
Constraints on axionlike particles and non-Newtonian gravity
from measuring the difference of Casimir forces

G. L. Klimchitskaya1,2 and V. M. Mostepanenko1,2,3
1Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences,

Saint Petersburg 196140, Russia
2Institute of Physics, Nanotechnology and Telecommunications,

Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia
3Kazan Federal University, Kazan 420008, Russia

(Received 6 February 2017; published 26 June 2017)

We derive constraints on the coupling constants of axionlike particles to nucleons and on the Yukawa-
type corrections to Newton’s gravitational law from the results of recent experiment on measuring the
difference of Casimir forces between a Ni-coated sphere and Au and Ni sectors of a structured disc. Over
the wide range of axion masses from 2.61 meV to 0.9 eV the obtained constraints on the axion-to-nucleon
coupling are up to a factor of 14.6 stronger than all previously known constraints following from
experiments on measuring the Casimir interaction. The constraints on non-Newtonian gravity found
here are also stronger than all that following from the Casimir- and Cavendish-type experiments over
the interaction range from 30 nm to 5.4 μm. They are up to a factor of 177 stronger than the constraints
derived recently from measuring the difference of lateral forces. Our constraints confirm previous
somewhat stronger limits obtained from the isoelectronic experiment, where the contribution of the Casimir
force was nullified.
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I. INTRODUCTION

Both the scalar and pseudoscalar particles are predicted in
many extensions of the standard model [1]. The light
pseudoscalar particles, axions, and different kinds of axion-
like particles play an important role by explaining the
absence of both the large electric dipole moment of a
neutron and strong CP violation in QCD [2–4]. In astro-
physics and cosmology axions are considered as the most
probable constituents of darkmatter [5–13]. An exchange of
light scalar particles between atoms of two closely spaced
macrobodies leads to the Yukawa-type corrections to
Newton’s gravitational law [14]. Similar corrections have
been predicted by the extradimensional unification schemes
with a low-energy compactification scale [15,16]. It is
important to remember that at separations below a few
micrometers the corrections of Yukawa type, which far
exceed the Newtonian gravitation, are not excluded exper-
imentally. Of special interest is the hypothetical scalar
particle called the chameleon whose mass depends on the
matter density of an environment [17,18]. This particle may
be considered as a constituent of dark energy and is
discussed in connection with the observed late-time accel-
eration of the Universe’s expansion [19,20].
In spite of many attempts, none of the predicted light

pseudoscalar and scalar particles has been discovered so
far. Specifically, axionlike particles have been searched for
in many laboratory experiments using their interactions
with photons, electrons and nucleons (see, e.g., reviews in
Refs. [5,21–23]), in astrophysical observations [22–25],
and in gravitational experiments [26,27]. The gravitational

experiments of Eötvos and Cavendish type were also used
to constrain the Yukawa-type corrections to Newtonian
gravity mediated by the scalar particles (see Refs. [14,28]
for a review and one more recent experiment in Ref. [29]).
As was proposed long ago [30,31], measurements

of the van der Waals and Casimir forces can be used for
constraining different corrections to Newton’s gravitational
law. During the last few years these forces have been under
an active study both experimentally and theoretically (see
Refs. [32,33] for a review). The strongest constraints on
the Yukawa-type corrections to Newtonian gravity, follow-
ing from the most precise measurements of the Casimir
interaction, have been obtained in Refs. [34–38] in the
interaction range below a micrometer. Recently, the major
strengthening was achieved in the isoelectronic experiment,
where the Casimir force, acting perpendicular to the test
surfaces, was nullified [39] (see also the version of the
isoelectronic experiment based on measuring the difference
of lateral forces [40]).
Furthermore, it was shown that precise experiments on

measuring the Casimir-Polder and Casimir forces place
strong limits on the coupling constants of axionlike
particles to nucleons [41–44]. For the axionlike particles,
which are lighter than 1 eV, even stronger constraints have
been derived [45] from the isoelectronic experiment of
Ref. [39]. According to the proposal of Ref. [46], the
model-independent constraints on an axion are obtainable
from measuring the Casimir force between two test bodies
with aligned nuclear spins. It was shown also [47,48] that
the best laboratory constraints on the parameters of a
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chameleon can be obtained from precise measurements of
the Casimir force. Experiments of this kind have been
proposed in Refs. [49,50].
In this paper, we derive the constraints on the coupling

constants of axionlike particles to nucleons and on the
Yukawa-type corrections to Newtonian gravity from the
recent experiment on measuring the difference of Casimir
forces [51] between a Ni-coated sphere and Au and Ni
sectors of the structured disc. This disc consisted of
alternating Ni and Au sectors deposited on a Si substrate.
It was covered by two sufficiently thin homogeneous
overlayers made of Ti and Au.
The differential measurements of the Casimir force

between metallic test bodies in similar configurations have
been proposed in Refs. [52–54] in order to perform a
conclusive test on the account of dissipation in the
Lifshitz theory of dispersion forces [55,56]. The point is
that the measurement data of several precise experiments
(see a review in Ref. [32] and more recent results in
Refs. [57–59]) have been found to exclude theoretical
predictions of the Lifshitz theory combined with the
dielectric permittivity of the Drude model taking into
account the relaxation properties of free electrons. The
same data turned out to be in a very good agreement with
theory if the dielectric permittivity of the lossless plasma
model is used at low frequencies. It should be noted,
however, that within the distance range of all precise
experiments below a micrometer the differences in theo-
retical predictions of both approaches do not exceed a few
percent. Because of this, the obtained results have been
considered by some authors as not convincing enough; see,
e.g., Refs. [60,61] for a discussion).
The situation was changed recently after the experiment

on measuring the difference of Casimir forces [51] was
performed. In this experiment, the alternative theoretical
predictions using the Drude and the plasma models differ
by up to a factor of several thousands of percent. That is
why an unequivocal exclusion of the Lifshitz theory
combined with the Drude model and good agreement of
the same theory using the plasma model, demonstrated in
the experiment [51], can be considered as conclusive.
Below, we use the differential measurement data of

Ref. [51] to derive the constraints on an axion and non-
Newtonian gravity and compare them with those following
from the previously performed individual measurements of
the Casimir interaction. It is shown that over a wide
interaction range the obtained constraints are much stronger
than all other constraints derived from the Casimir experi-
ments. The constraints on an axion, found here, are
complementary (up to a factor of 2 differences) to those
of Ref. [45] following from the isoelectronic experiment of
Ref. [39], where the Casimir force was nullified. Our
present constraints on the corrections to Newtonian gravity
are weaker by up to a factor of 10.5 than those derived in
Ref. [39], but stronger by up to a factor of 177 than the

constraints derived in recent Ref. [40] exploiting measure-
ments of the lateral force.
The paper is organized as follows. In Sec. II we obtain

constraints on the coupling constants of axionlike particles
to neutrons and protons from measuring the difference of
Casimir forces. In Sec. III the same measurement data are
used to derive constraints on the Yukawa-type corrections
to Newton’s gravitational law. Section IV contains our
conclusions and discussion.
Throughout the paper we use units in which ℏ ¼ c ¼ 1.

II. CONSTRAINTS ON THE COUPLING
CONSTANTS OF AXIONLIKE PARTICLES

TO NUCLEONS

We consider the axionlike particles interacting with
nucleons (protons and neutrons) via the pseudoscalar
Lagrangian [5]. Then, the effective interaction potential
between two nucleons situated at the points r1 and r2
belonging to two test bodies (a sphere and a disc in our
case) arises due to the process of two-axion exchange
[26,62,63]

Vklðjr1 − r2jÞ ¼ −
g2akg

2
al

32π3m2

ma

jr12j2
K1ð2majr12jÞ: ð1Þ

Here, gak and gal are the axion-proton (k; l ¼ p) or axion-
neutron (k; l ¼ n) dimensionless coupling constants, m ¼
ðmn þmpÞ=2 is the mean mass of a nucleon,ma is the mass
of an axion, r12 ¼ r1 − r2, and K1ðzÞ is the modified Bessel
function of the second kind. Note that Eq. (1) is derived
under the condition jr12j ≫ 1=m which is satisfied in all
experiments on measuring the Casimir interaction.
In the experiment [51] on measuring the difference of

Casimir forces the first test body was a sapphire (Al2O3)
sphere (with a density ρs ¼ 4.1 × 103 kg=m3) covered with
the thermally evaporated layers of Cr of thickness ΔCr ¼
10 nm (ρCr ¼ 7.15 × 103 kg=m3) and Ni of thickness
ΔNi ¼ 250 nm (ρNi ¼ 8.9 × 103 kg=m3). The Ni-covered
sphere had a radius of R ¼ 150.8 μm. The second test body
was the structured disc consisting of alternating Au and Ni
sectors. It was covered by the homogeneous Ti and Au
overlayers with thicknessesΔTi ¼ 10 nmandΔAu ¼ 21 nm,
respectively. These overlayers effectively enhance the varia-
tion in the difference of Casimir forces between a Ni-coated
sphere and sectors of the disc made of Au and Ni when the
Drude and plasma models are used in calculations. At
the same time, the homogeneous overlayers do not contrib-
ute to the difference of additional forces, originating
from either two-axion exchange or from the Yukawa-type
corrections to Newtonian gravity. To finish with a descrip-
tion of the second test body, we note that the thickness of
both Au (ρAu ¼ 19.31 × 103 kg=m3) and Ni sectors was
D ¼ 2.1 μm. The structured disc covered with two over-
layers was placed on the top of a homogeneous Si wafer of

G. L. KLIMCHITSKAYA and V.M. MOSTEPANENKO PHYSICAL REVIEW D 95, 123013 (2017)

123013-2



thickness ΔSi ¼ 100 μm. This wafer also does not contrib-
ute to the difference of additional forces.
The difference of additional forces between a sphere and

Au and Ni sectors of the structured disc due to two-axion
exchange can be calculated using the potential (1). With
appropriately replaced materials of the layers, the result can
be found in Ref. [45],

jΔFadd
diffðaÞj¼

π

2mam2mHH2
ðCAu−CNiÞ

×
Z

∞

1

du

ffiffiffiffiffiffiffiffiffiffiffiffi
u2−1

p

u3
e−2mauað1−e−2mauDÞXðmauÞ;

ð2Þ

where mH is the mass of atomic hydrogen, a is the distance
between a sphere and the sectors of a disc, and the
following notation is introduced,

XðzÞ≡ CNiΦðR; zÞ þ ðCCr − CNiÞe−2zΔNiΦðR − ΔNi; zÞ
þ ðCs − CCrÞe−2zðΔNiþΔCrÞΦðR − ΔNi − ΔCr; zÞ;

ð3Þ

with the function Φ defined as

Φðr; zÞ ¼ r −
1

2z
þ e−2rz

�
rþ 1

2z

�
: ð4Þ

Here, the coefficients CM with an index M ¼ Au, Cr, s,
and Ni, for gold, chromium, sapphire and nickel, respec-
tively, are defined as

CM ¼ ρM

�
g2ap
4π

ZM

μM
þ g2an

4π

NM

μM

�
; ð5Þ

where ρM is the density, ZM and NM are the number of
protons and the mean number of neutrons in an atom or a
molecule of the respective material, and μM ¼ mM=mH,
mM being the mean atomic (molecular) mass of the
material M. Note that the values of Z=μ and N=μ for many
elements with an account of their isotopic composition are
contained in Ref. [14]. In our calculations below we use
ZM=μM ¼ 0.40422, 0.46518, 0.49422, and 0.48069 and
NM=μM ¼ 0.60378, 0.54379, 0.51412, and 0.52827 for
Au, Cr, sapphire, and Ni, respectively.
Now we obtain constraints on the coupling constants gan

and gap from the experimental results of Ref. [51]. For this
purpose, we use the measurement set which was found in
agreement with theoretical results for the difference in
Casimir forces predicted by the Lifshitz theory and the
plasma model within the limits ofΔF ¼ 1 fN error over the
separation range from 250 to 400 nm (see Fig. 12 of
Ref. [51]). This means that the difference of additional
forces (2) arising due to two-axion exchange satisfies the
condition

jΔFadd
diffðaÞj < ΔF: ð6Þ

Note that the distances a between the sphere and the
sectors of a rotating disc are connected with the exper-
imental separations z by

a ¼ zþ ΔTi þ ΔAu ¼ zþ 31 nm; ð7Þ

i.e., a and z differ by the combined thickness of Ti and Au
overlayers. We have substituted Eqs. (2)–(5) in Eq. (6) and
found numerically the values of gan, gap and ma satisfying
the inequality (6) at different separations a. In so doing, the
strongest constraints have been obtained at a ¼
291 nm (z ¼ 260 nm).
In Fig. 1, we present the computational results for allowed

and excluded regions of the plane ðma; g2apðnÞ=4πÞwhich lie
below and above each of the lines, respectively. The three
lines from top to bottom are plotted under the respective
assumptions g2ap ≫ g2an, g2an ≫ g2ap, and g2ap ¼ g2an.
In Fig. 2, we compare the constraints of Fig. 1 with the

strongest laboratory constraints on the coupling constants of
axionlike particles to nucleons obtained so far in the same
region of axion masses. The comparison is made under the
plausible condition gap ¼ gan [26]. The line 1 shows the
constraints obtained [44] from measurements of the lateral
Casimir force between sinusoidally corrugated surfaces
[64,65]. By the line 2 we present the constraints found
[43] from measuring the effective Casimir pressure by
means of a micromechanical torsional oscillator [36,37].
The line 3 is obtained in this work using the experiment [51]
on measuring the difference of Casimir forces. It reproduces
the bottom line in Fig. 1. The constraints derived [45] from
the isoelectronic experiment of Ref. [39], where the Casimir
forcewas nullified, are shownby the line 4. Finally, the line 5

3 2.5 2 1.5 1 0.5 0 0.5

5

4

3

2

1

FIG. 1. The lines from top to bottom show the constraints on the
coupling constants of axionlike particles to a proton and a neutron
as functions of the axion mass, which follow from measuring the
difference of Casimir forces under the assumptions g2ap ≫ g2an,
g2an ≫ g2ap, and g2ap ¼ g2an, respectively. The regions of the plane
above each line are excluded and those below each line are
allowed.
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demonstrates the constraints obtained [27] from the
Cavendish-type experiment of Ref. [66]. The regions of
the plane ðma; g2apðnÞ=4πÞ above each line are experimentally
excluded.
As seen in Fig. 2, the constraints of the line 3, derived

here from measuring the difference of Casimir forces, are
stronger than the gravitational constraints and all the other
constraints obtained from measurements of the Casimir
force within the wide range of axion masses ma from
2.61 meV to 0.9 eV. The maximum strengthening by a
factor of 14.6 is achieved for ma ¼ 4.88 meV. Up to a
factor of 2 stronger constraints are given by the line 4
obtained from an experiment [39], where the Casimir force
was nullified. Thus, one can say that the constraints of the
line 3 confirm previous somewhat stronger constraints of
the line 4.

III. CONSTRAINTS ON THE YUKAWA-TYPE
CORRECTIONS TO NEWTONIAN GRAVITY

Now we consider two atoms with masses m1 and m2

situated at the points r1 and r2 of the test bodies in the same
experiment on measuring the difference of Casimir forces.
An exchange of one light scalar particle of mass M ¼ 1=λ
results in the Yukawa-type effective potential, which is
usually considered as a correction to the Newtonian
gravitational potential [14]

Vðjr12jÞ ¼ −
Gm1m2

jr12j
ð1þ αe−jr12j=λÞ: ð8Þ

Here, G is the Newtonian gravitational constant and α is a
dimensionless constant of the strength of the Yukawa

interaction. As mentioned in Sec. I, the potential (8) also
arises in extradimensional unification schemes with a low-
energy compactification scale [15,16].
A difference of the additional forces between a sphere

and Au and Ni sectors of the structured disc arising due to
the potential (8) can be easily calculated as described in
Ref. [67]:

jFYu
diffðaÞj ¼ 4π2Gjαjλ3Re−a=λðρAu − ρNiÞð1 − e−D=λÞ

× ½ρNi þ ðρCr − ρNiÞe−
ΔNi
λ

þ ðρs − ρCrÞe−
ΔNiþΔCr

λ �: ð9Þ

The constraints on the parameters α and λ of the potential
(8) are obtained from the measurement set of Ref. [51]
specified in Sec. II. For this purpose, a difference of the
Yukawa-type additional forces (9) was substituted in
Eq. (6) in place of Fadd

diff and the numerical analysis of
the obtained inequality has been performed. The strongest
constraints on the parameters α, λwere obtained at the same
separation distance a ¼ 291 nm, as in Sec. II.
In Fig. 3, our constraints on the Yukawa-type corrections

to Newtonian gravity, following from measuring the

4 3 2 1 0 1

6

4

2

0

FIG. 2. The line 3 shows the constraints on the coupling
constants of axionlike particles to a proton and a neutron as a
function of the axion mass obtained here from measurements of
the difference of Casimir forces. The other lines show previous
constraints derived from measuring the lateral Casimir force (line
1), the effective Casimir pressure (line 2), from the isoelectronic
and Cavendish-type experiments (lines 4 and 5). See the text for
further discussion. The regions of the plane above each line are
excluded and below each line are allowed.
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FIG. 3. The line 6 shows the constraints on the strength of a
Yukawa-type correction to Newton’s gravitational law as a
function of the interaction length obtained here from the experi-
ment on measuring the difference of Casimir forces. The other
lines show previous constraints derived from measuring the
effective Casimir pressure (line 1), from a previous isoelectronic
(Casimir-less) experiment (line 2), from an experiment on
measuring the difference of lateral forces (line 3), from measuring
the Casimir force by means of torsion pendulum (line 4), from the
Cavendish-type experiments (line 5), and from the recent
isoelectronic experiment (line 7). The regions of the plane above
each line are excluded and those below each line are allowed.
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difference of Casimir forces in Ref. [51], are shown by the
line 6. For comparison purposes, in Fig. 3 the other
strongest laboratory constraints are shown in the same
interaction range. The line 1 indicates the constraints
following from measurements of the effective Casimir
pressure [36,37]. The constraints of the line 2 were
obtained from the previous isoelectronic (Casimir-less)
experiment [68]. The line 3 demonstrates the constraints
derived very recently from measuring the difference in
lateral forces [40]. The line 4 shows the constraints
obtained from measuring the Casimir force by means of
a torsion pendulum [38]. The constraints of the line 5 have
been obtained from the short-separation Cavendish-type
experiment [69–71]. Finally, the line 7 represents the
constraints derived from the results of the recent isoelec-
tronic experiment of Ref. [39]. In all cases the regions of the
plane ðλ; jαjÞ above each line are excluded by the results of
respective experiment, and the regions below each line are
allowed.
As can be seen in Fig. 3, the constraints of the line 6

obtained here from the experiment [51] on measuring the
difference of Casimir forces are quite competitive over the
wide interaction region from λ ¼ 30 nm to λ ¼ 5.4 μm. In
this region they are much stronger than all the constraints
obtained from other measurements of the Casimir force.
Specifically, the constraints of line 6 are up to a factor of 16
stronger than that of line 1 derived from measurements of
the Casimir pressure. The maximum strengthening holds at
λ ¼ 80 nm. The constraints of line 6 are also stronger than
that following from the previous isoelectronic (Casimir-
less) experiment (line 2) and recent experiment on meas-
uring the difference of lateral forces (line 3). The maximum
strengthenings by the factors of 122 and 177 hold at λ ¼
435 nm and 2 μm, respectively. At λ ¼ 3.1 μm the con-
straints of line 6 are stronger by a factor of 100 than that of
lines 4 and 5. Our constraints turn out to be stronger than
the ones obtained from the Cavendish-type experiment
(line 5) in the interaction region λ < 5.4 μm.
At λ ¼ 30 nm the constraints obtained here are of the

same strength as those found from the improved isoelec-
tronic experiment of Ref. [39]. At larger λ the latter become
stronger than the constraints of line 6 by up to a factor of
10.5. This is explained by the fact that the force sensitivity
in the experiment [39] is up to an order of magnitude higher
than the measure of agreement between the experimental
force differences and theoretical predictions in Ref. [51].
Therefore, both the isoelectronic experiment [39] and the
experiment on measuring the difference of Casimir forces
can be considered as two independent confirmations for the
obtained stronger constraints on the Yukawa-type correc-
tions to Newtonian gravity.

IV. CONCLUSIONS AND DISCUSSION

In the foregoing, we have derived the constraints on the
coupling constants of axionlike particles to nucleons and on

the non-Newtonian gravity of Yukawa type from the results
of a recent experiment on measuring the difference of
Casimir forces [51]. This experiment occupies a highly
important place among numerous experiments on measur-
ing the Casimir interaction because the predicted force
difference varies by thousands of percent depending on
which model of dissipation of free electrons is used. An
important feature of the employed differential measurement
scheme is also that the role of possible background effects,
such as the electrostatic patches, surface roughness, and
variation of optical properties of material boundaries is
largely suppressed [51]. All this allowed an unequivocal
exclusion for theoretical predictions of the Lifshitz theory
using the Drude model and a conclusive demonstration of
an agreement of the same theory using the plasma model
with the experimental data. The measure of this agreement
was used here to obtain stronger constraints on the axions
and non-Newtonian gravity than those obtained from all
previous measurements of the Casimir force.
According to our results, the derived constraints on the

coupling constant of the axion to nucleons over a wide
range of axion masses from 2.61 meV to 0.9 eVare stronger
by up to a factor of 16 than all previously known constraints
following from the Casimir experiments. They confirm by a
factor of 2 stronger constraints obtained previously from
the isoelectronic experiment [39] where the Casimir force
was nullified.
The constraints on the Yukawa-type corrections to

Newton’s law of gravitation, derived here from the same
experiment, are stronger than all those found from the
previously performed measurements of Casimir and gravi-
tational interactions in the range from 30 nm to 5.4 μm.
Strengthening is achieved by up to the factors of 16 and 122
as compared to the experiment on measuring the effective
Casimir pressure [36,37] and the previous Casimir-less
isoelectronic measurement [68], respectively. Our present
constraints are stronger by up to the factor of 177 than the
results obtained very recently from measuring the differ-
ence of lateral forces [40], but weaker by up to a factor 10.5
than the constraints following from the latest version of the
isoelectronic experiment [39]. Thus, at the moment the
experiment on measuring the difference of Casimir forces
and the isoelectronic experiment lead to the strongest
constraints on both the coupling constants of axions to
nucleons and on the Yukawa-type corrections to Newtonian
gravity over the respective regions of axion masses ma and
interaction lengths λ indicated above. Some possibilities on
how to further strengthen these constraints using the same
experimental setup are discussed in Ref. [72].
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