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We describe a novel, very fast and robust, directed search incoherent method (which means that the
phase information is lost) for periodic gravitational waves from neutron stars in binary systems. As a
directed search, we assume the source sky position to be known with enough accuracy, but all other
parameters (including orbital ones) are supposed to be unknown. We exploit the frequency modulation due
to source orbital motion to unveil the signal signature by commencing from a collection of time and
frequency peaks (the so-called “peakmap”). We validate our algorithm (pipeline), adding 131 artificial
continuous-wave signals from pulsars in binary systems to simulated detector Gaussian noise, charac-
terized by a power spectral density Sh ¼ 4 × 10−24 Hz−1=2 in the frequency interval [70, 200] Hz, which is
overall commensurate with the advanced detector design sensitivities. The pipeline detected 128 signals,
and the weakest signal injected (added) and detected has a gravitational-wave strain amplitude of ∼10−24,
assuming one month of gapless data collected by a single advanced detector. We also provide sensitivity
estimations, which show that, for a single-detector data covering one month of observation time, depending
on the source orbital Doppler modulation, we can detect signals with an amplitude of ∼7 × 10−25. By using
three detectors, and one year of data, we would easily gain a factor 3 in sensitivity, translating into being
able to detect weaker signals. We also discuss the parameter estimate proficiency of our method, as well as
computational budget: sifting one month of single-detector data and 131 Hz-wide frequency range takes
roughly 2.4 CPU hours. Hence, the current procedure can be readily applied in ally-sky schemes, sieving in
parallel as many sky positions as permitted by the available computational power. Finally, we introduce
(ongoing and future) approaches to attain sensitivity improvements and better accuracy on parameter
estimates in view of the use on real advanced detector data.
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I. INTRODUCTION

Since the early 1960s, when the first gravitational-wave
bar detector was developed [1], the experiments that aimed at
the detection of gravitational radiation, planned in labora-
tories throughout the world, have been in continuous pro-
gress [2–10]. At present, LIGO and Virgo [11–13] are the
most sensitive ground-based gravitational-wave detectors.
Following a major upgrade that lasted for five years, with

consequent improvement in sensitivity [14], the LIGO
observatories resumed data taking with the first observing
science run during which they have collected data between
September 2015 and January 2016. On September 14,
2015, the advanced LIGO interferometers detected for the
first time a coincident transient gravitational-wave signal
produced by the coalescence of a pair of black holes [15],
marking thus the official beginning of a new era: the era of
gravitational-wave astronomy.
There are, however, other classes of gravitational-wave

signals, which have still to be detected, such as long-lived

continuous waves (CWs), which are expected to be emitted
by rapidly rotating neutron stars (NSs) with nonaxisym-
metric deformations [16]. Based on standard theory of
stellar evolution, we expectOð108Þ of these sources to exist
in the Galaxy [17], but only ∼2500 NSs (mostly pulsars)
have been electromagnetically observed [18]. Roughly
1300 of these observed radio pulsars are located in binary
systems, and have rotation rates that can allegedly emit
CWs in the advanced LIGO-Virgo sensitivity band. This
promising class of sources is the target of the current paper.
The detectionofCWsignalswill enrich the understanding

that we have about the emitting objects (i.e., NSs), providing
us insight about the equation of state of the matter at
supranuclear densities inside the NSs [19], know exactly
theNSdegree of asymmetry, and have also demographic and
evolutionary information about these sources.
In the rest frame of the NS, CWs have a constant

amplitude and are quasimonochromatic with a slowly
decreasing intrinsic frequency. They are received at
Earth-based detectors with a Doppler modulation due to
the relative motion between the source and the detector.
Consequently, the observed phase evolution depends on the*paola.leaci@roma1.infn.it
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intrinsic signal frequency, frequency time derivatives (also
known as “spindown” terms), and source sky position. If
the source is located in a binary system, there is a further
frequency-modulation caused by the source orbital motion,
which in general is described by five unknown Keplerian
parameters [20] (as detailed in Sec. II B).
The weakness of the expected signal requires long

integration times, typically of the order of a few months
or years, to accumulate a signal-to-noise ratio (SNR)
sufficient for detection as, for a coherent (incoherent.1)
search, the SNR scales as the square (fourth) root of the
length of the observational time (i.e., the length of the data
being analyzed) [21,22]. All-sky, wide frequency searches
over long observation times cannot be treated by using
standard coherent methods (where the phase information is
used), as is the case for targeted and narrow-band searches
for known pulsars [23,24], because of the demanding
computational burden. Hence, hierarchical approaches
have been proposed [25–27], where the entire data set is
split into shorter segments. Each segment is analyzed
coherently, and afterwards the information from the
different segments is combined incoherently. The hierar-
chical approaches allow us to dramatically reduce the
analysis computational time at the cost of a relatively
small sensitivity loss.
The additional source orbital parameters make the search

parameter space to blow up, resulting in a prohibitive
computational cost [28]. Hence, it becomes pressing to
develop robust strategies to detect CWs emitted by NSs
orbiting a companion object, and being able to reach a
tradeoff between computational cost and sensitivity.
Although CWs have not been detected so far by analyzing
data from initial LIGO and Virgo detectors, stringent upper
limits have been set on the gravitational-wave signal
strength for both isolated pulsars [24,29–31] and pulsars
in binary systems [32,33].
A particularly interesting type of potential CW sources

are NSs in low-mass x-ray binaries (LMXBs), with
Scorpius X-1 being its most prominent representative
[34]. Several searches for CW signals from Scorpius
X-1 have been performed (without any detections) on data
from initial LIGO [33,35], and new algorithms (pipelines)
have been developed [28] and recently tested in a Scorpius
X-1 mock data challenge (MDC) [36].
We present here an incoherent strategy that allows us to

perform directed searches for CWs emitted by NSs in
binary systems (LMXB like sources), exploring a wide
frequency range and source orbital parameters by using
only a standard laptop computer for a few hours. We also
include investigations of pulsars in eccentric orbits, which
we know to exist [18,37,38]. The method is based on
selecting significant peaks from a short fast-Fourier-
transform (FFT) database (SFDB), and exploiting the

frequency modulation pattern produced by the source
orbital motion to detect a potential CW signal. We show
the performance of the current method to detect CW signals
by analyzing pure Gaussian noise data to which we add
hundreds of fake signals. We consider one month of gapless
data, i.e., data taken continuously during the assumed
observation time from the Virgo (or equivalently LIGO)
detector in its advanced configuration.
We restrict our investigation to constant-frequency CW

signals (i.e., we neglect frequency time derivatives). This is
motivated by the assumed steady-state torque-balance
situation in LMXB like sources [39,40], which are our
main target of interest.2 However, the corresponding
fluctuations in the accretion rate are expected to cause
some stochastic frequency drift, and one will therefore need
to be careful to restrict the maximal coherence time (i.e.,
FFT duration) in order to limit the frequency resolution. In
fact, in [28] it has been shown that the maximal FFT
duration would be restricted by the astrophysical concern of
spin wandering, namely a stochastic variability of the spin
frequency due to variations in the accretion rate. In the
present work we neglect the spin wandering effect, as our
new robust methodology is expected to be unaffected by
these variations. Exhaustive future studies will be able to
shed light on these considerations and will be presented in a
subsequent paper.
The novel procedure described here allows us to detect

gravitational-wave signals with strain amplitude of ∼10−24,
the weakest value that we used for the simulations,
assuming one month of gapless data collected by a single
advanced detector. Sensitivity estimation studies show
however that, depending on the source orbital Doppler
modulation, the current method can detect signals with an
amplitude of ∼7 × 10−25. By using three advanced detec-
tors, and one year of data, we would be able to further
improve the sensitivity by a factor 3. This novel algorithm
is the first in the literature able to provide estimates for
orbital eccentricity and argument of periapse, and this is
achieved with a small computational cost.
The paper is organized as follows. Section II provides a

general and brief introduction of the expected signal model.
Section III describes the data analysis approach. In Secs. V
and IV, we present a rigorous description of the novel

1In an incoherent method the phase information is lost.

2The plausibility of the torque-balance scenario is based on the
observed lack of accreting neutron stars spinning at very high
frequencies (above 700 Hz) [41], even though their ages and
accretion rates imply that they should have accreted enough
matter to reach the centrifugal break-up limit around 1400 Hz
[42]. Alternative interpretations of the lack of high spin frequen-
cies in the most rapidly accreting neutron stars have been
proposed and involve disc accretion physics [43]. Although
these interpretations indicate that gravitational radiation is not
required to brake the spin-up of the neutron star, they do not rule
out gravitational emission from accreting systems. We underline
that the torque-balance argument is used here as an approximate
bound.
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strategy used to detect CW signals orbiting a companion
object. In Sec. VI, we report the parameter estimation
methods. In Sec. VII, we discuss the choices of the
investigated parameter space, and detail the signal gener-
ation. Sections VIII and IX show the key results of the
procedure. Sensitivity estimates and computing cost budget
are detailed in Secs. X and XI, respectively. Finally,
Sec. XII contains concluding remarks, underway search
improvements, and future prospects.

II. THE SIGNAL

In the following we briefly recall the expected waveform
model and signal phase.

A. The waveform model

The expected waveform of a nonaxisymmetric NS,
rapidly rotating around one of its principal axes, and
received at the detector is

hðtÞ ¼ h0Fþðt; n⃗;ψÞ
1þ cos2ι

2
cosϕðtÞ

þ h0F×ðt; n⃗;ψÞ cos ι sinϕðtÞ; ð1Þ

where ι is the inclination angle of the NS rotational axis to
the line of sight and ϕðtÞ is the phase evolution of the
gravitational-wave signal; Fþ;× are the detector beam
pattern functions to plus and cross polarized gravitational
waves, which depend on the sky position n⃗ and the relative
polarization angle ψ of thewave-frame3 [21,44]. In standard
equatorial coordinates, with right ascension α and declina-
tion δ, the components of the unit vector n⃗, pointing to the
NS, are given by ðcos α cos δ; sin α cos δ; sin δÞ.
The gravitational-wave amplitude parameter is given by

h0 ¼
4π2G
c4

Izzf2ε
d

; ð2Þ

where f is the frequency of the emitted CW signal (which is
also twice the rotational frequency of the star for the
sources we are interested in [45]); G is Newton’s constant,
c is the speed of light, d is the distance to the star, and ε is
the star ellipticity expressed in terms of principal moments
of inertia. The distribution of ε for NSs is uncertain
and model dependent since the breaking strain for a NS
crust is highly uncertain (see, e.g., [46–49] for exhaustive
discussion).
Spinning NSs in binary systems are particularly inter-

esting because accretion from a companion may cause an
asymmetrical quadrupole moment of inertia of the spinning

NS. An intriguing astrophysical model postulating torque
balance between the accretion and CWemission [39,40,50]
yields a predicted CW amplitude that, for Scorpius X-1, is

h0 ∼ 3.5 × 10−26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
300 Hz

f

s
: ð3Þ

B. Binary CW signal phase

The general CW phase model assumes a slowly spin-
ning-down NS with a rotation rate and quadrupolar
deformation resulting in the emission of CWs. The phase
evolution can therefore be expressed as a Taylor series in
the NS source frame as

ϕsrcðτÞ ¼ 2π½fðτ − trefÞ þ
1

2
_fðτ − trefÞ2 þ � � ��; ð4Þ

where tref denotes the reference time and f; _f; f̈;… are the
CW frequency and spindown parameters.
To relate the CW phase in the source frame to the phase

ϕðtarrÞ in the detector frame, we need to relate the wave-
front detector arrival time tarr to its source emission time τ,
i.e., τðtarrÞ, such that ϕðtarrÞ ¼ ϕsrcðτðtarrÞÞ. Neglecting
relativistic wave-propagation effects, such as Einstein
and Shapiro delays (see, e.g., [51,52] for more details),
we can write this as

τðtarrÞ ¼ tarr þ
r⃗ðtarrÞ · n⃗

c
−
D
c
−
RðτÞ
c

; ð5Þ

where r⃗ is the vector from solar-system barycenter (SSB) to
the detector, D is the (generally unknown) distance
between the SSB and the binary barycenter (BB), R is
the radial distance of the CW-emitting NS from the BB
along the line of sight, where R > 0means the NS is further
away from us than the BB.
Following the discussion in Sec. III A of [28], we can

write the Rømer delay of the binary (i.e., the light-travel
time across the orbit) as

R
c
¼ ap½sinωðcosE − eÞ þ cosω sinE

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
�; ð6Þ

where we defined the projected semimajor axis ap ≡
a sin I=c of the NS orbit; I is the inclination angle between
the orbital plane and the sky, a the semimajor axis, ω is the
argument of periapse, e the orbital eccentricity, and E the
eccentric anomaly, defined by the transcendental relation

τ − tp ¼ P
2π

ðE − e sinEÞ: ð7Þ

Equation (7) is the so-called Kepler’s equation, and
describes the dynamics in binary systems; P is the binary
period, and tp is the time of periapse passage.

3The wave frame is a right-handed Cartesian coordinate system
based on the direction of propagation of the gravitational wave.
Its z axis is along the direction of propagation, and its x-and y-
axes are along the principal directions of polarization of the wave.
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Dropping the unknown distance D to the BB (which is
equivalent to redefining the intrinsic spindown parameters),
and defining the SSB wavefront arrival time tSSB as

tSSBðtarr; n⃗Þ≡ tarr þ
r⃗ðtarrÞ · n⃗

c
; ð8Þ

we can rewrite the timing relation Eq. (5) as

τðtSSBÞ ¼ tSSB −
RðτÞ
c

: ð9Þ

As we are interested only in binary systems with known
sky-position n⃗, we can place us into the SSB, which is
always possible for known n⃗ [28]. In order to simplify the
notation, we now simply write t≡ tSSB. Plugging this
timing model into the phase of Eq. (4), we obtain

ϕðtÞ ≈ 2π

�
f

�
Δt −

R
c

�
þ 1

2
_f

�
Δt −

R
c

�
2

þ � � �
�
; ð10Þ

with Δt≡ t − tref . The binary systems we are interested in
have semimajor axis ap of order of Oð1–3Þ s, and binary
periods P of order of several hours. Hence, the change in E,
and therefore RðEÞ during the time R=c, will be negligible,
and so we can approximate EðτÞ ≈ EðtÞ, namely

t − tp ≈
P
2π

ðE − e sinEÞ: ð11Þ

For our purposes, by using the linear phase-model approxi-
mation, we can write Eq. (10) as [28]

ϕðtÞ ≈ 2πf

�
Δt −

RðtÞ
c

�
: ð12Þ

Replacing Eq. (6) into Eq. (12), we find

ϕðtÞ ¼ 2πffΔt − ap½sinωðcosEðtÞ − eÞ
þ cosω sinEðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
�g; ð13Þ

which is the phase model valid for eccentric orbits. It is
useful to consider, however, also the small-eccentricity
limit,4 thus simplifying Eqs. (6) and (13). To this purpose,
we Taylor expand Eqs. (6) and (11) up to leading order in e,
i.e., inserting EðtÞ ¼ E0ðtÞ þ eE1ðtÞ þ � � � into Kepler’s
equation [i.e., Eq. (11)], and obtain

E0ðtÞ ¼ Ωðt − tpÞ; ð14Þ

E1ðtÞ ¼ sinE0ðtÞ: ð15Þ

Plugging this information into Eq. (6), we obtain the Rømer
delay of the binary to leading order in e as

RðtÞ
c

¼ ap

�
sinψðtÞ þ κ

2
sin 2ψðtÞ − η

2
cos 2ψðtÞ − 3η

2

�
:

ð16Þ

We use the standard Laplace-Lagrange parameters
defined as

κ ≡ e cosðωÞ; ð17Þ

η≡ e sinðωÞ; ð18Þ

and the mean orbital phase,

ψðtÞ≡Ωðt − tascÞ; ð19Þ

measured from the time of ascending node tasc, which (for
small e) is related to tp by [51]

tasc ≡ tp −
ω

Ω
; ð20Þ

and that (contrary to the time of periapse tp), remains well
defined even in the limit of circular orbits (e ¼ 0). The
parameter Ω≡ 2π

P is the mean orbital angular velocity.
The small-eccentricity phase model can be, therefore,

written as

ϕðtÞ ≈ 2πf

�
Δt − ap

�
sinψ þ κ

2
sin 2ψ −

η

2
cos 2ψ −

3η

2

��
:

ð21Þ

III. DATA ANALYSIS TECHNIQUE

In what follows we summarize details of the data
analysis methodology used to detect CW signals hidden
in the calibrated detector strain data. We commence from
short FFTs of the collected data, from which we compute a
time-frequency map (i.e., the peakmap). This is analyzed
by applying first a thresholding criterion, and then a series
of four consecutive filters with the purpose of allowing a
CW signal to stand out.

A. Short fast-Fourier-transform database

The first step consists of building up a short FFT
database, the SFDB [53], where the duration of each
FFT, i.e., the coherence time TFFT, must be short enough
such that the signal power remains confined within a
frequency bin. The signal frequency changes in time,
however, due to the Earth Doppler modulation, source
spindown (if present), and -if the star is in a binary system-
also due to the modulation caused by the source binary
orbit. To take this modulation into account we constrain
here the FFT time baseline to TFFT ¼ 512 s (for more
details, see Appendix C). We note that the only Earth4Low-eccentricity values generally range from 0 up to 0.1 [28].
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Doppler modulation would allow us to produce FFTs
longer than those used here (see, e.g., Table I of [54]).
The FFTs are then obtained from calibrated detector

strain data split into interlaced (by half) chunks of TFFT
duration, each windowed in order to limit the dispersion of
power due to their finite length. A time-domain data
cleaning procedure, described in [53,55,56], is applied
when constructing the SFDB to safely remove time-domain
disturbances in detector data, which would enhance the
detector noise level at the cost of a reduction in search
sensitivity.

B. Peakmap

From the SFDBwe create a time-frequency map, called a
peakmap, obtained selecting the most significant peaks on
equalized periodograms (according to what is described in
the following). This is a subtle step as the peak selection
will affect the detection efficiency: all potential CW
candidates, skipped at this stage due to an inaccurate
construction of the peakmap, will be definitely lost. The
peakmap has been described in [53,54], but here we recall
only the salient aspects.
The peakmap production begins by computing, for each

of the N FFTs in the SFDB, the ratio R of the square root
of the periodogram [i.e., the square modulus of the ith FFT,
SP;iðfÞ] and the autoregressive average spectrum estima-
tion, SAR;iðfÞ [53],

Rði;lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SP;iðflÞ
SAR;iðflÞ

s
; i ¼ 1;…;N ; ð22Þ

where R is computed for every frequency bin (indexed by
l) of the ith FFT. By construction, the ratio R is an
adimensional function varying around 1 and showing
evident departures from 1 when spectral peaks are present.
The function R is compared to a threshold Rth ¼

ffiffiffiffiffiffiffi
2.5

p
[54] such that, all frequency bins above Rth, and that are
local maxima, are selected. We call peak each pair con-
sisting of a selected frequency bin and beginning time of
the corresponding FFT. In general, the collection of all
peaks, selected from all FFTs of the SFDB, forms the
peakmap. A collection of peaks selected from a single FFT
is instead referred to as a “subpeakmap.”
An example of a peakmap (corrected by the Earth’s

Doppler modulation) is shown in Fig. 1 for simulated data
covering an observation time of 30 days, and a detector
power spectral density Sh¼4×10−24Hz−1=2 in the fre-
quency band [70,73] Hz.5 The faint tracks of three (fake)
CW signals, having a gravitational-wave strain amplitude
of ∼3 × 10−24, and an adimensional Doppler modulation
due to orbital motion of ΔM∼2×10−4;6×10−5;2.6×10−4

[see Eq. (A4) for details] for frequency of ∼70.5, 71.5, and
72.5 Hz, respectively, are clearly visible as sinusoidal
curves. We note that the peakmap is corrected only by
the modulations caused by the Earth (orbital and rotational)
motions, and not by the binary orbital motion (described by
unknown parameters). If this last effect could be removed,
the signals would appear as straight lines.
We stress that, contrary to what is implemented in the

StackSlide [25] and Powerflux [57] schemes, we select here
peaks above threshold, and that are also local maxima. This
translates into a better robustness to spectral disturbances
and a significant reduction of the analysis computational
burden, as the number of selected peaks is smaller. This
comes at the cost of only a small sensitivity loss (≲%10), as
described in [54], where we refer the reader to for detailed
statistical considerations about peak selection.

C. Peakmap analysis

After correcting the peak frequencies for the Doppler
effect due to Earth’s motions, we split the frequency range
into 1 Hz-wide frequency bands, and deeply analyze the
peakmap in every band. Such an analysis consists of
initially filtering the peak frequencies by using two
standard triangular impulse response filters (with and
without weighing the peak frequencies by their peak
amplitude R, respectively). Only if the maximum values
of the two filter outputs are above a given threshold, the
analyzed frequency bands are considered interesting, and
the filtered data are convolved against a further filter, which
has been built in such a way as to model the expected
pattern of a CW signal.
If a signal is found, we proceed to estimate the source

parameters. To this purpose, we first select the most

FIG. 1. Peakmap in the frequency band [70,73] Hz, where we
can recognize the track of three simulated CW signals. Time is
since the beginning of the run.

5Details on how such fake data have been generated are given
in Sec. VII A.
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significant peaks,6 and then average all the selected most
significant peak frequencies corresponding to a same FFT
midtime. By using those averaged peak frequencies, we can
first compute a periodogram estimate and then a least-
squares fit (properly described in Secs. VI A and VI B,
respectively). We detail in the next section the conditions
allowing us to find a signal.

IV. IDENTIFYING SIGNAL PATTERN
AND CLAIMING A DETECTION

The pattern of a CW signal, whose frequency is
modulated by the source orbital motion, is characterized
by two asymmetric horns [such as those hidden in the blue
dots of Fig. 2(a)].7 To identify the “double horn” feature,
which is the signature of the orbital Doppler modulation,
the peak frequencies in every 1 Hz analyzed frequency
band undergo a set of four filters in cascade, described in
the following.
Figure 2(a) shows the peak amplitudeR as a function of

the peak frequencies for two superimposed frequency
bands taken as examples where a modulated CW signal
is present (blue dots) and absent (red dots). In order to
facilitate the task of identifying a CW signal with two
asymmetric horns, we first filter the peak frequencies by
using a standard triangular impulse response filter
(i) [whose output is denoted with W in Fig. 2(b)], and a
window half-width equal to T−1

FFT (empirically chosen). We
then apply the same filter to the peak frequencies weighted
by the peak amplitude R (ii), obtaining an output Ww
[shown in Fig. 2(c)]. We note how the double-horn feature
is enhanced after applying these filters.8

In order to first identify frequency bands with potential
signals standing out from noise, we verify if

�
maxW > mð1Þ þ 6mð2Þ
maxWw > mwð1Þ þ 6mwð2Þ;

ð23Þ

where

mð2Þ ¼ medianðjW −mð1ÞjÞ
C

; ð24Þ

with mð1Þ ¼ medianðWÞ, and C ¼ 0.6745 is a normaliza-
tion factor such that, if the distribution ofW is normal, then
mð2Þ is the standard deviation [54]. We note thatmwð1Þ and

mwð2Þ have the same meaning as mð1Þ and mð2Þ, respec-
tively, but are referred to Ww.

9

Figure 2(b) shows the output of the triangular impulse
response filter (i) applied to a 1 Hz-wide frequency band
where a modulated CW signal is present (blue curve), and
absent (red curve). In this last case of pure Gaussian noise,
there are no outliers crossing the red straight line, which
correspond to the value mð1Þ þ 6mð2Þ.
For all frequency bands satisfying Eq. (23), we compute

the ratio of Ww=W, illustrated in Fig. 2(d). This is done to
remove the depletion visible in the blue curves of Figs. 2(b)
and 2(c), which is due to the peak selection effect in the
peakmap [53,54], and is more prominent for loud signals.
To enhance the signal contribution, the ratioWw=W is then
convolved against a filter (iii), which we have ad hoc built
with a nonsymmetrical Gaussian shape response, and
finally a filter identical (iv), but running in opposite
direction. This is needed to reproduce, in the plane
(f,R), the shape of a signal whose frequency is modulated
by the source orbital motion [see blue dots in Fig. 2(a)].
Such a Gaussian-like filter, modeling half of the horn-

shaped signal modulation pattern, is given by

8<
:

Gð1∶μÞ ¼ e−
ðtð1∶μÞ−μÞz

uσ2

Gðμþ 1∶ntÞ ¼ e
−ðtðμþ1∶ntÞ−μÞq

gσ2 ;
ð25Þ

where μ ¼ 3σ, nt ¼ 12σ, z ¼ 2, u ¼ 2, q ¼ 1.7, g ¼ 10,
and the “standard deviation” σ ¼ 6 (all values found
empirically).
We refer the reader to Appendix E for further details on

the Gaussian-like filter.
To model the remaining half part, the convolution is

computed by using the same Gaussian-like filter running in
opposite direction.
In general, if a signal is present in a band, when the

Gaussian-like filter runs in one direction, only one of the
horns in Fig. 2 gets amplified, and the other horn will be
amplified by the filter running in opposite direction. If this
condition is not satisfied, we consider the signal not found
in the analyzed frequency band. Alternatively, we can claim
a detection and identify the band around the modulated
signal pattern. For safety reasons we select, however, a
wider band consisting of roughly 100 additional samples
(corresponding to ∼10 mHz) on both sides.
The standard deviation of the Gaussian-like filter σ ¼ 6

is chosen to bewide enough to account for the Doppler shift
due to source orbital motion. If a signal is not found in a
frequency band, however, a second attempt is done by
convolving the data against an identical Gaussian-like filter,

6We call most significant peaks those having a peak amplitude
R larger than the threshold value of ∼3.5 (see Appendix D for
details).

7We note that such an asymmetry depends on the combination
of orbital parameters, and is also present for circular orbits.

8The filters (i) and (ii) are implemented in the SNAG software
package [58], with the possibility of choosing either a triangular,
rectangular or exponential window, which exhibit similar results
when applied to the same data set. We opted, however, for the
most intuitive choice of a triangular impulse response.

9We use the median, rather than the mean, as it is more robust
in the presence of outliers, and we choose it to build a robust
estimator of the dispersion parameter, which we use instead of the
classical standard deviation.
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but with σ ¼ 1, to take into account also smaller Doppler
modulation effects.
We stress that what we refer to as detection claim here

corresponds to candidates (i.e., potential signals) that must
however undergo deep follow-up studies, such as [30,59],
before being eventually confirmed as real detections.

V. DETAILS OF THE SEARCH METHOD

The new strategy presented here relies on the basic
consideration that the frequency modulation caused by the
source orbital motion can be used to unveil the signature of
CW signals, and to also extract information on source

parameters. We summarize the salient steps of the pro-
cedure in the following:
(1) We start from the subpeakmaps obtained by process-

ing the artificial data set generated according to the
guidelines described in Sec. VII. In particular, we
have N ¼ 10127 subpeakmaps and interlaced FFTs
of duration TFFT ¼ 512 s, covering an overall one
month of gapless data.
Peakmap analysis:

(2) For every subpeakmap, for the source sky location
assumed to be known with enough accuracy, we
apply a frequency correction to account for the
Doppler shift due to the Earth motions. Hence,

(b)(a)

(d)(c)
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FIG. 2. Panel (a): Peak amplitude R versus peak frequencies for two frequency bands where a modulated CW signal is present (blue
dots), with an orbital Doppler modulation 2ΔMfs ∼ 37 mHz (see Appendix A for details), and absent (red dots). Panel (b): OutputW of
a triangular impulse response filter applied to the peak frequencies in a band where there is a signal added to Gaussian noise data (blue
curve), and the same band when no signal is present, but just pure Gaussian noise (red curve). The highest and lowest lines correspond to
the valuemð1Þ þ 6mð2Þ in the two cases, respectively. Panel (c): OutputWw of the triangular impulse response filter applied to the peak
frequencies weighted by their respective peak amplitude; the dashed line corresponds to the value mwð1Þ þ 6mwð2Þ (see main text for
the definition of the m and mw values.). Panel (d): Ratio of Ww=W versus peak frequencies. We note that the signal visible in Fig. 2(a)
has a strain amplitude of ∼2.7 × 10−24 over a Tobs ¼ 30 days. As shown in Sec. X, we would have detected the same signal also if it
would have had a strain amplitude of ∼8.7 × 10−25 over the same observation time.
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neglecting relativistic effects, we shift the peak
frequencies fp from the original received ones,
fop, according to

fp ¼ fop
ð1þ v⃗·n⃗

c Þ
; ð26Þ

where n⃗ is the unit vector pointing from the SSB to
the source (see Sec. II); v⃗ is the detector velocity
with respect to the SSB frame, and is given by the
sum of two components, from the yearly Earth
motion around the Sun and from the rotation of
Earth around its axis. These velocities are computed
at the FFT midtimes (tc) by using the DE405 JPL
Solar System Ephemeris [60,61].
We emphasize that fp are then the peak frequen-

cies modulated due to the only source orbital
motion, which is the information we need for the
current procedure.

(3) We analyze the search frequency range splitting it
into 1 Hz frequency bands, and each of them
undergoes scrutiny to establish if the modulated
pattern of a CW signal is present. To this purpose we
apply the filters described in Sec. IV and, if a signal
is found, we extract the subband containing the
modulated pattern that needs additional inspection
for the parameter estimation.

(4) In every subband identified as above, we
select the most significant peaks crossing the
threshold established in Appendix D (i.e., having
R > θthr ∼ 3.5).

(5) We then average the frequencies of the most sig-
nificant peaks identified at the previous stage, and
corresponding to a same FFT midtime, resulting at
most in N ðtc; f̄pÞ pairs per subband.10
Parameter estimation:

(6) For each subband, we perform a periodogram
estimate (detailed in Sec. VI A) for the unevenly
spaced data set ðtc; f̄pÞ in order to look for perio-
dicities, and possibly estimate source orbital period.

(7) We then carry on with a least-squares fitting of
sine waves to estimate the signal frequency and
remaining orbital parameters (as depicted in
Sec. VI B).

Further details follow to describe steps 6 and 7.

VI. PARAMETER ESTIMATION METHODOLOGY

A. Spectral analysis of unequally spaced data

If a signal is found, we select the frequency band
around the modulated signal pattern, and proceed on
selecting only the most significant peaks11 within such
a subband. Then we average all the selected most
significant peak frequencies corresponding to a same
FFT midtime.
For all subbands where a putative signal has been

identified, we face the problem to sift through the unevenly
sampled data (tc; f̄p) in order to unveil any potential
periodicity. In general, Fourier analysis is employed to
characterize the frequency content of a signal, thus
detecting possible periodicities. The FFT algorithm com-
putes a Fourier decomposition under the assumption that
the input data points are equally spaced in the time domain.
However, approximate Fourier transform methods have
also appeared in the literature, which treat nonequispaced
data (see, e.g., [62]). More generally, there are other
methods used to perform a spectral estimate of nonregu-
larly spaced data, which are based on periodogram
analysis.
The periodogram estimate is well suited to the problem

of detecting a periodic signal in the presence of noise, and
is the most common method to estimate the power
spectrum of evenly and unevenly spaced data, due to
the simplicity of its statistical behavior [see Eqs. (4) and
(10) of [63] for evenly and unevenly spaced data,
respectively].

1. Peak power spectrum estimate
and orbital period recovery

In the following we illustrate an alternative, and more
straightforward, estimate of the power spectrum12 with
respect to the standard Lomb-Scargle periodogram estima-
tor. We refer the reader to [63,64] for more details,
including the statistical properties of the Lomb-Scargle
periodogram.
For every frequency subband (selected within every 1 Hz

analyzed band), where a signal has been pinpointed, we
estimate the peak power spectrum as follows,

SðνjÞ ¼
1

N

				
XN
k¼1

Yke2πiνjtc;k
				
2

; ð27Þ
10In the current analysis we found a minimum (maximum) of

14 (9 417) pairs ðtc; f̄pÞ, in the band [151,152] Hz ([82,83] Hz),
where a signal with an amplitude h0 ¼ 1.1 × 10−24 (h0 ¼
4.3 × 10−24) has been injected. Special care must be devoted
not to consider such a number of FFTs as those contributing to
detect a putative signal, but rather to estimate the parameters of a
previously identified signal. In fact, a detection claiming (defined
in Sec. IV) depends only on the performance of the filters
introduced in Sec. IV, and applied before selecting peaks with
R > θthr.

11As already said, the most significant peaks are those with
R > θthr ∼ 3.5.

12We note that we use here “power spectrum” and “periodo-
gram” synonymously, although specifically the power spectrum
is a theoretical quantity defined as an integral over continuous
time, of which the periodogram is purely an estimate based on a
amount of discrete data.
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where Yk ¼ f̄p;k − hf̄piN are the deviations of f̄p;k from
their mean value,13 and f̄p;k are the kth averaged peak
frequencies. The number N of averaged frequencies varies
for every frequency subband and is at most N ¼ N when
the signal contribution comes from all subpeakmaps. We
recall that the times tc;k correspond to the midtimes of the
kth FFT (or, equivalently, subpeakmap) in the analyzed
frequency subband.
The numberNν of frequency points νj (with j¼1;…;Nν)

at which to compute the periodogram is given by

Nν ¼
νmax − νmin

dν
; ð28Þ

where νmin ¼ 0 d−1, νmax ¼ 10 d−1, and the step dν ¼
1=ðTobsrνÞ, with rν being a refinement factor. The values of
0 d−1 and 10 d−1 correspond to considering orbital periods
from a few hours (∼2.4 h) up to infinity. This very wide
range includes of course the source orbital periods we
target, which range from 10 h up to 48 h.
The resolution at which to evaluate the periodogram can

be either refined or coarsened via rν. A reasonable choice is
a refinement in frequency resolution rν ¼ 4. Hence, for the
observation time Tobs ¼ 1 month considered here, we
compute the periodogram for 1200 frequencies.
By taking the maximum value of SðνjÞ, and the inverse

of the fundamental frequency, which is the frequency
corresponding to maxSðνjÞ, i.e., νm, we obtain the source
orbital period, namely

P ¼ 1

νm
: ð29Þ

Appendix F illustrates an example of the periodogram
appearance, and how the orbital eccentricity impacts on the
number of harmonics. Perfect consistency with the Lomb-
Scargle periodogram is also discussed.

B. Least-squares fitting of sine waves

We illustrate here the method employed to estimate the
signal frequency and all source orbital parameters but the
orbital period.
For every subband of interest, we perform a sinusoidal fit

of the averaged peak frequencies f̄p,

f̄p;k ¼ A0 þ
XNh¼2

h¼1

½A2h−1 cosðΩhtc;kÞ þ A2h sinðΩhtc;kÞ�;

ð30Þ

with k ¼ 1;…; N, Ω ¼ 2π=P, and P being the source
orbital period recovered by the periodogram technique
detailed in Sec. VI A 1. The A coefficients are real numbers
with dimension of the inverse of a time.
In Appendix G, we provide details on the spectral content

of the source orbital modulation, i.e., _RðtÞ, and we note
(from Fig. 15) that only two harmonics are necessary to
describe the spectral content of _R=c. Hence, we chose
Nh ¼ 2.
We then have to solve the overdetermined linear system

of N > Nh equations, given by Eq. (30), in the unknowns
A0;1;2;3;4, i.e.,

A · X ¼ Y; ð31Þ

with

A¼

2
6666666664

1 cosðΩtc;1Þ sinðΩtc;1Þ cosð2Ωtc;1Þ sinð2Ωtc;1Þ
1 cosðΩtc;2Þ sinðΩtc;2Þ cosð2Ωtc;2Þ sinð2Ωtc;2Þ
: : : : :

: : : : :

: : : : :

1 cosðΩtc;NÞ sinðΩtc;NÞ cosð2Ωtc;NÞ sinð2Ωtc;NÞ

3
7777777775
;

ð32Þ

X ¼

2
6666664

A0

A1

A2

A3

A4

3
7777775
; Y ¼

2
6666666664

f̄p;1

f̄p;2
:

:

:

f̄p;N

3
7777777775
: ð33Þ

The exact solution is obtained by using the least-squares
method.
Equation (30) is an equality between f̄p;k and a sum of

sinusoids at frequencies 1=P; 2=P, with 1=P the first
harmonic (i.e., the fundamental frequency). Technical
details on how establishing the existence of these two
peak power spectrum harmonics can be found in
Appendix H. The amplitudes of the first and second
sinusoid in Eq. (30) are given by H1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ A2

2

p
and

H2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
3 þ A2

4

p
, respectively, while A0 is the so-called

DC value. This term corresponds to the amplitude of a
cosine wave with zero frequency [note, in fact, the presence
of ones in Eq. (32)].
In order to solve Eq. (31), we multiply each member of

such an equation byAT, with the superscript T denoting the
transpose matrix, and obtain

B · X ¼ D; ð34Þ

13The mean is a marginal statistic and is not important for
judging periodicity. Hence, we can safely subtract the sample
mean in Eq. (27) in order to obtain a series with zero mean. Not
subtracting the sample mean would make the scale of the periodo-
gram plot difficult to judge, mainly if Sð0Þ is very large [65].
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where D ¼ AT · Y, and B ¼ AT ·A is a (5 × 5) square
matrix. The number 5 comes from considering the b ¼
2Nh þ 1 amplitudes A0;1;2;3;4 (chosen Nh ¼ 2).
The estimate of the unknown X parameters is obtained

by solving Eq. (34), i.e.,

X ¼ B−1 ·D; ð35Þ

X is the least-squares solution that minimizes the (N − 5)
degrees-of-freedom χ2 variable

χ2 ¼
XN
k¼1

ðf̄p;k −A · XÞ2; ð36Þ

where ðf̄p;k −A · XÞ are the residuals, whose mean indi-
cates the accuracy of the solution found: the closer to 0,
the more accurate X. The inverse matrix C ¼ B−1 is
the covariance matrix of the A0;1;2;3;4 parameters, and the
elements on the diagonal of C are proportional to the
variance of A0;1;2;3;4. Hence, their uncertainties are

dAb ¼
ffiffiffiffiffiffiffi
Cbb

p 1

TFFT
; b ¼ 0;…; 4: ð37Þ

Having then solved Eq. (35), we can estimate the
A0;1;2;3;4 parameters and explicitly write Eq. (30) for
every k as

ð38Þ

which we can compare against the received frequencies, which are modulated due to the source orbital motion, i.e.:

ð39Þ

with the orbital Doppler modulation contribution obtained by deriving Eq. (16) with respect to time.

From the comparison of the dark-gray highlighted terms
of Eqs. (38) and (39), we find the signal frequency

f ¼ A0: ð40Þ
By performing a fit with a sinusoidal function, i.e., by

comparing the gray highlighted terms of Eqs. (38) and (39),
we obtain an estimate of the projected orbital semimajor
axis:

ap ¼ H1

A0Ω
: ð41Þ

Finally, by comparing the light-gray highlighted terms,
we find the orbital eccentricity given by the ratio of the two
harmonic amplitudes:

e ¼ H2

H1

: ð42Þ

The argument of periapse is given by

ω ¼ arctan

�
A4

A3

�
; ð43Þ

where we used that e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ η2

p
and ω ¼ arctanðη=κÞ,

due to Eqs. (17) and (18).
Finally, we can compute the time of periapse from

Eq. (20):

tp ¼ 1

Ω

�
ω − arctan

�
A2

A1

��
; ð44Þ

being

tasc ¼ −
1

Ω
arctan

�
A2

A1

�
: ð45Þ

VII. SIGNAL GENERATION

We describe the steps performed to create a fake data set
to which we added simulated CW signals, which have the
scope to validate the new presented algorithm. The choice
of reasonable ranges from which the source parameters are
drawn is also discussed.

A. Data production

We have generated one month of gapless Gaussian
detector noise data assuming the expected best strain
sensitivity of advanced LIGO-Virgo [11–13] detectors,
i.e., a noise spectral density Sh ¼ 4 × 10−24 Hz−1=2

approximately constant in the frequency interval [70,
200] Hz. We have produced N ¼ 10127 interlaced FFTs
with duration TFFT ¼ 512 s each.14 Then, we artificially
generated and injected into (i.e., added to) such a data set
131 CW signals emitted from pulsars in low- and high-
eccentricity binary systems. Software injections have been
performed using the LALSUITE software package [66]. As
already anticipated, we have neglected spin wandering

14The FFT duration is in general obtained by requiring the
signal power to be concentrated in less than a frequency bin (see
Appendix C for more details). Furthermore, we specify that the
FFT production is a common piece of other CW analyses.
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effects since the current method—due to its robustness—
has a high tolerance to small frequency variations and then
is expected not to be limited by possible spin wandering.

B. Choice of signal parameters

In Fig. 3, we plot the distribution of orbital eccentricities
versus the projected semimajor axis for 221 ATNF catalog
pulsars found in binary systems. The minimum and
maximum orbital periods in Fig. 3 are roughly 1.6 h and
46 y, respectively. The binary systems we are interested in,
however, have orbital periods 10 h ≤ P ≤ 2 d, projected
semimajor axis ap of a few seconds, and no restriction on
orbital eccentricity (see magenta stars in Fig. 3).15

The so-called signal amplitude parameters are randomly
chosen from uniform distributions as follows: the scalar
gravitational-wave amplitude hs0 ∈ ½1; 5� × 10−24, the incli-
nation angle cos ιs ∈ ½−1; 1�, the polarization angle within
ψ s ∈ ½0; 2π�, and the (irrelevant) initial phase within
ϕ0s

∈ ½0; 2π�.16
The sky-position for all signals is fixed to that of

Scorpius X-1, namely ðαs; δsÞ ¼ ð4.276;−0.273Þ rad.17
The so-called signal phase-evolution parameters

ffs; aps
; tps

; Ps; es;ωsg are generated by randomly draw-
ing them from uniform distributions over the ranges:

fs ∈ ½70; 200� Hz

aps
≡ a sin i

c
∈ ½1; 3� s;

Ps ∈ ½10; 48� h;

tps
∈
�
tmid −

P
2
; tmid þ

P
2

�
;

log10es ∈ ½−6; log10ð0.9Þ�;
ωs ∈ ½0; 2π� rad; ð46Þ

with tmid being the midtime of the whole observation.
We remark that we consider also high-eccentricity orbits,

favoring low-eccentricity ones as more copious (see Fig. 3).
Every frequency fs has been actually uniformly drawn

from a subinterval of 0.4 Hz around the mid interval of
every analyzed 1 Hz band (which is larger than the
modulation expected from the orbital motion of the sources
considered here). This is done to avoid border effects,18

which would make borderline detections more difficult.
A way to circumvent this issue consists of performing a
trivial interlacement of all analyzed frequency intervals,
which will be anyway done in a real search. This would
increase the computing cost, as it would double the number
of analyzed frequency bands, but will avoid to under-
estimate signal amplitudes and miss borderline detections.
Such an increase in computing time will anyway keep the
method quite computationally feasible even on a single-
processor computer.
In Fig. 4, we show the orbital eccentricities versus

frequency for 131 simulated sources (light dots) and 45
known pulsars found in binary systems (dark asterisks)
[18,67] in the same frequency and eccentricity ranges of the
simulated population. The asterisks surrounded by circles
indicate sources with 10 h ≤ P ≤ 2 d and 1 ≤ ap ≤ 3 s,
which is our target population. Although they are only
three sources, there are several other pulsars we expect to
exist in the Galaxy, which have not yet been discovered (as
discussed in Sec. I). Hence, it becomes crucial to sift a
parameter space as much large as possible, without
exclusion of particular regions.
As stated earlier, we split the searched frequency range

into smaller frequency bands that will be deeply analyzed
to find evidence of CW signals. We choose 1 Hz as width to
analyze the various frequency bands, which is much larger
than the maximummodulation caused by the orbital motion
of the source in the parameter space investigated here. In
fact, Fig. 5 exhibits the maximal Doppler shift due to orbital
motion, i.e., 2fsΔM (discussed in Appendix A), versus the
frequency of 131 simulated sources. We see that 2fsΔM
varies from 8.2 × 10−3 Hz up to ∼0.2 Hz.
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FIG. 3. Distribution of orbital eccentricities versus projected
semimajor axis for 221 ATNF catalog pulsars found in binary
systems with rotation frequencies ≥ 10 Hz, and up to ∼716 Hz
[18,67]. The colour bar indicates the logarithmic values of source
orbital periods. The points surrounded by magenta stars correspond
to sources with 10 h ≤ P ≤ 2 d, 1s ≤ ap ≤ 3 s, and 0 < e < 1.

15We note that such a class of signals includes, of course,
Scorpius X-1.

16The initial phase ϕ0 at the reference time tref has to be
added in Eqs. (13) and (21), but for our purposes it can also
be neglected.

17In order to avoid sensitivity losses from sky positions which
are less favorable at certain times, the selected peaks can be
normalized with ad hoc weights based on the so-called antenna
pattern, i.e., the directional (angular) response of the detectors.
When necessary, this can be done in a way analogous to what
is implemented in [54].

18In the presence of signals whose frequency modulation
spans more than one frequency bin, the SNR would be lessened
in every bin.
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VIII. RESULTS: DETECTION AND
PARAMETER ESTIMATION

Based on the condition outlined in Sec. IV, we can
claim 128 signal detections out of total 131. The frequency
bands where our algorithm fails to detect a signal are
[141,142] Hz, [166,167] Hz, and [190,191] Hz. The
gravitational wave strain amplitudes of the three not-
detected signals is h0 ∼ 10−24 for one month of single-
detector data set we process. The signals are missed as they
are not loud enough to stand out of the background noise,
mainly due to a large orbital Doppler modulation.
Figure 6 shows the parameter estimates for 128 detected

signals; the parameters of the three signals that could not be

detected are denoted by filled diamonds in all panels. The
offsets on the vertical axes give the absolute value of the
difference between estimated and true signal parameters
(denoted with r and s subscripts, respectively),

ΔO ¼ Or −Os; ð47Þ

where O refers to a generic parameter among those shown
in Fig. 6.
We observe that the recovery of signal frequency fs,

projected orbital semimajor axis aps
, and orbital period Ps

is generally quite good. The behavior of the one-sigma
orbital period uncertainty dP [inferable by the open squares
in panel (c) of Fig. 6] is larger than typical actual offsets and
reflects the scaling of dP with P2, i.e.,

dP ¼ P2dν; ð48Þ

with dν ¼ ð4TobsÞ−1, as described in Sec. VI A 1.
Obviously, the higher the orbital period, the less precise
its estimate as the number of orbits observed during Tobs

decreases. The offsets larger than 104 s in Fig. 6(c)
correspond to three signals where the periodogram estimate
does return an orbital period which is half of the true value.
This happens for sources with an orbital period close to
multiples and submultiples of the Earth’s sidereal day,
especially if they are not strong enough to stand out of noise
and have a quite high eccentricity. In these circumstances,
multiples and submultiples of the Earth periodicity can be
mistaken for the signal periodicity. A way to bypass this
contingency is to perform a sinusoidal fit with two
harmonics (similarly to what is discussed in Sec. VI B),
looping over several target orbital periods and then choos-
ing the orbital period value for which the fit exhibits the
smallest residuals. Although such approach will increase
the computational cost (e.g., if a large number of orbital
periods is considered), the method will remain computa-
tionally affordable (on a single-processor computer) and
will improve even further the source parameter estimation.
The investigations of this technique will be performed in a
separate study.
The uncertainties on the source parameters are obtained

by using standard error propagation rules for uncorrelated
variables from Eqs. (40), (41), (42), (43), (44) and using as
dAb uncertainties (with b ¼ 0;…; 4) those given by
Eq. (37).
The estimate of signal eccentricity es, argument of

periapse ωs, and time of periapse passage tps
is more

delicate. The crosses in panels (d) and (e) of Fig. 6
correspond to 69 cases where a signal is detected but no
estimate can be provided for es and ωs, as the second
harmonic is not found in the corresponding periodogram,
and hence the recovered eccentricity would be indistin-
guishable from zero (as also described in Appendix G). If
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FIG. 4. Distribution of orbital eccentricities versus frequency
for the population of 131 simulated sources (dots) and 45 ATNF
catalog pulsars found in binary systems (asterisks). The asterisks
surrounded by empty circles correspond to sources with orbital
periods and projected semimajor axes compatible with our target
population.
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FIG. 5. Maximal Doppler shift due to orbital motion (2fsΔM)
as a function of the frequency for the population of 131 simulated
sources.
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Parameter estimation for detected signals as a function of 131 injected signal (a) frequency fs, (b) projected orbital semimajor
axis aps

, (c) orbital period Ps, (d) eccentricity es, (e) argument of periapse ωs, and (f) time of periapse passage tps
. The light-blue filled

circles show the absolute value of the difference between the injected (true) and recovered values of signal parameters. The empty
squares show the sum of the offsets jΔOj and the quoted one-sigma errorbars corresponding to each estimate. The filled diamonds mark
the parameters of signals that have not been detected (and for which no parameter estimates can be provided). The crosses in panels (d)
and (e) indicate the parameters of 69 signals for which no estimate can be obtained as the second harmonic is not found in the
corresponding periodogram. Hence, the estimate is provided only for 59 signals.
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the second harmonic does not exist,19 the current method
does not have the ability to estimate the eccentricity.
Further studies are needed to determine the best strategy
to use for such situations.20

The tps
estimate is generally poor and would improve

with more precise estimates of ωs and Ps.
We highlight that in Eq. (39) we use the small-

eccentricity approximation for _R=c, which also works
well overall to estimate high eccentricities. Future studies,
however, will be devoted to understanding how to relax
this condition (by making suitable use of Eq. (G1) in a
least-squares fitting approach).
The novel method presented here allows us to detect the

bulk (∼97%) of injected signals and to perform satisfactory
parameter estimates by using a standard portable computer.
All source parameter estimates, however, can be further
improved by using a hierarchical approach, which use the
current parameter estimates to obtain an approximate
demodulation of the source orbital motion, and then
produce longer FFTs, by assuming such a partially known
modulation. Then, the same procedure can be reiterated on
the new data set, thus improving the parameter estimation
and search sensitivity by a factor depending on the square
root of how much the FFT duration can be increased. Such
approach, however, will be implemented in a separate
pipeline.
This is the first algorithm in the literature able to provide

estimates for orbital eccentricity and the argumentof periapse.

IX. RECOVERY OF SIGNAL
STRAIN AMPLITUDE

The current search is sensitive to a combination of h0 and
cos ι, which is given by [23]

H0 ¼
h0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6cos2ιþ cos4ι

p
: ð49Þ

We can define a theoretical SNR in terms of the H0

amplitude,

SNR ¼ H0

ffiffiffiffiffiffiffiffiffiffi
TFFT

Sh

s
; ð50Þ

and find an empirical relation between such SNR and the
number of peaks selected above threshold, on average, per
FFT in a frequency band where a signal has been identified
that are properly weighed by taking into account the signal
amplitude, i.e.,

SNR2 ¼ NpEp
TFFT

Tobs
þ corr: ð51Þ

We labeled Np as the number of peaks in a small frequency
band where a CW signal has been found, and being above
the threshold R > θthr ∼ 3.5 (see Appendix D for more
details), while Ep is the average of the squared peak
amplitude above the same threshold in that band.21

Figure 7 shows the relation expressed by Eq. (51) [with
the SNR given by Eq. (50)], which is linear apart from a
correction factor “corr” that is necessary to account for the
discrepancies obtained for low SNR signals. We note
that this correction factor is included in the uncertainty
estimates provided in Fig. 8.
In the top (bottom) panel of Fig. 8 we show the

consistency of the estimated signal amplitudes Hr
0 (hr0)

with the true values Hs
0 (hs0), together with the relative

uncertainties that are especially small.
We emphasize that such a method can be used to

estimate the gravitational-wave strain amplitude also in
CW searches for isolated NSs, as there is no dependency on
orbital parameters. Hence, by using Eqs. (50) and (51), and
interpolation (or extrapolation, if needed) schemes, for a
given set of Np, Ep, TFFT and Tobs, we can find the H0
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FIG. 7. Observed SNR2 versus NpEpTFFT=Tobs (points), and
related linear fit (straight line).

19As a reminder, we used the criterion discussed in Appendix H
to check if the second harmonic of the periodogram exists.

20Attempts to discard the peaks due to noise will be inves-
tigated. Once the first harmonic is well characterized in terms of
amplitude, frequency and phase (i.e., a sinusoid), a viable
approach might consist of determining a range of possible values
around it, i.e., a minimum and maximum sinusoid around the first
harmonic in the peak frequency and time plane. These “boundary
sinusoids” can be obtained by the periodogram background and
can be used to discard all the peaks that do not lie in such a region.
At this point, the surviving peak-frequencies can be averaged and
a new periodogram can be computed. This new periodogram will
have a reduced noise background with respect to the original one,
and the second harmonic should more likely stand out of noise.
Detailed studies, which we postpone to future work, must be
however performed to characterize the boundary sinusoids and
accurately test this approach.

21The frequency band of the modulated signal pattern is
identified according to what is outlined in Sec. IV.
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corresponding to a given signal, which has been previously
identified in a frequency band.

X. SENSITIVITY ESTIMATE

The customary modus operandi to rigorously estimate
the sensitivity of a search for CW signals is based on
cumbersome Monte-Carlo simulations, which require con-
secutive signal injections. We circumvent such expensive
approach, opting for a less accurate, but expeditious,
iterative procedure that provides however reliable esti-
mates. The estimates we present agree, in fact, with the
results of the Monte-Carlo simulations performed in a few
1 Hz bands.
In every 1-Hz frequency band, where a CW signal has

been found, we decrease the peak amplitude R by a factor
varying from 1 up to 0.1, in steps of 0.1, and select all peaks

above the initial threshold Rth ¼
ffiffiffiffiffiffiffi
2.5

p
. To these rescaled

data we apply, recursively, the cascade of four filters
introduced in Sec. IV until a CW signal can no longer
be detected. This translates into testing essentially the
performance of the Gaussian-like filter, which has the final
say-so to consider a signal detected or not detected. Such
approach is equivalent to keep fixed all parameters of the
sources injected in every 1-Hz band, but the strain ampli-
tude hs0, which decreases by a factor that can be obtained
from Eq. (51). We determine thus Np and Ep, based on the
scaled peak amplitude R, and crossing the same threshold
(see Appendix D for more details). Hence, we can estimate
the minimum strain amplitude he0 that can be detected by the
filter cascade. The resulting detectable strain amplitude he0
is plotted in Fig. 9 against signal frequency for 128 sources,
as we excluded the three 1-Hz frequency bands where no
signal has been previously detected.
The results shown in Fig. 9 are quite promising, mainly

considering they derive from one month of single-detector
data, albeit with the caveat of being in Gaussian noise. The
broad variability in terms of sensitivity estimation, visible
in Fig. 9, is attributed to the performance of the Gaussian-
like filter, which needs to be fine-tuned and enhanced. This
is part however of a supplementary study, which aims also
at carrying investigations over to real interferometer data,
with the goal of both testing and strengthen the perfor-
mance of such a filter, and provide more accurate sensi-
tivity estimations. In the circumstance of real detector data
we expect several outliers to compromise the ability of such
a filter to identify putative CW signals. We plan however to
resort to follow-up studies, and coincidence-based meth-
ods, to verify the presence of a given signal [24,59].
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FIG. 8. Fractional errors in strain amplitude estimates divided
by the true values (blue filled circles) and, almost superimposed,
the same errors summed to the one-sigma error bars correspond-
ing to each estimate (empty squares). The estimates are provided
for 128 out of 131 original inspected frequency bands, where an
artificial CW signal has been injected and detected (in each
of them).
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FIG. 9. Detectable strain amplitudes versus 128 signal frequen-
cies. The dots are the injected strain values, the filled stars are the
minimum strain amplitudes that can be detected (over one month
of single-detector data), and the (hardly visible) empty stars show
the one-sigma errorbars associated to these estimates.
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XI. COMPUTING COST MODEL

The computational cost of the machinery here presented
is estimated to be around 2.4 CPU hours on a 1.4 GHz Intel
Core i5 processor. This estimate is based on timing the
different pieces of the analysis (items from 2 to 7 listed in
Sec. V), without counting the SFDB production, which is a
common part of other CW searches and noise characteri-
zation studies, and is discussed in [68].
The total computing cost Ctot needed to both claim a

detection and estimate source parameters is

Ctot ¼ C1 þ C2; ð52Þ

where C1 is a computing cost scaling linearly with the time
length (i.e., the observation time) of the data being
analyzed, with the number of inspected frequency bands
Nb, and inversely with the FFT duration. Furthermore, if
we would analyze data from different detectors independ-
ently, C1 would scale also with the number of interferom-
eters considered (Ndet), i.e.,

C1 ¼ c0NbJNdet
Tobs

TFFT
I ; ð53Þ

where c0 ∼ 6 ms is a timed implementation cost per
subpeakmap. We note that Tobs=TFFT is exactly the number
of FFTsN only for gapless data; I and J are factors equal
to 2 for interlaced (by half) FFTs and frequency bands,
respectively, and 1 otherwise.
In other words, C1 is the time required to perform steps

from 2 to 6 listed in Sec. V. The remaining step 7, needed to
provide further parameter estimates, is evaluated in a very
cheap amount of time expressed by

C2 ¼ cθN0
bJ ; ð54Þ

where cθ ∼ 2.34 s is an implementation and hardware-
dependent computing cost per band. We note that N0

b ≦ Nb

is the number of frequency bands where a signal has been
identified.
Hence, for Tobs ¼ 1 month, TFFT ¼ 512 s, Nb ¼ 131,

J ¼ 1, Ndet ¼ 1, I ¼ 2, and N0
b ¼ 128, we have C1 ∼ 2.3

hours and C2 ∼ 5 minutes.
We underline that the search frequency range is relevant

to computational performance only because it affects the
Doppler shift due to orbital motion. In fact, an increase in
frequency would correspond to a reduction in TFFT [see
Eq. (B6) for details], and a consequent increase in C1. The
method will remain however computationally tractable on a
single-processor computer22

There are other CW pipelines, such as those included in
the Scorpius X-1 MDC [36] (in particular the “Radiometer”
search, which is roughly comparable to this method in
computational efficiency) and [69], to which more detailed
comparisons will be made in the future.

XII. CONCLUSIONS

This paper describes an incoherent and computationally
cheap innovative method to search for continuous gravi-
tational waves emitted by pulsars orbiting a companion
object. To show the pipeline performance, we analyze one
month of simulated gapless Gaussian noise single-detector
data to which we added 131 CW signals emitted by
pulsars in low- and high-eccentricity binary systems. We
used an advanced LIGO-Virgo detector design sensitivity
of Sh ¼ 4 × 10−24 Hz−1=2[11–13] constant over the search
frequency range [70,200] Hz and reported 128 detections,
with the weakest—injected and detected—gravitational-
wave amplitude of h0 ∼ 10−24. We point out that, by using
one year of data and three detectors in their advanced
configuration, this translates into being able to detect CW
signals with strain amplitude as low as h0 ∼ 3 × 10−25. At
very small frequencies, this corresponds to reach, and go
below, the torque balance limit currently foreseen for
Scorpius X-1 [28]. We also stress that, as discussed in
Sec. X, depending on the orbital Doppler modulation, our
novel algorithm has the ability to detect also signals as low
as h0 ∼ 7 × 10−25 for a single-detector one-month data. So,
the reachable sensitivity is expected to improve further with
one year of three-detector data.
After claiming a detection, we recover the signal

parameters, which we infer with decent accuracy. Note
that, contrary to the Scorpius X-1 MDC [36] and previous
searches [33], in addition to circular orbits, we consider
also high-eccentricity orbits, being able to process data on a
single-processor computer, and attaining a good sensitivity.
A detailed comparison study should be however carried out
between the current algorithm and other existing methods,
such as [36,69–76], to exactly assess the sensitivity
performance and compare the related computational costs.
This is, however, beyond the scope of the current paper, and
we defer it to future work.
The current search may also be used as a fast quick-look

analysis to scan the data and possibly single out significant
candidate signals which deserve further investigations. The
recovery of source parameters can be honed by assuming
the estimates obtained for signal frequency and orbital
parameters as preliminary. Hence, one can envisage using
those estimates to approximately demodulate the data from
the binary orbital motion. This will serve to create longer
FFTs, enhancing, thus, the search sensitivity. Rather than
considering a fixed FFT duration for the entire search
frequency range (as done here), we note that the sensitivity
can be further increased by creating FFTs of different
length in time, based on the highest frequency value of the

22A similar reasoning applies when we reduce the source
orbital period and increase the semimajor axis with respect to the
choices applied here.
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subinterval into which the whole search frequency range
has been previously split. This will allow a higher sensi-
tivity at low frequencies. At this point, the procedure
outlined here can be reiterated to get more accurate signal
parameter estimates. Alternatively, or in addition, deep
follow-up studies with a longer coherence time for the
weakest detections can be applied to increase the SNR of a
putative signal, and obtain even more precise parameter
estimates (e.g., [24,59]). This entails the generalization of
the resampling technique, currently used for CW signals
from isolated pulsars [24], to the case of binary systems,
and this is part of a separate ongoing study.
Although the current work is invaluable to both gauge

and validate the performance of the various steps of the
presented algorithm, accurate testing is needed (and cur-
rently underway) to enhance the Gaussian-like filter ren-
dering and efficiency. In fact, the success of such a filter
varies depending both on the particular source orbital
parameters, which govern the shape of the modulated
signal pattern, and on the signal strength.
Looking farther forward, we expect to generalize the

method presented here to search for a broader class of
signals, considering spindown parameters and accretion-
induced spin-wandering effects for the simulated sources,
which will be added to real data collected from multiple
detectors. We expect this novel methodology to be so
robust not to be subject to frequency variabilities, and so the
characteristics of spin wandering are expected to have no
impact on the analysis. The complication to deal with real
detector data will be faced applying ad hoc noise reduction
approaches that aim to identify, and possibly knock out,
non-Gaussian artifacts, as well as coincidence-based
approaches [24,77].
Furthermore, due to the tremendously cheap 2.4 CPU

hours taken to analyze a fixed sky location, 131 1-Hz
frequency bands, and one month of single-detector data, the
current procedure can be applied in all-sky schemes in an
equally successful and inexpensive way. This can be in fact
achieved analyzing in parallel as many sky positions as
permitted by the available computational power.
In addition, we plan to improve the current pipeline in

order to provide estimates of source orientation and
polarization parameters (i.e., cos ι, ψ , and ϕ0), and also
to get further enhancements in strain sensitivity, which will
allow us to detect signal amplitudes at, or below, the torque
balance limit currently foreseen for Scorpius X-1-like
sources.
The present method—and its future improvements—will

be applied to analyze new data collected by the ever-
sensitive Advanced LIGO and Virgo detectors (which are
second-generation detectors), as well as by future third-
generation detectors. This is an outstanding challenge,
which makes us more optimistic about being able to make
direct detections of CW signals. Such detections will
provide new insights into the internal structure, formation

history and population statistics of neutron stars. In case of
no detection, we plan however to set more astrophysically
constraining upper limits on the gravitational-wave signal
strength.
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APPENDIX A: MAXIMAL DOPPLER SHIFT
DUE TO ORBITAL MOTION

As shown in [28], we estimate the maximal Doppler shift
the intrinsic signal frequency of a binary CW signal can
undergo due to orbital motion. From the approximated
phase model of Eq. (13), we see that the instantaneous
Doppler shift is

				
_ϕðtÞ
2πf

− 1

				 ¼
				
_RðtÞ
c

				
¼ apΩ

				
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cosE cosω − sinE sinω
1 − e cosE

				
≤ apΩ

j sinE sinωj þ j cosE cosωj
j1 − e cosEj ; ðA1Þ

where we used the fact that jaþ bj ≤ jaj þ jbj andffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
≤ 1. In addition, we observe that

j cosE cosωj þ j sinE sinωj
¼ maxfj cosðEþ ωÞj; j cosðE − ωÞjg ≤ 1; ðA2Þ

and j1 − e cosEj ≥ 1 − e to obtain

				
_ϕðtÞ
2πf

− 1

				 ¼
				
_RðtÞ
c

				 ≤ ΔM; ðA3Þ

with

ΔM ¼ apΩ
1 − e

ðA4Þ

being the maximal Doppler modulation due to orbital
motion.

APPENDIX B: MAXIMAL FFT DURATION

The maximal length of the FFT is limited by the linear-
phase approximation of Eq. (12). In order to improve
sensitivity, we want to choose the longest possible FFT
duration TFFT with an acceptable error in the linear-phase
approximation. In order to estimate the maximal value of

NOVEL DIRECTED SEARCH STRATEGY TO DETECT … PHYSICAL REVIEW D 95, 122001 (2017)

122001-17



this phase-error (jΔϕj) over a single FFT, we follow [28]
and estimate it as

jΔϕj ¼
				 12 ϕ̈ðtÞ

�
TFFT

2

�
2
				; ðB1Þ

but taking the second time derivative of the more precise
phase of Eq. (13) rather than that of Eq. (21), as instead
done in [28]. Hence, we have

ϕ̈ðtÞ ¼ 2πfapΩ2

ð1 − e cosEÞ3 ½ðcosE − eÞ sinω

þ cosω sinE
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
�; ðB2Þ

and replacing Eq. (B2) in Eq. (B1) we obtain the
following upper limit on the error in the linear-phase
approximation:

jΔϕj ≤ π

4
T2
FFTfapΩ2

1þ e
ð1 − eÞ3 ; ðB3Þ

where we used the fact that jaþ bj ≤ jaj þ jbj,ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
≤ 1, and

j cosE sinωj þ j cosω sinEj
¼ maxfj sinðEþ ωÞj; j sinðE − ωÞjg ≤ 1; ðB4Þ

which brings us to

jðcosE − eÞ sinωþ cosω sinE
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
j ≤ 1þ e: ðB5Þ

Hence, the FFT length must be

TFFT ∼
2

Ω
ð1 − eÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e
1þ e

Δϕ
πfap

s
: ðB6Þ

APPENDIX C: CONSTRAINING
THE FFT DURATION

The time baseline of an FFT is typically determined by
requiring the signal power to be concentrated in less than a
frequency bin. In Appendix B, we have nailed down the
longest possible FFT duration based on the phase error of
the linear-phase approximation over an FFT. The estimate
provided in Eq. (B6) is, however, very conservative.
Indeed, assuming a phase error Δϕ ¼ π=4, and the most
unfavorable boundaries of the investigated parameter
space, i.e., P¼10h, e ¼ 0.9, ap ¼ 3 s, f ¼ 200 Hz, we
obtain TFFT ∼ 129 s. The FFT durations we used to process
the set of data containing 131 sources, simulated with
parameters within the ranges provided in Eq. (46), are
instead 512 s, which are based on an approximation that

allows us to improve the sensitivity by a factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
512=129

p
∼ 2.

The reasoning behind the usage of FFTs longer than
those obtained with Eq. (B6) consists of considering, rather
than the whole orbit swept by a source, only a large fraction
of it, i.e., at most the 80%. This is somewhat reasonable
as, over one month, we will observe from a minimum
of 15 orbits to a maximum of 72 orbits (considering
10 h ≤ P ≤ 2 d). We explain better how we achieved such
a consideration. We performed simulations for 1000
sources, with random parameters drawn uniformly from
the ranges of Eq. (46), and for each source we compute the
rate at which the source changes its velocity by taking the
second time derivative of Eq. (6) (i.e., the acceleration
divided by the light speed). We then choose, for every
source, the 80th percentile of jR̈ðtÞj=c, neglecting thus the
20% highest values in terms of jR̈ðtÞj=c, which correspond
to parts of the orbit where there is the largest source
velocity variation, and then the largest orbital Doppler
modulation.
Figure 10 shows the distribution of the 80th percentiles

of jR̈ðtÞj=c for 1000 simulated sources. We see that the
maximum value of the 80th percentiles of jR̈ðtÞj=c is
P ∼ 8 × 10−8 s−1, which is of course the 100th percentile
of the distribution in Fig. 10. We should use such value to
reliably estimate the maximum FFT duration as a function
of the search frequency:

Tmax
FFT ¼ 1ffiffiffiffiffiffiffi

Pf
p : ðC1Þ

If we consider instead the 85th percentile (marked by the
arrow in Fig. 10,) i.e., P0.85 ∼ 2 × 10−8 s−1, we can further

FIG. 10. Distribution of the 80th percentiles of jR̈ðtÞj=c for
1000 sources. The arrow denotes the value of jR̈ðtÞj=c corre-
sponding to the 85th percentile, i.e., jR̈0.85j=c ∼ 2 × 10−8 s−1.
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lengthen the FFT duration by a factor of 2 at the expense of
further reducing the fraction of the orbit for 15% of the
sources, considering for them even smaller velocity
variations.
Hence, replacing P with P0.85 in Eq. (C1), we obtain

Tmax
FFT ¼ 512 s, which we use to produce FFTs for the whole

search frequency range f ∈ ½70; 200� Hz. Such a choice is
actually based on the (worst) highest search frequency, i.e.,
200 Hz, as for 70 Hz an FFT of 845 s would be more
appropriate. As this translates into a reduction in sensitivity
(and then in parameter estimate accuracy), one can envis-
age to produce SFDB of different duration, depending on
the highest frequency value of the subinterval into which
the entire search frequency range has been previously split.

APPENDIX D: SETTING A STRINGENT
THRESHOLD FOR PEAK SELECTION

The threshold θthr, which we choose in order to select the
most significant peaks, affects the parameter estimate
abilities and search sensitivity. The criterion we use for
the choice of θthr is the maximization of an informative
observable ΦðθÞ, which combines the number of peaks
solely due to signal, NsðθÞ, and the number of peaks due to
pure noise, NnðθÞ, as a function of a varying threshold θ,
and is empirically found to be

ΦðθÞ ¼ NsðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NsðθÞ þ NnðθÞ2

p : ðD1Þ

We identify frequency subbands, containing the CW
signature, by using the procedure described in Sec. IV. We
then select peaks with an amplitude R larger than θ,
ranging from 2 to 10 in steps of 0.1; we note that the
minimum value of θ is chosen to be slightly larger than the
threshold set for initial peak selection Rth ¼

ffiffiffiffiffiffiffi
2.5

p
∼ 1.6.

Then, we can estimate the number of peaks due to signal
and noise in that band, able to surpass a given value of θ,
i.e.,NsnðθÞ [blue dots in Fig. 2(a)], and the number of peaks
due to pure noise in the same band, but assuming no signals
were present, and surpassing the same θ, i.e., NnðθÞ [red
dots in Fig. 2(a)]. Hence, we compute the number of peaks
solely due to signal in a certain frequency band as
NsðθÞ ¼ NsnðθÞ − NnðθÞ. The observable Φ, as a function
of θ, is shown in Fig. 11.
As the threshold in a given frequency subband, we

choose the optimal value, which is the one maximizing
ΦðθÞ. As shown in Fig. 11, this varies from a minimum of
3.1 to a maximum of 3.8, with an average of θthr ¼ 3.5 for
the bulk of frequency bands. In every subband, where a
presumed CW signal has been identified, we select all
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FIG. 11. ObservableΦ as a function of possible thresholds θ for
131 analyzed frequency bands. The dark-blue dots correspond to
the maximum values of ΦðθÞ, while the black cross at θ ¼ 2
corresponds to frequency bands where no signals could be
identified, i.e.: [141,142] Hz, [166,167] Hz, and [190,191] Hz
(see details in Sec. VIII).

(b)(a)

FIG. 12. G function of Eq. (25) versus nt for z ¼ 2, u ¼ 2, q ¼ 1.7, g ¼ 10 and three σ values [panel (a)], and σ ¼ 6 with different
values of z, u, q, g, shown in the legend [panel (b)].
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peaks above this slightly varying threshold, and average the
related frequencies corresponding to a same FFT midtime,
obtaining at most N ðtc; f̄pÞ pairs.
A systematic study of how varies θthr with varying Tobs

and TFFT lies outside the scope of this paper as a value of
θthr ¼ 3.5 can be broadly adopted for further analyses, even
on real detector data. Such a value is indeed consistent with
what can be obtained by a visual inspection of the analyzed
frequency bands, and is however at the edge of what would
be indistinguishable from Gaussian noise [as can be
appreciated in Fig. 2(a)].

APPENDIX E: GAUSSIAN-LIKE
FILTER DETAILS

The G function of Eq. (25) is plotted in Fig. 12(a) for
different σ (i.e., “standard deviation”) values and z ¼ 2,
u ¼ 2, q ¼ 1.7, g ¼ 10, while in Fig. 12(b) for different
values of z, u, q, g and σ ¼ 6.
Simulation-based studies bring us to choose a G function

with z ¼ 2, u ¼ 2, q ¼ 1.7, g ¼ 10, and σ ¼ 6 (red curve
in Fig. 12).
We stress that the criterion given in Eq. (23) is not

sufficient to prevent the selection of instrumental arti-
facts, but it is used to quickly sift the analyzed frequency
bands, and identify the disturbed ones, which will be
inspected with more scrutiny. Furthermore, in the present
work we have simulated a single detector data set adding
fake signals into Gaussian noise data, but when applying
the current method to real case, data taken from multiple
detectors will be available, allowing us to more reliably
exclude prominent disturbances by using a coincidence
analysis. The application of more aggressive noise
identification and artifact mitigation techniques is
also envisaged to be beneficial, and is currently under
investigation.
The false alarm probability for the identification of a

signal (i.e., a false alarm) in frequency bands where no
signal is present is computed generating 6 × 104 pure
Gaussian noise realizations for which we verify if the
condition expressed by Eq. (23) is satisfied. Since this is not
fulfilled, we can place an upper limit on the false alarm
probability, which results being smaller than 1.6 × 10−5.
We note that such a value is very conservative as it does not
take into account that a false alarm, if found, will undergo
further checks via the Gaussian-like filter before being
claimed a detection.

APPENDIX F: EXAMPLE OF PERIODOGRAM
APPEARANCE

Figure 13 shows the periodograms evaluated for (tc; f̄p)
pairs selected from randomly generated pure Gaussian
noise [panel (a)], and from data where two CW signals
have been added to artificial gapless Gaussian noise, with
orbital eccentricity e ¼ 0 and e ∼ 0.87 for the panels (b)
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FIG. 13. Semilogarithmic plots of the periodogram as a function
of the frequency for: normally distributed random numbers (a); set
of synthetic data where two CW signals have been added at
155.5 Hz (b), and 1001.5 Hz (c), with orbital eccentricities e ¼ 0

(b), and e ∼ 0.87 (c), and strain amplitude h0 ∼ 10−21 (b), and
h0 ¼ 4 × 10−20 (c), respectively. The power spectral density used
for these tests is Sh ¼ 4 × 10−24 Hz−1=2. The x axis shows, for all
panels, 400 frequencies νj at which the periodogram of Eq. (27)
has been evaluated for Tobs ¼ 10 days and rν ¼ 4.
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and (c), respectively. The artificially generated data sets
span a period of Tobs ¼ 10 days, and the conservative FFT
duration used is TFFT ¼ 128 s.
A strong component at ν ∼ 2.4 d−1 is clearly observed in

the periodogram of Fig. 13(b), indicating the presence of a
signal with orbital period P ¼ ν−1 ∼ 10 h. The signal
frequency is ∼155.5 Hz. In Fig. 13(c) we can appreciate
the harmonics due to the orbital eccentricity, which is
e ∼ 0.87. The first harmonic at ν1 ∼ 1.6 d−1 is the funda-
mental, and the other harmonics are its multiples. All the
harmonics are separated in frequency by 1=P. The recov-
ered orbital period is P ¼ ν−11 ∼ 15 h. This simulated signal
has a frequency of 1001.5 Hz.
We emphasize that both the power spectrum estimate,

given by Eq. (27), and the evaluation of the Lomb-Scargle
periodogram bring us to the same results.

APPENDIX G: HARMONIC CONTENT OF THE
ORBITAL DOPPLER MODULATION

We estimate the harmonic content of the orbital
Doppler modulation _RðtÞ (i.e., the amplitudes of the funda-
mental and its multiples) in order to understand what are the
harmonics that contribute to estimate the orbital eccentricity.
The time derivative of the Rømer delay in Eq. (6) is

given by

_RðtÞ
c

¼ ap _EðtÞ× ½−sinωsinEðtÞþ cosωcosEðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
�;

ðG1Þ
where _EðtÞ¼Ω=½1−ecosEðtÞ� is obtained deriving Eq. (7)
with respect to time.
In order to perform a spectral analysis of _RðtÞ=c, we first

find the eccentric anomaly E by numerically solving

FIG. 14. Top panel: Time derivative of the Rømer delay, _RðtÞ=c [given by Eq. (G1)], versus time for 60 simulated sources with fixed
values of ap ∼ 3 s,P ∼ 0.5 d,ω ∼ 6 rad, tp ∼ 54131 mjd, but e randomly drawn from a uniform distribution in the range e ∈ ½10−5; 0.9�,
indicated by the values on the colour bar. Bottom panel: The same as top panel, but zooming into roughly a single period.
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Eq. (7) and inserting it in Eq. (G1). We consider 60 fixed
values of ap ∼ 3 s, P ∼ 0.5 d, ω ∼ 6 rad, tp ∼ 54131 mjd,
and we draw e from a uniform distribution in the range
e ∈ ½10−5; 0.9�. Equation (7) is solved by employing
standard iterative methods, such as the Newton’s method
and, in case of failure, the bisection method. In Fig. 14 we
plot the resulting _RðtÞ=c as a function of time. From the top
panel we observe, as expected, that each peak is separated
from the next by the chosen orbital period P ∼ 0.5 d, and
that sharp-edge peaks correspond to high eccentricity
values (as shown on the vertical colour bar).
Given the periodic nature of _RðtÞ=c (see Fig. 14), we

perform a Fourier decomposition of _RðtÞ=c (by computing
a discrete Fourier transform), and we plot in Fig. 15 the
normalized harmonic amplitude for the first 10 harmonics
of _RðtÞ=c as a function of the eccentricity, and for 60 values
of fap; tp; P; e;ωg. We stress that considering more points
would only thicken the curves shown in Fig. 15, without
adding further information. Independently of the chosen
values for ap; P;ω; tp, we note that, in order to estimate the
orbital eccentricity e, only the first two harmonics of _RðtÞ=c
are necessary, whose contribution is the most dominant.
We further note that for very low-eccentricity orbits,

only the first harmonic exists,which is not enough to precisely
recover eccentricity values, which cannot then be distinguish-
able from zero, as stated in Sec. VIII. This is confirmed by a
separate investigation of the very low range e ∈ ½10−8; 10−3�.
From Fig. 15, we observe that the higher the eccentricity,

the greater the number of contributing harmonics.
Furthermore, the amplitude of higher (≥10) order har-

monics is low enough that they can be entirely ignored.

APPENDIX H: ESTABLISHING THE EXISTENCE
OF THE PEAK POWER SPECTRUM

HARMONICS

The peak power spectrum described in Sec. VI A 1 is
used to derive the source orbital period, which is given by
the reciprocal of the fundamental frequency νm, i.e., the first

harmonic [see Eq. (29)]. The second harmonic (i.e., 2νm),
when exists, is instead used to determine the source
orbital eccentricity and argument of periapse [see
Eqs. (42) and (43), respectively]. In order to check if these
harmonics exist in the peak power spectrum, we use a
threshold based on a robust estimator, such as the median.
After identifying νm and 2νm in the peak power spectrum,
we compute the median and dispersion parameter for
roughly 80 samples around those two frequencies, and
verify if the amplitude of each harmonic satisfy the
following condition,

Hh > Mð1Þ þMð2Þ; ðH1Þ

with h¼1, 2,Mð1Þ¼medianðSðhνm−40dν∶hνmþ40dνÞÞ,
andMð2Þ¼medianðjSðhνm−40dν∶hνmþ40dνÞ−Mð1ÞjÞ.
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