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We consider a real scalar singlet field which provides a strong first-order electroweak phase transition via
its coupling to the Higgs boson, and gives a CP violating contribution on the top quark mass via a
dimension-6 operator. We study the correlation between the baryon-to-entropy ratio produced by
electroweak baryogenesis, and the gravitational wave signal from the electroweak phase transition. We
show that future gravitational wave experiments can test, in particular, the region of the model parameter
space where the observed baryon-to-entropy ratio can be obtained even if the new physics scale, which is
explicit in the dimension-6 operator, is high.
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I. INTRODUCTION

Electroweak baryogenesis is one of the most studied
scenarios for dynamically producing the matter-antimatter
asymmetry in the Universe [1,2]. The scenario relies on a
strong first-order electroweak phase transition during
which the baryon number violating sphaleron processes
translate the CP asymmetry at the bubble wall region to
baryon asymmetry. In the Standard Model the electroweak
phase transition is a crossover [3,4], and the CP violating
phase of the CKMmatrix is generally agreed to be tooweak
to account for the observed baryon-to-entropy ratio [5–8].
New physics can, however, modify the electroweak
phase transition and provide new sources of CP violation,
possibly enabling a successful electroweak baryogenesis.
Probably the simplest model in which a strong first-order

electroweak phase transition can be realized is the real scalar
singlet extension of the Standard Model [9–20]. The model
can be extended by introducing an effective nonrenormaliz-
able coupling between the top quark and the singlet scalar,
which modifies the top quark mass at nonzero values of the
singlet scalar field [21,22]. If this coupling is complex, it
provides a source of CP violation, thereby making electro-
weak baryogenesis in this scenario possible.
Another interesting aspect of first-order phase transitions

is that they produce gravitational waves [23–25], which can
perhaps be observed in future space-basedgravitationalwave
interferometers [26–28]. Gravitational wave signals from a
first-order electroweak phase transition have recently been
extensively studied in various extensions of the Standard
Model [29–36]. Also, different scenarios with gravitational
waves from hidden sector phase transitions and from phase
transitions at energy scales above the electroweak transition
have been considered [37–43]. Yet, the correlation between
the gravitational wave signal from the electroweak phase
transition and the baryon-to-entropy ratio produced by
electroweak baryogenesis has not been studied.

As shown in Ref. [44], a sizable gravitational wave
signal can be obtained while simultaneously satisfying the
requirements for viable electroweak baryogenesis. The
gravitational wave signal is strongest for high bubble wall
velocities, whereas the baryon-to-entropy ratio produced
via electroweak baryogenesis decreases as a function of the
relevant velocity. However, for electroweak baryogenesis
the relevant velocity is not directly the bubble wall velocity,
but the relative velocity between the bubble wall and the
plasma just in front of the wall. Especially for very strong
transitions, this velocity is much lower than the bubble wall
velocity.
In the real scalar singlet extension of theStandardModel, a

first-order electroweak phase transition can be realized
already at tree level by a two-step transition pattern where
the singlet scalar first obtains a nonzero vacuum expectation
value. This phase transition pattern can lead to strong
supercooling. As the transition finally happens, a large
amount of vacuum energy is released, so the gravitational
wave signal from the transition can be strong. In this paperwe
show that the baryon-to-entropy ratio produced by electro-
weak baryogenesis and the gravitational wave signal from
electroweak phase transition are correlated in the real scalar
singlet extension of the Standard Model. We compare the
gravitational wave signal to the expected sensitivities of
Laser Interferometer Space Antenna (LISA) [45] and Big
Bang Observer (BBO) [46] interferometers, and show that
these experiments can test the model.
The paper is organized as follows: First, in Sec. II we

introduce the model, and in Sec. III we discuss the phase
transition pattern giving a strong first-order electroweak
phase transition. Then, in Sec. IV we calculate the bubble
nucleation temperature. In Sec. V we perform the electro-
weak baryogenesis calculation by solving the transport
equations, and we study the dependence of the baryon-to-
entropy ratio on bubble wall velocity and width. In Sec. VI
we calculate the gravitational wave signal produced by the
electroweak phase transition and compare it to the expected*ville.vaskonen@kbfi.ee
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sensitivities of future gravitational wave interferometers.
Finally, in Sec. VII we present our conclusions.

II. MODEL

We consider the simplest scalar extension of the
Standard Model where, in addition to the Standard
Model Higgs doublet H, the scalar sector includes a Z2

symmetric real scalar singlet field s. The scalar potential of
the model is given by

VðH; sÞ ¼ μ2hH
†H þ λhðH†HÞ2

þ λhs
2
ðH†HÞs2 þ μ2s

2
s2 þ λs

4
s4: ð1Þ

As we will explain in the next section, we consider a phase
transition pattern where at T ¼ 0 the vacuum expectation
value of s is zero. The Higgs field mass term is related to
the T ¼ 0 vacuum expectation value of the Higgs field,
v ¼ 246 GeV, via μ2h ¼ −λhv2, and the results from LHC
[47] fix the mass of the Higgs boson, m2

h ¼ 2λhv2, to
mh ¼ 125 GeV. The scalar potential then includes only
three free parameters: the portal coupling λhs, the quartic s
self-coupling λs, and the T ¼ 0 mass of s, m2

s ¼ μ2sþ
λhsv2=2.
We assume the Z2 symmetry only for simplicity, and,

assuming that the Z2 symmetry in the underlying model is
broken, neglect all constraints which would be present if s
was dark matter [48]. However, the constraint arising
from the Higgs invisible decay must be taken into account.
For the range of portal couplings we are considering,
λhs ≳ 0.1, the constraint from the Higgs invisible decay
excludes the region ms < mh=2.
As in Ref. [22] we assume that the necessary CP

violation for baryogenesis arises from a dimension-6
operator modifying the top quark mass,

ytQ̄LH

�
1þ c

s2

Λ2

�
tR þ H:c: ð2Þ

Here c is a complex number, and Λ is a new physics scale.
Alternatively, we could consider a dimension-5 operator
∼s=Λ, but to be consistent with the Z2 symmetric scalar
potential, we choose to study the dimension-6 operator.
Obviously, our results would not change qualitatively for a
dimension-5 operator. One should also note that this
operator would contribute on the electric dipole moments
of the electron and neutron at two loops only if there was
mixing between h and s at T ¼ 0 [21]; thus, the amount of
CP violation arising from (2) in the scenario considered
here is not constrained by experiments.

III. PHASE TRANSITION PATTERN

In the real scalar singlet extension of the Standard
Model, a first-order electroweak phase transition can be

realized at tree level: First, the s field obtains a nonzero
vacuum expectation value. Then, the potential develops a
second minimum at s ¼ 0 which breaks the electroweak
symmetry. Finally, the electroweak breaking minimum
becomes the global minimum of the potential, and if there
is a potential barrier between the electroweak symmetric
minimum at s ≠ 0 and the electroweak breaking minimum
at s ¼ 0, the electroweak phase transition is of first order.
The potential barrier is provided by a sufficiently large
portal coupling λhs.
To study the phase transition, we include finite temper-

ature corrections to the leading terms in the scalar potential,1

μsðTÞ2 ¼ μ2s þ csT2; μhðTÞ2 ¼ μ2h þ chT2; ð3Þ

where

cs ¼
1

12
ð2λhs þ 3λsÞ;

ch ¼
1

48
ð9g2L þ 3g2Y þ 12y2t þ 24λh þ 2λhsÞ: ð4Þ

We neglect the contribution δch ¼ y2t ðs=ΛÞ4=8 arising from
the dimension-6 operator. We will later validate this by
checking that s2=Λ2 is small.
Obviously, the described phase transition pattern

requires that μ2s < 0. Moreover, the s direction has to
break before the Higgs direction breaks, and the electro-
weak breaking minimum has to be the global minimum at
T ¼ 0, which requires

μ4s
c2s

>
μ4h
c2h

ð5Þ

and

μ4s
λs

<
μ4h
λh

; ð6Þ

respectively.
The critical temperature Tc at which the two minima are

equally deep is given by

T2
c ¼

csμ2sλh þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2sc2hμ

4
h þ λhλsðc2hμ4s − c2sμ4hÞ

p
c2hλs − c2sλh

: ð7Þ

For a first-order electroweak phase transition, we must
require that the electroweak symmetric extremum is a
minimum when the transition occurs. At Tc the condition
reads

1We neglect one-loop corrections beyond the leading T2 terms.
Taking into account the full one-loop potential would only
slightly change the value of the singlet couplings for which
the following results hold.
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λhs > 2
ffiffiffiffiffiffiffiffi
λhλs

p
; ð8Þ

and below Tc the condition becomes more constraining,

λhsðμ2s þ csT2Þ < 2λsðμ2h þ chT2Þ: ð9Þ

The region where the conditions (5), (6) and (8) are fulfilled
is shown in Fig. 1.

IV. BUBBLE NUCLEATION AND EXPANSION

A first-order phase transition proceeds via nucleation of
bubbles of the new phase, which expand and eventually fill
the Universe. The bubble nucleation probability per unit
time and volume is given by [49]

Γ ∼ T4

�
S3
2πT

�
3=2

exp

�
−
S3
T

�
; ð10Þ

where

S3 ¼ 4π

Z
r2dr

�
1

2

�
dh
dr

�
2

þ 1

2

�
ds
dr

�
2

þ ~V

�
ð11Þ

is the three-dimensional Euclidean action for an
O(3)-symmetric bubble corresponding to the path in the
field space which minimizes S3. Here h denotes the real
part of the neutral component of H, and ~V is the Z2

symmetric scalar potential (1) including temperature

corrections (3) and normalized such that outside the bubble
at r → ∞ the potential energy is zero.
The bubble nucleation temperature Tn is defined as the

temperature at which the probability of creating at least one
bubble per horizon volume is of order one. This condition
can be written as [50]

S3
Tn

≈ −4 log
�

Tn

MPlanck

�
: ð12Þ

For simplicity, and to speed up numerical calculations,
we do not calculate the path which minimizes the full action
S3, but we use the path which minimizes the potential
energy. It has been checked that typically this approxima-
tion works reasonably well [51]. We write the fields as

h ¼ x cos θ; s ¼ x sin θ; ð13Þ

and for each value of θ, we find the value of x which
minimizes the potential energy. Then, knowing the path
xðθÞ which minimizes the potential energy, we solve the
equation of motion for θ,

d2θ
dr2

þ 2

r
dθ
dr

¼ 1

x2
d ~V
dθ

−
2

x
dx
dθ

�
dθ
dr

�
2

; ð14Þ

to find the bubble wall shape as a function of r.
We perform a scan of the parameter space with fixed

λs ¼ 0.1. We consider only values of λhs andms which give
a first-order electroweak phase transition, e.g. correspond-
ing to the region in the ðms; λhsÞ plane shown in Fig. 1.
In Fig. 2 the nucleation temperature is shown for the
scanned points. The color coding shows the value of vn=Tn,

FIG. 1. Color coding shows the critical temperature in the
region where the conditions for the first-order electroweak phase
transition are fulfilled for λs ¼ 0.1. The dashed line shows the
lower limit on λhs requiring that the extremum in the s direction at
T ¼ 0.95Tc is a minimum. The gray region is excluded for
λs ¼ 0.1 because there the T ¼ 0 global minimum of the potential
is at h ¼ 0. In the white region the electroweak phase transition is
not of first order. The green contour marks off the region where
the transition is of first order for λs ¼ 0.5. The blue shaded region
is excluded by the Higgs invisible decay.
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FIG. 2. The bubble nucleation temperature Tn as a function of
the critical temperature Tc for the points from the scan with
λs ¼ 0.1. Color coding shows the strength of the transition,
vn=Tn. The dashed line corresponds to Tn ¼ Tc. Gray points are
excluded by the Higgs invisible decay.
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where vn denotes the Higgs field expectation value at Tn.
Though all results in this paper are shown only for λs ¼ 0.1,
we have checked that they do not change qualitatively for
different values of λs.
If the friction force exerted by the plasma on the bubble

wall becomes sufficiently large, the bubble wall will
quickly reach a constant terminal velocity ξw < 1.
Calculating the friction which determines the bubble wall
velocity is out of the scope of this work. Instead, we fix
ξw ¼ 0.2 which is in agreement with the results from
Ref. [52] at vn=Tn ∼ 1.1. For large vn=Tn the bubble wall
velocity may be significantly larger; thus, in the following
sections we will also study how our results would change
for different values of ξw.
We accept only the points for which deflagration

solutions, necessary for electroweak baryogenesis, exist,
e.g. [53]

α <
1

3
ð1 − ξwÞ−13=10 ¼ αmax: ð15Þ

Here α is the ratio of released vacuum energy in the
transition to that of the radiation bath at Tn,

α ¼ 1

ργ

�
ΔV −

Tn

4
Δ
dV
dT

�
: ð16Þ

In the left panel of Fig. 3 the ratio α=αmax is shown for the
scanned points which give α=αmax < 1. We note that even
though deflagration solutions exist, it is not guaranteed that
they are realized if runaway (or detonation) solutions are
also possible. Using the criterion α > α∞ [53,54] for the
runaway solutions, we have checked that for vn=Tn ≳ 1.5
runaway solutions also exist. We perform the following
baryogenesis analysis for all points which satisfy the
condition (15), but one should keep in mind that some

of the points with vn=Tn ≳ 1.5 may actually lead to
runaway bubble walls, in which case the following analysis
is not valid.

V. ELECTROWEAK BARYOGENESIS

The baryogenesis in the model relies on spatially varying
complex top quark mass, given by the dimension-6
operator (2), over the bubble wall. The top quark mass
as a function of z, which measures the distance from the
bubble wall, is given by

mtðzÞ ¼
ytffiffiffi
2

p hðzÞ
�
1þ c

sðzÞ2
Λ2

�
: ð17Þ

We assume that the bubble wall profile is of the form

hðzÞ ¼ vn
2

�
1þ tanh

�
z
Lw

��
;

sðzÞ ¼ wn

2

�
1 − tanh

�
z
Lw

��
; ð18Þ

where vn and wn are the expectation values of h in broken
phase and s in symmetric phase, respectively, at the bubble
nucleation temperature Tn.
For the bubble wall width we use a very simple

estimate [55],

L2
w ¼ v2n

8Vb
; ð19Þ

where Vb is the height of the potential barrier between the
two minima at Tn. The bubble wall widths for the scanned
points are shown in Fig. 3. We will later study how the
produced baryon-to-entropy ratio changes as a function
of Lw.

FIG. 3. Points from the scan with λs ¼ 0.1 which are not excluded by the Higgs invisible decay constraint. Color coding shows the
ratio of the bubble nucleation temperature Tn and the critical temperature Tc. Here Lw denotes the bubble wall width, and vw the relative
velocity between the bubble wall and the plasma just in front of the wall. To the right of the vertical dashed lines, the transition is
sufficiently strong to avoid baryon washout. The blue line in the right panel shows vw ¼ ξw ¼ 0.2, and the blue points show the value of
vw for ξw ¼ 0.34.
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The complex phase of the top quark mass induces a
chiral force at the bubble wall region, which causes
particles and antiparticles to slow down at different rates.
The effect of this force diffuses outside the wall, producing
a chiral asymmetry in front of the wall. To find the chiral
asymmetry which drives the baryon asymmetry production,
we solve the chemical potentials μjðzÞ, describing depar-
ture from the equilibrium particle densities, for top, antitop
and bottom, from the transport equations given in
Refs. [56,57]. From these we construct the left-chiral
baryon chemical potential

μBL
¼ 1

2
ð1þ 4K1;tÞμt þ

1

2
ð1þ 4K1;bÞμb − 2K1;tcμtc ;

ð20Þ

where Kj are thermal averages defined in [56].
The left-chiral baryon chemical potential enters as a

source term to the equation for the baryon number violation
rate [58],

_nB ¼ 3

2
Γsph

�
3μBL

T2
n −

15

2
nB

�
; ð21Þ

where the second term in the right-hand side describes
baryon number relaxation by the sphaleron processes.
Finally, the baryon-to-entropy ratio, ηB ¼ nB=s, is given by

ηB ¼ 405

4π2vwgeffTn

Z
∞

0

dzΓsphμBL
e−45Γsphz=4vw : ð22Þ

For the sphaleron rate we use a formula interpolating
between the symmetric and the broken phase [59–61],

ΓsphðzÞ ¼ minð10−6Tn; 2.4Tne−40hðzÞ=TnÞ: ð23Þ

As emphasized in Ref. [44], the relevant velocity for
baryogenesis is not the bubble wall velocity, but the relative
velocity between the bubble wall and the plasma just in
front of the wall [53],

vw ¼ 1

1þ αþ

�
ξw
2
þ 1

6ξw

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ξw
2
þ 1

6ξw

�
2

þ α2þ þ 2αþ
3

−
1

3

s �
: ð24Þ

The αþ parameter is given in the Appendix of Ref. [53].
The velocity vw is much smaller than the bubble wall
velocity, especially for very strong transitions. In the right
panel of Fig. 3, vw is shown for the scanned points as a
function of vn=Tn which characterizes the strength of the
transition. For comparison, vw is shown also for ξw ¼ 0.34.
From the scan of the parameter space we take the points

for which the electroweak phase transition is sufficiently

strong, vn=Tn > 1, to prevent baryon number washout in
the electroweak breaking minimum. For these points we
perform the baryogenesis calculation. We fix the coupling c
to c ¼ i.
First, we notice that the baryon-to-entropy ratio is

inversely proportional to the square of the new physics
scale Λ. Hence, we can calculate the baryon-to-entropy
ratio for fixed Λ ¼ Λ0, and then via Λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηB=ηobs
p

Λ0, we
obtain the value of Λ which gives the observed baryon-to-
entropy ratio ηobs ¼ 8.7 × 10−11 [62]. In Fig. 4 the values of
Λ which give the observed baryon-to-entropy ratio are
shown for the scanned points. We have also checked that
w2
n=Λ2 is always small, w2

n=Λ2 ≲ 0.1. Hence, the treatment
of the dimension-6 operator is consistent.
From Fig. 4 we see that α increases as a function of Λ.

The parameter α, which measures the vacuum energy
released in the transition, increases as a function of
1=Tn. As can be seen from Eq. (22), the baryon-to-entropy
ratio also increases as a function of 1=Tn. Thus, for small
Tn the new physics scale Λ has to be high in order to obtain
the observed baryon-to-entropy ratio because ηB ∼ 1=Λ2.
This explains the correlation shown in Fig. 4: Both Λ and α
are large for small Tn. This correlation already points out
that the larger Λ is, the stronger the gravitational wave
signal is, which increases as a function of α. We will study
in detail the gravitational wave spectrum in the next section.
Finally, we show how the baryon-to-entropy ratio

depends on vw and Lw. In Fig. 5 the baryon-to-entropy
ratio is shown in the ðvw; LwÞ plane for one point of the
scan. The baryon-to-entropy ratio decreases as a function of
both vw and Lw. We note that the width of the bubble wall
obtained from Eq. (19) is small for many points, LwTn ∼ 1.

FIG. 4. The same points as in the right panel of Fig. 3. The
vertical axis shows the new physics scale Λ which gives the
observed baryon-to-entropy ratio. Color coding shows the ratio of
released vacuum energy in the transition to that of the radiation
bath at the bubble nucleation temperature. The unfilled points
indicate the cases where α > α∞.
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Since the baryogenesis calculation relies on semiclassical
analysis which assumes that the bubble wall thickness is
much larger than the de Broglie wavelength of particles
in the plasma [58], the resulting ηB for the points with
LwTn ∼ 1 may be inaccurate.

VI. GRAVITATIONAL WAVE SIGNAL

The gravitational wave spectrum is determined by the
ratio of released vacuum energy in the transition to that of
the radiation bath α, the bubble wall velocity ξw, and the
inverse duration of the phase transition [50],

β ¼ HðTnÞTn
d
dT

S3
Tn

: ð25Þ

For nonrunaway bubble walls the gravitational wave signal
arises from sound waves and magnetohydrodynamical
turbulence in the plasma. We calculate the gravitational
wave spectrum,

Ωgwh2ðfÞ ¼ Ωswh2ðfÞ þ Ωmh2ðfÞ; ð26Þ

following Ref. [28]. The contributions from sound waves
and magnetohydrodynamical turbulence are, respectively,
given by

Ωswh2ðfÞ ¼
1.23 × 10−5

g1=3�

H
β

�
κswα

1þ α

�
2

ξwSswðfÞ;

Ωmh2ðfÞ ¼
1.55 × 10−3

g1=3�

H
β

�
κmα

1þ α

�3
2

ξwSmðfÞ: ð27Þ

The functions parametrizing the spectral shape of the
gravitational waves read

SswðfÞ ¼
�

f
fsw

�
3
�

7

4þ 3ðf=fswÞ2
�7

2

;

SmðfÞ ¼
ðf=fmÞ3

ð1þ ðf=fmÞÞ113 ð1þ 8πf=h�Þ
; ð28Þ

with

h� ¼ 1.65 × 10−5 Hz

�
Tn

100 GeV

��
g�
100

�1
6

: ð29Þ

Here fsw and fm are the peak frequencies of each con-
tribution,

fsw ¼ 1.9 × 10−5 Hz
ξw

β

H

�
Tn

100 GeV

��
g�
100

�1
6

;

fm ¼ 1.42fsw; ð30Þ

and κsw and κm are the fractions of the released vacuum
energy density converted into bulk motion of fluid and
magnetohydrodynamical turbulence, respectively. For sub-
sonic bubble walls these read [53]

κsw ¼ c11=5s κaκb

ðc11=5s − ξ11=5w Þκb þ ξwc
6=5
s κa

;

κm ¼ ϵκsw; ð31Þ

where cs ¼ 1=
ffiffiffi
3

p
is the sound velocity, ϵ ¼ 0.05

describes the fraction of bulk motion which is turbulent
[28], and
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FIG. 6. Gravitational wave spectra for the same points as in
Fig. 3. Color coding shows the new physics scale which gives the
observed baryon-to-entropy ratio. The red and orange curves
show the expected sensitivities of eLISA and BBO, respectively.

FIG. 5. Blue lines show the values of the relative velocity
between the bubble wall and the plasma just in front of the
wall, vw, and the bubble wall width Lw, which give baryon-to-
entropy ratios shown in the plot. Here λhs ¼ 0.785, λs ¼ 0.1,
ms ¼ 138.7 GeV, and Λ ¼ 2.08 TeV. Gray dotted lines show the
values of vw and Lw given by Eqs. (24) and (19).
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κa ¼
6.9ξ6=5w α

1.36 − 0.037
ffiffiffi
α

p þ α
;

κb ¼
α2=5

0.017þ ð0.997þ αÞ2=5 : ð32Þ

In Fig. 6 the gravitational wave spectrum is shown for the
points from the scan. Color coding shows the new physics
scale Λ which gives the observed baryon-to-entropy ratio.
Also, the expected sensitivities of eLISA and BBO [63] are
shown. We see that the gravitational wave signal may be
well within the reach of the future gravitational wave
interferometers, and, as expected based on the results
presented in the previous section, the strength of the signal
increases as a function of Λ. This is because of the
correlation between Λ and α shown in Fig. 4.
As mentioned in Sec. IV the bubble wall velocity may, in

reality for strong transitions, be much larger than the value
ξw ¼ 0.2 used for the results shown. Thus, it is interesting
to see how the gravitational wave signal depends on the
bubble wall velocity. We take the same point as used in
Fig. 5 and calculate the gravitational wave signal for
different bubble wall velocities. In Fig. 7 the gravitational
wave spectrum is shown for three values of ξw.

VII. CONCLUSIONS

We have studied the real scalar singlet extension of the
Standard Model where the new scalar field s couples to the
Higgs field h via λhsh2s2=4. For sufficiently large values of
the portal coupling λhs, the singlet scalar field can induce a
strong first-order electroweak phase transition. Also, the
CP violation required for baryogenesis is given by the s
field via a complex dimension-6 operator, which modifies
the top quark mass at s ≠ 0.

We have shown that if the first-order electroweak phase
transition arises from tree-level terms in the potential, the
bubble nucleation temperature can be much lower than the
critical temperature at which the electroweak symmetric
and breaking minima are equally deep. This makes it
possible to get a strong gravitational wave signal from the
phase transition since the vacuum energy released in the
transition is large.
We have calculated the baryon-to-entropy ratio by

solving the transport equations. Since the baryogenesis
does not directly depend on the bubble wall velocity, but
the relative velocity between the bubble wall and the
plasma just in front of the wall, the observed baryon-to-
entropy ratio can be realized at reasonably large values of
the new physics scale Λ.
Finally, we have calculated the gravitational wave

spectrum from the electroweak phase transition. We have
compared the gravitational wave signal to the expected
sensitivities of eLISA and BBO, and shown that these
interferometers can test the model. In particular, the
parameter space region where the new physics scale Λ
can be high is well within the reach of eLISA.
In our analysis we fixed the bubble wall velocity

ξw ¼ 0.2. A detailed analysis of the bubble wall dynamics,
including a microscopic computation of the friction, is left
for future work. The bubble wall velocity is expected to be
larger than the value ξw ¼ 0.2 used, especially for large
vn=Tn. Thus, our results give conservative estimates for the
gravitational wave signal, as illustrated in Fig. 7. We have
also checked, by putting in by hand different increasing
behaviors of ξw as a function of vn=Tn, that the correlation
between Λ and the strength of the gravitational wave signal
remains. However, we note that whereas we have required
that deflagration solutions for the bubble wall exist, for the
strongest transitions runaway solutions are also possible,
and for those points our results may not be valid. These
correspond to Λ≳ 2 in Fig. 6.
Also, as indicated by the results of Ref. [52], the simple

estimate used in this work for the bubble wall width may
somewhat underestimate the thickness of the wall.
Correcting this, and the bubble wall velocity, decreases
the baryon-to-entropy ratio. However, on the basis of
Fig. 5, we believe that our results overestimate the new
physics scale Λ which gives the observed baryon-to-
entropy ratio by less than a factor of two.
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FIG. 7. Gravitational wave spectrum for λhs ¼ 0.785, λs ¼ 0.1
and ms ¼ 138.7 GeV. The red and orange curves show the
expected sensitivities of eLISA and BBO, respectively.
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