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Acoustic quadrupole modes of sunlike stars vibrate when perturbed by a passing gravitational wave
generated somewhere in the Universe. Here, we compute the imprint of the gravitational waves on the
acoustic spectrum of these stars for gravitational events occurring near the supermassive black hole located
at the center of the Milky Way. We found that in most cases the impact of gravitational waves in low-order
quadrupole modes is not above the current observational threshold of detectability, although this should be
in the reach of the next generation of near infrared observatories and asteroseismology satellite missions.
Equally, we found that it is possible to follow the end phase of the coalescence of binaries with large chirp
masses, as these phenomena have a unique imprint in the spectra of sunlike stars affecting sequentially
several low-order quadrupole modes. Moreover, we discuss the different imprints on the acoustic spectra of
the different types of binary systems constituted either by two white dwarfs, two neutron stars, two black
holes or a compact star and a massive black hole.
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I. INTRODUCTION

The Milky Way harbors a supermassive black hole at its
core. Its location coincides with awell-known compact radio
source, Sagittarius A� [1]. With a diameter of 0.3 AU this
source is surrounded by one of the most dense stellar
populations of the Galaxy. The most compelling proof of
the existence of a black hole in Sagittarius A� is the
continuous observation of the nearest stars orbiting in a very
fast Keplerian motion, which is only possible with a very
concentrated massive object located in the Galactic Center
[2]. For example, a star of 15 M⊙, known as S2, spins around
the central object in an elliptical orbit with a period of 15.2 yr
and a pericenter of 120 A.U. (smallest distance from the
central object). From the motion of S2, Ghez et al. [3] made
the first estimation of the mass of the central black hole.
These authors have determined this mass to be 4.1106 M⊙.
More recently, from the measurement of the proper motions
of several thousand stars within one parsec from the central
black hole, Schödel et al. [4] have estimated simultaneously
the black hole’s mass at 3.6þ0.2

−0.4 10
6 M⊙ and an additional

distributed mass of 1.0� 0.5 × 106 M⊙. The latter mass
term is due to a local population with a few tens of million of
stars. The population consists of metal-rich, M, K, and G old
giant stars, main-sequence B stars [5] and compact stars
(or stellar remnants).
Equally, like the Milky Way, many other massive

galaxies are known to have a core made of a supermassive
black hole surrounded by a concentrated and dense stellar
environment. Throughout the lifetime of a galaxy, the

central black hole grows by capturing many of the
neighboring stars and clouds of molecular gas. A complex
network of gravitational interactions between stars occurs
continuously in the galactic core. During these stellar
encounters, a countless number of binaries form between
neighboring pairs of white dwarfs (WD-WD), neutron stars
(NS-NS), and stellar black holes (BH-BH). The recent
discovery of gravitational radiation from the merger of
two stellar black-hole binaries, ensures that the last type of
binaries must be quite common in the Galaxy [6,7].
Another type of binary that is created with regularity
corresponds to the ones that are formed between the
supermassive black hole and nearby compact stars. In
binaries like these for which the lighter star is 4 orders
of magnitude less massive than the companion, the asso-
ciated gravitational event is classified as an extreme mass
ratio inspiral (EMRI). As described above, stellar (com-
pact) binaries and EMRIs should form in large numbers in
the core of the Milky Way.
Nonradial oscillations have been discovered in many stars

in the Milky Way by the COROT [8] mission and Kepler’s
main and extended missions [9,10]. More than 18 000
main-sequence subgiants and red giant stars have been
shown to have oscillation spectra with identical properties.
The combined spectra of these stars spans the frequency
range from 10−7 to 10−2 Hz [11,12]. The excitation and
damping of these oscillations is attributed to the turbulent
motions of convection in the external layers of these stars.
These physical processes that excite stellar oscillations are
identical to the ones found for the Sun. For that reason such
oscillations are known as sunlike oscillations and the stars as
sunlike stars. These stars are found in many regions of
the Milky Way. The Kepler mission alone has measured*ilidio.lopes@tecnico.ulisboa.pt
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oscillations in stars located at distances up to 15 kiloparsecs.
In many cases the sunlike stars belong to stellar clusters
found in the direction of the Galactic Center, several of
which are located above the galactic disk or in the bulge.
Furthermore, bymakinghighprecision observations inmany
new directions of the Galaxy, the future PLATO satellite [13]
should be able to increase significantly the quantity and
quality of sunlike stars discovered in the Milky Way.
This work focuses on the study of the impact of

gravitational waves emitted by compact binaries (with
special focus on EMRIs events) in the spectra of sunlike
stars. The motivation for the project comes from the fact
that the core of the Milky Way is densely populated by
compact stars, stellar binaries, and possibly multistellar
systems, all of which are being attracted by the super-
massive black hole. The gravitational radiation emitted by
these binaries will excite some of the oscillations of the
sunlike stars located at relatively short distances from the
Galactic Center.
Specifically, we are interested in studying the impact of

the gravitational waves emitted during the binary contrac-
tion, a phase known as the inspiral phase. For our
convenience this phase is split into the following two
stages: (1) the inspiral phase begins when the two stars are
far-apart rotating in near-perfect circular orbits (monochro-
matic emission) and (2) finishes at the end of the orbits
contraction (chirp emission), just before the merger of the
two stars. There is a post-merger emission known as the
ring-down phase, where the shape distortion of the nearly
formed object is also dissipated as gravitational radiation,
but this stage is not discussed in this work.
All the different types of binary systems in the inspiral

phase emit gravitational waves with a characteristic wave-
form known as “chirp” whose amplitude and frequency
increases with time until the coalescence. Even though the
observation of strongest events are expected to be more
sporadic, the detection of such phenomena would produce
very unique and interesting results that can be used to test
General Relativity. For instance, in the case of EMRIs, these
waves can be used to probe the gravitational field of the
central black hole. In addition, as these waves travel large
distances through space, equally these can be used to test the
wave properties of gravitational radiation. Theoretical mod-
els predict gravitational chirps with strains on Earth of the
order of 10−17–10−22, and frequencies varying from 10−4 to
10−1 Hz.Most of these events are expected to be detected by
experiments like eLISA [14–16]. Nevertheless, the strain of
such gravitational events will bemuch larger for stars located
nearby these binaries.
Oscillating stars are natural receptors of gravitational

waves. Like any resonant sphere, they have an isotropic
sensitivity to gravitational radiation—able to absorb gravi-
tational waves from any direction of the sky. For a given
frequency of acoustic oscillations, stars have sensitivity
much larger than current resonant mass detectors, as their

integrated scattering cross section and Q quality factor for
gravitational waves is 20 and 2 orders of magnitude larger
than the usual resonant mass detectors [17–20], respec-
tively. For that reason in the rest of this article we will refer
to these as star detectors.
The first studies of the absorption of gravitational waves

by astrophysical objects like Earth, Moon, planets, and
stars were developed by Dyson [21] Khosroshahi and
Sobouti [22], Zimmerman and Hellings [23], among others.
Boughn and Kuhn [24] were the first to use helioseismol-
ogy to constrain the amplitude of gravitational waves.
Recently Siegel and Roth [25] and Lopes and Silk [19,26]
have updated these calculations. By using the unseen solar
gravity modes, Siegel and Roth [27] determined the
maximum amplitude of the strain for the stochastic gravi-
tational wave background [28,29]. By focusing on the
study of the Sun as a natural gravitational wave detector
Lopes and Silk [19,26] have shown the potential of
asteroseismology for gravitational wave searches.
McKernan et al. [30] were the first to propose that stars
near massive black-hole binaries could be efficient resonant
GW detectors. Moreover, these authors estimated that the
gravitational radiation is absorbed by stars and have shown
how such spectra could be observed by second generation
space-born gravitational wave detectors.
In this article, we study the impact that the gravitational

wave emissions coming from binaries located in the core of
Milky Way have on the low-order quadrupole acoustic
modes of nearby sunlike stars. We found that for the more
massive binaries (including EMRIs), it will be possible to
follow the end of the inspiral phase, during which a large
emission of gravitational radiation is expected in the last
stage of the binary contraction (chirp emission), before the
coalescence of the two black holes. We show for the first
time that the chirp waveform of the gravitational wave has a
unique impact on the acoustic spectrum of the sunlike stars
by ringing up one quadruple mode after another. Some
gravitational chirp events could excite several modes in the
same star. Although these gravitational emissions have
relatively large strains, their impact on acoustic modes of
nearby sunlike stars leads to relatively small amplitude
variations, which we can expect to be well within reach of
the next generation of near infrared observatories.
In this study the focus is on the impact of gravitational

radiation of low-order quadrupole modes, since recent
developments in analyzing asteroseismology data and in
our understanding of the theory of stellar pulsations have
been quite successful in predicting the properties of
acoustic modes. Nevertheless, there is a large research
potential in studying the impact of gravitational waves in
quadrupole gravity modes and mixed modes of sunlike
stars in the main sequence or in the red giant branch. This is
particularly so as there is a significant amount of data
available from recent asteroseismology surveys. In particu-
lar, the impact of gravitational waves in gravity modes,
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more precisely in the Sun, was recently computed by Siegel
and Roth [25]. They found the velocity amplitude to be of
the order of 10−5–10−3 mms−1 for the Sun, but has the
potential to be more significant for other stars. Moreover,
the same authors have shown that gravity modes can be
used as an independent method to put an upper bound to the
stochastic background of gravitational radiation [27].
In Sec. II, we discuss a basic description of the formation

and evolution of a binary system and the generation of
gravitational waves. In Sec. III we compute the imprint of
a gravitational wave chirp in the stellar acoustic spectrum.
In the last two sections we present a discussion and
conclusion about the impact and relevance of these results.

II. THE GRAVITATION WAVE
CHIRP WAVEFORM

Binaries of compact stellar objects are the most studied
sources of gravitational radiation. Among other binaries
these apply to massive black holes, EMRIs, stellar black
holes, neutron stars, and white dwarfs. We start by assuming
that the two compact stars of the binary system are in a
circular orbit. The binary is considered to be sufficiently
faraway from the star detector, such that the incoming
gravitational radiation is described by a plane wave field,
but near enough to ignore the redshift corrections to the
frequency spectrum. The gravitational waves emitted in the
end of the inspiral phase have a chirp waveform. In this
preliminary study, wewill compute gravitational radiation as
due to the leading quadrupolewhich results from the use of a
multipole expansion, which alsomeans that high-order terms
will be of much smaller amplitude. This is valid since
v=c ≪ 1. Hence, the binary system is held together by
gravitational forces as per the virial theorem ðv=cÞ2 ∼
ðRs=dÞ where Rs is the Schwarzschild radius and d a typical
length of the self-gravitating system, which leads toRs=d ≪
1 for all the binaries systems in our study. For instance, for
a binary like the one formed by the supermassive black
hole and the S2 in the center of the Milky Way,
ðRs=dÞ∼0.0810A:U=12A:U:∼0.0001. Nevertheless, more
precise predictions of the waveform for gravitational radi-
ation during the chirp phase can be found in the literature,
such as in [31].Unlikemonochromaticwaves, thiswaveform
changes with time. The frequency and amplitude increase as
follows:
(i) As the gravitational frequency f is 2 times the orbital

frequency, from Kepler’s law the results are that f increases
with the reduction of the orbital radius of the binary system.
The smaller star slowly enters in an adiabatic inspiral
process by going through a succession of quasicircular
orbits during which it loses energy by gravitational radi-
ation. Consequently, f increases as the time to coalescence
τ decreases fðτÞ=fc ¼ 0.0728ðfcτÞ−3=8 where fc is a
characteristic frequency of the binary system. fc is equal
to [c3=ðGMcÞ] where c and G are the speed of light and
Newton constant, and Mc is the chirp mass of the binary

system Mc ≡ ðm1m2Þ3=5=M1=5
t where m1 and m2 are the

masses of the two stars and Mt ¼ m1 þm2.
The inspiral phase ends when the radial distance between

the two stars is shorter than the last stable circular
orbit, also known as the innermost stable circular orbit
(ISCO). When this orbit is passed, the two stars merge and
coalesce. The ISCO frequency fISCO is approximately
2.2 kHzðM⊙=MtÞ where M⊙ is the solar mass. Hence,
the gravitational wave with the largest frequency emitted by
the binary system fmax at coalescence (τ ¼ 0) is equal to
twice the fISCO [32]. The precoalescence phase will be
observed in the spectra of the star detectors if the fmax of
the binary has a value within the frequency interval of 10−7

to 10−2 Hz [19], or Mt has a value between 4.4 × 105 and
4.4 × 1010 M⊙.
(ii) The strain h increases as the binary system

approaches the coalescence. The two polarized components
of the h [32], hþ and h× are written in a condensed form,
for the time interval corresponding to the orbital changes of
the stars in the binary system, from the start of the inspiral
phase until the coalescence (−∞ < τ < 0):

hkðtÞ ¼ h⋆
�

5

fcτ

�
1=4

gkðφÞCk½ΦðτÞ�; ð1Þ

where k is one of the two possible polarizationsþ or ×, and
h⋆ is the strain amplitude equal to c=ðd⋆fcÞ, where d⋆ is the
distance of the binary system to the star detector. gk and Ck
are geometrical and circular functions. The first is related
with the direction of the gravitational wave source, and the
latter takes into account the stretching of the gravitational
wave as the binary approaches the coalescence. The gk
functions are gþ ≡ ð1þ cos2φÞ=2 and g× ≡ cosφ where φ
is a directional angle. The Ck functions areCþ ≡ cos ½ΦðτÞ�
and C× ≡ sin ½ΦðτÞ�. These last functions are dependent of
the phase ΦðτÞ, which is equal to Φo − 2ðfcτ=5Þ5=8 where
Φo is the value of the phase at coalescence.
The power spectrum of each of the hkðtÞ components,

during the inspiral phase (f ≤ fmax), is given by

PkðfÞ ¼ h̄2⋆g2kðφÞ
�
f
fc

�
−14=6

; ð2Þ

where h̄⋆ ¼ Ash⋆τc with τc ¼ f−1c and As ¼ 0.2128. τc
gives the time scale of the gravitational wave (GW) event,
like for a burst or a Gaussian waveform; PkðfÞ is propor-
tional to h2⋆τ2c [32]. The power spectrum PkðfÞ is equal to
the square of the Fourier transform of hkðtÞ [Eq. (1)], such
that ~hkðfÞ ¼ h̄⋆gkðφÞeiΨkðfÞðf=fcÞ−7=6 where the phase
ΨkðfÞ is either ΨþðfÞ ¼ 2πfðtc þ d⋆=cÞ −Φo − π=4þ
3=4ð8πf=fcÞ−5=3 or Ψ×ðfÞ ¼ ΨþðfÞ þ π=2, e.g., [32].
Figure 1 shows a gravitational wave with a positive

polarization. For large values of fcτ the gravitational
wave is monochromatic and for small values of fcτ the
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gravitational wave is a chirp. Equally, Fig. 2 shows the
power spectrum PþðfÞ and ~hþðfÞ of the same gravitational
wave. These results are easily generalized to hðtÞ wave-
forms with both polarizations, e.g., [33]. We notice that all
gravitational waves produced by the different binary types
have this waveform, the difference between them being
uniquely related with the value of the characteristic
frequency fc or their chirp mass.
Table I lists the main characteristics of some typical

inspiral binary systems. In the table are included the two

recently discovered stellar black-hole binaries [6,7].
Equally, we include EMRI binaries formed between the
supermassive black hole of the Milky Way and several
fiducial (stellar) black holes. Notice that as the chirp and
total mass of the binary system increase, fc and fmax
decrease. The chirp waveform is more pronounced for f ≤
0.005fc (cf. Fig. 2). In particular, for some binaries the
duration of the chirp phase (τfc ≤ 1000, cf. Fig. 1) varies
between a few seconds to several minutes before coales-
cence, i.e., τ⋆ is of the order of a few seconds to several
minutes. This chirp phase occurs in a time scale (or the
equivalent frequency scale) that could be detected by
sunlike stars, for which the spectral window of stellar
oscillations varies from 10−7 to 10−2 Hz. Therefore, binary
systems that have chirp phases with a duration from a few
seconds to several minutes, in principle, could affect the
oscillations of nearby sunlike stars during this critical phase
of their evolution. Binaries of massive black holes should
be the first candidates to consider, although these are
unlikely to be found in the core of the Milky Way due
to their very high masses (cf. Table I). Nevertheless, EMRIs
binaries that equally emit gravitational radiation in the same
spectral window are much more likely to be found in the
core of the Milky Way.
During the chirp phase several quadrupole modes in the

same star will be excited by the passing gravitational wave.
Conversely, in the case of monochromatic gravitational
waves, at best a single stellar quadrupole mode will be
excited (cf. Figure 1). It is worth highlighting that as the
inspiral binary approaches the coalescence, hðtÞ is less
accurate and the determination of the exact waveform
should take into account the finite structure of the two
compact objects in coalescence. Nevertheless the general
properties of the gravitational waveform remain.

050010001500200025003000
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1
 monochromatic  chirp

FIG. 1. Strain of the gravitational wave of an inspiral stellar
binary system: hþðtÞ (with h⋆ ¼ 1 and gk ¼ 1) as a function of
the dimensionless natural unity fcτ. This illustrates the two basic
gravitational waveforms (or gravitational wave phases) of a
inspiral binary system. In the case that the time to coalescence
is such that fcτ ≥ 1000 the wave is monochromatic. Reversely
for fcτ ≤ 1000 the gravitational wave is a chirp.
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FIG. 2. Inspiral stellar binary system: PþðfÞ is the power
spectrum of the strain in the chirp phase (red curve) and ~hþðfÞ is
the real part of the Fourier transform of hþðtÞ (blue curve), as a
function of the dimensionless natural quantity f=fc. Both
functions are normalized to their maximum value. Figure 1
shows the related hþðtÞ.

TABLE I. Inspiral Binary Systems

m1m2 Mc fc h⋆a fmax
Binary (M⊙) (M⊙) (Hz) � � � (Hz)

Low mass
WD-WD 0.71–0.13 0.25 8 × 105 1 × 10−17 5 × 103

NS-NS 1.4–1.4 1.22 2 × 105 6 × 10−17 2 × 103

BH-BH 5.0–5.0 4.35 5 × 104 2 × 10−16 4 × 102

BH-BH 14.2–7.5 8.9 2 × 104 4 × 10−16 200
BH-BH 36.0–29.0 28.1 7 × 103 1 × 10−15 67
High mass
EMRI 4 × 106–15 2 × 103 90 1 × 10−13 1 × 10−3

EMRI –102 7 × 103 29 3 × 10−13 1 × 10−3

EMRI –103 3 × 104 7 1 × 10−12 1 × 10−3

BH-BH 4 × 106–104 1 × 105 2 5 × 10−12 1 × 10−3

BH-BH 105–105 9 × 104 2.3 4 × 10−12 2 × 10−2

BH-BH 5 × 106–5 × 105 4 × 105 0.46 4 × 10−11 4 × 10−3

BH-BH 106–106 9 × 105 0.23 2 × 10−11 2 × 10−3

aThe strain of a gravitational wave at a distance of 1 kiloparsec
from the binary.
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III. IMPRINT OF GRAVITATIONAL WAVES ON
THE ACOUSTIC SPECTRUM

Main-sequence stars are in hydrostatic equilibrium, their
transport of energy and their mechanical vibrations occur in
quite distinct time scales, the Kelvin-Helmholtz and free-
fall time scales. In the Sun these characteristic times are of
the order of 30 million years and 40 minutes, respectively.
For that reason, the stellar vibrations are represented as
a combination of nonradial adiabatic oscillation modes
of low amplitude, e.g., [34]. Any perturbed quantity of
a mode, like the displacement ξnðr; tÞ is equal to
AðtÞξnðrÞe−iωnt−ηnt, where ωn and ηn are the frequency
and the damping rate, AðtÞ is the instantaneous amplitude,
and ξnðrÞ is the spatial eigenfunction, e.g., [35–38].
The instantaneous amplitude is a solution of

d2A
dt2

þ 2ηn
dA
dt

þ ω2
nA ¼ SgwðtÞ; ð3Þ

where SgwðtÞ is the source of gravitational radiation, e.g.,
[39]. Following from the specific properties of gravitational
systems as demonstrated in general relativity, a gravita-
tional perturbation only affects modes with degrees equal
to or larger than 2. For convenience, we opt to study the
leading order of the gravitational perturbation on the
quadrupole acoustic modes, see [26] for details. In this
study, the mode pn (n ¼ 0; 1; � � �) refers to f- and acoustic
(p-)quadrupole modes of order n and undefined azimuthal
orderm, e.g., [32]. SgwðtÞ is equal to the LnḧmðtÞwhere Ln

is the modal length of the quadrupole mode and ḧmðtÞ is the
m-spherical component (m ≤ 2) of perturbation of the
spatial component of the Minkowski metric, e.g., [39].
In this study, we assume that the source of gravitational
radiation is at a sufficiently small distance from the star
detector, such that we can neglect all redshift corrections.
This is justified since all the gravitational sources are
located in our own Galaxy. Ln is equal to 1=2Rjχnjwhere R
is the stellar radius and χn reads

χn ¼
3

4πρ̄⋆

Z
1

0

ρðrÞ½ξr;n2ðrÞ þ 3ξh;n2ðrÞ�r3dr; ð4Þ

where ρ and ρ̄⋆ are the density inside the star and its
averaged value. This definition of χn is identical to the
one used for resonant-mass detectors [26]. In the particular
case that ρ̄⋆ is constant, Eq. (3) becomes equivalent to the
one found for a spherical resonant-mass detector, e.g., [32].
We noticed that there are several χn definitions, e.g.,
[24,25] differing between them only by the normalization
condition.
In the computation of the stellar acoustic modes and χn,

we use an up-to-date solar model, e.g., [40]. The obser-
vational frequencies and damping rates used were from
Bertello et al. [41], Garcia et al. [42], Jimenez and Garcia
[43], Turck-Chieze et al. [44], Baudin et al. [45] and

Chaplin et al. [46]. The theoretical damping rates used were
from Belkacem et al. [47], Grigahcène et al. [48], and
Houdek et al. [49]. Table II shows the frequencies for the
quadrupole acoustic modes of a main-sequence star that we
chose to be identical to the Sun. The frequency in Hz in the
table corresponds toωn=2π. A detailed discussion about the
properties of low-order acoustic modes can be found in
Turck-Chieze and Lopes [50].
The averaged power spectrum PA (¼ hj ~A2ji) of an

acoustic mode stimulated by a gravitational wave [see
Eq. (2)] is computed by taking the Fourier transform of
Eq. (3) and neglecting transients terms arising from the
initial conditions on A. PA of an quadrupole mode reads

PAðωÞ ¼
L2
nh̄2⋆ω4

cg2kðφÞ
ðω2 − ω2

nÞ2 þ 4η2nω
2

�
ω

ωc

�
5=3

; ð5Þ

where ωc ¼ 2πfc.
The square of photospheric velocity V2ðωÞ is equal to

ð2πτwÞ−1
Rþ∞
0 PVðωÞdω, where τw is the duration of the

gravitational wave impact on the star’s quadrupole mode.
PV (≡ω2PA) is the power spectrum of the square of
photospheric velocity [45]. Hence the impact of a chirp
gravitational wave emission [as defined by Eqs. (1) and
(2)] with a frequency ω that resonates with the frequency of
the stellar mode ωn reads

TABLE II. Quadrupole Acoustic Modes of One Solar Mass.

Frequencya Ln Qn
Mode (Hz) (cm) (no-dim)

×10−6 ×107 ×10þ8

f 347 2.347 38
p1 382 3.841 4.1
p2 514 0.737 1.0
p3 664 0.219 0.28
p4 811 0.074 0.10

×10−6 ×105 ×106

p5 959 2.867 3.8
p6 1104 1.211 1.7
p7 1249 0.524 0.74
p8 1394 0.238 0.33
p9 1535 0.108 0.12

×10−6 ×104 ×104

p10 1674 1.082 6.7
p11 1810 0.520 4.1
p12 1945 0.272 2.9
p13 2082 0.153 2.1
p14 2217 0.054 1.9
p15 2352 0.033 1.8
p16 2485 0.022 1.7
p17 2619 0.014 1.5
p18 2754. 0.010 1.5

aFrequency table of solar acoustic modes obtained from a
compilation made by Turck-Chieze and Lopes [50]. The
frequencies in italic correspond to theoretical predictions for the
current solar model as in reference Lopes and Turck-Chieze [51].

QUADRUPOLE STELLAR OSCILLATIONS: THE IMPACT … PHYSICAL REVIEW D 95, 123015 (2017)

123015-5



V2
n ¼

h2⋆L2
nω

4
n

α2sη
2
n

Cn; ð6Þ

where V2
n is equal to V2ðωnÞ, Cn is a chirp factor given by

ðτ2cΔωn=τwÞðωn=ωcÞ−7=3, and αs (≡ð2 ffiffiffiffiffiffi
2π

p Þ=ðAsgkðφÞγsÞ)
is a multiplicative factor related to stellar observations. αs
(with gk ¼ 1) is equal to 24=γs where γs is a unity
photospheric numerical factor. As the contribution for
the V2ðωÞ integral is only significant near each ωn, in
computing the previous equation, we approximate
ω11=3ððω2 − ω2

nÞ2 þ 4η2nω
2Þ−1 in PVðωÞ by its first term

of the Taylor series ω5=3
n =4η2n, and the integral limits around

each ωn by ωn − Δωn=2 and ωn þ Δωn=2 where Δωn is
the equivalent linewidth. We notice that V2ðωnÞ is propor-
tional to η−2n : Eqs. (5) and (6) are related with V2ðωnÞ ¼
ω2
nðΔωn=τwÞ=2πPAðωnÞ. Thus, if the linewidthΔωn relates

with the damping time as Δωn ∼ τ−1η , and τw ∼ τc then
ðτ2cΔωn=τwÞ in Cn simplifies to τc=τη.
In the particular case that the excitation of the stellar

mode is due to monochromatic gravitational wave emis-
sion, it is reasonable to assume that ωn ∼ ωc and τn ∼ τc for
which Cn ¼ 1. In these circumstances, Eq. (6) simplifies to
Vn ¼ h⋆Lnω

2
n=ðαsηnÞ. Equally Vn can be expressed as a

function of the quality factor of the mode Qn ≡ ωn=ð2ηnÞ
as Vn ¼ 2h⋆LnQnωn=αs. The values of Qn are shown in
Table II. This result was computed by Lopes and Silk [26],
and an identical expression was previously obtained by
Siegel and Roth [25] for acoustic and gravity quadrupole
modes in the Sun. Moreover, this result shows that the
photospheric velocity of modes excited by a gravitational
chirp waveform [Eq. (6) with Cn ≠ 1] differs only by the
simple factor from the excitation due to a monochromatic
gravitational wave.
In both gravitational emission cases the excitation of a

quadrupole mode occurs when the frequency of the
gravitational wave ω matches the frequency of the stellar
mode ωn. Nevertheless, this only occurs for a very short
period of time; hence, the exact calculation of the impact of
the gravitational waves must take into account the time drift
of ω in relation to ωn. In the case that the time drift is small,
ω is approximated by ωn þ _ωτ, where _ω is the frequency
time variation of the gravitational wave and τ is the time
difference to the resonance [19].
The impact of the gravitational wave on an oscillation

mode is maximum when the gravitational time drift τgw ≡
1=

ffiffiffiffi
_ω

p
is larger than the damping time of the mode

τn ¼ 1=ð2ηnÞ; i.e., the ratio T n ¼ τgw=τn is larger than
one. Figure 3 compares these two characteristic times. In
this study τgw is 0.577ðGMc=c2Þ−5=6ω−11=6, e.g., [19,32].
Accordingly, a stellar mode for which T n ≫ 1, the exci-
tation is known as the steady-state solution or a saturated
mode of oscillation. In the calculation of this photospheric
velocity Vn;s, the frequency drift _ω is neglected, as
such Vn;s ¼ Vn. Reversely, for the case that T n ≪ 1, the

excitation is known as an undamped mode of oscillation;
the photospheric velocity Vn;u is such that the contribution
_ω is taken into account in the calculation of Vn;u, following
Lopes and Silk [19] and McKernan et al. [30] Vn;u ¼
T 1=2

n Vn. Figure 4 shows the Vn;u of quadrupole acoustic
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FIG. 3. Comparison between the dumping time of the quadru-
pole acoustic modes τn (red circle) and the characteristic time
drift time of the gravitational waves τgw (blue circle). The
gravitational radiation is assumed to be due to the occurrence
of an EMRI (with m1 ¼ 4 × 106 M⊙ and m2 ¼ 15 M⊙) at the
center of the Galaxy (see Table I).
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FIG. 4. Photospheric velocity amplitude of the low-order
acoustic quadrupole modes (n ¼ 0; 1; � � �) of a star detector
located at a distance of 1 kiloparsec from the Galactic Center
for two types of gravitational radiation emission: (a) monochro-
matic wave, Vn;s (blue square) and Vn;u (blue circle) as given by
Eq. (6) with Cn ¼ 1. (b) chirp wave, Vn;s (red square) and Vn;u

(red circle) as given by Eq. (6) with Cn ≠ 1. (c) Vn;u is the same
used in case (b), but now the star detector is located at a 10 parsec
(cyan circle) or 1000 A.U. (magenta circle). The gravitational
radiation is assumed to be due to the occurrence of an EMRI
(with m1 ¼ 4 × 106 M⊙ and m2 ¼ 15 M⊙) at the center of the
Galaxy (see Table I).
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modes excited by a chirp gravitational wave emission and
a monochromatic gravitational wave emission. In this case
all stellar modes have a T n that varies from 10−6 to 10−2;
therefore, all the modes are in an undamped mode of
oscillation since T n ≪ 1. Vn;s is also shown in the same
figure. In the calculation of Vn;s and Vn;u we used Eq. (6)
for which the gravitational wave radiation was estimated
from Eq. (2). The power spectrum of the incoming
gravitational radiation is given by Eq. (1).

IV. DISCUSSION

The most important factor affecting the amplitude of Vn
is the distance of the star detector to the compact binary. An
EMRI merger corresponding to the capture of the S2 star by
the supermassive black hole in the Galactic Center will
produce a gravitational event with a strain amplitude of
∼10−13 at a distance of 1000 parsecs. This result is obtained
from the relation h⋆ ¼ c=ðd⋆fcÞ (see previous section)
where fc ¼ 90 Hz (see Table I). In particular, for the case
of a binary of black holes that has masses identical to the
ones found for the first time by the LIGO Collaboration [6],
the strain amplitude at the same distance is ∼10−15 (see
Table I). This corresponds to a strain of 3 × 10−21 at a
distance of 410 Mpc, which is close to the 10−21 strain
amplitude measured by the LIGO experiment on Earth.
Figure 4 shows the Vn;u for this EMRI event, where the

sunlike star is located at a distance of 1000 parsec, 10
parsecs and 1000 A.U. from the Galactic Center. The last
distance, although unlikely, gives us an order of magnitude
of the phenomena. For illustrative purposes, other quan-
tities are also shown in the same figure. The Sun is the
fiducial star detector in this analysis. In the computation of
the photospheric velocity, the values of ωn and ηn corre-
spond to the observed solar frequencies and the theoretical
predictions of damping rates for the Sun by Belkacem et al.
[47] and Houdek et al. [49]. The Ln varies from
107–104 cm as computed by Lopes and Silk [19] for these
modes. α has the numerical value 24.0 (with γs ∼ 1).
These results can be understood qualitatively. If we

neglect numerical factors of the order of unity, the
estimation of Vn;u is made as follows: for a monochromatic
gravitation wave emission [from the expression given by
Eq. (6) with Cn ¼ 1], we obtain that Vn;u is proportional to

h⋆LnQnT
1=2
n where Qn is the quality factor of the quadru-

pole mode of order n, such that Qn ¼ ωn=ð2ηnÞ. If we
choose an ηn ∼ 10−6 μHz as a fiducial value of the range of
ηn values 10−8–10−3 μHz predicted by Belkacem et al. [47]
and Houdek et al. [49] for low-order acoustic modes, for a
mode with a frequency 400 μHz we obtain Qn ∼ 109. Note
that aQn computed from an observational data set (acoustic
modes with much higher frequency), we obtain signifi-
cantly smaller Qn values. A typical example from Chaplin
et al. [46] corresponds to a mode with ν ∼ 1500 μHz
and ηn ∼ 10−2 μHz for which Qn ∼ 106. Nevertheless, this

result can only be used as a lower value estimation of Qn,
since acoustic modes with these high frequencies (and
much higher values of ηn) are not perturbed by incoming
gravitational radiation. Therefore, for a fiducial acoustic
mode with a frequency of 400 μHz, we estimate Vn ∼
1 cm s−1 for a Qn ∼ 109, Ln ∼ 107 cm and Cn ¼ 1 when
stimulated by an incoming gravitational wave with a strain
h⋆ ¼ 10−13. Finally, if we take into account that this mode
is unsaturated, this value must be multiplied by the T 1=2

n

with τgw ∼ 106 s and τn ∼ 1012 s then Vn;u ∼ 10−3 cm s−1

(cf. Fig. 4). However, if the star detector is located at a
distance of ∼1000 AU then Vn ∼ 10 cm s−1. This study
complements the original work of McKernan et al. [30],
which has found stars to be good resonant absorbers of
gravitational radiation. The contribution related with the
chirp emission is contained in the term Cn [Eq. (6) with
Cn ≠ 1]. This quantity increases with the frequency varying
from 10−2 up to 102. Accordingly, Vn;u of low-order modes
excited by a chirp gravitational wave (Cn ≠ 1) is a factor 10
smaller in comparison to modes excited by a monochro-
matic wave (Cn ¼ 1), since their velocity ratio is propor-
tional to C1=2n (cf. Fig. 4).
In the following, we discuss the two Vn;u results given

equation (6) with Cn ¼ 1 and Cn ≠ 1. These solutions
correspond to a monochromatic emission and a chirp
emission of gravitational radiation. In both cases, the
amplitude of VðωnÞ decreases with the order mode n, since
the modal length Ln (and χn) decreases rapidly with
increasing n acoustic modes for a main-sequence star.
In the following two predictions it is worth highlighting
the following:
First, the Vn;u for the low-n quadrupole acoustic modes

is of the order of 10−4–1 cm s−1 (cf. Fig. 4, depending on
the distance of the star detector to the binary). These values
are below the Vn;u currently measured for similar stars in
the neighborhood of the Sun by the Kepler mission, for
which the excitation of stellar oscillations is well known to
be attributed to the convection of the external layers of
these stars. As an example, the Procyon A star (F5 IV
spectral type star) has Vn ∼ 38 cm s−1, e.g., [52]. This
result is equally valid for monochromatic and chirp
emission phases of the inspiraling binary.
Second, the impact of the gravitational waves during the

chirp emission phase on Vn;u [Eq. (6)] is strongly depen-
dent on the shape of the strain function hðtÞ [Eq. (1)].
Unlike for the case of excitation of Vn;u by a monochro-
matic gravitational wave for which only a stellar quadru-
pole mode is excited, during the chirp phase several
acoustic modes are excited sequentially by the same
gravitational waveform. Figure 5 shows how the global
shape of the PAðωÞ spectrum for quadrupole acoustic
modes in the sunlike star is excited by the gravitational
radiation coming from the inspiral binary during the chirp
emission phase. The PAðωÞ corresponds to a gravitational
event shown in Fig. 5 and the Vn;u is given by Eq. (6).
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These values of Vn;u predicted for stars similar to the Sun
near the galactic core should be within reach only in a
future generation of asteroseismology satellites. Moreover,
as Vn;u decreases with d⋆, it is reasonable to expect that star
detectors located in the neighborhood of such binaries (as
near as 1000 AU) could have a Vn above the threshold of
detectability. However for larger d⋆ values, such phenom-
ena will be difficult to observe. In particular, it is unlikely
for that measurement to be done by the PLATO mission [13]
since, at best, PLATO is expected to measure oscillations
in sunlike stars with amplitudes of the order of ∼1 cm s−1.
It will be necessary to wait for an increase of at least 1 or 2
orders of magnitude in the instrumental threshold to be able
to measure quadrupole acoustic modes excited by gravi-
tational radiation coming from the Galactic Center. This
point is illustrated in Fig. 4 where it is shown how Vn;u

varies with the distance of the star detector to the source of
gravitational waves. For instance, a star detector located at a
distance of 10 parsec has Vn;u of 10−2 cm s−1, while the
same star located at a distance of 1000 A.U. has a Vn;u of
50 cm s−1. Although the last scenario is theoretically
possible, it will be very unlikely since the Schwarzschild
radius of the supermassive black hole is 0.0810 A.U. and
the orbit of the S2 varies between 12 and 2000 AU. It would
mean that such star would also be orbiting the supermassive
black hole. For comparison, it is worth noticing that in the
Sun’s case, the precision attained in Vn by the GOLF

experiment for a 10 year observational period [43,44,53]

varies from 10−2 cm s−1 to 3 × 10−4 cm s−1. The signal-to-
noise ratio of the GOLF experiment is just a few orders of
magnitude below the Vn predictions previously mentioned.

V. CONCLUSION

Main-sequence stars like the Sun (with a spectral
window of acoustic oscillations 300 μHz ≤ νn ≤
5000 μHz) when located at relatively short distances of
compact binaries (including massive black-hole and
EMRIs binaries) of the Milky Way core have their quadru-
pole acoustic modes of low order stimulated by the
incoming gravitational radiation. This frequency range
overlaps the frequency window of gravitational waves
emitted by EMRIs 100 Hz ≤ νn ≤ 10000 μHz. These sys-
tems form preferentially in dense stellar regions such as the
nucleus of galaxies. The Galaxy nucleus is one of the
most dense stellar regions in the Universe with ∼107 stars
squeezed in spherical regions with a radius of ∼10 parsec
[54]. As in any other galaxy, the nucleus of the Milky Way
is one of the preferential locations to look for EMRIs. In
particular, these detector’s stars could follow the end of the
binary contraction in the pre-coalescence phase, during
which sequentially the low-n quadrupole acoustic modes
of the star are stimulated by the incoming gravitational
waves. Equally, many other stars, including main-
sequence, subgiant, and red giant stars [55] will also be
sensitive to the same type of radiation. Hence, all these
sunlike stars have a combined spectral window of 0.1 to
105 μHz. As such these stars form a network of detectors
sensitive to the gravitational radiation coming from the
Galactic Center.
A very interesting result of this study is the clear

possibility to observe the end phase of the coalescence
of binary systems by using sun-like stars as detectors. This
is a powerful method to study the gravitational radiation.
As the period of the gravitational wave chirp varies within
the spectral bandwidth of the star detector, it is certain that
different quadrupole modes of the same star will register
the same gravitational event. Moreover, as VnðωÞ is
proportional to ðω=ωcÞ−7=6, this relation can be used to
look for the gravitational wave signature on low-order
quadrupole modes of these stars (cf. Equation (6)). This
method is ideal for studying the binaries of massive black
holes or EMRIs for which the chirp phase occurs in a time
interval varying from a few seconds to several minutes
(cf. Table I). This new type of research can complement the
gravitational waves experimental detectors like the ELISA
instrument. Moreover these star detectors can be used to
look for gravitational wave radiation, including the chirp
phase of inspiral binary systems in the frequency interval,
10−6 to 10−4 Hz, which is not currently probed by ground
based experiments.
The galactic core is a very efficient machine for

converting the gravitational energy of the captured matter
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FIG. 5. Amplitude power spectrum of the quadrupole modes of
different orders excited by an external GW source with a
characteristic frequency fc ≈ 90 Hz (identical to a inspiral binary
system with m1 ¼ 4 × 106 M⊙ and m2 ¼ 15 M⊙, see Table I):
the peaks occur at the location of eigenfrequencies ωn (l ¼ 2 and
n ¼ 0; 1; 2; 3; � � �) corresponding to the different acoustic ei-
genmodes of the Sun. The red curve corresponds to the amplitude
power spectrum [Eq. (5)]. The blue curve corresponds to the
amplitude power spectrum as given by Eq. (5) with the term
ðω=ωcÞ5=3 replaced by one. The black curve corresponds to the
term ðω=ωcÞ5=3. All the curves are scaled by their maximum
values (in arbitrary units).
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into electromagnetic and (possibly) gravitational radiation.
Stars like the Sun but near the Galactic Center, for which
their spectra of oscillations is well known, form a natural
network of detectors for gravitational radiation. In this
article, we have shown for the first time that chirp wave-
forms of gravitational waves have a unique imprint in the
spectrum of these sunlike stars. Nevertheless, it is worth
highlighting that this study is made for a relatively simple
chirp waveform expression although sufficient to make the
first prediction of the amplitude stellar modes. A more
rigorous calculation must take into account an high-order
expression gravitational-wave emission during the inspiral
of compact binary systems beyond the quadrupole radiation
expression [31].
We could expect that it would be quite difficult to

separate the excitation of quadrupole modes in sunlike
stars caused by gravitational radiation from the intrinsic
excitation and damping of these modes due to turbulent
convective motions occurring on the upper layers of the
star. Nevertheless, there are three important arguments that
could help astronomers to isolate the gravitational wave
stimulation from intrinsic excitation: First, current theory of
stochastic excitation and damping of nonradial oscillations
is very successful in predicting the exactly amplitude of
individual acoustic modes, e.g., [56], as well as the global
envelope of amplitudes of the acoustic modes in the
oscillation spectrum of the star, e.g., [57]. Second, this
theory predicts that low-order degree modes (including
radial, dipole, and quadrupole modes) with near frequen-
cies have identical amplitudes. Therefore, by taking ad-
vantage from the fact that gravitational waves only excite
quadrupole modes, the amplitude excess found in these
modes above the radial and dipole mode amplitudes can be
attributed to excitation due to gravitational radiation. This
means that if astronomers found on the oscillation spectrum
of a sunlike star one or more quadrupole modes with
amplitudes that are well above the amplitudes of neighbor-
ing radial and dipole modes, this will be a strong indication
that these modes are being stimulated by incoming gravi-
tational radiation, possibly caused by a source located
nearby the star. Finally, if the gravitational source is known,
it will be possible to compute precisely the amplitude of
each mode due to the impact of the gravitational wave, in
particular, by taking into account the distance and direction
of the gravitational source in relation to the star [26].

Although gravitational waves affect all modes with a
degree higher than two, the amplitudes of high-degree
modes are very small in comparison to quadrupole modes.
Actually, this effect is neglected in high-degree modes
since gravitational wave stimulation is insignificant.
As the stars located near the core of the Milky Way have

their line of sight obscured by dust, the near infrared
band will provide the best option to observe such stars.
In principle, a near infrared observatory should be able to
observe stars in these dense stellar regions of the galactic
nucleus. This option could be a very interesting alternative
to optical asteroseismolgy, since the amplitude of stellar
oscillations in this band will be only a factor 5 smaller than
pulsations in the optical band. Alternatively, an optical
mission on the follow-up of the PLATO satellite will be able
to observe stars only in regions located well above the
galactic disc. In particular, red giant stars could be a very
interesting target since these stars can be observed up to
distances near the Galactic Center, close to 1000 parsec of
the supermassive black hole [58] located in the Galaxy
Center. These stars are known to have acoustic, gravity,
and mixed quadrupole modes, all of which can be affected
by gravitational radiation. Nevertheless the mode ampli-
tude variations on these stars should be very different from
the ones computed for sunlike stars, since their internal
structures are very different. Another possibility on the
optical band is to look for pulsating stars in globular
clusters and dwarf galaxies. Additionally, the probability of
such detections being achieved successfully would increase
significantly if the source of gravitational radiation is
located near a population of stars, since in this case the
quadrupole modes of several stars are affected simulta-
neously or contemporaneously within the same field of
view.
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