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We compute the net electric current generated during a first order electroweak phase transition when
fermions transit from the false to the true vacuum. This current is generated by the charge parity
conjugation (CP)-violating fermion interaction with the Higgs field during the phase transition and is
quantified in terms of a CP-violating phase in the bubble wall separating the symmetric from the
symmetry-broken phases. We comment on the seed magnetic field that this current is able to generate, and
it is possible implications for magnetogenesis in the early Universe during the electroweak phase transition.
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I. INTRODUCTION

An outstanding problem in modern cosmology is to
understand the origin of the observed large scale magnetic
fields [1]. It has been suggested that these fields could be a
relic from the Universe’s evolution during its early stages.
Several scenarios are plausible, and among them, phase
transitions are one of the venues that is under active
consideration. One of such transitions is the electroweak
phase transition (EWPT) that took place around temper-
atures of order 100 GeV. It is by now understood that the
EWPT is weakly first order [2] and can become stronger if
additional ingredients are considered, such as the presence
of magnetic fields themselves during the electroweak
epoch [3].
One of the first explored mechanisms to generate

magnetic fields during a first order phase transition is
the so-called battery effect [4]. The generation of electro-
magnetic fields from gradients of the Higgs field during the
EWPT [5] has been also studied in detail. Spontaneous
magnetization of Bose-Einstein condensedW bosons in the
broken phase after the EWPT has also been explored [6].
For reviews, see Refs. [7].
A first order EWPT happens through the nucleation of

the true vacuum bubbles within the false phase. These
bubbles expand and fill up the entire space until the phase
transition is completed. Bubble collisions can provide
turbulence that can in turn amplify any seed magnetic
field by a Dynamo effect [8]. During the phase transition,
particles acquire their masses when passing from the false
to the true vacuum through the bubble walls. This transit
can be regarded as a quantum scattering process, whereby
particles, in general, and fermions, in particular, have a
probability of being either transmitted or reflected.
The problem of fermion scattering off bubble walls

has been the subject of several studies in the context of
the EWPT. In the absence of any source of asymmetric

scattering, the solution has been found in full detail for the
thin wall regime in Ref. [9] by solving the Dirac equation
using for the fermion mass a term proportional to the Higgs
field profile between degenerate vacua. The charge parity
conjugation (CP)-violating scenario has been discussed in
Ref. [10], including CP-violation as part of the bubble wall
and finding the solution to the Dirac equation as a
perturbation on top of CP-conserving solutions. More
recently, the exact solution of the Dirac equation for the
case when the Higgs field profile is of the kink type and
contains a CP-violating phase was found in Ref. [11]. The
P-odd problem in the presence of an external hypermag-
netic field, where the asymmetric scattering is provided by
the different hypercarge couplings of left- and right-
fermion modes, has also been solved in Refs. [12]. The
emphasis of these works has been the search for extra
sources of baryogenesis.
When the scattering of conjugate (in a given charge)

fermion modes is asymmetric, the process can give rise to
currents whose fate depends on the dynamical properties of
the plasma. For instance, it has been found that in the
presence of a magnetic field, an imbalance between the
number density of left- and right-handed fermions leads to
an induced electric current [13] that in turn serves a seed for
the development of a magnetic field whose helicity can be
inherited from that of the fermions [14]. In this context, it is
interesting to explore and quantify the current that CP-
violating interactions with the bubble walls induce during
the EWPT, as a possible seed for magnetogenesis. In this
work, we undertake such exploration. We compute the
transmission and reflection coefficients for fermion modes
incident from the false vacuum. From these coefficients, we
compute the strength of the generated electric current that is
quantified in terms of a CP-violating phase introduced as a
property of the bubble wall interacting with fermions. Since
the emphasis is on the generated current, we work in the
infinite thin wall case to simplify the analysis.
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The work is organized as follows: In Sec. II, we write the
Dirac equation for the left- and right-handed chirality
modes propagating through a zero width wall during the
EWPT. CP violation is introduced in terms of a complex
mass term. In Sec. III, we find the solutions in the broken
and symmetric phases and discuss their properties. In
Sec. IV, we compute the transmission and reflection
coefficients and the asymmetry caused by the complex
mass term in the Dirac equation. Finally, in Sec. V, we
summarize and conclude providing possible implications of
this asymmetry for primordial magnetogenesis during
the EWPT.

II. DIRAC EQUATION WITH A COMPLEX MASS

A first order phase transition happens through bubble
nucleation. The interface separating the two phases is called
the wall. During the EWPT, the properties of the wall
depend on those of the effective electroweak effective
potential. In the thin wall regime and when the phase
transition is considered for degenerate energy densities
between the false and true vacua, it is possible to find a one-
dimensional solution for the Higgs field φ called the kink.
This is given by

φðzÞ ∼ 1þ tanh

�
z
λ

�
; ð1Þ

where z is the direction along the phase change and λ is the
wall’s width. We consider the limit where the wall has zero
width (λ ¼ 0). Therefore, the problem of fermion reflection
and transmission through the wall can be cast in terms of
solving the Dirac equation with a position dependent
fermion mass, mðzÞ, proportional to the Higgs field.
Since the wall has zero width, the kink solution becomes
a step function ΘðzÞ. To allow for a CP-violating inter-
action between the Higgs field and fermions, mðzÞ is
allowed to be complex. Therefore, the expression for the
particle’s mass becomes explicitly

mðzÞ ¼ m0eiϕΘðzÞ; ð2Þ

where ϕ is a phase. CP-violation implies that left- and
right-handed chirality modes of a fermion spinor Ψ,
namely,

ψR ¼ 1

2
ð1þ γ5ÞΨ;

ψL ¼ 1

2
ð1 − γ5ÞΨ; ð3Þ

couple to the Higgs field withmðzÞ andm�ðzÞ, respectively.
The Dirac equation is written as

fiγμ∂μ −m�ðzÞ 1
2
ð1 − γ5Þ −mðzÞ 1

2
ð1þ γ5ÞgΨ ¼ 0: ð4Þ

Hereafter, we work with the chiral representation of the
gamma matrices, where

γ0 ¼
�

0 −I
−I 0

�
; γj ¼

�
0 σj

−σj 0

�
;

γ5 ¼
�
I 0

0 −I

�
: ð5Þ

We now proceed to find the solution of Eq. (4).

III. SOLVING THE DIRAC EQUATION

A general solution of Eq. (4) is of the form

Ψ ¼
�
iγμ∂μ þm�ðzÞ 1

2
ð1 − γ5Þ þmðzÞ 1

2
ð1þ γ5Þ

�
Φ:

ð6Þ

Substituting Eq. (6) into Eq. (4), we obtain four Klein-
Gordon-like equations

�
−∂2− iγ3m0e−iϕδðzÞ

1

2
ð1− γ5Þ

− iγ3m0eiϕδðzÞ
1

2
ð1þ γ5Þ−m2

0ΘðzÞ
�
Φ¼ 0: ð7Þ

Using separation of variables, the solution of Eq. (7) can be
written as

Φðx̄; tÞ ¼ ξðx; yÞΦðzÞηðtÞ: ð8Þ

We look for the stationary solution, ηðtÞ ¼ e−iEt, describing
the motion of fermions perpendicular to the wall, i.e., along
the ẑ axis. Thus, Eq. (7) becomes

�
E2 −m2

0ΘðzÞ þ
d2

dz2
− im0δðzÞγ3

×

�
e−iϕ

1

2
ð1 − γ5Þ þ eiϕ

1

2
ð1þ γ5Þ

��
ΦðzÞ ¼ 0: ð9Þ

Now, we expandΦðzÞ in terms of the eigenspinors us� of γ3

u1� ¼

0
BBB@

1

0

�i

0

1
CCCA; u2� ¼

0
BBB@

0

1

0

∓ i

1
CCCA; ð10Þ

where s ¼ 1, 2 are spin indices and � label positive and
negative energies, respectively. Using Eq. (10), we can
write ΦðzÞ as
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ΦðzÞ ¼ Φ1þðzÞu1þ þΦ1
−ðzÞu1− þΦ2þðzÞu2þ þΦ2

−ðzÞu2−;
ð11Þ

where u1� and u2� satisfy the following relations

γ3u1;2� ¼ �iu1;2� ;

γ0u1� ¼∓ iu1∓;
γ0u2� ¼ �iu2∓;
γ5u1;2� ¼ u1;2∓ : ð12Þ

Substituting Eq. (11) into Eq. (9) and taking into account
that the eigenspinors are mutually orthogonal, we obtain
four differential equations, one for each of the four
combinations of u1;2� ,

�
E2 −m2

0ΘðzÞ þ
d2

dz2
þm0δðzÞ cosϕ

�
Φ1þðzÞ

¼ −im0δðzÞ sinϕΦ1
−ðzÞ;�

E2 −m2
0ΘðzÞ þ

d2

dz2
−m0δðzÞ cosϕ

�
Φ1

−ðzÞ

¼ im0δðzÞ sinϕΦ1þðzÞ;�
E2 −m2

0ΘðzÞ þ
d2

dz2
þm0δðzÞ cosϕ

�
Φ2þðzÞ

¼ −im0δðzÞ sinϕΦ2
−ðzÞ;�

E2 −m2
0ΘðzÞ þ

d2

dz2
−m0δðzÞ cosϕ

�
Φ2

−ðzÞ

¼ im0δðzÞ sinϕΦ2þðzÞ: ð13Þ

To solve the set of Eqs. (13), we notice that it is enough to
work with only two of the four equations, namely Φ1

�,
given that the other two equations are identical. We take

�
E2 −m2

0ΘðzÞ þ
d2

dz2
þm0δðzÞ cosϕ

�
Φ1þðzÞ

¼ −im0δðzÞ sinϕΦ1
−ðzÞ;�

E2 −m2
0ΘðzÞ þ

d2

dz2
−m0δðzÞ cosϕ

�
Φ1

−ðzÞ

¼ im0δðzÞ sinϕΦ1þðzÞ: ð14Þ

To find the explicit solution for ΦðzÞ, we divide the space
direction perpendicular to the wall in three regions, z < 0,
z ¼ 0, and z > 0. The solutions are found in each region
and then matched, imposing continuity of the solution and
accounting for the discontinuity of the first derivative
at z ¼ 0.
When z < 0, the mass term is equal to zero and thus, the

differential equations decouple and can be written as

�
E2 þ d2

dz2

�
Φ1þðzÞ ¼ 0;

�
E2 þ d2

dz2

�
Φ1

−ðzÞ ¼ 0; ð15Þ

whose solutions are

Φ1
�ðzÞ ¼ A�eiEz þ B�e−iEz: ð16Þ

For z > 0, once again the equations decouple, and they are
explicitly

�
E2 −m2

0 þ
d2

dz2

�
Φ1þðzÞ ¼ 0;

�
E2 −m2

0 þ
d2

dz2

�
Φ1

−ðzÞ ¼ 0; ð17Þ

whose solutions are

Φ1
�ðzÞ ¼ F�ei

ffiffiffiffiffiffiffiffiffiffi
E2−m2

0

p
z þG�e−i

ffiffiffiffiffiffiffiffiffiffi
E2−m2

0

p
z: ð18Þ

From the solutions at z ≠ 0, we now impose continuity at
z ¼ 0, which results in the conditions

A� þ B� ¼ F� þ G�: ð19Þ

To compute the discontinuity, we first find the derivative of
Eqs. (16) and (18). These are

ðz < 0Þ d
dz

Φ1
�ðzÞ ¼ iEðA�eiEz − B�e−iEzÞ;

ðz > 0Þ d
dz

Φ1
�ðzÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

q
ðF�ei

ffiffiffiffiffiffiffiffiffiffi
E2−m2

0

p
z

− G�e−i
ffiffiffiffiffiffiffiffiffiffi
E2−m2

0

p
zÞ; ð20Þ

respectively. Evaluating Eq. (20) at z ¼ 0, we get

ðz < 0Þ d
dz

Φ1
�ð0Þ ¼ iEðA� − B�Þ;

ðz > 0Þ d
dz

Φ1
�ð0Þ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

q
ðF� −G�Þ: ð21Þ

The proper way to compute the discontinuity at z ¼ 0 is to
integrate Eq. (14) from 0 − ϵ to 0þ ϵ and then take the
limit ϵ → 0. In this way, we obtain

Δ
�
d
dz

Φ1þðzÞ
�
¼ −mo cosϕΦ1þð0Þ − imo sinϕΦ1

−ð0Þ;

Δ
�
d
dz

Φ1
−ðzÞ

�
¼ mo cosϕΦ1

−ð0Þ þ imo sinϕΦ1þð0Þ: ð22Þ

By using Eqs. (16) and (21) into Eq. (22), we get the result
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Aþð−mo cosϕþ iEÞ þ Bþð−mo cosϕ − iEÞ
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

q
ðFþ −GþÞ þ im0 sinϕðA− þ B−Þ;

A−ðm0 cosϕþ iEÞ þ B−ðm0 cosϕ − iEÞ
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

q
ðF−G−Þ − im0 sinϕðAþ þ BþÞ: ð23Þ

Notice that we are left with two sets each with two
differential equations, Eqs. (19) and (23), and eight
unknown coefficients, A�, B�, F�, and G�. However, if
we assume that the incident wave comes from z → −∞,
then after the wave crosses the wall, there is only one
resulting wave traveling in the same direction; hence,
G� ¼ 0 and the system of equations is reduced

Aþ þ Bþ ¼ Fþ;

A− þ B− ¼ F−;

Aþð−mo cosϕþ iEÞ þ Bþð−mo cosϕ − iEÞ
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

q
ðFþÞ þ im0 sinϕðA− þ B−Þ;

A−ðm0 cosϕþ iEÞ þ B−ðm0 cosϕ − iEÞ
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

q
ðF−Þ − im0 sinϕðAþ þ BþÞ: ð24Þ

Since the incident wave comes from z → −∞, we express
the solution in terms of A�, such that the other coefficients
are written as

B− ¼ Aþ

�
m0 sinϕ

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
�
− A−

�
im0 cosϕ

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
�
;

Bþ ¼ −Aþ

�
im0 cosϕ

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
�
− A−

�
m0 sinϕ

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
�
;

ð25Þ

and

Fþ ¼ Aþ

�
1 −

im0 cosϕ

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
�
− A−

�
m0 sinϕ

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
�
;

F− ¼ Aþ

�
m0 sinϕ

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
�
þ A−

�
1 −

im0 cosϕ

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
�
:

ð26Þ

With Eqs. (25) and (26) at hand, we can now write the
solutions for Φ1;2

� . For z < 0,

Φ1;2
þ ¼ AþeiEz −

�
Aþ

�
im0 cosϕ

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
�

þ A−

�
m0 sinϕ

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
��

e−iEz;

Φ1;2
− ¼ A−eiEz þ

�
Aþ

�
m0 sinϕ

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
�

− A−

�
im0 cosϕ

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
��

e−iEz; ð27Þ

whereas for z > 0,

Φ1;2
þ ¼

�
Aþ

�
1 −

im0 cosϕ

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
�

− A−

�
m0 sinϕ

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
��

ei
ffiffiffiffiffiffiffiffiffiffi
E2−m2

0

p
z;

Φ1;2
− ¼

�
A−

�
1 −

im0 cosϕ

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
�

þ Aþ

�
m0 sinϕ

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
��

ei
ffiffiffiffiffiffiffiffiffiffi
E2−m2

0

p
z: ð28Þ

We now use these solutions to find the transmission and
reflection coefficients.

IV. TRANSMISSION AND REFLECTION
COEFFICIENTS

To write the solution of the Dirac equation, we substitute
Eqs. (27) and (28) into Eq. (11). In order to get the incident
Ψinc, reflected Ψref , and transmitted Ψtra waves, we first
compute Eq. (6). We start this procedure with the incident
wave. This travels from z < 0 to z ¼ 0, and therefore, we
obtain it from

ΨðincÞ ¼
�
γ0E − iγ3

∂
∂z

�
fΦ1þðzÞu1þ þΦ1

−ðzÞu1−
þΦ2þðzÞu2þ þΦ2

−ðzÞu2−g; ð29Þ

where Φ1;2
� only includes terms proportional to eiEz. Since

the reflected wave travels in the opposite direction of the
incident one, that is, toward negative values of z, we can get
it from Eq. (29) as well. However, in this case, we take into
account only terms inΦ1;2

� proportional to e−iEz. Finally, for
the transmitted wave, we consider the solution of Φ1;2

� for
positive values of z. Therefore, we get it from

ΨðtraÞ ¼
�
γ0E − iγ3

∂
∂zþm0

�
fΦ1þðzÞu1þ þΦ1

−ðzÞu1−
þΦ2þðzÞu2þ þΦ2

−ðzÞu2−g: ð30Þ

AYALA, HERNÁNDEZ, and SALINAS PHYSICAL REVIEW D 95, 123004 (2017)

123004-4



To quantify the probability that particles are either trans-
mitted or reflected, we need to compute the corresponding
reflection and transmission coefficients. These are built
from the incident, reflected, and transmitted currents.
Recall that for a given wave function Ψ, the current normal
to the wall is given by

J ¼ Ψ†γ0γ3Ψ; ð31Þ

where the incident, transmitted, and reflected currents are

Jinc ¼ −8ðA2þ þ A2
−ÞE2;

Jref ¼ 8ðA2þ þ A2
−Þ

E2m2
0

2E2 −m2
0 þ 2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p ;

Jtra ¼ −16ðA2þ þ A2
−Þ

E2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
ðEþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
Þ

2E2 −m2
0 þ 2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p ;

ð32Þ

respectively. To write Eq. (32), we have kept the currents
expressed in terms of the incident amplitudes A�. However.
since we are only looking for scattering states, i.e., positive
energies, A− ¼ 0, and the currents become

Jinc ¼ −8A2þE2;

Jref ¼ 8A2þ
E2m2

0

2E2 −m2
0 þ 2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p ;

Jtra ¼ −16A2þ
E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
ðEþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
Þ

2E2 −m2
0 þ 2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p : ð33Þ

Since the total current is conserved, Jinc ¼ Jref þ Jtra, we
have

1 ¼ Jref
Jinc

þ Jtra
Jinc

; ð34Þ

with R≡ −Jref=Jinc (the minus sign accounts for the fact
that the incident and reflected currents travel in opposite
directions) and T ≡ Jtra=Jinc. From Eq. (33), the reflection
and transmission coefficients, R and T, become

R ¼ m2
0

2E2 −m2
0 þ 2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p ;

T ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p ðEþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p Þ
2E2 −m2

0 þ 2E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p : ð35Þ

Recall that for particles in the false vacuum, the equations
of motion for left- and right-handed modes are the same
since they have vanishing mass. The distinction between
modes is made evident in the true vacuum, once they have
crossed the wall, where their equations of motion are
different. Therefore, in the region z > 0, it is possible to

separate the transmitted current into left- and right-handed,
namely,

JLtra ¼
�
1

2
ð1 − γ5ÞΨtra

��
γ0γ3

�
1

2
ð1 − γ5ÞΨtra

�
;

JRtra ¼
�
1

2
ð1þ γ5ÞΨtra

��
γ0γ3

�
1

2
ð1þ γ5ÞΨtra

�
: ð36Þ

The currents are given explicitly by

JLtra ¼
4A2þ

2E2 −m2
0 þ 2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p

×

�
−2E2

�
E2 −m2

0 þ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

q �

þ 4Em3
0cos

2ϕ sinϕ

�
;

JRtra ¼
4A2þ

2E2 −m2
0 þ 2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p

×

�
−2E2

�
E2 −m2

0 þ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

q �

− 4Em3
0cos

2ϕ sinϕ

�
: ð37Þ

From Eq. (37), it is clear that the transmitted currents
for the two modes are different due to the term
�4Em3

0 cos
2 ϕ sinϕ. We can also check that when

ϕ ¼ 0, the transmitted currents become equal. To obtain
the corresponding transmission coefficients, we divide JLtra
and JRtra by the incident current, namely,

TL ¼ E3 − Em2
0 þ E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
− 2m3

0cos
2ϕ sinϕ

2E3 − Em2
0 þ 2E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p ;

TR ¼ E3 − Em2
0 þ E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p
þ 2m3

0cos
2ϕ sinϕ

2E3 − Em2
0 þ 2E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

0

p :

ð38Þ
Equation (38) contains the information on the fraction of

incoming fermions passing through the wall out of the
incident ones. The asymmetry is quantified in terms of the
phase ϕ. Figure 1 shows the transmission and reflection
coefficients for the case when ϕ ¼ 0 as a function of the
incident particle’s energy. As expected, for this case, both
TL;R coincide. Figure 2 shows the left-handed transmission
coefficient for four different values of ϕ. As the phase
increases from 0 to the critical value ϕc ≃ π=5, the
curves become flatter for low energies. For values
π=5 < ϕ < π=2, the curves become steeper. The behavior
of the right-handed transmission coefficient is shown in
Fig. 3. In this case, the curvature changes from concave to
convex as the phase increases from 0 to the critical value
ϕc ≃ π=5. For values π=5 < ϕ < π=2, the curves become
concave again. For ϕ ¼ ϕc, the asymmetry is maximum,
and it vanishes again for ϕ ¼ π=2. Notice also that since the
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factor responsible for the asymmetry depends on the
particle’s mass, the transmission and reflection coefficients
as functions of the particle’s energy are affected by the
value of m0; the asymmetry is magnified as m0 increases.
This is shown in Figs. 4 and 5 for the case of the left- and
right-handed transmission coefficients, respectively.

V. SUMMARY AND DISCUSSION

In conclusion, we have studied in detail the asymmetrical
transmission of fermions incident on EWPT bubble walls
from the false into the true vacuum. The wall is considered
in the infinitely thin limit and modeled as a step function
whose height is the particle’s mass. A CP-violating
interaction term between fermions and the wall is included
by means of a complex phase factor and quantified by the
phase ϕ. We have shown that for 0 < ϕ < π=2, an
asymmetry in the transmission of left- and right-handed
modes is developed.
Since CP is violated, the above implies that for fermions

with a charge qf, a net local electric current transverse to
the wall,

J⃗ ¼ qfðJ⃗Ltra − J⃗RtraÞ; ð39Þ

is generated in the true vacuum. Figure 6 shows the strength
of such current, quantified in terms of the difference
between the transmission coefficients TL − TR just after
fermions pass through the wall.
Recall that an important property of a magnetic field is

its helicity. This is defined as the integral over a closed
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FIG. 1. Transmission coefficients TL and TR for ϕ ¼ 0 and
m0 ¼ 175 GeV.
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FIG. 2. Transmission coefficient TL for four different values of
ϕ and m0 ¼ 175 GeV.
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FIG. 3. Transmission coefficient TR for four different values of
ϕ and m0 ¼ 175 GeV.
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FIG. 4. Transmission coefficient TL for four different values of
m0 evaluated for ϕ ¼ π=5.
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FIG. 5. Transmission coefficient TR for four different values of
m0 evaluated for ϕ ¼ π=5.
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volume (one where the magnetic field lines are fully
contained) of the dot product between the magnetic field
B⃗ and the vector potential A⃗. With this definition, helicity is
a gauge invariant quantity. A homogeneous magnetic field
has vanishing helicity. Notice that the scenario advocated in
this work produces electric currents normal to the bubble
walls. The intensity of these currents at each scattering
point on the bubble wall depends on the energy of the
incident particle, and thus, it is a probabilistic process.
When these bubbles are considered as three-dimensional
spheres, the produced currents are radial and have different
intensities. Therefore, the induced magnetic field can be
helical. This is an important feature since turbulent dif-
fusion cannot dissipate helicity [15]. Hence, with the kind
of magnetic fields produced in this scenario, it becomes

possible that during the Universe’s evolution, part of the
magnetic field energy can be transferred from shorter to
longer wavelengths (inverse cascade), thus avoiding that
the fields become short ranged [16].
Notice also that the strength of the electric currents, and

thus of the magnetic field generated by this mechanism, is
proportional both to the (product of the square of the cosine
times the sine of the) CP violating phase between left- and
right-handed modes as well as to the intensity of the
Yukawa interaction between fermions and the Higgs field,
represented by the value m0, hereby chosen to correspond
to the top quark. The asymmetry is maximal for ϕ≃ π=5.
Such a magnitude of a CP-violating phase is comparable to
the size of the complex phase in the CKM matrix [17].
Therefore, to study its subsequent evolution, one can think
of remaining within the realm of the standard model (SM).
Nevertheless, it is known that the intensity of the interaction
is not enough to produce a strong enough first order phase
transition to avoid the sphaleron erasure of the baryon
asymmetry (BAU) produced during the EWPT [18].
Although this intensity may be enough to generate a strong
enough magnetic field seed, to strengthen the interaction,
and thus the magnitude of the generated field, and perhaps
link magnetogenesis with the BAU during the EWPT, it
may be interesting to explore extensions of the SM such as
two Higgs doublet models or even models with a singlet
scalar coupling to the Higgs field. Work along these lines is
in progress and will be reported elsewhere.
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