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We study a superconductor that is coupled to a superfluid via density and derivative couplings. Starting
from a Lagrangian for two complex scalar fields, we derive a temperature-dependent Ginzburg-Landau
potential, which is then used to compute the phase diagram at nonzero temperature and external magnetic
field. This includes the calculation of the critical magnetic fields for the transition to an array of magnetic
flux tubes, based on an approximation for the interaction between the flux tubes. We find that the transition
region between type-I and type-II superconductivity changes qualitatively due to the presence of the
superfluid: the phase transitions at the upper and lower critical fields in the type-II regime become first
order, opening the possibility of clustered flux tube phases. These flux tube clusters may be realized in the
core of neutron stars, where superconducting protons are expected to be coupled to superfluid neutrons.
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I. INTRODUCTION

A. Goal

An array of magnetic flux tubes is created in certain
superconductors for intermediate strengths of an external
magnetic field. Superconductors with this property are
said to be of type II. This is in contrast to type-I super-
conductors, where the magnetic field is either completely
expelled or completely destroys the superconducting state,
but never penetrates partially through quantized flux tubes.
The Ginzburg-Landau parameter κ—the ratio between the
magnetic penetration depth and the coherence length of the
superconducting condensate—predicts whether a super-
conductor is of type I or of type II.
The goal of this paper is to study the critical magnetic

fields for the flux tube lattice in a two-component system,
where the superconductor is coupled to a superfluid. We
consider a system of two complex scalar fields and an
Abelian gauge field, with the two scalar fields coupled to
each other and one of them coupled to the gauge field—the
neutral scalar field is then indirectly coupled to the gauge
field through the charged scalar field. Various aspects of
this system will be discussed, such as the effect of different
forms of the coupling between the scalar fields (density
coupling vs derivative coupling), effects of nonzero temper-
ature, and the interaction between magnetic flux tubes.
Special emphasis will be put on the transition region
between type-I and type-II behavior, because this region
is changed qualitatively by the presence of the superfluid,
and one of the main results will be the topology of the phase
diagram in this region.

B. Methods

Our calculations are based on a Ginzburg-Landau free
energy for two condensates. We start, however, from a field-
theoretical Lagrangian from which we compute the thermal
fluctuations of the system. This is necessary in order to
generalize the standard temperature-dependent coefficients
of the Ginzburg-Landau potential to the situation of two
coupled fields.We shall work in a relativistic formalism, but
the main results hold for nonrelativistic systems as well
because we only consider the static limit. The coupled
equations of motion for the two condensates and the gauge
field—which yield the profile and energy of a single flux
tube—are computed numerically. Nevertheless, where pos-
sible, we derive simple analytical results. For instance,
when we compute the free energy of a flux tube array, we
employ an approximation valid for sparse arrays, based on
the numerical solution for a single flux tube, which is
sufficient to derive certain aspects of the phase structure.
For a complete study of the phase diagram a fully numerical
calculation would be necessary. We believe that our results
provide guidance and physical insights that can support and
complement such a numerical calculation in future studies.

C. Astrophysical context

A superconductor that is coupled to a superfluid is
expected to exist in the core of neutron stars in the form of
superconducting protons which coexist with superfluid
neutrons [1–5]. Although we keep all our results as generic
as possible, this is the application we have in mind when
we make certain choices for the parameters of our model.
It is also the main motivation for including a derivative
coupling between the superconductor and the superfluid;
for a calculation of the strength of this coupling in dense
nuclear matter see for instance Ref. [6]. Microscopic
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calculations—which have to be taken with care at these
extreme baryon number densities—suggest that the proton
superconductor turns from type II to type I as the density
increases, i.e., as we move further towards the center of the
star. In other words, a neutron star has a spatially varying κ,
and the transition from type-II to type-I superconductivity
might be realized as a function of the radius of the star [7].
The resulting interface between the two superconducting
phases might affect the evolution of the magnetic field in
the star and is thus of potential relevance to observations.
Even if this interface is not realized, be it because the
central density is not sufficiently large or because quark
matter is preferred before the necessary density is reached,
it is important to understand the magnetic properties
of the flux tube phase in the presence of the neutron
superfluid.
The energy gaps from nucleon Cooper pairing depend

strongly on density, varying nonmonotonically along the
profile of the star, with a maximum of the order of 1 MeVat
intermediate densities and being much smaller at higher
densities deep in the core [8]. Therefore, the critical
temperatures, which can be as high as Tc ∼ 1010 K, are
very small in certain regions of the star. And, the critical
magnetic fields for proton superconductivity, at their
maximum about Hc ∼ 1016 G—larger than the largest
measured surface fields—become very small as well.
(A very feeble superconducting pairing gap is neither
robust against temperature nor against a magnetic field.)
This motivates us to study the behavior of the super-
conductor at magnetic fields close to the critical fields, and
it motivates us to include temperature. For predictions in
the astrophysical context, the coefficients of our effective
model should be made density dependent, using results
from more microscopic calculations (which, however,
are prone to large uncertainties). In the present work we
mainly focus on deriving general results and only mimic
the situation of dense nuclear matter by varying our
parameters in a way that is reminiscent of the situation
in a neutron star.
There are other possible two- or multifluid phases in the

core of a neutron star, where at least one of the components
is charged. For instance, hyperon condensation may yield
further condensate species [9], a charged hyperon con-
densate in coexistence with a proton superconductor
possibly forming a two-superconductor system. Two-
component systems are also possible in dense quark matter.
In the color-flavor locked (CFL) phase [10], the pairing of
all quarks is usually described by a single gap function.
This is different in the presence of a magnetic field, and the
study of color-magnetic flux tubes [11] or domain walls
[12] in a Ginzburg-Landau approach shows striking simi-
larities with our two-component system. The color-mag-
netic flux tubes in CFL are not protected by topology [13],
but if there is a mechanism to stabilize them, for instance
an external magnetic field, they may have interesting

implications for neutron star physics [14], like their
analogues in 2SC quark matter [15]. In coexistence with
a kaon condensate [16,17], the CFL phase couples a color
superconductor with a superfluid and represents another
interesting system to which our results can be potentially
applied.

D. Broader context

A mixture of a superconductor with a superfluid is
conceivable not only in neutron stars but also in the
laboratory, for example in ultracold atomic systems, where
Bose-Fermi mixtures have been produced [18,19]. Atoms
are, of course, neutral, and thus this is actually a mixture
of two superfluids. However, at least for a single atomic
species, the coupling to a “synthetic magnetic field” has
been realized, including the observation of analogues of
magnetic flux tubes [20–22]. Therefore, future experiments
may well allow for the creation of a laboratory version of a
coupled superconductor/superfluid system.
If we relax the condition of exactly one of the two

components being charged, we find more realizations.
Systems of two superconducting components have been
discussed in the literature [23–26] and can be realized in the
form of two-band superconductors, or even in liquid
metallic hydrogen [27]. Two coexisting superfluids,
besides atomic Bose-Fermi mixtures, are conceivable in
3He-4He mixtures [28,29], although in this case it is
experimentally challenging to have both components in
the superfluid state simultaneously.

E. Relation to previous work

Our study makes use of and extends various results of
the literature. The model we are using is a gauged version
of the one of Ref. [30], where two-stream instabilities in a
system of coupled superfluids were discussed. Magnetic
flux tubes from proton superconductivity in neutron stars
have been studied extensively in the literature, usually with
an emphasis on phenomenological consequences. More
microscopic approaches often do not include a consistent
treatment of both components and rather put together
separate results from the proton superconductor and the
neutron superfluid (which may be a good approximation
for certain quantities because of the small proton fraction in
neutral, β-equilibrated nuclear matter). Studies relevant to
our work that do include both components within a single
model can be found in Refs. [31–34]. In Ref. [32], flux tube
profiles and energies are computed, results that we repro-
duce and utilize in the present paper. Our calculation of the
interaction between flux tubes is performed within an
approximation valid for large flux tube separations, based
on old literature for a single-component superconductor
[35]; for a different method leading to the same result see
Ref. [36]. Extensions to a system of a superconductor
coupled to a superfluid can be found in Refs. [37,38],
where the results were restricted to the symmetric situation
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of approximately equal self-coupling and cross-coupling
strengths of the scalar fields (which is unrealistic for
neutron star matter [39]), and no derivative cross-coupling
was taken into account. Interactions between flux tubes
have also been computed, based on the same approxima-
tion, in the context of cosmic strings for one-component
[40] and two-component [41] systems. Our study is also
related to so-called type-1.5 superconductivity, predicted to
occur in systems with two superconducting components
[23,42,43]. Although in our study only one component is
charged, we shall find very similar effects, for instance the
possibility of flux tube clusters.

F. Structure of the paper

In Sec. II, we present the model, compute the free
energy densities of the various phases at vanishing mag-
netic field, and introduce effects of nonzero temperature.
In Sec. III, we derive the expressions for the critical
magnetic fields Hc, Hc1, and Hc2 for our two-component
system and use the flux tube–flux tube interaction to point
out the possibilities of first-order phase transitions. Our
numerical results, most of them in the form of phase
diagrams, are presented in Sec. IV, together with a
discussion of the type-I/type-II transition region. We give
our conclusions and an outlook in Sec. V. Throughout the
paper, we use natural units ℏ ¼ c ¼ kB ¼ 1 and Gaussian
units for the electromagnetic fields, such that the elemen-
tary charge is e ¼ ffiffiffi

α
p ≃ 0.085 with the fine structure

constant α.

II. MODEL

A. Lagrangian and basic phase structure

Our calculation will essentially be a mean-field
Ginzburg-Landau study, and we could thus, as a starting
point, simply state the Ginzburg-Landau potential. We
choose a slightly more general field-theoretical language,
mainly because it provides us with the framework of
thermal field theory to introduce temperature. Starting
from a Ginzburg-Landau potential directly, this would be
less straightforward in our two-component system. In the
following, we thus start with a Lagrangian for two complex
scalar fields, and the zero-temperature Ginzburg-Landau
potential simply is the tree-level potential of this
Lagrangian. This is Eq. (5). Temperature is then introduced
in an approximation based on the thermal excitations
of the system, providing a simple temperature dependence
for the Ginzburg-Landau coefficients, given in Eqs. (13)
and (14).
The Lagrangian is

L ¼ L1 þ L2 þ Lint þ LYM; ð1Þ

where

Li¼DμφiðDμφiÞ�−m2
i jφij2−λijφij4; i¼ 1;2; ð2aÞ

Lint ¼ 2hjφ1j2jφ2j2 −
g1
2
½φ1φ2ðDμφ1Þ�ðDμφ2Þ� þ c:c:�

−
g2
2
½φ1φ

�
2ðDμφ1Þ�Dμφ2 þ c:c:�; ð2bÞ

LYM ¼ −
FμνFμν

16π
; ð2cÞ

with the covariant derivative Dμφi ¼ ð∂μ þ iqiAμÞφi,
where Aμ is the gauge field and q1, q2 the electric charges,
with the complex scalar fields φ1, φ2, the mass parameters
mi ≥ 0, the self-coupling constants λi > 0, and the field
strength tensor Fμν ¼ ∂μAν − ∂νAμ. We have included two
types of cross-couplings between the fields: a density
coupling with dimensionless coupling constant h, and a
derivative coupling which allows for two different struc-
tures with coupling constants g1 and g2 of mass dimension
−2. Due to this derivative coupling, the model is non-
renormalizable and an ultraviolet cutoff is required in
general. However, in our Ginzburg-Landau-like study we
are only interested in an effective potential for which the
only occurring momentum integral is made finite by
nonzero temperature. Therefore, the nonrenormalizability
will not play any role in the following. The chemical
potentials μ1 and μ2 are introduced in the usual way, they
can be formally included in the Lagrangian as temporal
components of the gauge fields in the covariant derivatives,
qiA0 → −μi, including the covariant derivatives in the
coupling terms [30]. In isolation, each of the fields would
form a Bose-Einstein condensate if μi > mi. We para-
metrize the condensates by their moduli ρi and their
phases ψ i,

hφii ¼
ρiffiffiffi
2

p e−iψ i : ð3Þ

Since we are interested in a superconductor coupled to a
superfluid, we assume only one of the fields to be charged,
say field 1, and the second to be neutral,

q≡ q1; q2 ¼ 0: ð4Þ
Moreover, we are only interested in static solutions and
thus drop all time derivatives. Then, the zero-temperature
tree-level potential U ¼ −Lφi→hφii is

Uðr⃗ Þ ¼ ð∇ρ1Þ2
2

þ ð∇ρ2Þ2
2

−
μ21 − ð∇ψ1 − qA⃗Þ2 −m2

1

2
ρ21

−
μ22 − ð∇ψ2Þ2 −m2

2

2
ρ22 þ

λ1
4
ρ41 þ

λ2
4
ρ42

−
hþ gμ1μ2

2
ρ21ρ

2
2 −

G
2
ρ1ρ2∇ρ1 ·∇ρ2

þ g
2
ρ21ρ

2
2ð∇ψ1 − qA⃗Þ · ∇ψ2 þ

B2

8π
; ð5Þ
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where we have reduced the Yang-Mills contribution to a
purely magnetic term, B⃗ ¼ ∇ × A⃗, and where we have
introduced the abbreviations

G≡ g1 þ g2
2

; g≡ g1 − g2
2

: ð6Þ

Boundedness of the tree-level potential requires
hþ gμ1μ2 <

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
. In the remainder of the paper, we

shall set g ¼ 0, mainly for the sake of simplicity.1 Some of
our results would become more complicated with a nonzero
g, for example the large-temperature expansion in Sec. II B.
Also, by reducing the number of parameters, the parameter
space of our model becomes a little less unwieldy. On the
other hand, at least for zero temperature, g does not play an
important role for the magnetic flux tube profiles because
our solutions will not include any circulation of the neutral
condensate, ∇ψ2 ¼ 0, in which case we see from Eq. (5)
that g appears merely as a modification of the density
coupling h.
To define the possible phases of the system and establish

the notation for their condensates, we start with the simplest
case of spatially uniform condensates in the absence of a
magnetic field, ∇ρ1 ¼ ∇ρ2 ¼ ∇ψ1 ¼ ∇ψ2 ¼ A⃗ ¼ 0. As a
consequence of these assumptions, the potential becomes
independent of G. The local minima of the potential yield
the possible phases, i.e., we need to solve the algebraic
equations

∂U
∂ρ1 ¼ 0;

∂U
∂ρ2 ¼ 0; ð7Þ

which allow for the following solutions:
(i) In the normal phase (“NOR”), neither the charged

nor the neutral field condenses,

ρ1 ¼ ρ2 ¼ 0; UNOR ¼ 0: ð8Þ

(ii) In the (pure) superconductor (“SC”), only the
charged field forms a condensate, whereas the
condensate of the other field is zero,

ρ21 ¼ ρ2SC ≡ μ21 −m2
1

λ1
; ρ2 ¼ 0; USC ¼ −

λ1ρ
4
SC

4
:

ð9Þ

(iii) In the (pure) superfluid (“SF”), only the neutral field
forms a condensate, while the charged fields remains
uncondensed,

ρ22 ¼ ρ2SF ≡ μ22 −m2
2

λ2
; ρ1 ¼ 0; USF ¼ −

λ2ρ
4
SF

4
:

ð10Þ

(iv) In the coexistence phase (“COE”), both condensates
exist simultaneously. Without coupling, the coexist-
ence phase is realized if and only if both chemical
potentials are larger than the corresponding masses.
The coupling favors (h > 0) or disfavors (h < 0) the
COE phase. The condensates and the free energy
density are

ρ21 ¼ ρ201 ≡ λ2ðλ1ρ2SC þ hρ2SFÞ
λ1λ2 − h2

;

ρ22 ¼ ρ202 ≡ λ1ðλ2ρ2SF þ hρ2SCÞ
λ1λ2 − h2

; ð11aÞ

UCOE¼−
λ1λ2ðλ1ρ4SCþ λ2ρ

4
SFþ2hρ2SCρ

2
SFÞ

4ðλ1λ2−h2Þ : ð11bÞ

The ground state is then found by determining the global
minimum of U. The resulting phase diagram in the μ1-μ2
plane is shown in Fig. 1, for both signs of the coupling h.
The figure also contains the phase transitions at nonzero
temperature, which we discuss now.

B. Introducing temperature

We intend to include temperature T into the potential (5)
in an effective way. In Ginzburg-Landau models this is
usually done by introducing T-dependent coefficients, with
a T-dependence that is strictly valid only close to the
critical temperature. In our system, the form of these
coefficients is not obvious because we have two fields
and hence (at least) two critical temperatures. We thus
proceed by introducing temperature in our underlying field
theory and derive an effective potential. This will be done in
a high-temperature approximation, assuming the conden-
sates to be uniform, and without background magnetic
field. Once we have derived the T-dependent Ginzburg-
Landau potential, we shall reinstate the magnetic field for
our discussion of the phase diagram and allow for spatially
varying condensates and gauge fields in a flux tube.
Neglecting zero-temperature quantum corrections, the
one-loop potential is

Ωðμ1; μ2; TÞ ¼ U þ T
X6
i¼1

Z
d3k
ð2πÞ3 lnð1 − e−ϵki=TÞ; ð12Þ

where the sum is taken over all six quasiparticle excitations
ϵki. Without condensation, each of the complex scalar fields
yields two excitations (both massive if mi > 0), corre-
sponding to particle and antiparticle excitations, while the
gauge field has two massless excitations, corresponding to

1In Ref. [32] the terms proportional to g were not included
from the beginning. In Ref. [30], which did not discuss vortex
solutions, only the tree-level potential with ∇ρi ¼ 0 was used,
such that G dropped out and g was the only relevant derivative
coupling.
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the two possible polarizations of massless photons. These
are six modes in total. In the coexistence phase both scalar
fields condense. As a consequence, there is one Goldstone
mode from the neutral field and one would-be Goldstone
boson from the charged field, which becomes a third mode
of the now massive gauge field. Together with the two
massive modes from the scalar fields and the two original
modes of the gauge field—which are now massive as
well—these are again six modes. The excitations ϵki are
computed from the tree-level propagator. Their expressions
are very complicated, but for the high-T approximation we
only need their behavior at large momenta. All details of
this calculation are deferred to Appendix A. From a field-
theoretical perspective our high-T approximation is very
crude, and for a quantitative evaluation of the model for all
temperatures more sophisticated methods are needed, such
as the two-particle irreducible formalism [44] or functional
renormalization group techniques [45]. These methods are
beyond the scope of the present work because, first, if
applied to our present context of magnetic flux tubes and
their interactions, they would render the calculation much
more complicated and purely numerical methods would be
required. Second, having in mind the application of our
model to nuclear matter, the next step towards a more
sophisticated description should probably be to employ a
fermionic model, rather than improving the bosonic one
(note for instance that our bosonic system has well-defined
quasiparticle excitations for all energies, while a fermionic
one has a continuous spectral density for energies larger
than twice the energy gap from Cooper pairing).
We also simplify the result by only keeping the leading

order contribution from the derivative coupling G. As a
result, all temperature corrections can be absorbed into

thermal masses and a thermal density coupling, and we can
work with the effective potential

Uðr⃗ Þ≃ ð∇ρ1Þ2
2

þ ð∇ρ2Þ2
2

−
μ21 − ð∇ψ1 − qA⃗Þ2 −m2

1;T

2
ρ21

−
μ22 − ð∇ψ2Þ2 −m2

2;T

2
ρ22 þ

λ1
4
ρ41 þ

λ2
4
ρ42

−
hT
2
ρ21ρ

2
2 −

G
2
ρ1ρ2∇ρ1 · ∇ρ2 þ B2

8π
; ð13Þ

where

m2
1;T ¼ m2

1 þ
2λ1 − hþ 6πq2

6
T2; ð14aÞ

m2
2;T ¼ m2

2 þ
2λ2 − h

6
T2; ð14bÞ

hT ¼ h

�
1þGT2

6

�
: ð14cÞ

For the following, we can thus simply take Eqs. (8)–(11)
and replace the masses and the density coupling by their
thermal generalizations. The effect of nonzero temperature
on the phase structure is shown in Fig. 1. Before we use the
potential to compute the critical magnetic fields, we briefly
comment on the critical temperatures of the coexistence
phase without external magnetic field. In the presence of a
derivative coupling G the resulting expressions are very
lengthy and not very insightful. Therefore, we setG ¼ 0 for
the moment, such that the only effect of temperature is a
modification of the masses m1 and m2. Inserting the
thermal masses into Eq. (11), we compute the T-dependent
condensates

FIG. 1. Phases in the μ1-μ2 plane at zero temperature (solid curves) and nonzero temperature (dashed curves). All lines are second-
order phase transitions. The density coupling disfavors (h < 0, left panel) or favors (h > 0, right panel) the COE phase. The effect of
temperature on the SC and SF phases is asymmetric, even for identical self-coupling constants, because the thermal mass of the charged
field depends on q. The values of the parameters are q ¼ 2e, m1 ¼ m2 ≡m, λ1 ¼ λ2 ¼ 0.5, T ¼ 3m, h ¼ �0.1, G ¼ 0.
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ρ20iðTÞ ¼ ρ20iðT ¼ 0Þ
�
1 −

T2

T2
ci

�
; ð15Þ

where the critical temperatures Tc1 and Tc2 indicate the
phase transitions to the SF and SC phases,

T2
c1 ¼

6ðλ1λ2 − h2Þ
λ2ð2λ1 þ hþ 6πq2Þ − h2

ρ201ðT ¼ 0Þ; ð16aÞ

T2
c2 ¼

6ðλ1λ2 − h2Þ
λ1ð2λ2 þ hÞ − hðh − 6πq2Þ ρ

2
02ðT ¼ 0Þ: ð16bÞ

In the limit h ¼ 0, Eq. (16a) reduces to the well-known
result for a single charged field, see for instance Eq. (4.24)
in Ref. [46] (in this reference Heaviside-Lorentz units are
used, i.e., our charge q has to be divided by

ffiffiffiffiffiffi
4π

p
to match

that result exactly). If we set h ¼ 0 in Eq. (16b) the result
becomes independent of the charge q, as it should be
because field 2 is neutral and couples to the gauge field
only indirectly through field 1.
The critical temperatures (16) and their more compli-

cated versions with nonzeroG are interesting in themselves.
For instance, they can be used to analyze systematically in
which regions of parameter space the COE phase is
superseded by the SF phase at high temperature (i.e., the
charged condensate melts first, Tc1 < Tc2) or by the SC
phase (i.e., the neutral condensate melts first, Tc2 < Tc1).
Or, they can be used to identify regions in the parameter
space where one or both critical temperatures squared
become negative, indicating that one or both condensates
“refuse” to melt. This interesting observation—although it
may be an artifact of our approximation—has been pointed
out previously in the literature, see for instance Appendix C
in Ref. [47] and references therein. Here we shall not further
analyze the critical temperatures and proceed with our main
concern, phases at nonzero external magnetic field. None of
the parameter sets we shall use in the following show this
unusual behavior, i.e., we choose parameters such that Tc1
and Tc2 exist.

III. CRITICAL MAGNETIC FIELDS

The free energy can be computed from the potential (13),

F ¼
Z

d3rUðr⃗ Þ: ð17Þ

Since we are interested in the phase structure at fixed
external (and homogeneous) magnetic field H⃗ ¼ He⃗z, we
need to consider the Gibbs free energy

G ¼ F −
H⃗
4π

·
Z

d3rB⃗: ð18Þ

To determine the complete phase diagram, we would have
to compute the Gibbs free energy for all possible phases at

each point in the phase space given by the thermodynamic
variables ðμ1; μ2; T;HÞ. The possible phases are the NOR,
SF, SC, and COE phases listed above, and for the phases
that are superconducting (SC and COE) we have to
distinguish the Meissner phase, in which the magnetic
field is completely expelled, B⃗ ¼ 0, from the flux tube
phase, where a lattice of magnetic flux tubes is formed,
admitting part of the applied magnetic field in the super-
conductor. We shall simplify this problem by not comput-
ing the Gibbs free energy for the flux tube phase in full
generality, which would require us to determine the spatial
profile of the condensate and the magnetic field, including
the preferred lattice structure, fully dynamically. Instead—
following the usual textbook treatment [48]—we shall
compute the critical magnetic fields Hc1, Hc2, and Hc,
although they do not provide complete information of the
phase diagram, not even for a single-component super-
conductor. To interpret their meaning for the phase
diagram (in particular in our two-component system) it
is important to precisely recall how they are computed,
and thus we start each of the following three subsections
with the definition of the corresponding critical magnetic
field before we compute them for our system. In general,
when we speak of the superconducting phase, this can be
either the COE or the SC phase, while the normal-
conducting phase can either be NOR or SF. The concrete
calculations will always be done for the most interesting
case, where both charged and neutral condensates exist in
the superconducting phase (COE) and the normal con-
ductor is the pure superfluid (SF). The critical magnetic
fields for the transition between the COE and NOR and
between the SC and NOR phases are not needed for our
main results, but can be computed analogously. The latter
appears to be the standard textbook scenario. However, in
our two-component system it is conceivable that in the SC
phase a neutral condensate is induced in the center of a
flux tube [49,50]. Therefore, the pure superconductor SC
might acquire a superfluid admixture, which can affect the
critical magnetic fields for the transition to the completely
uncondensed phase (NOR). In the present paper, we shall
only consider flux tube solutions that approach the COE
phase, not the SC phase, far away from the center of the
flux tube.

A. Critical magnetic field Hc

Definition.—The critical magnetic field Hc is the
magnetic field at which the Gibbs free energies of
the superconducting phase in the Meissner state and the
normal-conducting phase are identical, resulting in a first-
order phase transition between them.

The Gibbs free energy of the COE phase with complete
expulsion of the magnetic field is

GCOE ¼ VUCOE; ð19Þ
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where V is the total volume of the system and UCOE is the
free energy density from Eq. (11b), with the massesm1,m2

and the coupling h replaced by their thermal generaliza-
tions m1;T , m2;T , hT . We neglect any magnetization in

the normal-conducting phases, and thus B⃗ ¼ H⃗ in the SF
phase, which yields the Gibbs free energy

GSF ¼ V

�
USF −

H2

8π

�
; ð20Þ

with USF from Eq. (10). Note that the H2 term is a sum
of the magnetic energy ∝B2 and the term ∝HB in the
Legendre transformation from the free energy F to the
Gibbs free energy G. Therefore, the critical magnetic field,
defined by GCOE ¼ GSF, becomes

Hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πðUSF−UCOEÞ

p
¼ 2πq

ffiffiffi
2

p
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

h2T
λ1λ2

s
ρ201: ð21Þ

Here we have introduced the Ginzburg-Landau parameter

κ ¼ l
ξ
¼

ffiffiffiffiffiffiffiffiffiffi
λ1

4πq2

s
; ð22Þ

with the magnetic penetration depth l and the coherence
length ξ,

l ¼ 1ffiffiffiffiffiffiffiffiffiffi
4πq2

p
ρ01

; ξ ¼ 1ffiffiffiffiffi
λ1

p
ρ01

: ð23Þ

B. Critical magnetic field Hc2

Definition.—Suppose there is a second-order phase
transition between the superconductor in the flux tube
phase and the normal-conducting phase, such that the
equations of motion can be linearized in the charged
condensate. Then, the critical magnetic field Hc2 is the
maximal magnetic field allowed by the equations of
motion. Hc2 is a lower bound for the actual transition
from the flux tube phase to the normal-conducting phase
because it does not exclude a first-order transition at some
larger H. We call the critical field for such a first-order
transition H0

c2.

By definition, as we approach Hc2, the charged con-
densate approaches zero and the neutral condensate
approaches the condensate of the SF phase. For magnetic
fields H close to and smaller than Hc2, we can write the
condensates and the gauge field as their values at Hc2 plus
small perturbations. Then, for the calculation of Hc2 itself
the equations of motion linear in the charged condensate
are sufficient. We are also interested in checking whether
and in which parameter regime the flux tube phase is
energetically preferred just below Hc2. This is done within

the same calculation, but taking into account higher order
terms in the equations of motion and the free energy.
This calculation is somewhat lengthy and is explained in
Appendix B. Here we summarize the results. The critical
magnetic field becomes

Hc2 ¼
1

qξ2

�
1 −

h2T
λ1λ2

�
¼

ffiffiffi
2

p
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

h2T
λ1λ2

s
Hc; ð24Þ

where the second expression relates Hc2 to Hc by using
Eq. (21). At zero temperature, Hc2 does not depend on the
gradient coupling G. However, the difference in Gibbs free
energies between the superconducting and the normal-
conducting phases does depend on G, see Eq. (B16). For
G ¼ 0 we have

GCOE

V
¼ GSF

V
þ λ1hφ̄4

1i
�
1

2κ2
− 1þ h2

λ1λ2
I1ðpÞ

�
; ð25Þ

where hφ̄4
1i is the spatial average of the charged condensate

(B9), where

p2 ¼ 2λ2ρ
2
SF

qHc2
; ð26Þ

and where

I1ðpÞ≡ pep
2=4

2
ffiffiffi
2

p
Z

∞

−∞
dte−t

2

�
ept
�
1 − erf

�
p
2
þ t

��

þ e−pt
�
1 − erf

�
p
2
− t

���
; ð27Þ

with the error function erf.
In the limit of a single superconductor, h ¼ 0, we recover

the standard result: in that case, Eq. (24) shows that the
critical fields Hc and Hc2 coincide at κ2 ¼ 1=2, and
Eq. (25) shows that the flux tube phase is preferred,
GCOE < GSF, if and only if κ2 > 1=2. In the coupled system
the situation is more complicated. Now, from Eq. (24) we
see that Hc and Hc2 coincide at a larger value of κ (since
h2 < λ1λ2 to ensure the boundedness of the potential
for h > 0 and to ensure the existence of the COE phase
for h < 0, the square root is always real and smaller than 1).
This appears to take away phase space from the flux tube
phase. However, from Eq. (25) we see that the difference in
Gibbs free energies between the COE and the SF phases
changes sign at a different point, and this point is given not
just by the coupling constant h, but also depends on p, i.e.,
on the magnitude of the neutral condensate ρSF compared to
the square root of the critical magnetic field Hc2. Despite
this dependence we can make a general statement: we find
0 ≤ I1ðpÞ < 1, and thus the factor I1ðpÞ weakens the
effect of the term h2=ðλ1λ2Þ. At the value of κ where Hc
and Hc2 are equal, the superconducting phase is preferred
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and—for all p—remains preferred along Hc2, until the
smaller κ defined through Eq. (25) is reached. This
observation is indicative of the complications at the
transition between type-I and type-II superconductivity
in the two-component system, and we shall find further
discrepancies to the standard scenario when we compute
the critical field Hc1.
Anticipating the numerical results in Sec. IV, let us

comment on a possible first-order phase transition at H0
c2,

as mentioned in the definition at the beginning of this
section. Suppose we are in a parameter region where the
flux tube phase is favored just belowHc2, i.e., let κ be larger
than the critical κ defined through Eq. (25). Then, any
phase transition from the flux tube phase to the normal
phase at a critical field smaller than Hc2 is excluded
because we know that the system prefers to be in the flux
tube phase just below Hc2 (here we ignore the very exotic
possibility that the system quits the flux tube phase and
then reenters it below Hc2). A phase transition at a critical
magnetic field larger thanHc2—instead of the one atHc2—
is however possible. This phase transition must be of first
order because by definitionHc2 is the largest magnetic field
at which a second-order transition may occur. Putting these
arguments together leads to the conclusion that Hc2 is a
lower bound for the transition from the flux tube phase to
the normal phase, possibly replaced by a first order
transition at H0

c2 > Hc2. Our numerical results will indeed
suggest such a first-order phase transition. However, we
shall find H0

c2 < Hc2, which, as we will explain, is an
artifact of the approximation we apply for the interaction
between flux tubes. Nevertheless, our result will allow us to
speculate about the correct critical field H0

c2, obtained
in a more complete calculation that goes beyond our
approximation.

C. Critical magnetic field Hc1

Definition.—The critical magnetic field Hc1 is the
magnetic field at which it becomes energetically favorable
to put a single flux tube into the superconductor in the
Meissner phase, resulting in a second-order phase transition
from the Meissner phase into the flux tube phase. Hc1 is an
upper bound for this transition because there can be a first-
order transition at some smaller H, i.e., it can be favorable
to directly form a flux tube lattice with a finite, not infinite,
distance between the flux tubes. We call this first-order
critical field H0

c1.

According to the definition (18), the Gibbs free energy
for the COE phase with a single magnetic flux tube is

G↺
COE ¼ VUCOE þ F↺ −

HnΦ0

4π
L; ð28Þ

where F↺ is the free energy of the flux tube, and where we
have used

Z
d3rB ¼ nΦ0L; ð29Þ

with the winding number n of the flux tube, the length of
the flux tube L, and the fundamental flux quantum
Φ0 ¼ 2π=q. Placing a single flux tube into the system
results in a loss in (negative) condensation energy, and thus
the free energy increases. However, at fixed magnetic field
H, there is an energy gain from allowing magnetic flux
into the system. As a consequence, there is a competition
between these two contributions of opposite sign in
Eq. (28). At the critical point, the two contributions exactly
cancel each other,

Hc1 ¼
2q
n
F↺

L
: ð30Þ

The calculation of Hc1 thus amounts to the calculation of
the free energy of a single flux tube F↺, for which we can
largely follow Ref. [32]. We work in cylindrical coordi-
nates, r⃗ ¼ ðr; z; θÞ, and make the following, radially
symmetric, ansatz for the condensates,

ρiðrÞ ¼ ρ0ifiðrÞ; ψ1ðθÞ ¼ nθ; ψ2 ¼ 0; ð31Þ

and the gauge field

A⃗ðrÞ ¼ naðrÞ
qr

e⃗θ ⇒ B⃗ðrÞ ¼ n
qr

∂a
∂r e⃗z: ð32Þ

The profile functions fi and a have to be computed
numerically. Their boundary conditions are fið∞Þ ¼
að∞Þ ¼ 1, f1ð0Þ ¼ 0, and ∂rf2ð∞Þ ¼ ∂rað∞Þ ¼ 0, such
that the condensates approach their homogeneous values
ρ0i and the magnetic field vanishes far away from the center
of the flux tube. The values of the neutral condensate and
the gauge field at the center of the flux tube are determined
dynamically. We have set the winding number of the
neutral condensate to zero because the flux tube does
not induce a superfluid vortex [32].
We insert our ansatz into the potential (13) and separate

the potential of the homogeneous COE phase,

Uðr⃗ Þ ¼ U↺ðr⃗ Þ þ UCOE; ð33Þ

with

UCOE ¼ −
μ21 −m2

1;T

2
ρ201 −

μ22 −m2
2;T

2
ρ202 þ

λ1
4
ρ401 þ

λ2
4
ρ402

−
hT
2
ρ201ρ

2
02: ð34Þ

To write the free energy of the flux tube in a convenient
form, we introduce the dimensionless variable
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R ¼ r
ξ
; ð35Þ

abbreviate the dimensionless gradient coupling by

Γ≡Gρ01ρ02; ð36Þ

and the ratio of neutral over charged condensate by

x≡ ρ02
ρ01

: ð37Þ

It is also useful to write μ21−m2
1;T ¼ λ1ρ

2
SC¼ λ1ρ

2
01−hTρ202

and μ22 −m2
2;T ¼ λ2ρ

2
SF ¼ λ2ρ

2
02 − hTρ201, which follows

from Eq. (11). Then, we obtain the free energy per unit
length,

F↺

L
¼ 1

L

Z
d3rU↺ðr⃗ Þ

¼ πρ201

Z
∞

0

dRR

�
n2κ2a02

R2
þ f021 þ f21

n2ð1 − aÞ2
R2

þ ð1 − f21Þ2
2

þ x2
�
f022 þ λ2

λ1
x2

ð1 − f22Þ2
2

�

−
hT
λ1

x2ð1 − f21Þð1 − f22Þ − Γxf1f2f01f02

�
; ð38Þ

where prime denotes derivative with respect to R. This
yields the equations of motion for a, f1, f2,

a00 −
a0

R
¼ −

f21
κ2

ð1 − aÞ; ð39aÞ

0 ¼ f001 þ
f01
R

þ f1

�
1 − f21 −

n2ð1 − aÞ2
R2

�
−
hT
λ1

x2f1ð1 − f22Þ

−
Γx
2
f1

�
f022 þ f2

�
f002 þ

f02
R

��
; ð39bÞ

0 ¼ f002 þ
f02
R

þ f2
λ2
λ1

x2ð1 − f22Þ −
hT
λ1

f2ð1 − f21Þ

−
Γ
2x

f2

�
f021 þ f1

�
f001 þ

f01
R

��
: ð39cÞ

We solve these equations numerically with a successive
over-relaxation method. The profiles themselves have been
discussed in detail in Ref. [32],2 and we do not further
comment on them. Instead we continue with the asymptotic
solution, which will be needed later.

Far away from the center of the flux tube, all profile
functions are close to one. Therefore, we write

aðRÞ ¼ 1þ RvðRÞ; f1ðRÞ ¼ 1þ u1ðRÞ;
f2ðRÞ ¼ 1þ u2ðRÞ; ð40Þ

and linearize the profile equations (39) in v, u1, and u2,

0≃ R2v00 þ Rv0 −
�
1þ R2

κ2

�
v; ð41aÞ

Δu≃Mu; ð41bÞ

where

u≡
�
u1
u2

�
; M≡ 2

 
1 − Γx

2

− Γ
2x 1

!−1 1 − hT
λ1
x2

− hT
λ1

λ2
λ1
x2

!
:

ð42Þ

We can decouple the equations for u1 and u2 by diagonal-
izing M,

diagðνþ; ν−Þ ¼ U−1MU; U ¼
�
γþ γ−

1 1

�
; ð43Þ

where ν� are the eigenvalues of M and ðγ�; 1Þ its
eigenvectors, given by

ν� ¼ λ1 þ λ2x2 − hTΓx�Q
λ1ð1− Γ2=4Þ ; γ� ¼ xðλ1 − λ2x2 �QÞ

λ1Γ− 2hTx
;

ð44Þ

where Q≡ ½ðλ1 − λ2x2Þ2 − 2hTΓxðλ1 þ λ2x2Þ þ x2ð4h2Tþ
Γ2λ1λ2Þ�1=2. This yields two uncoupled equations for ~u1 and
~u2, where ~u ¼ U−1u, which we solve with the boundary
condition ~u1ð∞Þ ¼ ~u2ð∞Þ ¼ 0 (which leaves one integra-
tion constant from each equation undetermined). We undo
the rotation with u ¼ U ~u, and, together with the solution to
Eq. (41), insert the result into Eq. (40) to obtain the
asymptotic solutions

aðRÞ≃ 1þ CRK1ðR=κÞ; ð45aÞ

f1ðRÞ≃ 1þDþγþK0ð ffiffiffiffiffiffi
νþ

p
RÞ þD−γ−K0ð

ffiffiffiffiffi
ν−

p
RÞ; ð45bÞ

f2ðRÞ≃ 1þDþK0ð ffiffiffiffiffiffi
νþ

p
RÞ þD−K0ð

ffiffiffiffiffi
ν−

p
RÞ; ð45cÞ

where K0 and K1 are the modified Bessel functions of
the second kind, and the constants C, Dþ, D− can only be
determined numerically by solving the full equations of
motion, including the boundary conditions at R ¼ 0.
In deriving the linearized Eqs. (41), we have not only

2Equation (39) is identical to Eq. (16) in Ref. [32] if we
identify

Γ
2
↔ σ; x ↔

hϕni
hϕpi

;
hT
λ1

↔ −
apn
app

;
λ2
λ1

↔
ann
app

:
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used u1, u2, v ≪ 1, but also v2 ≪ u1, u2, which implies
e−2R=κ ≪ e−

ffiffiffiffi
ν�

p
R. This assumption is violated if κ is

sufficiently large compared to 1=
ffiffiffiffiffiffi
ν�

p
(compared to 1=

ffiffiffi
2

p
in a single superconductor), i.e., deep in the type-II regime.
Later, when we use the solutions of the linearized equations
for the interactions between flux tubes, we are only
interested in the transition region between type-I and
type-II behavior, where 1=κ ≃ ffiffiffiffiffiffi

ν�
p

, i.e., for our purpose
the linearization is a valid approximation.

D. Interaction between flux tubes
and first-order phase transitions

If the phase transitions from the Meissner phase to the
flux tube phase and from the flux tube phase to the normal-
conducting phase were of second order we would be done.
The critical magnetic fields of the previous sections would
be sufficient to determine the phase structure. We shall
see, however, that, due to the presence of the superfluid,
first-order phase transitions become possible. To this end,
we compute the Gibbs free energy of the entire flux tube
lattice, rather than only of a single flux tube. We shall do so
in an approximation of flux tube distances much larger than
the width of a flux tube.
We generalize the Gibbs free energy (28) to a system

with flux tube area density ν and add a term that takes into
account the interaction between the flux tubes

G↺↺
COE

V
≃UCOE þ

nν
2q

ðHc1 −HÞ þ tν
2

F↺
intðR0Þ
L

; ð46Þ

where we have eliminated F↺ in favor of Hc1 with the
help of Eq. (30), and where we have employed the
nearest-neighbor approximation for the interaction term
with the number of nearest neighbors t, and the dimen-
sionless lattice constant R0. For a hexagonal lattice,
which we shall use in our explicit calculation, t ¼ 6

and ν ¼ 2=ð ffiffiffi
3

p
R2
0Þ. The interaction energy F↺

intðR0Þ is
defined by writing the total free energy of two flux tubes
with distance R0, say flux tubes (a) and (b), in terms of
the free energy of the flux tubes in isolation plus the
interaction energy,

FðaÞþðbÞ
↺ ¼ FðaÞ

↺ þ FðbÞ
↺ þ F↺

intðR0Þ: ð47Þ

We calculate F↺
intðR0Þ in Appendix C in an approximation

that is valid for large R0. This calculation makes use of
the method first employed in Ref. [35], adapted to our
two-component system with gradient coupling. All
related references mentioned in Sec. I E are based on
this method or an equivalent one, and our results
reproduce the ones of those references in various limits.
The result is

F↺
intðR0Þ
L

≃ 2ρ201R0

Z
∞

R0=2

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðR0=2Þ2

p �
κ2n2a0ð1 − aÞ

R2

− ð1 − f1Þf01 − x2ð1 − f2Þf02
þ Γx

4
ðf1 þ f2 þ f1f2 − 1Þ

× ½ð1 − f1Þf02 þ ð1 − f2Þf01�
�
: ð48Þ

As explained in the Appendix in more detail, the
integration can be reduced to an integral over the plane
that separates the two Wigner-Seitz cells, which, in this
simple setup, are two half-spaces. Since the integration
along the direction of the flux tubes is trivial, we are left
with a one-dimensional integral. As a consequence of the
approximation, only the profile functions of a single flux
tube appear in the integrand. In the derivation we have
also assumed the asymptotic values of the condensates to
be identical to the homogeneous values in the Meissner
phase, ρ01 and ρ02. We shall later insert our numerical
solutions f1, f2, and a into Eq. (48) to compute the Gibbs
free energy numerically. Before we do so we extract some
simple analytical results with the help of the asymptotic
solutions (45). Inserting them into Eq. (48) yields a
lengthy expression which is not very instructive, espe-
cially due to the terms proportional to the gradient
coupling. In Appendix D we show that a simple expres-
sion can be extracted, even including the gradient
coupling, if we restrict ourselves to the leading order
contribution at large distances. Here we proceed with the
simpler case of vanishing gradient coupling, Γ ¼ 0, to
obtain straightforwardly

F↺
intðR0Þ
L

≃ 2πρ201½κ2n2C2K0ðR0=κÞ
−D2þðγ2þ þ x2ÞK0ðR0

ffiffiffiffiffiffi
νþ

p Þ
−D2

−ðγ2− þ x2ÞK0ðR0

ffiffiffiffiffi
ν−

p Þ�; ð49Þ

where we have used γþγ− þ x2 ¼ 0 for Γ ¼ 0, which
follows from Eq. (44), the derivatives K0

1ðxÞ ¼
−K0ðxÞ − K1ðxÞ=x, K0

0ðxÞ ¼ −K1ðxÞ, and the integral

Z
∞

R0=2

dRK0ðαRÞK1ðαRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðR0=2Þ2

p ¼ πK0ðαR0Þ
αR0

: ð50Þ

The result (49) shows that there is a positive contribution,
which makes the flux tubes repel each other due to their
magnetic fields, and there is a negative contribution,
which makes the flux tubes attract each other due to the
lower loss of (negative) condensation energy if the flux
tubes overlap. Let us first see how the case of a single
superfluid is recovered by switching off the coupling h.
(Since we have set Γ ¼ 0, there is no temperature
dependence left in hT and we drop the subscript T in
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this discussion.) As h → 0, the quantities ν� and γ� go to
different limits, depending on the sign of λ1 − λ2x2. If
λ2x2 > λ1, we have γþ ∼ h and γ− ∼ h−1. Numerically, we
find that while γ− diverges, the product D−γ− goes to a
finite value. Moreover, Dþ goes to zero, such that the
attractive terms reduce to −D2

−γ
2
−K0ðR0

ffiffiffi
2

p Þ since ν− → 2
for h → 0. In particular, all dependence on x, which
contains the neutral condensate, has disappeared, as it
should be. If, on the other hand, λ2x2 < λ1, we see from
Eq. (44) that now γþ ∼ h−1 and γ− ∼ h, and it is the other
term, −D2þγ2þK0ðR0

ffiffiffi
2

p Þ, which survives, again reproduc-
ing the correct result of a single superconductor. The
result can be used to find the sign of the interaction at
R0 → ∞, i.e., to determine whether the flux tubes repel or
attract each other at large distances. Since the Bessel
functions fall off exponentially for large R0, we simply
compare the arguments of the Bessel functions of the
negative and positive contributions. For the single super-
conductor, the long-distance flux tube interaction is thus
attractive for κ2 < 1=2 and repulsive for κ2 > 1=2, i.e., the
sign change appears exactly at the point where Hc ¼ Hc2.
Going back to the full expression (49) for the two-

component system, we compare ν− with 1=κ2, because
ν− < νþ, i.e., the term proportional to K0ðR0

ffiffiffiffiffi
ν−

p Þ is less
suppressed for R0 → ∞. Therefore, the point at which the
long-range interaction changes from repulsive to attractive
is given by

1

κ2
¼ 1þ λ2

λ1
x2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

λ2
λ1

x2
�

2

þ 4h2x2

λ21

s

¼ H2
c2

κ2H2
c

�
1 −

h2

λ22x
2
þO

�
1

x4

��
: ð51Þ

By comparing Eq. (51) with Eq. (24), we see that in the
two-component system the long-distance interaction
changes its sign at a point different from Hc ¼ Hc2.
This is made particularly obvious in the second line of
Eq. (51), where we have expanded the result for large
values of x, i.e., for large values of the neutral condensate
compared to the charged one, ρ02=ρ01 ≫ 1. This limit is
interesting for the interior of neutron stars, where protons
are expected to contribute only about 10% to the total
baryon number density.3 From Eq. (51) we recover

κ2 ¼ 1=2 for h ¼ 0, but only if λ2x2 > λ1. The reason is
that the limits R0 → ∞ and h → 0 do not commute in
general: in deriving Eq. (51) we have fixed h at a nonzero
value and let R0 → ∞, while in our above discussion of
the single superconductor, we fixed R0 while first letting
h → 0.
An attractive long-distance interaction between the flux

tubes can have very interesting consequences. Recall that
Hc1 is the magnetic field at which the phase with a single
flux tube is preferred over the phase with complete field
expulsion. In other words, at Hc1 the flux tube density is
zero and increases continuously, while the flux tube
distance decreases continuously from infinity at Hc1. If
the interaction at infinite distances is attractive, the flux
tubes do not “want” to form an array with arbitrarily small
density. Assuming that the interaction always becomes
repulsive at short range [which our numerical results
confirm if we extrapolate Eq. (48) down to lower dis-
tances], there is a minimum in the flux tube–flux tube
potential, which corresponds to a favored distance between
the flux tubes. As a consequence, the transition from the
Meissner phase to the flux tube phase occurs at a critical
field lower than Hc1, which we call H0

c1, at which the flux
tube density jumps from zero to a nonzero value. An
instructive analogy is the onset of nuclear matter as a
function of the baryon chemical potential μB. If the
nucleon-nucleon potential was purely repulsive, there
would be a second-order onset at the baryon mass,
μc ¼ mB. In reality, there is a binding energy Eb, and
the baryon onset is a first-order transition at a lower
chemical potential μ0c ¼ mB − Eb. Here, the role of the
chemical potential is played by the external fieldH, the role
of the nucleons is played by the flux tubes with mass per
unit length Hc1 ¼ 2qF↺=ðnLÞ, and the binding energy
is generated by the attractive interaction between the flux
tubes.
In the single-component system, this first-order phase

transition is not realized because it occurs in the type-I
regime. More precisely, if we were to continue Hc1 into
the type-I regime, then, at Hc1, it does not matter that the
flux tube phase is made more favorable by an attractive
interaction because the normal-conducting phase is the
ground state (under the assumption that the gain in Gibbs
free energy is not sufficient to overcome the difference to
the normal phase). In the two-component system, however,
the attractive interaction may exist in the regime where,
at Hc1, the Meissner phase (and the phase with a single
flux tube) is already preferred over the normal phase.
Hence, any arbitrarily small binding energy will lead to a
first-order phase transition at H0

c1 < Hc1. As we move
along Hc1 towards smaller values of κ, i.e., towards the
type-I regime, we hit the critical point given by Eq. (51),
where the second-order transition turns into a first-order
transition. Since our approximation is accurate for infini-
tesimally small flux tube densities, our prediction for this

3In Ref. [38], the limit x ≫ 1 was considered (n1=n2 ≪ 1 in
the notation of that reference), and it was argued that the critical
κ’s for Hc ¼ Hc2 and the sign change of the long-range
interaction are identical, in agreement with the leading-order
contribution of our Eq. (51). Reference [38] only considered the
near-symmetric situation λ1 ¼ λ2 ≡ λ, h ¼ −λþ δλ with 0 <
δλ ≪ λ (notice that h < 0 here). In this case, our results show
that Hc ¼ Hc2 occurs at κ2 ≃ λ

4δλ and the sign change in the long-
range interaction energy at κ2 ≃ λ

4δλ
1þx2

x2 . Consequently, even in
the near-symmetric situation the two critical κ’s are different and
only become identical in the limit x ≫ 1.
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point is exact. If we then keep moving along H0
c1, the flux

tube density at the transition increases and our results have
to be taken with care.
We can directly compute H0

c1 by equating the Gibbs free
energy of the flux tube phase (46) to the Gibbs free energy
of the Meissner phase (19). In the flux tube phase we have
to find the preferred flux tube distance R0 (or, equivalently,
the preferred flux tube density ν), which is given by
minimizing the Gibbs free energy. Hence, we compute
H0

c1 by solving the coupled equations

G↺↺
COE ¼ GCOE;

∂G↺↺
COE

∂R0

¼ 0 ð52Þ

for H and R0. We may use the same method to compute
a potential first-order phase transition from the flux tube
phase to the normal-conducting phase, i.e., in the free
energy comparison we replace GCOE with GSF from Eq. (20)
and compute the resulting critical field H0

c2.

IV. PHASE DIAGRAMS

A. Taming the parameter space

The results in the previous sections have shown that the
presence of the superfluid affects the transition from type-I
to type-II superconductivity in a qualitative way, and we
will make these results now more concrete by discussing
the phase diagram of our model. To this end, we need to
locate this transition in the parameter space. A priori, we
have to deal with a large number of parameters, m1, m2, λ1,
λ2, q, h, G, and the external thermodynamic parameters T,
H, μ1, μ2. Having in mind a system of neutron and proton
Cooper pairs we setm1 ¼ m2 ≡m and q ¼ 2e, and express
all dimensionful quantities in units of m. Many interesting
results can already be obtained with a density coupling
alone, and we shall therefore set the gradient coupling to
zero, G ¼ 0, which implies hT ¼ h, for all numerical
results. This leaves us with the three coupling constants
λ1, λ2, h, plus four thermodynamic parameters. If we take
the condition Hc2 ¼ Hc as an indication for the location of
the type-I/type-II transition, then Eq. (24) shows that the
transition is, for G ¼ 0 and fixed q, given by a surface in
the λ1 − λ2 − h space. (This surface is independent of μ1,
μ2, and T, but these parameters of course determine the
favored phase, and thus, if embedded in the larger param-
eter space, not everywhere on that surface the COE phase is
the preferred phase at H ¼ 0.) Therefore, the phase dia-
grams in Fig. 1, where λ1, λ2, and h are fixed, are not very
useful for our present purpose, and it is more suitable to
start from the λ1-λ2 plane, where, for a given cross-coupling
h, we obtain a nontrivial curve H ¼ Hc2. Two phase
diagrams in the λ1-λ2 plane at vanishing magnetic field
are shown in the upper panels of Fig. 2, one for positive and
one for negative cross-coupling h. We have chosen the
chemical potentials to be larger than the common mass

parameter, μi > m, in which case it is always possible to
find negative and positive values of h such that at
sufficiently low T and H there is a region in the phase
diagram where the COE phase is preferred, cf. Fig. 1.
In the interior of a neutron star, as we move towards

the center and thus increase the total baryon number, the
system will take some complicated path in our multidi-
mensional parameter space, under the assumption that
the model describes dense nuclear matter reasonably well.
Here we do not attempt to construct this path. But, we keep
in mind that nuclear matter is expected to cross the critical
surface H ¼ Hc2 if we move to sufficiently large densities.
Therefore, we now choose a path with this property.
Starting from the diagrams in Fig. 2, the simplest way
to do this is to choose a path in the λ1-λ2 plane with all other
parameters held fixed. We parametrize the path by
α ∈ ½0; 1�, which is defined by

λ⃗ ¼ λ⃗start þ αðλ⃗end − λ⃗startÞ; ð53Þ

with λ⃗ ¼ ðλ1; λ2Þ. In Fig. 2 we show the paths for positive
and negative h that we shall use in the following. Both
paths cross from a type-II region for small α into a type-I
region for large α. In a very crude way, α plays the role of
the baryon density in a neutron star. Since our paths are
chosen such that λ1 decreases along them and the charge q
is fixed, the Ginzburg-Landau parameter κ decreases as α
increases.

B. Phases at nonzero temperatures
and magnetic fields

In the lower panels of Fig. 2 we show the zero-
temperature critical magnetic fields Hc, Hc2, and Hc1,
computed as explained in Secs. III A–III C, and the critical
temperatures at zero magnetic field, computed from
Eqs. (16) for the transition between the COE phase and
a single-condensate phase, and with the help of the
condensates (9) and (10) together with the thermal masses
(14) for the transitions from a single-condensate phase to
the NOR phase. The horizontal axis is given by α, i.e., we
move through the λ1-λ2 plane along the paths shown in the
upper panels of the figure. In principle, we can use the
model straightforwardly to determine the phases in the
entire α-H-T space. As a rough guide to this three-dimen-
sional space notice that increasing the magnetic field at
fixed T will eventually destroy the charged condensate, i.e.,
if H is sufficiently large only the SF and NOR phases
survive, while increasing the temperature at fixed H will
eventually destroy all condensates, i.e., at sufficiently large
T only the NOR phase survives. Working out the details of
the entire phase space might be interesting, but it is tedious
and not necessary for the main purpose of this paper.
Nevertheless, we emphasize that this possibility makes our
model very useful for nuclear matter inside a neutron star.
For instance, comparing our Fig. 2 with Fig. 1 in Ref. [7],
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we see that our results are—on the one hand—a toy version
of more concrete calculations of dense nuclear matter,
but—on the other hand—more sophisticated because they
include all possible phases in a consistent way, not relying
on any result within a single-fluid system.
Here we proceed with the discussion of the critical

magnetic fields, and for the remainder of the paper we shall
restrict ourselves to zero temperature.

C. Type-I/type-II transition region

At first sight, the phase structure in Fig. 2 regarding the
critical magnetic fields looks as expected from a single
superconductor, only with a critical κ that is shifted from
the standard value. But, we already know from Sec. III D
that the point at which the second-order onset of flux
tubes turns into a first-order transition is different from the
point where Hc and Hc2 intersect. We have marked this
point in both lower panels of Fig. 2. Moreover, in the
presence of the superfluid, the three critical magnetic
fields do not intersect in a single point. This is only visible

on a smaller scale, and we discuss this transition region
in detail now. With respect to that region, there is no
qualitative difference between the two parameter sets
chosen in Fig. 2, and therefore we will restrict ourselves
to the set with h < 0.
In Fig. 3, we present the critical magnetic fields in the

region that covers their intersection point(s). In the left
panel, we have, for comparison, set the coupling to the
superfluid to zero, h ¼ 0, with all other parameters held
fixed. As a result, we obtain the expected phase structure of
an ordinary superconductor. All three critical magnetic
fields intersect at one point—which can be viewed as a
check for our numerical calculation of Hc1—and this point
corresponds to κ2 ¼ 1=2. For magnetic fields smaller than
Hc and Hc1 the superconductor expels the magnetic field
completely, and magnetic fields larger than Hc and Hc2
penetrate the system and superconductivity breaks down. In
the open “wedge” between Hc1 and Hc2, an array of flux
tubes (with varying flux tube density) is expected to exist,
with second-order phase transitions at Hc1 and Hc2.

FIG. 2. Upper panels: Phases in the λ1-λ2 plane at T ¼ 0 [solid (black) curves] and T > 0 [dashed (black) curves], at vanishing
magnetic field, H ¼ 0. The shaded region in the upper right panel has to be excluded because there the potential is unbounded from
below, h >

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
. The dash-dotted (red) lines indicate Hc ¼ Hc2 in the COE phase (this curve does not depend on temperature). The

specific parameters are m1 ¼ m2 ≡m, μ1 ¼ 1.5m, μ2 ¼ 1.8m for all panels, and h ¼ −0.1 and T ¼ 2.43m (upper left), h ¼ 0.1,
T ¼ 3.5m (upper right). The (blue) paths in both upper panels are used for the lower panels and following figures and are parametrized
by α, see Eq. (53), with λ⃗start ¼ ð0.25; 1.2Þ, λ⃗end ¼ ð0.1; 0.1Þ for h < 0 and λ⃗start ¼ ð0.35; 0.2Þ, λ⃗end ¼ ð0.05; 0.9Þ for h > 0. Lower
panels: Critical temperatures [upper (black) curves] and zero-temperature critical magnetic fields [lower (red) curves] along the paths
from the upper panels. The magnetic fields are given in units of m2 and are scaled down by 0.3 (left) and 0.2 (right) to fit into the plot.
The black dots on theHc1 curves represent the onset of the first order phase transition. The three critical magnetic fields do not intersect
in a single point although they appear to do so in these plots, see Fig. 3 for a zoom-in.
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In the right panel we zoom in to the critical region of
the lower left panel of Fig. 2. From our analytical results we
know the following. (i) The critical magnetic fieldsHc,Hc2
intersect at a point given by Eq. (24), which corresponds for
the chosen parameters to α≃ 0.37182. (ii) Just below the
curve Hc2 the flux tube phase is energetically favored over
the normal-conducting phase (not necessarily over the
Meissner phase) for all α < 0.38265, as we can compute
from Eq. (25). This point is beyond the right end of
the scale shown in Fig. 3. (iii) The second-order phase
transition from the Meissner phase to the flux tube phase
turns into a first-order transition at the point given by
Eq. (51), here α≃ 0.29236, which is beyond the left end of
the scale of the plot. In the single superconductor, these
three α’s (or κ’s) coincide. Had we only computedHc,Hc2,
and Hc1, we would have obtained a puzzling collection of
potential phase transition lines. However, together with the
first-order phase transitions H0

c1 and H0
c2, computed from

Eq. (52), a consistent picture of the phase structure

emerges. Before we comment on this structure, we make
the behavior at H0

c1 more explicit by plotting the flux tube
density ν and the Gibbs free energies in Fig. 4. The right
panel of this figure includes the results for higher winding
numbers. We see that they are energetically disfavored for
the parameter set chosen here. In Ref. [32] it was shown
that higher winding numbers become important if the
magnetic flux, instead of the external field H, is fixed.
We did check that our numerical results indeed reproduce
that observation, but we have not checked systematically
whether and for which parameters flux tubes with higher
winding numbers are favored in an externally given
magnetic field H. This is an interesting question for future
studies.
The most straightforward interpretation of the right panel

of Fig. 3 is to simply ignore the second-order phase
transition curves. Then, the topology of the critical region
is the same as in the left panel, only with first-order instead
of second-order transitions at the boundaries of the flux

FIG. 4. Left panel: Flux tube density as a function of H with the parameters of the right panel of Fig. 3 and α ¼ 0.360, in units of
ν0 ¼ 1=ðπξ2Þ. The dashed line shows the unstable and metastable part of the solution and is not realized, i.e., the density jumps at
H ¼ H0

c1 from zero to a finite value indicated by the black dot. For ν → 0, the dashed line approaches the mass per unit length of the flux
tube, i.e., the “would-be” second-order transitionHc1. Right panel: Gibbs free energies as a function of the external magnetic fieldH for
the Meissner, flux tube, and normal-conducting phases, including higher winding numbers, n ¼ 2, 4, 6, 10, which are energetically
disfavored.

FIG. 3. Critical magnetic fields in the type-I/type-II transition region as a function of the parameter α for a single superconductor,
h ¼ 0 (left panel), and a superconductor coupled to a superfluid with negative density coupling, h < 0 (right panel). All other
parameters are taken from Fig. 2, i.e., the right panel is a zoom-in to the transition region of the lower left panel of Fig. 2. Solid (dashed)
lines are first (second) order phase transitions.
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tube phase (with H0
c1 turning into a second-order phase

transition at α≃ 0.29236). However, this cannot be the
complete picture. The reason is that after we have left the
flux tube phase through H0

c2 and keep increasing H we
reachHc2, and we know that there should be flux tubes just
below Hc2 for all α < 0.38265. In other words, our result
contradicts the observation thatHc2 is a lower bound for the
transition from the flux tube phase to the normal-
conducting phase, as explained at the end of Sec. III B.
This contradiction is resolved when we remember the
regime of validity of our approximation for the free energy
of the flux tube lattice. Our approximation is accurate
where Hc1 turns into H0

c1 because the distance between the
flux tubes is infinitely large at this critical point. As we
move along H0

c1 upon increasing α, and then along H0
c2

upon decreasing α, our approximation becomes worse and
worse. Within the present calculation we can thus not
determine the phase structure unambiguously, but it is easy
to guess a simple topology of the type-I/type-II transition
region that is consistent with all our results and takes
into account the shortcomings of our approximation. This
conjectured phase structure is shown in Fig. 5.
The motivation for the conjecture is as follows. The

existence of the first-order line H0
c1 and its starting point is

predicted rigorously in our approach. Let us move along that
line assuming that we go beyond our approximation and
know the complete result. As we move towards large α, we
will deviate from the line predicted by our approximation.
At some value of α, we will intersect the curve Hc. In order
to resolve the contradiction of our phase structure, we expect
this intersection to occur “on the other side” of the
intersection between Hc2 and Hc. This implies that our
approximation underestimates the binding energy of the flux
tubes, i.e., we expect the flux tube phase to be more favored
in the full result. We have not found a simple reason—other
than the inconsistency of the phase structure—why our

approximation distorts the full result in this, and not the
other, direction. Now, at the new, correct, intersection ofH0

c1
and Hc, there must necessarily be a third line attached,
namely H0

c2 (just like in our approximation). The reason is
that if we cross H0

c1 we end up in the flux tube phase and if
we crossHc we end up in the normal-conducting phase, and
these two phases must be separated by a phase transition
line. This critical fieldH0

c2 might be larger thanHc2 for all α
(below the α of the triple point where H0

c1, H
0
c2 and Hc

intersect) or H0
c2 might merge with Hc2, leading to an

additional critical point. The latter is the scenario shown in
the right panel of Fig. 5. One might ask whetherH0

c1 andHc
intersect exactly at the point whereHc and the second-order
line Hc2 intersect. In this case, the entire upper critical line
would be of second order and given by Hc2. However, this
seems to require some fine-tuning of the interaction between
the flux tubes since the second-order lineHc2 does not know
anything about this interaction.

D. Flux tube clusters

The first-order phase transitions with H as an external
variable translate into mixed phases if we fix the magnetic
field B (spatially averaged) instead. Again, this can be
illustrated by the analogy to the onset of baryonic matter at
small temperatures. As a function of μB, this onset is a first-
order transition with a discontinuity in baryon number
density nB. If we instead probe this onset with fixed nB
(spatially averaged), we pass through a region of mixed
phases, for example nuclei in a periodic lattice, until we
reach the saturation density. These mixed phases are
realized in the outer regions of a neutron star, and it would
be an intriguing manifestation of this analogy if the mixed
flux tube phases discussed here are realized in the core of
the star. Each first-order transition in H yields two critical
magnetic fields B which we compute as follows. At H0

c1,
the lower critical field is B ¼ 0, and the upper critical field

Hc1

Hc2

Hc

Hc1

Hc2

Hc

Hc1'
Hc1

Hc2
Hc2

'

Hc

Hc1'

Hc2
'

small-   approximation complete solution
(our calculation) (conjecture)

H

single superconductor

FIG. 5. Schematic phase structures for a single superconductor and our two-component system in the type-I/type-II transition region.
Solid (dashed) lines are first (second) order phase transitions. Our approximation of small flux tube densities ν rigorously predicts the
critical point at which Hc1 becomes first order. If we extrapolate our approximation to compute also the upper critical field—where ν is
not small—we arrive at the inconsistent diagram shown in the middle panel: the first-order transition H0

c2, computed from our small-ν
approximation, must not be smaller than Hc2 (Hc2 is a rigorous result, independent of the approximation). The conjectured phase
structure in the right panel is the simplest one consistent with our results, including a possible critical point between Hc2 and H0

c2.
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is hBi ¼ Φ0ν [using Eq. (29)], where ν is the numerically
computed flux tube area density as we approach the first-
order transition from above; at H0

c2, the lower critical field
is hBi ¼ Φ0ν, with ν now being the numerically computed
density as we approach the first-order transition from
below, while the upper critical field is B ¼ Hc2; at Hc,
the lower critical field is B ¼ 0, and the upper one is
B ¼ Hc. We perform this calculation with the parameters of
Fig. 3. As discussed for theH-α phase diagrams above, also
for the B-α phase structure we do not expect our approxi-
mation to yield quantitatively reliable results where the flux
tube density is large. Therefore, our results reflect the
topology of the B-α phase diagram correctly, but the precise
location of the phase transition lines cannot be determined
within our approach. The phase diagrams for the single
superconductor and the two-component system are shown
in Fig. 6. In a single superconductor, there is only one
possible mixed phase: macroscopic regions in which the
magnetic field penetrates, mixed with regions in which the
magnetic field remains expelled [48]. The geometric
structure of these regions depends on the details of the
system such as the surface tension, and it is beyond the
scope of this paper to determine them. In the two-
component system, two additional mixed phases are
possible, both of which contain flux tube clusters.
(Unrelated to the first-order phase transitions pointed out
here, flux tube clusters have been suggested to exist in
neutron stars in the vicinity of superfluid neutron vortices
[51].) First, at H0

c1, flux tube clusters are immersed in a
field-free superconducting region, as predicted for “type-
1.5 superconductivity” [42]. Second, at H0

c2, there is a
mixed phase of flux tubes with the normal-conducting
phase, i.e., superconducting regions that enclose flux tubes
and that are themselves surrounded by completely normal-
conducting regions.

V. CONCLUSIONS

We have shown that the coupling to a superfluid can have
profound effects on the magnetic properties of a super-
conductor. We have started from a microscopic model for
two complex scalar fields, coupled to each other via density
and gradient coupling terms, with one of the fields being
electrically charged. By computing the thermal excitations
of the system we have derived a Ginzburg-Landau-like
effective potential for the charged and neutral condensates
and the gauge field. This potential has then been evaluated
at nonzero temperatures and external magnetic fields,
computing the two condensates dynamically for all
four possible phases: condensation of both fields
(superconductor þ superfluid), condensation of only one
field (pure superconductor or pure superfluid), or no
condensation. We have discussed the structure of the
resulting phase diagram in the multidimensional parameter
space, with the main focus on the transition region between
type-I and type-II superconductivity. To this end, we have
computed the critical magnetic fieldsHc,Hc2 (analytically)
and Hc1 (numerically, based on the profile functions of a
magnetic flux tube). In contrast to the standard scenario of a
single superconductor, these three magnetic fields do not
intersect in a single point if the superconductor coexists
with a superfluid. The phase structure around these
intersection points is (at least partially) resolved by com-
puting the first-order phase transitions H0

c2 and H0
c1. This

has been done by employing a simple approximation for
the free energy of a flux tube array that is valid for large
flux tube distances and that effectively reduces the calcu-
lation to solving the equations of motion for a single flux
tube. The new critical fields Hc, H0

c2, H
0
c1 do intersect in a

single point, restoring the topology of the transition region,
with (segments of) the second-order transition lines

FIG. 6. Phases in the B-α plane, computed with the parameters and from the results of Fig. 3. In a single superconductor
(left panel), the magnetic field penetrates in the form of a flux tube array (“flux tube”), through macroscopic regions in a mixed phase
(“Meissner/normal”) or homogeneously and space filling (“normal”). In a superconductor coupled to a superfluid (right panel), it can
also penetrate in the form of flux tube clusters, either in a mixture with field-free regions (“Meissner/flux tube”) or in a mixture with
normal-conducting regions (“flux tube/superfluid”). The Meissner/flux tube phase is, for the chosen parameters, only possible for
α > 0.29236 (where the phase transition in the H-α plane is of first order).
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replaced by first-order transitions. In particular, we have
identified a new critical point—and derived an analytical
expression for its location—where the second-order flux
tube onset Hc1 turns into a first order transition H0

c1. The
presence of the first-order transitions allows for mixed
phases with flux tube clusters, very similar to a type-1.5
superconductor, which consists of two charged fields
coupled indirectly through the gauge field.
There are several possible improvements and extensions

of our work. Our approximation for the flux tube array can
be improved for instance by determining dynamically the
values of the condensates far away from the flux tubes
instead of using the values of the homogeneous phase.
To settle the precise location of the phase transition lines, it
would be interesting to perform a brute force numerical
calculation of the free energy of the flux tube phase, for
which our results are a valuable guidance. There are several
other interesting aspects of our model which we have
mentioned but not worked out in detail. For instance, one
could perform a more systematic study of the effect of the
derivative coupling, which we have included in all our
analytical results, but set to zero in the final numerical
results of the phase diagrams. Or one could perform a more
detailed study of flux tubes with higher winding numbers,
which turned out to be energetically disfavored for the
parameter regime we have studied, but which are known to
potentially play a role in the two-component system. One
can also study the phase structure at nonzero temperature in
more detail and/or improve the large-temperature approxi-
mation on which our Ginzburg-Landau potential was
based. Or one can include superfluid vortices, aiming at
the phase structure at nonzero magnetic field and externally
imposed rotation.
Our setup and our results are applicable to dense nuclear

matter in the core of neutron stars. For instance, one can fit
our model parameters, such as the density coupling and
gradient coupling, to values predicted for nuclear matter
and eventually compute the phase structure as a function of
the baryon number density rather than of an abstract model
parameter. One may also ask whether a potential phase of
flux tube clusters would affect the transport properties of
the core in a detectable way. Moreover, it would be
interesting to employ our results in studies of the time
evolution of the magnetic field in a neutron star. Here we
have computed the ground state in equilibrium for given
temperature, magnetic field and chemical potential, but for
more phenomenological predictions one needs to know
whether and on which time scale this ground state is
reached.
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APPENDIX A: DERIVATION OF THE
EFFECTIVE POTENTIAL

In this Appendix we compute an effective potential in a
high-temperature approximation from the excitations of the
system, taking into account the mixing of the two scalar
fields with the photon. Elements of this derivation can be
found in discussions of the standard Abelian Higgs model,
see for instance chapter 85 of Ref. [52].
It is convenient to split the complex scalar fields into

their real and imaginary parts,

φ1 ¼
1ffiffiffi
2

p ðϕ1 þ iχ1Þ; φ2 ¼
1ffiffiffi
2

p ðϕ2 þ iχ2Þ: ðA1Þ

Then, the Lagrangian (1), in the presence of chemical
potentials μ1 and μ2, becomes

L ¼ L1 þ L2 þ Lint þ LYM þ Lgf ; ðA2Þ

where we have added a gauge fixing term,

Lgf ¼ −
ð∂μAμÞ2

2ξ
; ðA3Þ

and where

L1 ¼
1

2
∂μϕ1∂μϕ1 þ

1

2
∂μχ1∂μχ1

þ ðqAμ − δ0μμ1Þðϕ1∂μχ1 − χ1∂μϕ1Þ

þ 1

2
ðϕ2

1 þ χ21Þðμ21 −m2
1 þ q2AμAμ − 2μ1qA0Þ

−
λ1
4
ðϕ2

1 þ χ21Þ2; ðA4aÞ

L2 ¼
1

2
∂μϕ2∂μϕ2 þ

1

2
∂μχ2∂μχ2 − μ2ðϕ2∂0χ2 − χ2∂0ϕ2Þ

þ 1

2
ðϕ2

2 þ χ22Þðμ22 −m2
2Þ −

λ2
4
ðϕ2

2 þ χ22Þ2; ðA4bÞ

Lint ¼
h
2
ðϕ2

1þ χ21Þðϕ2
2þ χ22Þ

−
G
2
ðϕ1∂μϕ1þ χ1∂μχ1Þðϕ2∂μϕ2þ χ2∂μχ2Þ: ðA4cÞ

We allow for condensation of both fields by shifting
ϕ1 → ρ1 þ ϕ1, ϕ2 → ρ2 þ ϕ2, i.e., we assume the con-
densates to be real, and from now on ϕi and χi are
fluctuations about the condensates. The dispersion relations
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of the excitations are computed from the tree-level propa-
gator in momentum space. To this end, we introduce the
Fourier transformed fields via

ϕiðXÞ ¼
1ffiffiffiffiffiffiffi
TV

p
X
K

e−iK·XϕiðKÞ;

χiðXÞ ¼
1ffiffiffiffiffiffiffi
TV

p
X
K

e−iK·XχiðKÞ;

AμðXÞ ¼
1ffiffiffiffiffiffiffi
TV

p
X
K

e−iK·XAμðKÞ; ðA5Þ

with the space-time four-vector X ¼ ð−iτ; r⃗Þ and the four-
momentumK ¼ ðk0; k⃗Þ, where k0 ¼ −iωn with the bosonic
Matsubara frequencies ωn ¼ 2πnT, n ∈ Z. In the imagi-
nary time formalism, we have to replace A0 → iA0.

The terms of second order in the fluctuations can then be
written asZ

X
Lð2Þ ¼ −

1

2

X
K

Ξð−KÞT S
−1ðKÞ
T2

ΞðKÞ; ðA6Þ

with

ΞT ¼ ðϕ1; χ1;ϕ2; χ2; A0; A1; A2; A3Þ: ðA7Þ
The inverse tree-level propagator is an 8 × 8 matrix, which
reads

S−1ðKÞ ¼
�
S−10 ðKÞ IðKÞ
ITð−KÞ D−1ðKÞ

�
; ðA8Þ

with the scalar field sector,

S−10 ðKÞ ¼

0
BBB@

−K2 þ η1ðρ1; ρ2Þ þ 2λ1ρ
2
1 2ik0μ1

ρ1ρ2
2
ðGK2 − 4hÞ 0

−2ik0μ1 −K2 þ η1ðρ1; ρ2Þ 0 0
ρ1ρ2
2
ðGK2 − 4hÞ 0 −K2 þ η2ðρ1; ρ2Þ þ 2λ2ρ

2
2 2ik0μ2

0 0 −2ik0μ2 −K2 þ η2ðρ1; ρ2Þ

1
CCCA; ðA9Þ

where η1=2ðρ1; ρ2Þ≡ −ðμ21=2 −m2
1=2Þ þ λ1=2ρ

2
1=2 − hρ22=1, the inverse gauge field propagator,

D−1ðKÞ ¼

0
BBB@

−K2 þ σk20 þ 4πq2ρ21 −iσk0k1 −iσk0k2 −iσk0k3
−iσk0k1 −K2 − σk21 þ 4πq2ρ21 −σk1k2 −σk1k3
−iσk0k2 −σk1k2 −K2 − σk22 þ 4πq2ρ21 −σk2k3
−iσk0k3 −σk1k3 −σk2k3 −K2 − σk23 þ 4πq2ρ21

1
CCCA; ðA10Þ

where σ ≡ 1 − 1=ξ, and the off-diagonal blocks that couple
the scalar fields to the gauge field,

IðKÞ ¼
ffiffiffiffiffiffi
4π

p
qρ1

0
BBB@

2iμ1 0 0 0

−k0 ik1 ik2 ik3
0 0 0 0

0 0 0 0

1
CCCA: ðA11Þ

We are interested in an effective potential for the con-
densates ρ1 and ρ2, and thus we need to keep these
condensates general. Nevertheless, it is instructive to first
discuss the dispersions at the zero-temperature stationary
point, i.e., we set ρ1 ¼ ρ01 and ρ2 ¼ ρ02 with the con-
densates in the coexistence phase ρ01 and ρ02 from Eq. (11).

Let us first set the cross-coupling between the scalar field
to zero, h ¼ G ¼ 0. The dispersion relations k0 ¼ ϵk are
given by the zeros of det S−1. Since this is a polynomial of
degree 8 in k20, we obtain eight dispersions, six of which are
physical. The two unphysical ones are of the form ϵk ¼ k.
These are the usual unphysical modes of the gauge field,
whose contribution to the partition function is canceled by
ghost fields. With the given gauge choice, ghosts do not
couple to any of the fields and merely serve to cancel the
unphysical modes. None of the modes depend on the gauge
fixing parameter ξ, which only appears as a prefactor of the
determinant det S−1 and thus does not have to be specified.
The six physical dispersions are

ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4πq2ρ201

q
ðtwo-foldÞ; ðA12aÞ

ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 3μ21 −m2

1 þ 2πq2ρ201 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ21k

2 þ ð3μ21 −m2
1 − 2πq2ρ201Þ2

qr
; ðA12bÞ

ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 3μ22 −m2

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ22k

2 þ ð3μ22 −m2
2Þ2

qr
: ðA12cÞ
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We have three gauge field modes with mass ϵk¼0 ¼ffiffiffiffiffiffi
4π

p
qρ01 [the two modes of Eq. (A12a) and the mode

with the lower sign in Eq. (A12b)], two more massive
modes from the scalar fields, and the Goldstone mode
[the mode with the lower sign in Eq. (A12c)]. Let us now
switch on the couplings G and h between the scalar fields.
We find that the unphysical modes remain unaffected
and all modes remain independent of the gauge fixing
parameter ξ. The mass of the three gauge field modes and
the entire dispersion (A12a) for two of them is
also unchanged. The expressions for the remaining
dispersions become very complicated. They can easily
be computed numerically, and we show the result in
Fig. 7.
We now compute our effective potential by reinstating

the general condensates, i.e., we need to compute the
dispersions away from stationary point ρ1 ¼ ρ01, ρ2 ¼ ρ02.
We restrict ourselves to the following large-momentum
approximation, which is sufficient for the high-temperature
approximation we are interested in,

ϵk ≃ kþ c1 þ
c22
k
; ðA13Þ

such that

T
Z

d3k
ð2πÞ3 ln ð1 − e−ϵk=TÞ≃ −

π2T4

90
þ c1ζð3ÞT3

π2

þ ðc22 − c21ÞT2

12
: ðA14Þ

In general, the dispersions now do depend on the gauge
fixing parameter ξ. However, in the limit (A13) this
dependence drops out, i.e., the coefficients c1 and c2 do
not depend on ξ. Moreover, now the unphysical gauge

modes no longer have the simple form ϵk ¼ k. Two of the
physical gauge modes keep their simple form (A12a), while
for the other four physical modes the coefficients c1 and c2
are (at least some of them) very lengthy. However, adding
up the result for all six physical modes yields a relatively
compact result,

T
X6
i¼1

Z
d3k
ð2πÞ3 ln ð1 − e−ϵki=TÞ≃ −

π2T4

15
−

T2

12ð1 − G2ρ2
1
ρ2
2

4
Þ

�
2ðμ21 þ μ22Þ − ðm2

1 þm2
2Þ − ð2λ1 − hþ 6πq2Þρ21 − ð2λ2 − hÞρ22

þ Ghρ21ρ
2
2 −

G2ρ21ρ
2
2

8
½μ21 þ μ22 − ðm2

1 þm2
2Þ − ðλ1 − hþ 12πq2Þρ21 − ðλ2 − hÞρ22�

�

≃ T2

12
½ð2λ1 − hþ 6πq2Þρ21 þ ð2λ2 − hÞρ22 −Ghρ21ρ

2
2� þ const; ðA15Þ

where, in the second step, we have absorbed all terms that
do not depend on ρ1 or ρ2 into “const,” and dropped all
higher-order terms in the derivative coupling (i.e., we
assume Gμ2 ≪ 1, where μ stands for all energy scales
μ1, μ2, m1, m2, ρ1 ρ2). Dropping the constant contribution,
we add the T2 terms to the potential (5) and arrive at the
potential (13) in the main text.

APPENDIX B: CALCULATION OF Hc2 AND
GIBBS FREE ENERGY JUST BELOW Hc2

Here we derive Eqs. (24) and (25). To this end, we need
the equations of motion for the scalar fields and the gauge
field. We go back to the Lagrangian (1), take the static limit
and replace the parameters mi and h by their T-dependent
generalizations mi;T and hT . This yields the potential

FIG. 7. Excitation energies for the COE phase, where both
charged and neutral fields condense. The dashed (red) line is
the diagonal ϵk ¼ k to guide the eye. There are six modes in
total, including one Goldstone mode and three massive gauge
modes. The excitation ϵk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4πq2ρ201

p
, which approaches

the diagonal from above, is two-fold degenerate. All other
dispersions have very complicated expressions due to the
mixing of the gauge field with the scalar fields. The parameters
used for this plot are m1 ¼ m2 ≡m, μ1 ¼ 1.2m, μ2 ¼ 1.1m,
λ1 ¼ 0.3, λ2 ¼ 0.5, h ¼ −0.1, G ¼ 0, q ¼ 2e. While these
excitation energies are evaluated at the zero-temperature sta-
tionary point, the main purpose of this Appendix is to derive an
effective thermal potential, for which the dispersions for
general values of the charged and neutral condensates are
needed.
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U ¼ ð∇ − iqA⃗Þφ1 · ð∇þ iqA⃗Þφ�
1 − ðμ21 −m2

1;TÞjφ1j2
þ λ1jφ1j4 þ∇φ2 ·∇φ�

2 − ðμ22 −m2
2;TÞjφ2j2 þ λ2jφ2j4

− 2hT jφ1j2jφ2j2 −
G
2
½φ1φ2ð∇þ iqA⃗Þφ�

1∇φ�
2

þ φ1φ
�
2ð∇þ iqA⃗Þφ�

1∇φ2 þ c:c:� þ B2

8π
; ðB1Þ

and the equations of motion for φ�
1, φ

�
2, and A⃗ become

½ð∇ − iqA⃗Þ2 þ μ21 −m2
1;T − 2λ1jφ1j2 þ 2hT jφ2j2�φ1

¼ Gφ1∇ · Reðφ2∇φ�
2Þ; ðB2aÞ

ðΔþ μ22 −m2
2;T − 2λ2jφ2j2 þ 2hT jφ1j2Þφ2

¼ Gφ2∇ · Re½φ1ð∇þ iqA⃗Þφ�
1�; ðB2bÞ

∇ × B⃗þ 8πqIm½φ1ð∇þ iqA⃗Þφ�
1� ¼ 0: ðB2cÞ

Since the transition from the flux tube phase to the normal-
conducting phase is assumed to be of second order, the
charged condensate becomes infinitesimally small just
below Hc2, and we make the ansatz φ1 ¼ φ̄1 þ δφ1 with
φ̄1 ∝ ðHc2 −HÞ1=2, and δφ1 includes terms of order
ðHc2 −HÞ3=2 and higher, i.e., at least of order φ̄3

1. We also
introduce perturbations for the neutral condensate and the
gauge field, φ2 ¼ φ̄2 þ δφ2, A⃗ ¼ ðĀy þ δAyÞe⃗y, where
δAy; δφ2 include terms of order ∝ Hc2 −H and higher,
i.e., they are at least of order φ̄2

1. As the magnetic field
completely penetrates the superconductor at the phase
transition, we can choose the unperturbed gauge field to
be of the form Āy ¼ xHc2, and we denote δB ¼ ∂xδAy,

such that B⃗ ¼ ðHc2 þ δBÞe⃗z. We assume all functions to be
real and to depend on x only, not on y and z (solutions with
these properties are sufficient for our purpose, the deriva-
tion would also work without these restrictions but would
be somewhat more tedious). We insert this ansatz into the
equations of motion (B2), and keep terms up to order φ̄3

1.
Then, the linear contributions from Eqs. (B2a) and (B2b)
yield two equations for φ̄1 and φ̄2,

D1φ̄1 ¼ 0; ðB3aÞ
D2φ̄2 ¼ 0; ðB3bÞ

with

D1 ≡ ∂2
x − q2Ā2

y þ μ21 −m2
1;T þ 2hTφ̄2

2 −G∂xðφ̄2∂xφ̄2Þ;
ðB4aÞ

D2 ≡ ∂2
x þ μ22 −m2

2;T − 2λ2φ̄
2
2; ðB4bÞ

while the subleading contributions from Eqs. (B2a) and
(B2b) and the leading contribution from Eq. (B2c) yield the
following equations for the perturbations δφ1, δφ2, and δAy,

D1δφ1 ¼ ½2ðq2ĀyδAy þ λ1φ̄
2
1 − 2hTφ̄2δφ2Þ

þ G∂2
xðφ̄2δφ2Þ�φ̄1; ðB5aÞ

D2δφ2 ¼ ½2ð2λ2φ̄2δφ2 − hTφ̄2
1Þ

þ G∂xðφ̄1∂xφ̄1Þ�φ̄2; ðB5bÞ

∂2
xδAy ¼ −8πq2Āyφ̄

2
1: ðB5cÞ

Inserting our ansatz into the potential (B1), using partial
integration and the equations of motion (B3) and (B5), and
keeping terms up to order φ̄4

1, we find after some algebra the
free energy

F ¼
Z

d3r

�
B2

8π
− λ1φ̄

4
1 − λ2φ̄

4
2

þ φ̄2δφ2½2hTφ̄2
1 −G∂xðφ̄1∂xφ̄1Þ�

�
: ðB6Þ

We will first compute Hc2 from Eq. (B3) and afterwards
compute the Gibbs free energy just below Hc2 from
Eq. (B6).
We assume the neutral condensate in the SF phase to be

homogeneous, and thus Eq. (B3b) yields 2φ̄2
2 ¼ ρ2SF, as

expected. For the solution of Eq. (B3a) we can simply
follow the textbook arguments because it has the same
structure as for a single-component superconductor. It reads

ð−∂2
x þ q2H2

c2x
2Þφ̄1 ¼ ðλ1ρ2SC þ hTρ2SFÞφ̄1; ðB7Þ

and thus is equivalent to the Schrödinger equation for
the one-dimensional harmonic oscillator, − ℏ2

2mψ
00ðxÞ þ

m
2
ω2x2ψ ¼ Eψ with the identification E=ðℏωÞ ¼

ðλ1ρ2SC þ hTρ2SFÞ=ð2qHc2Þ. Since the eigenvalues are
En ¼ ðnþ 1

2
Þℏω, the largest magnetic field for which the

equation allows a physical solution is obtained by setting
n ¼ 0,

Hc2 ¼
λ1ρ

2
SC

q

�
1þ hTρ2SF

λ1ρ
2
SC

�
¼ 1

qξ2

�
1 −

h2T
λ1λ2

�
; ðB8Þ

in agreement with Eq. (13) of Ref. [34]. In the second
expression we have rewritten the condensates ρSC and ρSF
in terms of the charged condensate in the coexistence phase
ρ01, see Eq. (11), and used the definition of the coherence
length ξ from Eq. (23). Since the relevant eigenvalue of
Eq. (B7) is given by n ¼ 0, the corresponding eigenfunc-
tion is a Gaussian,

φ̄1ðxÞ ¼ C0e−x
2qHc2=2; ðB9Þ

where the exact value of the prefactorC0 ∝ ðHc2 −HÞ1=2 is
not relevant for the following. The result shows that,
for H just below Hc2, charged condensation with small
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magnitude of order ðHc2 −HÞ1=2 occurs in a slab confined
in a direction perpendicular to the external magnetic field,
here chosen to be the x-direction, with width ðqHc2Þ−1=2.
Had we allowed for y and z dependencies of the con-
densate, we could have used this linearized approximation
to discuss crystalline configurations and determine the
preferred lattice structure. Here we continue by checking
whether the solution (B9) is energetically preferred over the
normal-conducting phase for H below and close to Hc2. To
this end, we need to compute the Gibbs free energy, as
defined in Eq. (18), from the free energy (B6). We first
solve Eq. (B5c) with the boundary condition δBð�∞Þ ¼
H −Hc2 (since B ¼ H in the normal-conducting phase)
to find

δBðxÞ ¼ −ðHc2 −HÞ þ 4πqφ̄2
1ðxÞ: ðB10Þ

Inserting this result into Eq. (B6) and using Eq. (B9) yields
the Gibbs free energy

GCOE ¼ GSF þ
Z

d3r

��
1

2κ2
− 1

�
λ1φ̄

4
1

þ φ̄2δφ2½2hTφ̄2
1 − G∂xðφ̄1∂xφ̄1Þ�

�
; ðB11Þ

with GSF from Eq. (20). It remains to compute δφ2. We use
Eq. (B5b), which can be written as

ð∂2
t −p2Þδφ2ðtÞ¼−

hTp2C2
0

2
ffiffiffi
2

p
λ2ρSF

e−t
2ð2þ γ−2γt2Þ; ðB12Þ

with the dimensionless variable t ¼ ffiffiffiffiffiffiffiffiffiffiffi
qHc2

p
x and the

dimensionless quantities

p2 ¼ 2λ2ρ
2
SF

qHc2
; γ ¼ GqHc2

hT
; ðB13Þ

where p indicates the magnitude of the neutral condensate
and γ the magnitude of the gradient coupling G relative
to the density coupling hT , both in units given by the
critical magnetic field. With the boundary conditions
δφ2ð�∞Þ ¼ 0, this equation has the solution

δφ2ðtÞ ¼
1

2

hTp2C2
0

2
ffiffiffi
2

p
λ2ρSF

�
γe−t

2 þ
ffiffiffi
π

p
p

�
1 −

p2γ

4

�
Zðp; tÞ

�
;

ðB14Þ

where we have abbreviated

Zðp; tÞ≡ ep
2=4

�
ept
�
1 − erf

�
p
2
þ t

��

þ e−pt
�
1 − erf

�
p
2
− t

���
; ðB15Þ

with the error function erf. Inserting Eq. (B14) into
Eq. (B11) yields

GCOE

V
¼ GSF

V
þ λ1hφ̄4

1i
�

1

2κ2
− 1þ h2T

λ1λ2

�
p2γ

4

�
1þ γ

4

�

þ
�
1 −

p2γ

4

���
1þ γ

2

�
I1ðpÞ − γI2ðpÞ

���
;

ðB16Þ

where h� � �i denotes spatial average, and

I1ðpÞ≡ p

2
ffiffiffi
2

p
Z

∞

−∞
dte−t

2

Zðp; tÞ;

I2ðpÞ≡ p

2
ffiffiffi
2

p
Z

∞

−∞
dtt2e−t

2

Zðp; tÞ: ðB17Þ

We discuss this result for the case without gradient
coupling, γ ¼ 0, in the main text.

APPENDIX C: INTERACTION BETWEEN
TWO FLUX TUBES

In this Appendix we derive the expression for the
interaction energy Eq. (48). We start from the definition
(47), i.e., we consider two parallel flux tubes (a) and (b)
separated by the (dimensionless) distance R0. We divide the
total volume V into two half-spaces VðaÞ and VðbÞ, which
are the simplest versions of two Wigner-Seitz cells: we
connect the two flux tubes by a line with length R0, and the
plane in the center of and perpendicular to that line divides
V into VðaÞ and VðbÞ. The interaction free energy is then
computed from

F↺
int ¼ 2

Z
VðaÞ

d3r½UðaÞþðbÞ
↺ − UðaÞ

↺ −UðbÞ
↺ �; ðC1Þ

where, due to the symmetry of the configuration, we have

restricted the integration to the half-space VðaÞ, where UðaÞ
↺ ,

UðbÞ
↺ are the free energy densities of the two flux tubes in

the absence of the other flux tube, and where UðaÞþðbÞ
↺ is the

total free energy of the flux tubes. (Recall that by definition
U↺ denotes the pure flux tube energy density, with the free
energy density of the homogeneous configuration already
subtracted.)
We assume R0 to be much larger than the widths of the

flux tubes, such that the contribution of flux tube (b) to the
free energy is small in VðaÞ. Therefore, we will now
compute the free energy density of a “large” contribution
that solves the full equations of motion plus a “small”
contribution that solves the linearized equations of motion.
We shall do so in a general notation, not referring to the
geometry of our two-flux tube setup. Only in Eq. (C8),
when we insert the results into the free energy (C1), we
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shall come back to this setup and introduce a more explicit
notation indicating the contributions of the two different
flux tubes. Following Ref. [35], we define

Q⃗≡ ξðqA⃗ −∇ψ1Þ ¼ −
nð1 − aÞ

R
e⃗θ; ðC2Þ

and write

Q⃗ ¼ Q⃗0 þ δQ⃗; ðC3aÞ

f1 ¼ f10 þ δf1; ðC3bÞ

f2 ¼ f20 þ δf2: ðC3cÞ

The equations of motion for a single flux tube to leading
order, δQ⃗ ¼ δf1 ¼ δf2 ¼ 0, are (from now on, in this
Appendix, all gradients are taken with respect to the
dimensionless coordinates)

0 ¼ ∇ × ð∇ × Q⃗0Þ þ
f210
κ2

Q⃗0; ðC4aÞ

0 ¼ Δf10 þ f10ð1 − f210 −Q2
0Þ −

hT
λ1

x2f10ð1 − f220Þ

−
Γx
2
f10∇ · ðf20∇f20Þ; ðC4bÞ

0 ¼ Δf20 þ
λ2
λ1

x2f20ð1 − f220Þ −
hT
λ1

f20ð1 − f210Þ

−
Γ
2x

f20∇ · ðf10∇f10Þ; ðC4cÞ

[equivalent to Eqs. (39) in the main text], and the equations
of motion of first order in the corrections δQ⃗, δf1, δf2
become

0 ¼ ∇ × ð∇ × δQ⃗Þ þ f10
κ2

ðf10δQ⃗þ 2δf1Q⃗0Þ; ðC5aÞ

0 ¼ −Q⃗0 · ð2f10δQ⃗þ δf1Q⃗0Þ þ Δδf1 þ δf1ð1 − 3f210Þ

−
hT
λ1

x2½δf1ð1 − f220Þ − 2f10f20δf2�

−
Γx
2
½δf1∇ · ðf20∇f20Þ þ f10Δðf20δf2Þ�; ðC5bÞ

0 ¼ Δδf2 þ
λ2
λ1

x2δf2ð1 − 3f220Þ

−
hT
λ1

½δf2ð1 − f210Þ − 2f10f20δf1�

−
Γ
2x

½δf2∇ · ðf10∇f10Þ þ f20Δðf10δf1Þ�: ðC5cÞ

We denote the free energy density, up to second order and
after using the equations of motions, by U0 þ δU, where

U0 ¼
ρ201
2

�
κ2ð∇ × Q⃗0Þ2 þ ð∇f10Þ2 þ f210Q

2
0 þ

ð1 − f210Þ2
2

þ x2
�
ð∇f20Þ2 þ

λ2
λ1

x2
ð1 − f220Þ2

2

�

−
hT
λ1

x2ð1 − f210Þð1 − f220Þ − Γxf10f20∇f10 ·∇f20

�
ðC6Þ

is the free energy density of a single flux tube from
Eq. (38), and the first-order and second-order corrections
can be written as a total derivative,

δU ¼ ρ201∇ ·

�
κ2δQ⃗ ×

�
∇ ×

�
Q⃗0 þ

δQ⃗
2

��

þ δf1∇
�
f10 þ

δf1
2

�
þ x2δf2∇

�
f20 þ

δf2
2

�

−
Γx
2

�
δf1

�
f10 þ

δf1
2

�
f20∇f20

þ δf2

�
f20 þ

δf2
2

�
f10∇f10

þ 1

2
∇ðf10f20δf1δf2Þ

��
: ðC7Þ

Notice that any explicit dependence on the density coupling
hT has disappeared, while the derivative coupling Γ does
appear explicitly.
We can now go back to the interaction free energy (C1)

and identify the full free energy UðaÞþðbÞ
↺ in the half-space

VðaÞ with U0 þ δU. In VðaÞ, UðaÞ
↺ is given by setting δQ⃗¼

δf1¼δf2¼0 in U0 þ δU (which simply leaves U0), and

UðbÞ
↺ is obtained by setting Q⃗0¼0, f10¼f20¼1 in U0þδU

(which leaves various terms from δU). Consequently,
we find

F↺
int ≃ 2ρ201

Z
∂VðaÞ

dS⃗ ·

�
κ2δQ⃗ðbÞ × ð∇ × Q⃗ðaÞ

0 Þ þ δfðbÞ1 ∇fðaÞ10

þ x2δfðbÞ2 ∇fðaÞ20 −
Γx
2

�
δfðbÞ1

�
fðaÞ10 þ δfðbÞ1

2

�
fðaÞ20 ∇fðaÞ20

þ δfðbÞ2

�
fðaÞ20 þ δfðbÞ2

2

�
fðaÞ10 ∇fðaÞ10

þ 1

2
∇ðfðaÞ10 f

ðaÞ
20 δf

ðbÞ
1 δfðbÞ2 Þ − 1

2
∇ðδfðbÞ1 δfðbÞ2 Þ

��
;

ðC8Þ

where we have rewritten the volume integral as a surface
integral and where we have made the contributions from the
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two flux tubes (a) and (b) explicit. Since the derivatives of
all fields vanish at infinity, the integration surface is
reduced to the plane that separates the two Wigner-Seitz
cells. We now use the geometry of the setup to simplify this
expression: we align the z-axis with flux tube (a), such that
this flux tube sits in the origin of the x-y plane, with the

x-axis connecting the two flux tubes. Therefore, Q⃗ðaÞ, fðaÞ10 ,

fðaÞ20 are functions only of R, while δQ⃗ðbÞ, δfðbÞ1 , δfðbÞ2 also
depend on the azimuthal angle θ. However, since we only
need the functions and their gradients at the boundary
between the twoWigner-Seitz cells and since this boundary
is by assumption far away not only from flux tube (b) but
also from flux tube (a), we can write (i ¼ 1, 2)

Q⃗ðaÞ
0 ≃ δQ⃗ðaÞ ≡ −δQe⃗θ ¼ δQðsin θe⃗x − cos θe⃗yÞ;

δQ⃗ðbÞ ¼ −δQðsin θe⃗x þ cos θe⃗yÞ; ðC9aÞ

fðaÞi0 ≃ 1 − δfðaÞi ; δfðbÞi ¼ δfðaÞi ≡ δfi; ðC9bÞ

∇fðaÞi0 ≃ −∇δfðaÞi ¼ −δf0ie⃗R ¼ −δf0iðcos θe⃗x þ sin θe⃗yÞ;
∇δfðbÞi ¼ δf0ið− cos θe⃗x þ sin θe⃗yÞ: ðC9cÞ

Note in particular that, at the relevant surface, δfðbÞi ¼δfðaÞi ,

but dS⃗ · ∇δfðaÞi ¼ −dS⃗ · ∇δfðbÞi . Now, δQ and δfi are
functions only of R. Inserting Eq. (C9) into Eq. (C8) yields

F↺
int

L
¼ 2ρ201R0

Z
∞

R0=2

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðR0=2Þ2

p
×

�
−κ2δQ

�
δQ
R

þ δQ0
�
þ δf1δf01 þ x2δf2δf02

−
Γx
4
½2ð1 − δf1 − δf2Þ þ δf1δf2�ðδf1δf2Þ0

�
:

ðC10Þ

We can employ this result by inserting the modified Bessel
functions from Eq. (45),

δQ≃ −nCK1ðR=κÞ; ðC11aÞ

δf1 ≃ −DþγþK0ð ffiffiffiffiffiffi
νþ

p
RÞ −D−γ−K0ð

ffiffiffiffiffi
ν−

p
RÞ; ðC11bÞ

δf2 ≃ −DþK0ð ffiffiffiffiffiffi
νþ

p
RÞ −D−K0ð

ffiffiffiffiffi
ν−

p
RÞ: ðC11cÞ

We may also extrapolate this result down to smaller
distances by reinstating the full numerical functions
through δQ → Q ¼ −nð1 − aÞ=R and δfi → 1 − fi, which
yields the result (48) in the main text.

APPENDIX D: ASYMPTOTIC APPROXIMATION
OF FLUX TUBE INTERACTION
WITH GRADIENT COUPLING

In the main text, we discuss the large-distance behavior
of the flux tube interaction without gradient coupling. In
the presence of a gradient coupling, the interaction is more
complicated, but, as we show in this Appendix, an equally
compact expression can be derived if we are only interested
in the leading order contributions, i.e., the exponential
behavior.
We start by inserting the asymptotic solutions (45) into

the expression for the interaction free energy (48). The
result is an integral over a sum of many terms, each of
which is a product of two, three, or four modified Bessel
functions of the second kind. In each product, one factor is
K1 and the remaining ones are K0. The integral over the
terms with two Bessel functions that have the same argu-
ment can be expressed again as a Bessel function with the
help of Eq. (50). For the integral over all other products we
use the expansion,

KnðzÞ ¼
ffiffiffiffiffi
π

2z

r
e−z
�
1þ 4n2 − 1

8z
þO

�
1

z2

��
; ðD1Þ

and only keep terms with the smallest exponential sup-
pression. These terms are found as follows. With Eq. (D1)
we approximate

e−αR ≃ αR
π

K0ðαR=2ÞK1ðαR=2Þ: ðD2Þ

Then, we approximate each product of Bessel functions
K0K1, K0K0K1, K0K0K0K1 by the leading order term, and
reexpress the exponential as a product K0K1 with the help
of Eq. (D2). If we have started with a product K0K1 with
different arguments, we arrive at an expression which we
can integrate using Eq. (50). If we have started with a
product of three or four Bessel functions, we do not exactly
reproduce the integrand of Eq. (50) because there is an
additional factor R−1=2 (for three Bessel functions) or R−1

(for four Bessel functions). The resulting integral can be
expressed in terms of the so-called Meijer G-function,
which we expand again since we are anyway only inter-
ested in the asymptotic behavior. As a result, we obtain

Z
∞

R0=2
dR

K0ðα1RÞK1ðα2RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðR0=2Þ2

p ∼ e−
α1þα2

2
R0 ; ðD3aÞ

Z
∞

R0=2
dR

K0ðα1RÞK0ðα2RÞK1ðα3RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðR0=2Þ2

p ∼ e−
α1þα2þα3

2
R0 ; ðD3bÞ

Z
∞

R0=2
dR

K0ðα1RÞK0ðα2RÞK0ðα3RÞK1ðα4RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðR0=2Þ2

p ∼e−
α1þα2þα3þα4

2
R0 :

ðD3cÞ
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For each of the terms in the interaction energy we need to
replace αi by either

ffiffiffiffiffiffi
νþ

p
or

ffiffiffiffiffi
ν−

p
. From Eq. (44) we see thatffiffiffiffiffiffi

νþ
p

>
ffiffiffiffiffi
ν−

p
. Therefore, the largest contribution we obtain

is expð− ffiffiffiffiffi
ν−

p
R0Þ, and this contribution is only created by

the product of two Bessel functions with the same argumentffiffiffiffiffi
ν−

p
because two Bessel functions with different arguments

give rise to exp½−ð ffiffiffiffiffiffi
νþ

p þ ffiffiffiffiffi
ν−

p ÞR0=2�, which is suppressed
more strongly, three Bessel functions give rise to suppres-
sions of at least exp½−3 ffiffiffiffiffi

ν−
p

R0=2� etc. The largest con-
tributions are thus given by the terms where we can apply
the integral (50), and we obtain

F↺
intðR0Þ
L

≃ 2πρ201½κ2n2C2K0ðR0=κÞ
−D2þðγ2− þ x2 − Γxγ−ÞK0ðR0

ffiffiffiffiffi
ν−

p Þ�: ðD4Þ

Therefore, if γ2− þ x2 − Γxγ− > 0, one can use the same
arguments as in the main text for the discussion of the
attractiveness of the flux tube interaction at large distances,
only with a more complicated eigenvalue ν−, which now
depends on the gradient coupling Γ.
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