , we may still use (12)

and (10), provided that we take ρðνÞ ¼
P

iρðνiÞ and
PðνÞ ¼

P
iPðνiÞ.

When interacting neutrinos are relativistic, mðνÞ ≪ TðνÞ,
we have

ϕ̈þ 3H _ϕþ V;ϕ ¼ 0

_ρðνÞ þ 4HρðνÞ ¼ 0; ð13Þ

and Veff ¼ V, while for nonrelativistic ones, mðνÞ ≫ TðνÞ,
we have

ϕ̈þ 3H _ϕþ V;ϕ ¼ −
mðνÞ;ϕ
mðνÞ

ρðνÞ

_ρðνÞ þ 3HρðνÞ ¼
mðνÞ;ϕ
mðνÞ

_ϕρðνÞ: ð14Þ

We can define a rescaled energy density ρ̂ðνÞ as

ρðνÞ ¼ mðνÞρ̂ðνÞ; ð15Þ

in terms of which (14) reduces to

ϕ̈þ 3H _ϕþ V;ϕ þmðνÞ;ϕρ̂ðνÞ ¼ 0

_̂ρðνÞ þ 3Hρ̂ðνÞ ¼ 0: ð16Þ

In the nonrelativistic case, we can write ρðνÞ ¼ mðνÞnðνÞ,
where nðνÞ is the neutrino density number. So we identify
nðνÞ ¼ ρ̂ðνÞ. The solution of the second equation in (16) is

ρ̂ðνÞ ¼ ρ̂0ðνÞa
−3; ð17Þ

where 0 denotes the present time, where we take a0 ¼ 1.
Equivalently nðνÞ ¼ n0ðνÞa

−3, as expected. From (16), in the

nonrelativistic limit, we can define an effective quintes-
sence potential:

Veff;ϕ ¼ V;ϕ þmðνÞ;ϕnðνÞ: ð18Þ

Now we can construct our model. We require
(i) Initially, when massive neutrinos are relativistic,

quintessence energy density is negligible, and the
Universe is in a decelerated phase.

(ii) The accelerated expansion of the Universe is caused
by symmetry breaking triggered by the evolution of
mass varying neutrinos from the relativistic regime
toward the nonrelativistic one.

To choose appropriate VðϕÞ and mνðϕÞ to fulfil (i) and
(ii), we proceed as follows:

We assume that VðϕÞ and mðϕÞ have Z2 symmetry and
initially the quintessence stays at the minimum of its
potential which we take as Vmin ¼ Vðϕ�Þ ¼ 0. Thus dark
energy density is negligible in this era:

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ ¼ Vðϕ�Þ ¼ 0: ð19Þ

To have an initial stable solution, we require that the
potential be convex at this point V;ϕϕðϕ ¼ ϕ�Þ > 0. As
neutrinos are initially relativistic, ρðνÞ ≈ 3PðνÞ, we have
V ¼ Veff .. From (6) we find that the Universe is in a
decelerated phase. In this era as ϕ is a constant, neutrino
masses are also constant and the interaction in (10) is
nonoperative. Due to the Universe’s expansion, neutrinos
exit from a relativistic phase such that ðρðνÞ − 3PðνÞÞ
becomes significant, ρðνÞ − 3PðνÞ > 0. Hence the effective
potential, given by (18), is no longer equal to the quintes-
sence potential. If we choose mðνÞ;ϕϕðϕ ¼ ϕ�Þ < 0, when-

ever ðρðνÞ − 3PðνÞÞ > − V;ϕϕðϕ¼ϕ�Þ
mðνÞ;ϕϕðϕ¼ϕ�Þ, the effective potential

becomes concave and ϕ� becomes an unstable point.
Therefore the quintessence rolls down the effective poten-
tial and the Z2 symmetry breaks. Contrary to the effective
potential, the potential is convex, and the quintessence
climbs its own potential. This can be achieved only when
Veff;ϕ and V;ϕ have opposite signs. From (12) this implies
that the signs of mðνÞ;ϕ and V;ϕ are opposite too. This
mechanism provides the positive potential required for
cosmic acceleration [see (6)].
This scenario is entirely different from the usual growing

neutrino quintessence studied in the literature. In that
scenario the interaction of neutrinos and quintessence,
after the neutrinos become nonrelativistic, acts as a barrier
potential and stops the fast rolling of the quintessence,
forcing it to follow the minimum of the effective potential
and giving rise to cosmic acceleration. In some papers an
adiabatic evolution for the quintessence is considered
[52,61]. This adiabaticity, which is absent in our model,
gives rise to growing neutrino perturbation and neutrino
nugget formation [61]. Our model is also different from the
symmetron model, where Veff;ϕ ¼ V;ϕ þ A;ϕρ̂ and ρ̂ is the
rescaled pressureless matter density. In the symmetron
model, by the dilution of matter density, the quintessence
becomes tachyonic and rolls down simultaneously its own
and its effective potential [71]. Therefore the potential
decreases by the symmetry breaking, and if it is initially
negligible, it will become negative after a while and cannot
drive the acceleration [71]. So in the symmetron model, the
initial dark energy density is assumed to be non-negli-
gible, ρϕ� ¼ Λ > 0.
Based on astrophysical data the EoS of the quintessence,

wϕ ¼
1
2
_ϕ2 − V

1
2
_ϕ2 þ V

; ð20Þ
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is estimated to be wϕ ¼ −1.006� 0.045 in the present
epoch [72]. So the kinetic energy of the quintessence must
be much less than its potential. This is the slow roll
condition

1

2
_ϕ2 ≪ VðϕÞ: ð21Þ

From (16) we have

_ϕ ¼ −
Veff;ϕ

3Hð1þ χÞ ; ð22Þ

where χ ¼ ϕ̈
3H _ϕ

. The slow roll condition is satisfied when

1

2

�
Veff;ϕ

3Hð1þ χÞ
�

2

≪ V: ð23Þ

If χ ∼Oð1Þ or χ ≲ 1, (23) becomes

V2
eff;ϕ ≪ 9H2V: ð24Þ

If in the slow roll epoch (like the present era), dark energy
and other components’ densities have the same order of
magnitude, by 3M2

PH
2 ∼ V and (24) we obtain

Veff;ϕ ≪
3V2

M2
P
: ð25Þ

As a summary, in our formalism of cosmic acceleration,
when the mass varying neutrinos become nonrelativistic,
their interaction with the quintessence becomes operative
and triggers the quintessence evolution, which augments
the potential from its initial zero value. This positive
potential is necessary to drive the cosmic acceleration.
This mechanism provides a slow roll evolution provided
that the effective potential is sufficiently flat [in the sense
used in (25)].
To get more intuition about our model let us give an

example. We choose the potential as a combination of a
cosmological constant and a Gaussian type potential
[73,74]. We assume that the mass of neutrinos also has
a Gaussian form [75,76],

VðϕÞ ¼ V0ð1 − e−αϕ
2Þ

mðνÞðϕÞ ¼ m�e−βϕ2

; ð26Þ

where α > 0 and β > 0 are constants with inverse mass-
squared dimensions and V0 > 0. m� is the neutrino mass
at ϕ ¼ 0.
Initially, neutrinos are relativistic and Veff ¼ V. The

quintessence effective mass is assumed to be much less
than the Hubble parameter, 2V0α ≪ H2, such that (16)
describes an overdamped oscillation equation [66].

Therefore, in this epoch ϕ ¼ 0 is a stable solution (as
the potential is convex) of equations of motion, yielding a
negligible dark energy density, ρϕðϕ ¼ 0Þ ¼ 0. When
temperature decreases, ρðνÞ − 3PðνÞ is no longer negligible
and

Veff;ϕ ¼ 2αV0ϕe−αϕ
2 − 2βϕðρðνÞ − 3PðνÞÞ: ð27Þ

When αV0

β < ρðνÞ − 3PðνÞ, the effective potential becomes
concave at ϕ ¼ 0 and this point becomes unstable. The
quintessence, which gains a negative mass squared, rolls
down the effective potential while climbing its own
potential (since Veff;ϕ and V;ϕ have different signs). This
holds whenever

α

β
V0 < eαϕ

2ðρðνÞ − 3PðνÞÞ: ð28Þ

This mechanism provides the positive potential needed for
the acceleration.
In the nonrelativistic limit m�e−βϕ2 ≫ TðνÞ, we can

ignore the pressure. The effective potential becomes

Veff ¼ V0ð1 − e−αϕ
2Þ þ nðνÞm�e−βϕ2

; ð29Þ

and we can write (28) as

V0 <
β

α
m�nðνÞeðα−βÞϕ

2

: ð30Þ

When ϕ2 increases, e−αϕ
2 ≪ 1 holds and the potential

behaves as a cosmological constant (see Fig. 1) at late time.
We take this era as our present era. Based on astrophysical
data, ρϕ constitutes about 0.7 of our Universe’s density, so

FIG. 1. The potential and the effective potential for fα ¼
15M−2

P ; β ¼ 15M−2
P ; V0 ¼ 0.691 × 3H2

0M
2
P; ρðνÞ ¼ 10H2

0M
2
Pg.
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we can take V0 ∼ ð 7
10
Þ3M2

PH
2
0. Because of the exponential

factors in (26), the derivative of the effective potential
satisfies (24) when αϕ2 ∼ 1 and βϕ2 ∼ 1, implying a slow
roll motion with wϕ ≃ −1. Eventually, by dilution of
massive neutrinos, the effective potential becomes the same
as the potential. The quintessence rolls down towards its
initial point and oscillates around that point.
Obtaining analytic solutions for the equations of motion,

even with a simple potential and mass function, is very
complicated, if not impossible. So let us illustrate our results
via a numerical example by using Eqs. (4), (5), (8), and (16).
We assume that the Universe is nearly composed of massive
neutrinos (ν), the quintessence ðϕÞ, the pressureless matter
(c) comprising cold dark matter and pressureless baryonic
matter, and radiation (r). We choose the parameters of
the model and the initial conditions as fα ¼ 15M−2

P ;
β ¼ 15M−2

P ; V0 ¼ 0.691 × 3H2
0M

2
P ¼ 2.74 × 10−47 GeV4g

and

ϕ

MP
¼ 10−10; _ϕ ¼ 10−6MPH0;

ρðνÞ ¼ 3.4 × 1010H2
0M

2
P; ρðcÞ ¼ 1.54 × 1011H2

0M
2
P;

ρðrÞ ¼ 2.50 × 1011H2
0M

2
P; ð31Þ

respectively. The initial conditions are set at τ ¼ tH0 ¼ 0,
which in our model is equivalent to the redshift z ¼ 5500
corresponding to the radiation-dominated Universe. H0 is
the present Hubble parameter, i.e., the Hubble parameter at
a ¼ 1. The relative densities defined by ΩðiÞ ¼ ρðiÞ

3M2
PH

2 are

derived from (31) as

ΩðrÞ ¼ 0.571; ΩðνÞ ¼ 0.077;

ΩðcÞ ¼ 0.352; ΩðϕÞ ¼ 1.14 × 10−24; ð32Þ

and the Hubble parameter is H ¼ 3.82 × 105H0. ΩðϕÞ ¼
1.14 × 10−24 shows that the initial values chosen forϕ and _ϕ
give only a negligible dark energy contribution in the total
density. In our numerical studywe assume that neutrinos are
completely nonrelativistic at τ ¼ 0, i.e., ρðνÞ − 3PðνÞ ≃ ρðνÞ.
So we can ignore the neutrinos’ pressure. In order that
ρðνÞ − 3PðνÞ ≃ ρðνÞ holds, wemust havem� ≫ TðνÞ at τ ¼ 0.
The mass varying neutrinos exit from the relativistic regime
when m� ≃ 3T�

ðνÞ, corresponding to the redshift z ¼ znr.

Until this time we have [77]

TðνÞ ¼
�
4

11

�1
3

Tγ; ð33Þ

where Tγ is the photons’ temperature. In addition we
have [77]

Tγ ¼ T0
γð1þ zÞ; ð34Þ

where T0
γ is the photons’ temperature at the present time.

Hence

T�
ðνÞ ¼

�
4

11

�1
3

T0
γð1þ znrÞ ¼ 0.085 × 10−3ð1þ znrÞ: ð35Þ

Therefore in our example we must have m� ≫ 0.92 eV.
Note that we have chosen our initial condition at τ ¼ 0 in

the nonrelativistic regime while the quintessence began its
motion in the semirelativistic regime, where PðνÞ was not
negligible; therefore, the values in (31) are not the varia-
bles’ values just after the symmetry breaking. Our numeri-
cal results illustrate the evolution of the Universe from an
epoch with ΩðϕÞ ≃ 0 to the present dark-energy-dominated
epoch. We also study the future behavior of the quintes-
sence. A quantitative study beginning from the semirela-
tivistic regime of neutrinos requires considering the
pressure PðνÞ [see (9)], which makes the equations very
complicated to solve. The initial conditions for the scalar
field are due to the quantum fluctuations around ϕ ¼ 0,
against which the model is no more stable after the
symmetry breaking. Therefore by a small deviation from
ϕ ¼ 0, the quintessence rolls down its steep effective
potential [65].
In Fig. 1, we have depicted the potential and the effective

potential for ρðνÞ ¼ 10H2
0M

2
P. The potential is the same as

the effective one in the relativistic limit. For nonrelativistic
massing neutrinos, the shape of the effective potential
changes, and the previous minimum point becomes the new
maximum.
In Fig. 2, the deceleration parameter, q ¼ − äa

_a2 ¼
−ð1þ _H

H2Þ, is depicted showing the transition of the
Universe from a deceleration epoch to acceleration in a
time of order of the Hubble time.
Although this acceleration, which begins at the redshift

z≃ 0.6, can last for some Hubble times, it is not persistent.
Gradually as the neutrinos’ density dilutes, the effective
potential becomes the same as the potential. The quintes-
sence rolls down to its initial position and oscillates about
that position via an underdamped oscillation. This is due to
the fact that the effective mass of the quintessence becomes
larger than the Hubble parameter at late time. This can also
be seen from Fig. 3. Figure 3 shows that the quintessence
grows from ϕ ¼ 0 and reaches to an approximately con-
stant value, which is consistent with our previous discus-
sion that when the effective potential becomes nearly flat,
the slow roll evolution begins.
Before the symmetry breaking, (11) is an overdamped

harmonic oscillator equation, and ϕ ¼ 0 is a stable point.
After the symmetry breaking, at τ < 0, this point becomes
unstable against fluctuations and ϕ commences its evolu-
tion. So just after the symmetry breaking, ϕ < ϕðτ ¼ 0Þ.
Note that Vðϕðτ ¼ 0ÞÞ ≪ V0, so ϕ cannot overcome the
potential initially, and needs a time of the order of the
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present Hubble time to reach the maximum of its potential
to drive the cosmic acceleration. In the future, by the
dilution of neutrinos the quintessence will come back to its
initial position, but because the Hubble parameter will be
much smaller than the effective mass, the quintessence will
have an underdamped oscillation (see Fig. 3).
The effective potential becomes very steep after the

symmetry breaking (see Fig. 1), sowe expect that _ϕ increases
initially. In our example Veff;ϕ ≃ −2βρðνÞϕ ∼ −100H2

0MP,

which is more efficient than the friction term 3H _ϕ ∼MPH2
0.

By the increase of _ϕ and decrease of ρðνÞ, the friction term
becomes more relevant, providing the required condition for
the slow roll (see Fig. 3).
The EoS parameter of the quintessence, wϕ, is plotted in

Fig. 4, showing that wϕ decreases and wϕ ≈ −1 during the
time where the effective potential is nearly flat. Finally in
the future due to the quintessence oscillation, wϕ will
oscillate between −1 and 1.
In the present era τ ¼ 0.94 (corresponding to a ¼ 1), and

we find wϕ ¼ −0.998, which is the range expected from
Planck 2015 data.
The relative densities defined by ΩðiÞ ¼ ρðiÞ

3M2
PH

2 are

depicted in Fig. 5, showing that the dark energy density
grows while other ingredients’ ratio densities decrease.
ΩðcÞ, ΩðνÞ, ΩðrÞ, and ΩðϕÞ are the relative densities of the
pressureless matter, the mass varying neutrinos, the radi-
ation, and the dark energy, respectively.
In this example, relative densities at the present era

τ ¼ 0.94 (corresponding to a ¼ 1) are obtained as ΩðϕÞ ¼
0.691;ΩðcÞ ¼ 0.308;ΩðνÞ ¼ 0.00003, and ΩðrÞ ¼ 0.00009,
which lie in the expected region estimated by Planck
2015 data.

III. LINEAR PERTURBATIONS

In this section we consider the evolution equations of
perturbations in the nonrelativistic era, mðνÞ ≫ TðνÞ. We
study the neutrino contrast with the same method used in

FIG. 2. The deceleration parameter in terms of dimensionless
time τ ¼ tH0, for fα¼15M−2

P ;β¼15M−2
P ;V0¼0.691×3H2

0M
2
Pg

and initial conditions (31).

FIG. 3. The quintessence field in terms of dimensionless time
τ ¼ tH0, for fα ¼ 15M−2

P ; β ¼ 15M−2
P ; V0 ¼ 0.691 × 3H2

0M
2
Pg

and initial conditions (31).

FIG. 4. The quintessence equation of state parameter in terms
of dimensionless time τ ¼ tH0, for fα ¼ 15M−2

P ; β ¼ 15M−2
P ;

V0 ¼ 0.691 × 3H2
0M

2
Pg and initial conditions (31).
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[62]. In the mass varying models of dark energy based on
adiabaticity, the linear perturbations grow and give rise to
instability and the formation of neutrino nuggets [61]. We
first gather the required equations corresponding to our
problem, which are derived in [78–80]. Then based on
these equations, we will continue our discussion through a
numerical illustrative example.
The line element of perturbed FLRW space-time can be

written as

ds2 ¼ −ð1þ 2φÞdt2 þ 2aðtÞB;idtdxi

þ a2ðtÞðδij þ 2ðE;ij − ψδijÞÞdxidxj; ð36Þ

where φ (lapse function), B (shift function), E, and ψ are
four scalar functions and a comma denotes a partial
derivative. The stress tensor perturbations are given by

δT00 ¼
X
j

δρðjÞ − φ _̄ϕ
2 þ δ _ϕ _̄ϕþV 0ðϕ̄Þδϕ

δT0i ¼ a

�
_̄ϕ

�
_̄ϕB;i þ

1

a
δϕ;i

�
−
X
j

ðρ̄ðjÞ þ P̄ðjÞÞvðjÞ;i
�

δTij ¼ δija2
�X

j

δPðjÞ − φ _̄ϕ
2 þ δ _ϕ _̄ϕ−V 0ðϕ̄Þδϕ

�
: ð37Þ

By bar we denote the background value of a parameter and
a prime denotes a derivative with respect to the argument.
Four velocities of the fluids are given by

uðjÞ0 ¼ −ð1þ φÞ
uðjÞi ¼ aðvðjÞ þ BÞ;i; ð38Þ

where ūðjÞ0 ¼ −1 and ūðjÞi ¼ 0 have been used. Going to
the Fourier space, the evolution equations for density
fluctuations are derived as

δ_ρðjÞ−
�
k2vðjÞ
a

þk2Eþ3 _ψ

�
ðρ̄ðjÞþP̄ðjÞÞþ3HðδρðiÞþδPðjÞÞ

¼βðjÞðϕÞðρ̄ðjÞ−3P̄ðjÞÞδ _ϕþβðjÞðϕÞðδρðiÞ−3δPðjÞÞ _̄ϕ
þβ0ðjÞðϕÞðρ̄ðjÞ−3P̄ðjÞÞ _̄ϕδϕ; ð39Þ

in which βðνÞ¼
m0

ðνÞðϕÞ
mðνÞðϕÞ and βðjÞ ¼ 0 for ðjÞ ≠ ðνÞ; this means

that the interaction is considered only between the quintes-
sence and massive neutrinos. From momentum conserva-
tion, the constraint

_vðjÞ ¼ −
βðjÞðϕ̄Þ

a

ρ̄ðνÞ − 3P̄ðνÞ
ρ̄ðνÞ þ P̄ðνÞ

δϕþ 3H
_̄PðjÞ
_̄ρðjÞ

ðvðjÞ þ BÞ

−HðvðjÞ þ BÞ − φ

a
−

δPðjÞ
aðρ̄ðjÞ þ P̄ðjÞÞ

− _B ð40Þ

is obtained. The evolution equation of the scalar field
perturbation is

δϕ̈þ 3Hδ _ϕþ V 00ðϕ̄Þδϕþ k2

a2
δϕ − ðk2 _Eþ 3 _ψÞ _̄ϕþ k2

a
B _̄ϕ

− _̄ϕ _φþ2V 0ðϕ̄Þφþ 2φβðνÞðϕ̄Þðρ̄ðνÞ − 3P̄ðνÞÞ
þ βðνÞðϕ̄ÞðδρðνÞ − 3δPðνÞÞ
þ β0ðνÞðϕ̄Þðρ̄ðνÞ − P̄ðνÞÞδϕ ¼ 0: ð41Þ

By considering the Einstein equation, one derives

3Hð _ψ þ φHÞ þ k2

a2
ðψ þHða2 _E − aBÞÞ

¼ −
1

2M2
P

�X
j

δρðjÞ − φ _̄ϕ
2 þ δ _ϕ _̄ϕþV 0ðϕ̄Þδϕ

�
ð42Þ

from the 0 − 0 component,

_ψ þ φH ¼ −
1

2M2
P

�X
j

aðvðjÞ þ BÞðρ̄ðjÞ þ P̄ðjÞÞ − _̄ϕδϕ

�
ð43Þ

from the 0 − i components, and

ψ̈ þ 3H _ψ þH _φþ ð3H2 þ 2 _HÞφ

¼ 1

2M2
P

�X
j

δPðjÞ − φ _̄ϕ
2 þ δ _ϕ _̄ϕ−V 0ðϕ̄Þδϕ

�
ð44Þ

by taking the trace of the i − j components. The trace-free
part of i − j gives

_σs þHσs − φþ ψ ¼ 0; ð45Þ

in which σs ¼ a2 _E − aB is the scalar shear.

FIG. 5. Relative densities in terms of the scale factor a, for
fα ¼ 15M−2

P ; β ¼ 15M−2
P ; V0 ¼ 0.691 × 3H2

0M
2
Pg and initial

conditions (31).
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In the following, we choose the flat gauge ψ ¼ E ¼ 0.
We assume that the Universe is constituted of the cold
pressureless matter with wc ¼ 0 (baryonicþ dark matter),
the radiation with wr ¼ 1

3
, the nonrelativistic massive

neutrino with wðνÞ ¼ 0, and the quintessence. Only the
interaction between the scalar field and the massive
neutrinos is taken into account. For the background we
have

_̄ρðrÞ þ 4Hρ̄ðrÞ ¼ 0

_̄ρðcÞ þ 3Hρ̄ðcÞ ¼ 0

_̄ρðνÞ þ 3Hρ̄ðνÞ ¼ βðνÞðϕ̄Þρ̄ðνÞ _̄ϕ
̈ϕ̄þ 3H _̄ϕþ V 0ðϕ̄Þ ¼ −βðνÞðϕ̄Þρ̄ðνÞ: ð46Þ

For the densities, we obtain

δ_ρr ¼ −4HδρðrÞ þ
4k2

3a
ðv̂ðrÞ − BÞρ̄ðrÞ

δ_ρðcÞ ¼ −3HδρðcÞ þ
k2

a
ðv̂ðcÞ − BÞρ̄ðcÞ

δ_ρðνÞ ¼ −3HδρðνÞ þ
k2

a
ðv̂ðrÞ − BÞρ̄ðνÞ þ βðνÞðϕ̄Þρ̄ðνÞδ _ϕ

þ βðνÞðϕ̄ÞδρðνÞ _̄ϕþ β0ðνÞðϕÞρ̄ðνÞ _̄ϕδϕ; ð47Þ

and for the velocities, v̂ðjÞ ¼ vðjÞ þ B, we derive

_̂vðrÞ ¼ −
φ

a
−

δρðrÞ
4aρðrÞ

_̂vðcÞ ¼ −
φ

a
−Hv̂ðcÞ

_̂vðνÞ ¼ −
φ

a
−Hv̂ðνÞ − βðνÞðϕ̄Þ

δϕ

a
: ð48Þ

The scalar field perturbation satisfies

δϕ̈ ¼ −3Hδ _ϕ − V 00ðϕ̄Þδϕ −
k2

a2
δϕ −

k2

a
_̄ϕB

− 2V 0ðϕ̄Þφ − 2φβðνÞðϕ̄Þρ̄ðνÞ

þ
_̄ϕ

2HM2
P

�X
j

δPj − φ _̄ϕ
2 þ δ _ϕ _̄ϕ−V 0ðϕ̄Þδϕ

�

−
3H2 þ 2 _H

H
φ _̄ϕ − βðνÞðϕ̄ÞδρðνÞ − β0ðνÞðϕ̄Þðρ̄ðνÞ: ð49Þ

By using the components of the Einstein equation we get

φ ¼ −
1

2HM2
P

�
− _̄ϕδϕþ a

X
j

v̂ðjÞðρ̄ðjÞ þ P̄ðjÞÞ
�
; ð50Þ

and

B¼ 3a
2k2M2

P

�
1

3H

�X
j

δρðjÞ−φ _̄ϕ
2þδ _ϕ _̄ϕþV 0ðϕ̄Þδϕ

�
þ _̄ϕδϕ

�

−
3a2

2k2M2
P

X
j

v̂ðjÞðρ̄ðjÞþP̄ðjÞÞ: ð51Þ

In models in which the coupling of neutrinos and
quintessence acts as a potential barrier and forces the
quintessence to trace the minimum of its effective potential,
neutrino perturbations grow significantly in the nonrela-
tivistic regime where the adiabaticity condition is used.
In our model, the adiabatic condition does not hold, and
instead, we use the slow roll condition. So we expect that
the model is still stable against linear perturbation [61].
Now let us numerically show this issue via the example (26)
introduced in the previous section.
To numerically plot the perturbations, we also need to

know the initial conditions for fluid velocities, energy
density perturbations, and perturbation of the scalar field.
At τ ¼ tH0 ¼ 0, we take

δðνÞ ¼ δc ¼
3

4
δðrÞ ¼ 10−7; δϕ ¼ 10−7ϕ;

δ _ϕ ¼ 10−7 _ϕ; v̂ðjÞ ¼ 10−7H−1
0 ; ð52Þ

where δi ¼ δρðiÞ
ρðiÞ

is the density contrast of the ith species. A

same initial 3-velocity v̂ðiÞ is assumed for all fluids. We
have employed adiabatic initial conditions which imply
δc ¼ 3

4
δr initially [80].

The parameters and initial conditions are taken the same
as in the previous section, i.e., fα ¼ 15M−2

P ; β ¼ 15M−2
P ;

V0 ¼ 0.691 × 3H2
0M

2
P ¼ 2.74 × 10−47 GeV4g, and (31).

In Figs. 6 and 7, using Eqs. (46)–(51), we depict φ and
the massive neutrino density contrast, respectively.

FIG. 6. Lapse function φ, in terms of dimensionless time
τ ¼ tH0, with initial conditions (31) and (52) and fα ¼ 15M−2

P ;
β ¼ 15M−2

P ; V0 ¼ 0.691 × 3H2
0M

2
Pg.
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As it is evident from Fig. 7, the neutrino perturbation
does not grow critically. This is in contrast to the mass
varying models of dark energy based on adiabaticity,
where the linear perturbations in the nonrelativistic era
grow and give rise to instability and formation of neutrino
nuggets [61].

IV. SUMMARY

Inspired by the mass varying neutrino and symmetron
models, we propose a new possible dynamical model of
dark energy to describe the onset of the present cosmic
acceleration. We assume that the quintessence is initially
trapped in the minimum of its potential, which has a Z2

symmetry. In this era, both the kinetic and potential
energies of the quintessence are negligible. This initial
zero density is in agreement with the present astrophysical
data, which imply that despite the slower redshift of dark
energy density with respect to the dark matter density, these
densities have the same order of magnitude today (pointed
out in the coincidence problem). After their relativistic era,
the mass varying neutrinos become nonrelativistic, the
shape of the effective potential changes, and the initial
stable point becomes unstable. Contrary to the symmetron
model, the effective potential and the potential have
opposite slopes; hence the quintessence climbs its potential
while it rolls down the effective potential. This procedure

provides enough energy to drive the cosmic acceleration via
a slow roll evolution.
The quintessence-neutrino coupling modifies the evo-

lution of the quintessence and consequently the dilution of
dark energy. In the mass growing neutrino model, the
scalar field dilutes like the dark matter during a significant
period of its evolution, and therefore the coincidence
problem may be alleviated [63]. In our model, the begin-
ning of quintessence evolution depends on the initial
neutrino mass. It is only after the nonrelativistic epoch
that the quintessence can commence its evolution from
zero density to gain the same order of magnitude as the
dark matter in later times. In this way, one may relate the
coincidence problem to the neutrino mass. The coincidence
problem also depends on the other parameters of the
model, especially those determining the dark energy
density. To fix the parameters, we need to confront our
model with observation data.
To illustrate how the model works, we used the example

(26) and chose the parameters, e.g., the initial neutrino
mass, such that the derived present ratio densities are in
agreement with the Planck 2015 data and the acceleration
begins at z≃ 0.6. In a time of the order of the Hubble time,
the dark energy density is given by V0, which plays the role
of a cosmological constant. So we fixed it as the value of
the present dark energy density. In this period, the model
behaves like ΛCDM, but in contrast to the ΛCDM model,
we have a dynamical dark energy with an initial zero
density. Also, unlike the ΛCDM model, the acceleration is
not persistent, and by dilution of massive neutrinos the
quintessence rolls back to its initial position and oscillates
about that position. However, to construct our model, we
have to fine-tune our parameters like V0, according to the
astrophysical data. Note that it is also possible to consider
other potentials, like those with an unbounded upper bound
such as V ¼ V0ðeαϕ2 − 1Þ; α > 0. In these cases, like the
example (26), the quintessence climbs its own potential
after the symmetry breaking, but unlike (26) the potential
does not have a maximum. The potential reaches V ¼
V0ðeαϕ2

present − 1Þ in the present era, which during the slow
roll evolution may be identified with the present dark
energy density. Again, by dilution of neutrinos, the
quintessence will come back to its initial position and will
oscillate about it via an underdamped oscillation.
In our scenario, as we do not employ the adiabaticity

condition used in some of the previous models of neutrino
dark energy, we do not encounter the instabilities that arise
in those models. This issue was discussed and illustrated
via numerical methods by using the example (26).

FIG. 7. Massive neutrinos’ density contrast in terms of dimen-
sionless time τ ¼ tH0 for three different wave numbers with
initial conditions (31), (52), and fα ¼ 15M−2

P ; β ¼ 15M−2
P ;

V0 ¼ 0.691 × 3H2
0M

2
Pg.
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