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We consider inflationary models with a Gauss-Bonnet term to reconstruct the scalar-field potentials
and the Gauss-Bonnet coupling functions. Both expressions are derived from the observationally favored
configurations of ns and r. Our result implies that, for the reconstructed potentials and coupling functions,
the blue tilt of inflationary tensor fluctuations can be realized. To achieve a blue tilt for the inflationary
tensor fluctuations, a scalar field must climb up its potential before rolling down. We further investigate
the properties of propagation of the perturbation modes in Friedmann-Robertson-Walker spacetime. For
the reconstructed configurations that give rise to the blue tilt for the inflationary tensor fluctuations, we
show that the ghosts and instabilities are absent with the superluminal propagation speeds for the scalar
perturbation modes, whereas the propagation speeds of the tensor perturbations are subluminal.
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I. INTRODUCTION

Cosmological observations including the cosmic micro-
wave background (CMB) anisotropies by the WMAP [1]
and Planck collaborations [2,3] have the prospect of
providing precise constraints on models for the origin of
the large-scale structure, among which inflation [4] is
currently the leading candidate. Although there exist
hundreds of different inflationary models in the market
at present [5], the inflationary scenario remains successful
at explaining the current observations. In spite of its
successes, however, the simplest models of chaotic infla-
tion are now observationally disfavored due to its predic-
tion of the large tensor-to-scalar ratio [3]. Instead, extended
models of inflation involving modified theories of gravity
are now attracting more considerable interest [6,7].
If we consider the early Universe approaching the Planck

scale, it is widely believed that quantum gravity would play
an important role. Since we do not have any complete
theory of quantum gravity yet, we consider Einstein gravity
with some modifications as the effective theory of ultimate
quantum gravity. One such modification is to consider the
Gauss-Bonnet term, which appears naturally in the low-
energy effective theory of string theory and in renormaliz-
ing the stress tensor in curved spacetime. Previously, in
Refs. [8–12], inflationary models with a Gauss-Bonnet
term were studied, and as the theories beyond standard
single-field slow-roll inflation, their predictions were found
to be consistent with the observation. Hence, if certain forms

of the potentials and the coupling functions are given, one
can compute the observable quantities and provide con-
strains on those quantities in light of observations.
On the other hand, if a particular set of observations with

some accuracy is given, one can attempt the task of
reconstructing the inflaton potential, either numerically
or analytically, from the observational data [2,3].
Motivated by this interest, reconstruction methods of the
scalar-field potentials in inflationary models without a
Gauss-Bonnet term are investigated [13–16]. As such, in
this paper, we attempt the inverse problem of reconstructing
the inflaton potentials in inflationary models with the
Gauss-Bonnet term analytically by using observationally
favored configurations of the observable quantities. In
this sense, our work is an extension of the work that
was previously done in Ref. [15]. Moreover, we apply the
authors’ approach to the inflationary models with a Gauss-
Bonnet term that is nonminimally coupled to a dynamical
scalar field.
An interesting feature of the inflationary models with a

Gauss-Bonnet term is the violation of the consistency
relation (r ¼ −8nt). In the conventional inflation models,
where the scalar field is minimally coupled to gravity, the
Hubble rateH monotonically decreases ( _H < 0), and hence
the first slow-roll parameter is positive (ϵ > 0). Thus, it is
implied that the spectral index of the primordial tensor
fluctuation (nt ¼ −2ϵ) is always negative. Therefore, the
spectrum of the tensor modes is always red tilted. Although
the present observations cannot determine the tilt of the
tensor spectral index, it is interesting to investigate the
blue-tilted spectrum of the tensor fluctuations in infla-
tionary cosmology from the perspective of theoretical
interpretations [17].
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If the blue-tilted spectrum is realized, in order to test
the cosmological viability and the compatibility with the
observational data, one needs to check the stabilities of the
perturbation modes. Thus, by applying the criterion pre-
viously discussed in Refs. [18–21], we investigate the
stability conditions in the inflationary models with a Gauss-
Bonnet term by using the reconstructed configurations of
the potential and the coupling functions. As a result, we
show that both the ghosts and the instabilities are absent in
our model. We further find that the propagation speeds for
the scalar perturbations are superluminal, whereas those of
the tensor perturbations are subluminal.
This paper is organized as follows. In Sec. II, we briefly

present the main feature of the model studied in Ref. [12]
together with the procedure for reconstructing the inflaton
potential. In Sec. III, several examples of the inflaton
potential, as well as the Gauss-Bonnet coupling functions,
are reconstructed from the observationally favored con-
figurations of ns and r. Our result implies that, as is
discussed in Sec. IV, the blue tilt for inflationary tensor
fluctuations can be achieved. Section V is devoted to the
analysis of the cosmological perturbations in inflation
with a Gauss-Bonnet term, namely, propagation of the
perturbation in Friedmann-Robertson-Walker (FRW)
spacetime. We summarize our result in Sec. VI. The unit
of κ2 ¼ 8πG ¼ M−2

pl is used throughout this paper.

II. COSMOLOGICAL PERTURBATIONS

The action that we consider is composed of the Einstein-
Hilbert term and the canonical scalar field, which couples
nonminimally to the Gauss-Bonnet term through the
coupling function ξðϕÞ,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
R −

1

2
gμν∂μϕ∂νϕ

− VðϕÞ − 1

2
ξðϕÞR2

GB

�
; ð1Þ

where R2
GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2 is the Gauss-

Bonnet term. The Gauss-Bonnet coupling ξðϕÞ is required
to be a function of a scalar field in order to give nontrivial
effects on the background dynamics. In a FRW universe
with a scale factor a and with an arbitrary constant
curvature K,

ds2 ¼ −dt2 þ a2
�

dr2

1 − Kr2
þ r2dΩ2

�
; ð2Þ

the background dynamics of this system yields the Einstein
and the field equations

H2 ¼ κ2

3

�
1

2
_ϕ2 þ V −

3K
κ2a2

þ 12_ξH

�
H2 þ K

a2

��
; ð3Þ

_H ¼ −
κ2

2

�
_ϕ2 −

2K
κ2a2

− 4̈ξ

�
H2 þ K

a2

�

− 4_ξH

�
2 _H −H2 −

3K
a2

��
; ð4Þ

ϕ̈þ 3H _ϕþ Vϕ þ 12ξϕ

�
H2 þ K

a2

�
ð _H þH2Þ ¼ 0; ð5Þ

where a dot represents a derivative with respect to the
cosmic time t, H ≡ _a=a denotes the Hubble parameter,
Vϕ ¼ ∂V=∂ϕ, and ξϕ ¼ ∂ξ=∂ϕ. Since ξ is a function of ϕ,
_ξ implies _ξ ¼ ξϕ _ϕ. If ξ is a constant, the background
dynamics would not be influenced by the Gauss-Bonnet
term because it is known that the Gauss-Bonnet in four-
dimensional spacetime is a topological term.
In this work, we consider the case in which a scalar

field slowly rolls down to the minimum of the potential
and the Gauss-Bonnet term is assumed to be a small
correction to gravity. Hence, the following inequality must
be satisfied [12]:

_ϕ2=2≪V; ϕ̈≪3H _ϕ; 4_ξH≪1; and ξ̈≪ _ξH: ð6Þ

To reflect the slow-roll approximations above, we define
the following slow-roll parameters:

ϵ≡−
_H
H2

; η≡ Ḧ

H _H
; δ1≡4κ2 _ξH; δ2≡ ξ̈

_ξH
: ð7Þ

Under Eq. (6), Eqs. (3)–(5) become for K ¼ 0

H2 ≃ κ2

3
V; ð8Þ

_H ≃ −
κ2

2
ð _ϕ2 þ 4_ξH3Þ; ð9Þ

3H _ϕþ Vϕ þ 12ξϕH4 ≃ 0: ð10Þ

We rewrite Eq. (7) in terms of the potential and the Gauss-
Bonnet coupling function as

ϵ ¼ 1

2κ2
Vϕ

V
Q; ð11Þ

η ¼ −
1

κ2

�
Vϕϕ

Vϕ
QþQϕ

�
; ð12Þ

δ1 ¼ −
4κ2

3
ξϕVQ; ð13Þ

δ2 ¼ −
1

κ2

�
ξϕϕ
ξϕ

Qþ 1

2

Vϕ

V
QþQϕ

�
; ð14Þ

where
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Q≡ Vϕ

V
þ 4

3
κ4ξϕV: ð15Þ

Another key parameter in an inflationary scenario is the
e-folding number, N, that measures the amount of infla-
tionary expansion from a particular time t until the end of
inflation te,

N ¼
Z

te

t
Hdt≃

Z
ϕ

ϕe

κ2

Q
dϕ; ð16Þ

where ϕe ¼ ϕðteÞ is the field value at the end of inflation.
To give the standard reheating process, N ≃ 50 ∼ 60 is
assumed at the horizon crossing time, k ¼ aH, where k is
the comoving scale.
Let us consider following linearized perturbation metric

in the comoving gauge in which δϕ ¼ 0 [12],

ds2 ¼ aðτÞ2½−dτ2 þ fð1 − 2RÞδij þ hijgdxidxj�; ð17Þ

where R represents the curvature perturbation on the
uniform field hypersurfaces and hij is the tensor perturba-
tion that satisfies hii ¼ 0 ¼ hij;i. At the linear order in
perturbation theory, the Fourier modes of the curvature and
tensor perturbations satisfy [11,12,22]

v00A þ
�
c2Ak

2 −
z00A
zA

�
vA ¼ 0; ð18Þ

where A ¼ fs; tg represents the scalar and tensor pertur-
bations, respectively; a prime denotes a derivative with
respect to the conformal time τ ¼ R a−1dt; and
c2s ≡ 1þ 2ð _H − κ2 _ξHðH2 þ 4 _HÞ þ κ2 ̈ξH2ÞΔ2

κ2 _ϕ2 þ 6κ2 _ξH3Δ
;

c2t ≡ 1 −
4κ2ð ̈ξ − _ξHÞ
1 − 4κ2 _ξH

ð19Þ

and

zs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð _ϕ2 þ 6_ξH3ΔÞ
H2ð1 − 1

2
ΔÞ2

s
;

zt ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

κ2
ð1 − 4κ2 _ξHÞ

s
; ð20Þ

with Δ ¼ 4κ2 _ξH=ð1 − 4κ2 _ξHÞ. By using the definitions of
the slow-roll parameters (6), one can write Eqs. (19)–(20)
in terms of the slow-roll parameters [11,12,22],

c2s ¼ 1 −
ð4ϵþ δ1ð1 − 4ϵ − δ2ÞÞΔ2

4ϵ − 2δ1 − 2δ1ð2ϵ − δ2Þ þ 3δ1Δ
;

c2t ¼ 1þ δ1ð1 − δ2Þ
1 − δ1

; ð21Þ

zs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

κ2
2ϵ − δ1ð1þ 2ϵ − δ2Þ þ 3

2
δ1Δ

ð1 − 1
2
ΔÞ2

s
;

zt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

κ2
ð1 − δ1Þ

s
; ð22Þ

with Δ ¼ δ1=ð1 − δ1Þ. Here, it is worth it to note that the
terms under square root in Eq. (22) must be positive;
otherwise, a ghost would appear in the theory [18–21]. We
will discuss the details of this in Sec. V. If one keeps the
leading order of the slow-roll parameters in z00A=zA using
Eq. (22), Eq. (18) becomes

v00A þ
�
c2Ak

2 −
ν2A − 1=4

τ2

�
vA ¼ 0; ð23Þ

where the parameters are given up to leading order in the
slow-roll parameters [12]

νs ≃ 3

2
þ ϵþ 2ϵð2ϵþ ηÞ − δ1ðδ2 − ϵÞ

4ϵ − 2δ1
; ð24Þ

νt ≃ 3

2
þ ϵ: ð25Þ

The general solutions of Eq. (23) can be obtained as a linear
combination of Hankel functions if the slow-roll parame-
ters are assumed to be constants,

vA¼
ffiffiffiffiffiffiffiffi
πjτjp
2

½cA1 ðkÞHð1Þ
νA ðcAkjτjÞþcA2 ðkÞHð2Þ

νA ðcAkjτjÞ�; ð26Þ

where HðiÞ
ν ði ¼ 1; 2Þ are the first- and second-kind Hankel

functions. cAi ði ¼ 1; 2Þ are the coefficients which are
determined from the initial conditions and satisfy the
normalization conditions

jcA2 j2 − jcA1 j2 ¼ 1: ð27Þ

If we adopt the Bunch-Davies vacuum which is defined
in the asymptotic past, by taking the positive frequency
mode solutions, one can obtain cA1 ¼ eiðνAþ1

2
Þπ
2 and cA2 ¼ 0.1

The exact solution of Eq. (26) becomes

vA ¼
ffiffiffiffiffiffiffiffi
πjτjp
2

eiðνAþ1
2
Þπ
2Hð1Þ

νA ðcAkjτjÞ: ð28Þ

1Details can be found in Ref. [12].
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The power spectra of the scalar and tensor modes are
calculated as

Ps ≃ csc2νsπ
πD2

sΓ2ð1 − νsÞ
1

c3s jτj2a2
�
cskjτj
2

�
3−2νs

; ð29Þ

Pt ≃ 8
csc2νtπ

πD2
tΓ2ð1 − νtÞ

1

c3t jτj2a2
�
ctkjτj
2

�
3−2νt

; ð30Þ

where DA ≡ zA=a2. The spectral indices of the scalar and
tensor perturbation modes and the tensor-to-scalar ratio are
obtained in Ref. [12] as

ns − 1 ≈ −2ϵ −
2ϵð2ϵþ ηÞ − δ1ðδ2 − ϵÞ

2ϵ − δ1
; ð31Þ

nt ≈ −2ϵ; ð32Þ

r ≈ 8ð2ϵ − δ1Þ: ð33Þ

If the potential and the Gauss-Bonnet coupling function are
given, the observable quantities can be obtained up to leading
order in terms of the slow-roll parameters. Subsequently, by
using Eqs. (31)–(33) for the given potentials and the Gauss-
Bonnet coupling functions, one can check the consistency
of the models by the observational data.
In this work, however, we are interested in the inverse

problem of reconstructing the inflaton potentials VðϕÞ and
the Gauss-Bonnet coupling functions ξðϕÞ from the obser-
vational data [2,3]. To reconstruct VðϕÞ and ξðϕÞ, we start
with Eqs. (31)–(33), where ns and r can be expressed as
functions of N. By using Eq. (16), however, we can write
them as a function of ϕ. Since the observable quantities can
be expressed as the functions of N [1–3], it is convenient to
rewrite the slow-roll parameters in terms of N as

ϵ ¼ 1

2

VN

V
; ð34Þ

η ¼ −
VNN

VN
¼ −2ϵ −

d ln ϵ
dN

; ð35Þ

δ1 ¼ −
4

3
κ4ξNV; ð36Þ

δ2 ¼ −
ξNN

ξN
−
1

2

VN

V
¼ ϵ −

d ln δ1
dN

; ð37Þ

where VN ¼ ∂V=∂N and ξN ¼ ∂ξ=∂N. By using
Eqs. (34)–(37), we rewrite Eqs. (31)–(33) as

nsðNÞ − 1 ¼
�
ln

�
VN

V2
þ 4

3
κ4ξN

��
;N
; ð38Þ

rðNÞ ¼ 8

�
VN

V
þ 4

3
κ4ξNV

�
¼ 8QðNÞ; ð39Þ

ntðNÞ ¼ −
VN

V
; ð40Þ

where ½…�;N represents a derivative with respect to the
e-folding number N. From Eqs. (38)–(39), we find

VðNÞ ¼ 1

8c1
rðNÞe−

R
½nsðNÞ−1�dN; ð41Þ

and by substituting Eq. (41) into Eq. (39),

ξðNÞ ¼ 3

4κ4

�
1

VðNÞ þ
Z

rðNÞ
8VðNÞ dN þ c2

�
; ð42Þ

where c1 and c2 are the integration constants. If the
particular form of ns − 1 and r are given, therefore, one
can reconstruct the scalar-field potential and the Gauss-
Bonnet coupling functions. Using Eq. (16) together with
Eq. (39), one also can find the relation between the number
of e-folding N and the scalar field ϕ as

Z
ϕ

ϕe

dϕ ¼
Z ffiffiffiffiffiffiffiffiffiffi

rðNÞ
8κ2

r
dN: ð43Þ

In the following sections, we apply this approach to the
particular models and investigate further properties of those
models.

III. RECONSTRUCTING THE POTENTIAL
AND THE COUPLING FUNCTIONS

There are hundreds of inflationary models in the market
today that show good fit with the observational data [2,3,5].
Therefore, the slow-roll formalism for inflationary models
with a Gauss-Bonnet term is not unfamiliar and was
previously studied with the particular potentials and the
coupling functions [9–12]. Although theoretical predictions
of those models are, in some parameter range, compatible
with the observational data, the observable quantities are
obtained differently in each model; hence, it is hard to
figure out the best inflation model even when the model
parameters accurately fit with the data. In this section,
therefore, we reconstruct the inflaton potentials, as well as
the Gauss-Bonnet coupling functions, that are in good
agreement with the latest observational data by using the
expressions for ns and r. We consider

ns − 1 ¼ −
β

N þ α
; ð44Þ

r ¼ q
Np þ γN þ α

; ð45Þ
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where β, γ, p, and q parameters are arbitrary integers,
while α is also an arbitrary constant but not required to
be an integer. These model parameters can be chosen in
such a way that the relations in Eqs. (44)–(45) are
consistent with the observations [2,3]. More importantly,
Eqs. (44)–(45) cover most of standard inflation models,
where the Gauss-Bonnet term is absent, discussed in
Ref. [2,3], and the models with a Gauss-Bonnet term; for
example, Ref. [11] must be recovered if p ¼ 1 and γ ¼ 0
in Eq. (45).
Previously in Refs. [14–16], an inverse problem of

reconstructing the scalar-field potential was studied for
the models without the Gauss-Bonnet term. If the Gauss-
Bonnet term is present with the constant coupling in
Eq. (1), however, the consequent result must be consistent
with that of Ref. [15], where the authors use the same
relation as Eq. (44) but α ¼ 0 is considered. This is so
because the Gauss-Bonnet term is known as a topological
term in four dimensions. Therefore, we will show that the
scalar-field potential obtained in Ref. [15] can also be
obtained in our model. We introduce nonzero α because its
presence enables the ns value to be best fit with data.
In the following two subsections, we employ with the

different configurations of Eqs. (44)–(45) to reconstruct
different potentials and coupling functions. In Secs. III A
and III B 1, we aim to test our approach by reproducing
the scalar-field potential that is obtained in Refs. [11,15].
Then, Sec. III B 2 is devoted to reconstructing a new type of
potential and coupling functions that have not been
considered before. Hence, without loss of generality, we
set γ ¼ 1 in Sec. III A and γ ¼ 0 in Sec. III B.

A. Models with γ = 1

To be consistent with Ref. [15], we set β ¼ p ¼ 2 and
q ¼ 8, for which Eqs. (44)–(45) become

ns − 1 ¼ −
2

N þ α
; ð46Þ

r ¼ 8

N2 þ N þ α
: ð47Þ

From Eqs. (41)–(42), we obtain

VðNÞ ¼ ðN þ αÞ2
c1ðN2 þ N þ αÞ ; ð48Þ

ξðNÞ ¼ −
3

4κ4

�
−

N2

ðN þ αÞ2 c1 þ c2

�
: ð49Þ

By using Eq. (43), we obtain N as the functions of ϕ,

N ¼ 1

4
½ð1 − 4αÞe−κðϕ−CÞ þ eκðϕ−CÞ − 2�; ð50Þ

where C is an integration constant and is responsible for the
shift of ϕ. Now, we can rewrite both the potential and the
coupling functions in terms of the scalar field,

VðϕÞ ¼ ðeκðϕ−CÞ − 1Þ2ð4αþ eκðϕ−CÞ − 1Þ2
c1ð4αþ e2κðϕ−CÞ − 1Þ2 ; ð51Þ

ξðϕÞ¼ 3

4κ4

� ð1−2eκðC−ϕÞ−ð4α−1Þe2κðC−ϕÞÞ2
ð1−e−κðϕ−CÞÞ2ð1þð4α−1Þe−κðϕ−CÞÞ2c1−c2

�
:

ð52Þ
In the α → 0 limit, the leading-order contribution gives

VðϕÞ ¼ c1tanh2
�
1

2
κðϕ − CÞ

�
;

ξðϕÞ ¼ 3

4κ4
ðc1 − c2Þ: ð53Þ

The Gauss-Bonnet coupling function in Eq. (53) becomes
zero if c1 ¼ c2 or constant otherwise. In either case,
the Gauss-Bonnet term does not give any effects on the
background evolution in four dimensions. Therefore, the
background evolution in our model reduces to Einstein
gravity. And our result in Eq. (53) successfully reproduces
the potentials obtained in Refs. [15,23].

B. Models with γ = 0

In this subsection, for simplicity, we consider the γ ¼ 0
case. If γ ¼ 0, Eqs. (44)–(45) become

nsðNÞ − 1 ¼ −
β

N þ α
; ð54Þ

rðNÞ ¼ q
Np þ α

: ð55Þ

After substituting Eqs. (54)–(55) into Eq. (42), we obtain

ξðNÞ ¼ 3

4κ4

��
8

q
Np þ α

ðN þ αÞβ þ
ðN þ αÞ1−β

1 − β

�
c1 þ c2

�
; ð56Þ

where β ≠ 1 is assumed.2 The scalar-field potential can also
be obtained with the help of Eq. (41) as

VðNÞ ¼ q
8c1

ðN þ αÞβ
Np þ α

: ð57Þ

2The β ¼ 1 case is not considered in this paper. If β ¼ 1, from
Eq. (54), the number of e-folds needs to be N ∼ 30 − α in order
to be consistent with the observational value of ns ∼ 0.9655�
0.0062 [3]. On the other hand, N ≃ 50 ∼ 60 is needed for
inflation; hence, α must take negative values between −30 ≤ α ≤
−20, which later conflicts with Eq. (58) where α > 0 is necessary.
For the β ≠ 1 case, however, no such contradictions occur.
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Equation (43) gives

ϕ − ϕe ¼ N

ffiffiffiffiffiffiffiffiffiffi
q

8κ2α

r
2F1

�
1

2
;
1

p
; 1þ 1

p
;−

Np

α

�
; ð58Þ

where α > 0 is necessary because the positive q is favored
by the observations [2,3]. It is often assumed for large-field
inflation that the field value at the end of inflation is
negligible compared to that of the beginning of inflation,
ϕe ≪ ϕ. Therefore, from now and throughout the rest of
this paper, we will ignore ϕe by assuming the large-field
inflation model in mind. It is difficult to solve Eq. (57)
for N for p ≥ 3; hence, for simplicity, we will consider
only the p ¼ 1 and p ¼ 2 cases, respectively, in the
following two subsections.

1. p = 1 case

If p ¼ 1 in Eq. (55), the corresponding ns and r relations
look the same as those obtained in Ref. [11]. Thus, as the
result, the monomial potentials and the inverse monomial
coupling functions are expected. When p ¼ 1, we obtain
from Eq. (58)

N ¼
 
2κ2

q
ϕ2 þ

ffiffiffiffiffiffi
8α

q

s
κϕ

!
; ð59Þ

where q ≠ 0 and Eqs. (56)–(57) give

VðϕÞ ¼ q
8c1

 
αþ 2

q
κ2ϕ2 þ

ffiffiffiffiffiffi
8α

q

s
κϕ

!β−1

; ð60Þ

ξðϕÞ ¼ 3

4κ4

"
qþ 8ð1 − βÞ
qð1 − βÞ

 
αþ 2

q
κ2ϕ2

þ
ffiffiffiffiffiffi
8α

q

s
κϕ

!
1−β

c1 þ c2

#
: ð61Þ

To be more consistent with Ref. [11], it is worth it to
express α and β in terms of the new parameter, n, as
follows:

α ¼ n
4
; β ¼ nþ 2

2
: ð62Þ

Equations (60)–(61) can be rewritten as

VðϕÞ ¼ q
8c1

 
n
4
þ 2

q
κ2ϕ2 þ

ffiffiffiffiffiffi
2n
q

s
κϕ

!n
2

; ð63Þ

ξðϕÞ ¼ 3

4κ4

"
8n − 2q

nq

 
n
4
þ 2

q
κ2ϕ2 þ

ffiffiffiffiffiffi
2n
q

s
κϕ

!−n
2

c1 þ c2

#
:

ð64Þ

From Eq. (64), one can see ξðϕÞ ¼ 0 for every q ¼ 4n if
c2 ¼ 0 or ξðϕÞ ¼ const.. for every q ¼ 4n if c2 ≠ 0. This
can also be seen in Fig. 1 where we plot Eqs. (63) and (64)
with n ¼ 2. In either case, the background evolution would
be described by Einstein gravity with a dynamical scalar
field. In Fig. 1, the potential takes its minimum value at
ϕmin ¼ 0 for α ¼ 0, and it shifts to ϕmin ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nq=ð8κ2Þ

p
if α ≠ 0 depending on n and q values. However, the
scalar field can be rescaled such that the minimum stays
at the origin. If c2 ¼ 0 in Eq. (64), the Gauss-Bonnet
coupling functions hold the inverse relation to monomial
potentials, ξðϕÞ ∼ 1=VðϕÞ.

2. p = 2 case

For the p ¼ 2 case, we obtain from Eq. (58)

N ¼ ffiffiffi
α

p
sinh

 ffiffiffi
8

q

s
κϕ

!
; ð65Þ

where α > 0 and q > 0 are assumed. By substituting
Eq. (65) into Eqs. (56)–(57), we get

FIG. 1. Numerical plot of Eqs. (63) and (64) with c1 ¼ 1, c2 ¼ 0, κ2 ¼ 1, and n ¼ 2.
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VðϕÞ ¼ q
8c1α

sech2
 ffiffiffi

8

q

s
κϕ

!"
αþ ffiffiffi

α
p

sinh

 ffiffiffi
8

q

s
κϕ

!#β
; ð66Þ

ξðϕÞ ¼ 3

4κ4

2
64q
�
αþ ffiffiffi

α
p

sinh
� ffiffi

8
q

q
κϕ
��

þ 8ð1 − βÞαcosh2
� ffiffi

8
q

q
κϕ
�

qð1 − βÞ
�
αþ ffiffiffi

α
p

sinh
� ffiffi

8
q

q
κϕ
��

β
c1 þ c2

3
75; ð67Þ

where β ≠ 1. We plot Eqs. (66)–(67) in Fig. 2 by setting
c1 ¼ 1, c2 ¼ 0, κ2 ¼ 1, α ¼ 10−4, β ¼ 2, q ¼ 16, K ¼ 0,
ϕ0 ¼ 13.28, _ϕ0 ¼ 0, and C ¼ 8.4 × 103. The overall
shape of the reconstructed potential is, in Fig. 2(a),
similar to that of a “T model” studied in Ref. [23] with
a small bump on the side which eventually disappears for
α ¼ 0. The existence of such a bump in the potential may
be important in achieving the blue-tilted spectrum for
inflationary tensor fluctuations as was discussed in
Ref. [8]. We will discuss such possibilities of the blue-
tilted spectrum for inflationary tensor modes in the next
section.

Previously, in the p ¼ 1 case, we were able to see an
inverse relation between the potentials and the Gauss-
Bonnet coupling functions if c2 ¼ 0. In the p ¼ 2 case, on
the other hand, such an inverse relation can be hold in an
infinitely large region −∞ < ϕ < ∞, everywhere except a
finite interval Oð5Þ near ϕ ¼ 0 in Fig. 2(c). By substituting
Eqs. (66) and (67) with β ¼ 2 into Eqs. (8)–(10), we obtain
the slow-roll solution for the scalar field

ϕðNÞ ¼ −
ffiffiffiffiffiffiffi
q
8κ2

r
arcsinh

 
Nffiffiffi
α

p −

ffiffiffiffiffiffiffi
8κ2

q

s
C

!
; ð68Þ

(a) (b)

(c) (d)

FIG. 2. We plot Eqs. (66) and (67) in the first row. The relation between the potential and the coupling function is plotted in
Fig. 2(c). Figure 2(d) shows the comparison between the numerical solution (solid) of Eqs. (3)–(5) and the slow-roll solution
(dashed) obtained in Eq. (68).
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where C is an arbitrary constant. We compare the slow-roll
solution obtained in Eq. (68) with the numerical solution of
Eqs. (3)–(5) in Fig. 2(d). It can be seen in Fig. 2(d) that the
slow-roll solution fits well with the numerical solution
during inflationary period. In the α → 0 limit, Eqs. (66)
and (67) can be reduced to

VðϕÞ ∼ tanh2
 ffiffiffi

8

q

s
κϕ

!
;

ξðϕÞ ∼ −
3c1

4
ffiffiffi
α

p
κ4

csch

 ffiffiffi
8

q

s
κϕ

!
: ð69Þ

In Fig. 3, we compare the predictions of the spectral index
and tensor-to-scalar ratio for three different models; namely,
the chaotic inflation with dilatonlike coupling [9]; the
chaotic inflation with an inverse power-law coupling [11],
which we also discussed in Sec. III B 1; and the inflation
models with Eqs. (66)–(67). For the chaotic inflation with
dilatonlike coupling, following Ref. [9], we use

VðϕÞ ¼ V0ϕ
n; ξðϕÞ ¼ ξ0e−λϕ ð70Þ

in our comparison. From Eqs. (31) and (33), by using
Eq. (70), we obtain the scalar spectral index and tensor-to-
scalar ratio,

ns − 1 ¼ −
1

ϕ2
½nðnþ 2Þ þ ~αλe−λϕϕnþ1ðn − 2λϕÞ�;

r ¼ 8

ϕ2
ðn − ~αλe−λϕϕnþ1Þ2; ð71Þ

where κ2 ¼ 1 is considered.3 In Fig. 3, we numerically plot
Eq. (71) with n ¼ 2 and λ ¼ 0.29 in green. Along the green
line, from the yellow end point to the light-blue end point,
the number of e-foldings is fixed to N ¼ 60, while the ~α
value varies between 0 ≤ ~α ≤ 0.12. We use Eqs. (54)–(55)
as theoretical predictions for the remaining two models. In
our numerical study, therefore, we use Eqs. (54)–(55) with
p ¼ 1 for the dashed line and p ¼ 2 for the solid line along
which the q value is fixed to q ¼ 8. However, along the
vertical red and dashed-blue lines where the number of
e-folds is fixed to N ¼ 60, the parameter q varies between
0 ≤ q ≤ 8. In this slow-roll inflationary scenario with
p ¼ 2, the Gauss-Bonnet term slows down the evolution
of the inflaton during inflation, which decreases the energy
scale of the potential be to in agreement with the amplitude
of scalar perturbations. Hence, the tensor-to-scalar ratio is
suppressed. Compared to the chaotic inflation with dilaton-
like coupling [9] and the chaotic inflation with an inverse
power-law coupling [11], the reconstructed configurations in

Eqs. (66)–(67) give rise to the observable quantities that are
excellently consistent with the Planck constraints.

IV. BLUE TILT OF THE INFLATIONARY
TENSOR FLUCTUATIONS

According to Ref. [8], an interesting feature of our model
is that the spectrum for inflationary tensor fluctuations
can be blue tilted if the potentials and the Gauss-Bonnet
coupling functions take the form given in Eqs. (66) and
(67); here and throughout this section, β ¼ 2 is assumed.
The blue tilt for inflationary tensor fluctuations is impos-
sible to achieve in the conventional inflation models
considered in Refs. [2,3] due to the monotonically decreas-
ing Hubble rate, _H < 0, during slow-roll inflation. Thus, it
is implies ϵ > 0, and one can conclude that, from Eq. (32),
the tensor spectral index for the conventional inflation
models is always negative, nt < 0; hence, the spectrum is
called red tilted.
This situation is violated or the blue tilt for inflationary

tensor mode is possible if a scalar-field climbs up its
potential slope, as seen in Fig. 4, in its early evolution
before rolling down. One can see from Fig. 4, particularly
the blue patch, that a scalar field climbs up the potential
slope if its initial value is larger than its value at which the
potential takes its maximum, ϕ0 > ϕ�. And it simply rolls
down the hill, the red patch, for ϕ0 < ϕ�. Therefore, we
argue that the blue tilt of the spectrum for inflationary
tensor modes would be realized when the scalar field is
initially released at the ϕ0 > ϕ� value. The spectrum would
be red tilted for the scalar field that is initially released at

FIG. 3. Predicted ns vs r in three different models; namely, the
red line represents the model in Eqs. (63)–(64) with n ¼ 2, the
blue-dashed line corresponds to the model Eqs. (66)–(67) with
α ¼ 10−4, and the green line is for the model in Eq. (70) with
n ¼ 2 and λ ¼ 0.29. The black dashed and solid lines indicate
the p ¼ 1 and p ¼ 2 cases in Eq. (55), respectively. The
contours show the 68% and 95% confidence levels from the
Planck2015 TTþ lowP. Here, we choose N ¼ 60 for all end
points. For the remaining parameters, we use the same
numerical inputs as Fig. 2.

3To avoid confusion of the same notation, we use ~α instead of
α, which was used in Ref. [9].
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the ϕ0 < ϕ� value. And the spectrum is scale invariant
for ϕ0 ¼ ϕ�.
To achieve the blue-tilted spectrum for inflationary

tensor fluctuations in our model, ϵ < 0 must be satisfied
from Eq. (32); hence, _H > 0 is necessary from Eq. (7). As
such, using Eq. (11) together with Eq. (15), one can easily
obtain condition for Gauss-Bonnet coupling functions,

ξ;ϕ > −
3

4κ4
V;ϕ

V2
; ð72Þ

where Vϕ < 0 for a scalar field which climbs up the
potential slope. As long as this condition is satisfied, the
blue-tilted spectrum for inflationary tensor modes would be
achieved in our model. This condition is clearly satisfied for
our models, and one can see that by substituting Eqs. (66)
and (67) with β ¼ 2 into Eq. (72),

cosh

 ffiffiffiffiffiffiffi
8κ2

q

s
ϕ

! ffiffiffi
α

p þ sinh

 ffiffiffiffiffiffiffi
8κ2

q

s
ϕ

!!2

> 0; ð73Þ

where α > 0 and q > 0. Thus, the spectrum would always
be blue tilted for the potentials and the coupling functions
given in Eqs. (66) and (67).
On the other hand, for successful inflation, we need

about 50 ∼ 60 e-folds, or so. Therefore, it is important to
know how many e-folds can be achieved so that the
spectrum for the inflationary tensor mode is to be blue
tilted. As we mentioned earlier, ϵ is required to be negative,
from Eq. (32), for achieving the blue spectrum. And, the
another criterion for the successful inflation is the small-
ness of the slow-roll parameter in which jϵj; jδ1j ≪ 1 is
assumed. These conditions imply the first slow-roll param-
eter must take values between −1 ≪ ϵ < 0. After substitut-
ing Eqs. (56) and (57) into Eq. (34), we obtain

ϵ ¼ 1

αþ N
−

N
αþ N2

; ð74Þ

where α > 0. We find from Eq. (74) that the condition
−1 ≪ ϵ < 0 is satisfied when N > 1. On the other hand,
ϵ > 0 between 0 < N < 1; hence, the spectrum would be
red tilted. In Fig. 5, we plot ϵ and nt as a function of N.

FIG. 5. ϵðNÞ and ntðNÞ plot by using Eqs. (66) and (67). We set α ¼ 10−4, and other numerical inputs are the same as Fig. 2. At
N ¼ 1, both ϵ and nt are zero, ϵ ¼ 0 ¼ nt.

FIG. 4. Marginalized part of the potential (left) and the Gauss-Bonnet coupling (right) shown in Figs. 2(a) and 2(b) with α ¼ 10−4. The
potential energy of the scalar field takes its maximum value at ϕ�, the vertical line. The Gauss-Bonnet coupling function ξðϕÞ allows the
scalar field, first, to climb up and, then, to roll down the potential slope as usual.
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The red color between 0 < N < 1 indicates positive ϵ and
the red-tilted spectrum, while the blue color where N > 1
corresponds to negative ϵ and the blue-tilted spectrum. We
conclude from Fig. 5 that for the successful inflation with a
enough number of e-folds the spectrum for the primordial
inflationary tensor mode would always be blue tilted.
Although δ1 has nothing to do with the blue tilt of the

inflationary tensor perturbations, it can provide constraints
on the model parameters. Moreover, one can notice from
Eq. (45) that the tensor-to-scalar ratio is always positive
r > 0; hence, searching for the parameter range of δ1 that
yields r > 0 is necessary. We obtain −1 ≪ δ1 < 0 from
Eqs. (32) and (33) by assuming the smallness of the second
slow-roll parameter jδ1j ≪ 1. By substituting Eqs. (56)
and (57) into Eq. (36), it reads

δ1 ¼
2

αþ N
−

16N þ q
8ðαþ N2Þ : ð75Þ

To yield the condition−1 ≪ δ1 < 0, the model parameter q
must take values in the ranges

0 < q ≤
8N3 þ 8αN2 − 8αN þ 8α2 þ 16α

αþ N
; for N > 1;

ð76Þ

where α > 0. Figure 6, where we plot δ1 and r as a
functions of N, shows the validity of both 1 ≪ δ1 < 0 and
r > 0. A range of q that satisfies Eq. (76) gives rise to
negative δ1 but positive r.
The most interesting and unique phenomenon for our

model is that the constructed configurations of the potential
and the Gauss-Bonnet coupling functions given in Eqs. (66)
and (67) give rise to the blue tilt for inflationary tensor
modes.

V. PROPAGATION OF THE PERTURBATIONS
IN THE FRW SPACETIME

We investigated the linear perturbations about the FRW
background in Sec. II. In this section, we check the stability
and the ghost-free conditions in the model discussed in
Sec. IV in which the blue-tilted spectrum of the inflationary
tensor fluctuations is discussed. For the system to be stable,
the propagation speeds for both the scalar and tensor
perturbations need to be positive definite. Otherwise, the
system becomes unstable; hence, a ghost appears [18–21].
From Eqs. (21), the conditions that our model have a real
and nonsuperluminal propagation speed are

Con1∶ 0 ≤ c2s ¼ 1−
ð4ϵþ δ1ð1− 4ϵ− δ2ÞÞΔ2

4ϵ− 2δ1 − 2δ1ð2ϵ− δ2Þ þ 3δ1Δ
≤ 1;

ð77Þ

Con 2∶ 0 ≤ c2t ¼
1 − δ1δ2
1 − δ1

≤ 1: ð78Þ

After substituting Eqs. (66) and (67) into Eqs. (77) and
(78), we plot the result in Fig. 7, and the figure shows that
our model is stable by giving the positive propagation
speeds, c2s ≥ 0 and c2t ≥ 0. But the condition for the
subluminal propagation speed for the scalar perturbation
is violated, c2s > 1, approaching 1 from above; hence, the
scalar perturbation modes propagate with speed faster than
that of light, as is seen in Fig. 7(a). The propagation speed
for the tensor perturbation, on the other hand, is subluminal
c2t ≤ 1 according to Fig. 7(b).
Further conditions for the model to be ghost-free are

discussed in Refs. [18–21] and can be written in our model
from Eq. (22) as follows:

Con 3∶ 4ϵð1 − δ1Þ − δ1ð2 − 2δ2 − 3ΔÞ > 0; ð79Þ

Con 4∶ 1 − δ1 > 0: ð80Þ

(a) (b)

FIG. 6. δ1ðNÞ and rðNÞ plot by using Eq. (66) and (67) with the same numerical inputs as Fig. 5. The horizontal line in Fig. 6(a)
represents the current upper limit of the tensor-to-scalar ratio r ¼ 0.11.
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The last condition (Con4) is clearly satisfied for our model
because, from Eq. (75), −1 ≪ δ1 < 0 is necessary to satisfy
the smallness of the second slow-roll parameter and to
yield a positive tensor-to-scalar ratio r > 0. Substituting
Eqs. (66) and (67) into Eq. (79), we numerically show in
Fig. 7(c) that the ghost-free condition is safe in our model.
Thus, we conclude that the model of our interest is free of
ghosts and stable. However, the propagation speed of the
scalar perturbation is superluminal, while that of the tensor
perturbation is subluminal.

VI. CONCLUSION

Let us conclude this work by summarizing our results;
we have considered inflationary models with a Gauss-
Bonnet term to reconstruct the scalar-field potentials
and the Gauss-Bonnet coupling functions from the
observable quantities. Assuming a specific ansatz for
nsðNÞ and rðNÞ, as given in Eqs. (44) and (45), that are in
good agreement with the observational data [2,3],
the main analytic results of this work are derived in
Eqs. (41) and (42).
In Sec. III, as an exercise, we studied the γ ¼ 1 and

γ ¼ 0 cases of Eq. (45). The scalar-field potentials and the

coupling functions for the γ ¼ 1 case are obtained in
Eqs. (51) and (52). Our result is, in this case, consistent
with that of Ref. [15] when α → 0, in which our model
reduces to the Einstein gravity where the Gauss-Bonnet
term is absent or has no effect on the background evolution
due to its minimal coupling to a scalar field. We then
considered a γ ¼ 0 case and reconstructed both the poten-
tials and the coupling functions. When p ¼ 1 in Eq. (45),
reconstructed potentials and coupling functions in Eqs. (63)
and (64) hold an inverse relation between them, and the
result covers the chaotic inflation model with an inverse
power-law coupling [11]. For the p ¼ 2 case, we obtained
the potentials and the coupling functions in Eqs. (66) and
(67). The configuration of the potentials has a shape similar
to a T model in Ref. [23] with a small bump on a side; see
Fig. 2. The width of the potentials is characterized by the
parameter q, while the height of the bump is determined by
the parameter α where, if α decreases, the height of the
bump decreases and eventually reduces to that of the
T model. The existence of this bump on the side of
the potentials implies the interesting feature of our model.
Compared to the chaotic inflation with dilatonlike coupling
[9] and the chaotic inflation with an inverse power-law
coupling [11], the reconstructed configurations in Eqs. (66)

(a) (b)

(c)

FIG. 7. The propagation speeds of both the scalar and tensor perturbations in Eqs (77) and (78) and the ghost-free condition in
Eq. (79). For the shaded regions in both panels, 10−4 < α < 1 (from blue to orange), and other numerical inputs are the same as those
used in Fig. 2.
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and (67) give rise to the observable quantities that are
excellently consistent with the Planck constraints.
The key result of our work, or the most interesting

feature in our model, is discussed in Sec. IV in which we
considered the model with the γ ¼ 0 and p ¼ 2 case,
particularly Eqs. (66) and (67) with β ¼ 2. Our result
implies that, for the reconstructed potentials and coupling
functions, the blue tilt for inflationary tensor fluctuations
can be realized. This blue tilt for primordial tensor modes,
nt > 0, is due to the fact that a scalar field climbs up
its potential slope in its early stage of evolution; hence,
Vϕ < 0 and ϵ < 0. Also, to have successful inflation with a
large enough number of e-folds about 50 ∼ 60, the scalar
field in our model must to be released at values larger than
the field value at which the potential value reached its
maximum, ϕ0 > ϕ�. This will allow a scalar field to climb
up the potential slope, and hence the spectrum would be
blue tilted. Thus, in case a blue tilt for inflationary tensor
fluctuation were to be detected by a future observation, that
would be evidence of our model.
We also have discussed the properties of the propagat-

ing modes in the FRW background in Sec. V. Following
the approaches investigated in Refs. [18–21], we have

checked the ghost-free and stability conditions in our
model. We found that the model, which was discussed
in Sec. IV, in which the potential and the coupling funct-
ions are given in Eqs. (66) and (67), is ghost free
but contains superluminal propagating scalar modes
over a wide range of parameter intervals of our interest,
while the tensor perturbation modes propagate with the
subluminal speeds. As a future extension of the present
work, we are planning to study the dynamical analysis of
the system, in addition to the inflationary attractor behav-
iors, for the case in which the blue tilt for tensor fluctua-
tions is realized.
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