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The renormalization that relates a coupling “a” associated with a distinct renormalization group beta
function in a given theory is considered. Dimensional regularization and mass independent renormalization
schemes are used in this discussion. It is shown how the renormalization a� ¼ aþ x2a2 is related to a
change in the mass scale μ that is induced by renormalization. It is argued that the infrared fixed point is to
be a determined in a renormalization scheme in which the series expansion for a physical quantity R
terminates.
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I. INTRODUCTION

The elimination of divergences arising in the computa-
tion of radiative effects in quantum field theory results in
the introduction of an unphysical mass scale parameter μ.
The explicit dependence on μ must be offset by implicit
dependence on μ through the parameters (couplings,
masses, and field strengths) characterizing the theory,
resulting in the renormalization group (RG) equations
[1–3]. If dimensional regularization [4–6] is used in
conjunction with mass independent renormalization
[7,8], it is possible to make additional finite renormaliza-
tions that lead to further RG equations.
We will examine the effect of finite renormalizations in

the QCD calculation of the process eþe− → hadrons with
cross section Reþe− . The strong fine structure constant is
α ¼ aπ and all quarks are taken to be massless. Avariety of
renormalization schemes (RS) will be considered; minimal
subtraction (MS) [8], a scheme due to ’t Hooft in which the
RG function β associated with a has no contribution
beyond the second order [9–11], and a scheme in which
no radiative corrections beyond the second order contribute
to the expansion of Reþe− in powers of a [12,13]. The latter
two schemes only involve RS invariant quantities. In each
of these schemes, a ¼ 0 is an ultraviolet fixed (UV) point;
that is, as the center of mass energy scale Q increases, the
couplant a goes to zero (“asymptotic freedom”) [8,14–17].
We will consider the possibility of there also being an
infrared (IR) fixed point, in which a goes to some finite
value as Q decreases to zero. The scheme in which the
expansion of Reþe− in powers of a is finite is argued to be

the only RS to be of relevance, as in this scheme, the
behavior of the infinite series in powers of a that occur in
other schemes is not a problem.

II. FINITE RENORMALIZATION

The cross section Reþe− can be expressed as a power
series in the couplant a

Reþe− ¼ 3

�X
i

q2i

�
ð1þ RÞ; ð1Þ

where the n loop contribution to R in perturbation theory is
given by the term of order anþ1 in the expansion

R ¼
X∞
n¼0

Xn
m¼0

Tn;manþ1Lm

�
T0;0 ¼ 1; L ¼ b ln

μ

Q

�
: ð2Þ

The explicit dependence of R on μ through L is canceled by
its implicit dependence through aðln μ

ΛÞ where

μ
da
dμ

¼ −ba2ð1þ caþ c2a2 þ � � �Þ≡ βðaÞ: ð3Þ

The solution to Eq. (3) is taken to be [18]

ln

�
μ

Λ

�
¼

Z
aðlnμΛÞ

0

dx
βðxÞ þ

Z
∞

0

dx
bx2ð1þ cxÞ : ð4Þ

The general relation between the bare couplant aB
appearing in the initial QCD Lagrangian and the renor-
malized couplant a when using a mass independent
renormalization scheme with dimensional regularization
is [8]
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aB ¼ μ−ϵ
�
A0ðaÞ þ

A1ðaÞ
ϵ

þ A2ðaÞ
ϵ2

þ � � �
�
; ð5Þ

where ϵ ¼ −4þ n, with n being the number of dimensions.
Since aB is independent of μ,

μ
daB
dμ

¼ 0 ¼
�
μ
∂
∂μþ βðaÞ ∂

∂a
�
μ−ϵ

�
A0 þ

A1

ϵ
þ A2

ϵ2
þ � � �

�
:

ð6Þ

Eq. (6) is satisfied at orders ϵ, ϵ0 provided that

βðaÞ ¼ 1

A0
0

�
A1 −

A0

A0
0

A0
1

�
þ A0

A0
0

ϵ

¼ −
�
A0

A0
0

�
2 d
da

�
A1

A0

�
þ
�
A0

A0
0

�
ϵ: ð7Þ

Terms of order ϵ−n ðn ¼ 1; 2…Þ in Eq. (6) fix A2; A3… in
terms of A0 and A1.
The function A0 in Eq. (5) is not fixed; the MS RS

corresponds to selecting A0ðaÞ ¼ a. Using ā to denote the
MS fine structure constant, then by Eq. (6),

β̄ðāÞ ¼ ðĀ1ðāÞ − āĀ0
1ðāÞÞ þ āϵ ð8Þ

is the MS β-function. We now can expand a general
function A0 as

A0ðaÞ ¼ aþ x2a2 þ x3a3 þ � � � ; ð9Þ

the identification

ā ¼ A0ðaÞ ð10Þ

constitutes a finite renormalization of ā.
In general, if we have two different couplings a and a�

such that they are related by the renormalization

a� ¼ aþ y2a2 þ y3a3 þ � � �≡ ρðaÞ; ð11Þ

then from the relation

μ
da�

dμ
¼ μ

da
dμ

da�

da
⇒ β�ða�Þ ¼ dρðaÞ

da
βðaÞ ð12Þ

or by Eqs. (3), (11)

− b�a�2ð1þ c�a� þ c�2a
�2 þ � � �Þ

¼ −ba2ð1þ caþ c2a2 þ � � �Þ
× ð1þ 2y2aþ 3y3a2 þ � � �Þ; ð13Þ

we see that [19]

b� ¼ b ð14aÞ

c� ¼ c ð14bÞ

c�2 ¼ c2 − cy2 þ y3 − y22 ð14cÞ

c�3 ¼ c3 − 3cy22 þ 2ðc2 − 2c�2Þy2 þ 2y4 − 2y2y3 ð14dÞ

c�4 ¼ c4 − 2y4y2 − y23 þ cðy4 − y32 − 6y2y3Þ
þ 3y3c2 − 4y3c�2 − 6y22c

�
2 þ 2y2c3 − 5y2c�3 þ 3y5

ð14eÞ

etc.
Consequently, b and c are RS invariants while c2; c3…

are RS dependent. The RG function β is thus not unique; in
addition to the one associated with MS in Eq. (8), there is
the ’t Hooft scheme in which cn ¼ 0 ðn ≥ 2Þ so that β
consists of two terms

βðaÞ ¼ −ba2ð1þ caÞ; ð15Þ

or the particular β-function associated with N ¼ 1 super-
symmetric gauge theory [20,21]

βðaÞ ¼ −ba2

1 − ca
: ð16Þ

In principle, the result of Eq. (16) could be altered upon
making a finite renormalization of a. It was noted in
ref. [18] that a RS can be characterized by the RS
dependent coefficients c2; c3… in Eq. (3). From Eq. (13)
it would appear that these coefficients could be identified
with y3; y4… appearing in ρðaÞ in Eq. (11); in ref. [18] it
was suggested that y2 should be associated with the scale
parameter μ. (In ref. [19], this coefficient is taken to be
arbitrary and not related to μ; the dependence of a on y2 is
analyzed as if y2 were a free parameter independent on μ.)
Identifying y2 with μ is reasonable, as by Eqs. (3), (12)

da
βðaÞ ¼

da�

β�ða�Þ ; ð17Þ

and so by Eq. (4),

Z
aðlnμΛÞ

0

dx
βðxÞ −

Z
a�ðlnμ�Λ Þ

0

dx
β�ðxÞ ¼ ln

�
μ

μ�

�
: ð18Þ

However, if μ ¼ μ� this extra arbitrariness disappears, and
y2 should vanish.
To see this connection between μ and y2 more explicitly,

let us consider

da
dci

¼ βiðaÞ ði ≥ 2Þ; ð19Þ
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from

μ
∂2a
∂μ∂ci − μ

∂2a
∂ci∂μ ¼ 0 ð20Þ

it follows that [18]

βiðaÞ ¼ −bβðaÞ
Z

a

0

dx
xiþ2

β2ðxÞ ≈
aiþ1

i − 1

�
1þ

�ð−iþ 2Þc
i

�
aþ

�ði2 − 3iþ 2Þc2 þ ð−i2 þ 3iÞc2
ðiþ 1Þi

�
a2

þ
�ð−i3 þ 3i2 þ 4iÞc3 þ ð2i3 − 6i2 þ 4Þcc2 þ ð−i3 þ 3i2 − 2iÞc3

ðiþ 2Þðiþ 1Þi
�
a3 þ � � �

�
: ð21Þ

(RS dependency in theories with renormalized masses is
considered in Refs. [22,23].) If now a and a� at the same
value of μ are expanded as

a� ¼ aþ λ2ðc�i ; ciÞa2 þ λ3ðc�i ; ciÞa3 þ � � � ; ð22Þ
then the equation

da�

dci
¼ 0 ¼

� ∂
∂ci þ βi

∂
∂a

�
ðaþ λ2a2 þ � � �Þ ð23Þ

with the boundary condition λnðci; ciÞ ¼ 0 can be used to
show that [12,13]

a� ¼ aþ ðc�2 − c2Þa3 þ
1

2
ðc�3 − c3Þa4 þ

�
1

6
ðc�22 − c22Þ

þ 3

2
ðc�2 − c2Þ2 −

c
6
ðc�3 − c3Þ þ

1

3
ðc�4 − c4Þ

�
a5 þ � � �

ð24Þ
Eqs. (11), (14) are consistent with Eq. (24) only if y2 ¼ 0.
If now from Eq. (14b) we see that

y3 ¼ c�2 − c2 þ cy2 þ y22 ð25aÞ
so that from Eqs. (14d), (25a) we obtain

y4 ¼
1

2
½c�3 − c3 þ ð6c�2 − 4c2Þy2 þ 5cy22 þ 2y32�; ð25bÞ

Eqs. (14e), (25a), (25b) now lead to

y5 ¼
1

3
fðc�4 − c4Þ þ y2ð5c�3 − 2c3Þ

þ ð4c�2 − 3c2 þ 6y2cÞðc�2 − c2 þ cy2 þ y22Þ
þ ðc�2 − c2 þ cy2 þ y22Þ2 þ 6y22c

�
2 þ y32cþ ð2y2 − cÞ

×

�
1

2
ðc�3 − c3Þ þ y2ð3c�2 − 2c2Þ þ

5

2
cy22 þ y32

��

ð25cÞ

etc.

We now take a� to have the same β function as a, but
evaluated with mass scale μ� rather than μ. If now we
expand a� in terms of a [12,13,24] so that

a� ¼ aþ ðσ21lÞa2 þ ðσ31lþ σ32l2Þa3 þ � � ��
l ¼ b ln

μ

μ�

�
ð26Þ

then as

μ
da�

dμ
¼ 0¼

�
μ
∂
∂μþ βðaÞ ∂

∂a
�

× ½aþ ðσ21lÞa2 þ ðσ31lþ σ32l2Þa3 þ � � �� ð27Þ
we find that

a� ¼ aþ ðlÞa2 þ ðclþ l2Þa3 þ
�
c2lþ 5

2
cl2 þ l3

�
a4

þ
�
c3lþ

�
3c2 þ

3

2
c2
�
l2 þ 13

3
cl3 þ l4

�
a5

þ
�
c4lþ 7

2
ðc3 þ c2cÞl2 þ

�
6c2 þ

35

6
c2
�
l3

þ 77

12
cl4 þ l5

�
a6 þ � � � ð28Þ

This is identical to what is obtained from Eqs. (11), (25) in
the limit c�i ¼ ci provided

y2 ¼ l: ð29Þ
This is consistent with Eq. (18) and with the observation in
ref. [18] that y2 is to be identified with the mass scale
parameter μ. It is also posible to use Eqs. (24), [25] together
to expand a�ðμ�; c�i Þ in powers of aðμ; ciÞ; the result is the
same as Eq. (11) with Eqs. (25), (29).
We now make the expansion

Ā1ðāÞ ¼ λ̄2ā2 þ λ̄3ā3 þ λ̄4ā4 þ � � � ð30Þ

where Ā1ðāÞ is associated with the MS RS. We find from
Eq. (8) that in this scheme
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b̄ ¼ λ̄2; ð31aÞ

c̄ ¼ 2λ̄3=λ̄2; ð31bÞ

c̄n ¼ ðnþ 1Þλ̄nþ2=λ̄2: ð31cÞ

If under a finite renormalization given by Eq. (9) we end up
with a coupling a and a RG function βðaÞ given by Eq. (7),
then the expansions of Eqs. (3), (9) show that if

A1ðaÞ ¼ λ2a2 þ λ3a3 þ � � � ; ð32Þ

then

λ2 ¼ b ð33aÞ

λ3 ¼
1

2
bðcþ 4x2Þ ð33bÞ

λ4 ¼
b
3

�
7x3 þ 2x22 þ

7

2
cx2 þ c2

�
ð33cÞ

λ5 ¼
b
4

�
10x4 þ

22

3
x2x3 −

4

3
x32 þ

5

3
cx22

þ 6cx3 þ
10

3
x3c2 þ c3

�
ð33dÞ

etc.
Upon identifying yi with xi, Eq. (25) can be used to

convert Eqs. (33c), (33d) to

λ4 ¼ b

�
7

3
c̄2 þ

7

2
x2cþ 3x22 − 2c2

�
ð34aÞ

λ5 ¼
b
4

�
112

3
c̄2x2 − 24x2c2 þ 40cx22 þ 16x32

þ 6c2x2 þ 6cðc̄2 − c2Þ þ 5c̄3 − 4c3

�
ð34bÞ

etc.
Together, Eqs. (9), (14), (31), (33) can be used to show

that

λ2a2 þ λ3a3 þ λ4a4 þ � � � ¼ λ̄2ā2 þ λ̄3ā3 þ λ̄4ā4 þ � � �
ð35aÞ

so that

A1ðaÞ ¼ Ā1ðāÞ: ð35bÞ

We thus see that with βðaÞ and β̄ðāÞ being given by Eqs. (7)
and (8) respectively, Eqs. (10) and (14) are consistent.
We now can examine the presence of an IR fixed point in

light of finite renormalizations.

III. INFRARED FIXED POINTS

Equation (12) implies that if βðaÞ ¼ 0, then β�ða�Þ ¼ 0
as well, if a� ¼ ρðaÞ. In addition, from Eq. (12) it also
follows that

dβ�ða�Þ
da�

¼
�
d2ρðaÞ
da2

βðaÞ þ dρðaÞ
da

dβðaÞ
da

��
dρðaÞ
da

; ð36Þ

and so if βðaÞ ¼ 0, then [26,27]

dβ�ða�Þ
da�

¼ dβðaÞ
da

: ð37Þ

These arguments rely on ρðaÞ being a well defined function
when βðaÞ ¼ 0; for ill behaved functions ρðaÞ, it may turn
out that β�ða�Þ is nonzero or that Eq. (37) is not satis-
fied [25,28].
In Refs. [12,13] the problem of RS dependence was

considered in the context of the cross section Reþe− of
Eq. (1). It was shown that by applying the RG equation

�
μ
∂
∂μþ βðaÞ ∂

∂a
�
R ¼ 0 ð38Þ

it is possible to sum the logarithm in Eq. (2) so that the
explicit dependence of R on μ (through L) and its implicit
dependence [through aðμÞ] cancel, leaving us with

R ¼
X∞
n¼0

Tnan
�
ln
Q
Λ

�
ðTn ≡ Tn;0Þ; ð39Þ

whereQ is center of mass energy andΛ is a scale parameter
introduced in Eq. (4).
The behavior of the sum in Eq. (39) can be affected by

three things. There is first the behavior of aðln Q
ΛÞ asQ itself

evolves. Second, the behavior of Tn as n becomes large,
and third, the convergence behavior of the infinite sum
itself. However, R is invariant under the finite renormal-
ization of Eq. (11); we will now examine how R is affected
by two particular renormalization schemes. We will then
consider their implications for the IR fixed point. Of course,
this IR fixed point cannot incorporate nonperturbative
effects in QCD; our discussion is entirely in the context
of the perturbative expansion of Eq. (2). Nonperturbative
effects in the low energy regime would necessarily involve
the emergence of low energy Goldstone Bosons (pions).
Changes in RS lead to compensating changes in Tn and a

so that

d
dci

R ¼ 0 ¼
� ∂
∂ci þ βiðaÞ

∂
∂a

�X∞
n¼0

Tnanþ1: ð40Þ

This leads [12,13] to a set of nested equations for Tn whose
solutions are
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T0 ¼ τ0 ¼ 1; ð41aÞ

T1 ¼ τ1; ð41bÞ

T2 ¼ −c2 þ τ2; ð41cÞ

T3 ¼ −2c2τ1 −
1

2
c3 þ τ3 ð41dÞ

T4 ¼ −
1

3
c4 −

c3
2

�
−
1

3
cþ 2τ1

�
þ 4

3
c22 − 3c2τ2 þ τ4

ð41eÞ

T5 ¼
�
1

3
cc22 þ

3

2
c2c3 þ

11

3
c22τ1 − 4c2τ3

�

−
1

2

�
1

6
c2c3 −

2

3
c3cτ1 þ 3c3τ2

�

−
1

3

�
−
1

2
c4cþ

1

2
c4τ1

�
−
1

4
c5 þ τ5 ð41fÞ

etc.
In Eq. (41), the τn are constants of integration and hence

are RS invariants. They can be determined by evaluating
the Tn and b, c, cn in one particular RS (such as MS) upon
explicitly computing the relevant Feynman diagrams.
Two particular RS are of special interest. In the first

scheme, the ci are selected so that Tn ¼ 0ðn ≥ 2Þ. From
Eq. (41) this means that

c2 ¼ τ2 ð42aÞ

c3 ¼ 2ð−2c2τ1 þ τ3Þ ¼ 2ð−2τ1τ2 þ τ3Þ ð42bÞ

c4 ¼ −
3

2
c3

�
−
1

3
cþ 2τ1

�
þ 4c22 − 9c2τ2 þ 3τ4

¼ cðτ3 − 2τ1τ2Þ þ 12τ21τ2 − 6τ1τ3 − 5τ22 þ 3τ4 ð42cÞ

etc.
In the second scheme, due to ’t Hooft, we set cn ¼

0ðn ≥ 2Þ [9–11], so that

Tn ¼ τn: ð43Þ
In the first instance, the series in Eq. (39) collapses down to
two terms

Rð1Þ ¼ að1Þ þ τ1a2ð1Þ

�
ln
Q
Λ

�
; ð44aÞ

while in the second case we have the infinite series

Rð2Þ ¼
X∞
n¼0

τna
nþ1
ð2Þ

�
ln
Q
Λ

�
: ð44bÞ

In the first case, að1Þ “runs” according to Eq. (4) with the ci
of Eq. (3) being given by Eq. (42). In the second case, að2Þ
runs according to the ’t Hooft β-function of Eq. (14). In
Eq. (44a), there is no possible problem associated with
there being a divergent series for Rð1Þ or of having
diverging behavior for the coefficients of anð1Þ; one need
only discuss how að1Þðln Q

ΛÞ behaves as Q varies. On the
other hand, in the infinite series for að2Þ, the behavior of
að2Þðln Q

ΛÞ is completely known as upon integrating Eq. (4),
we obtain the Lambert W function [29–32]. With βð2Þðað2ÞÞ
given by Eq. (14), it is evident that að2Þ has an UV fixed
point at að2Þ ¼ 0 (if b > 0) and an IR fixed point at að2Þ ¼
−1
c (if c < 0). As one [14–17] and two [33,34] loop
calculations show that for an SU(N) gauge theory with
Nf flavors of quarks,

b ¼ 33 − 2Nf

6
; ð45aÞ

c ¼ 153 − 19Nf

2ð33 − 2NfÞ
; ð45bÞ

which means that in order to have asymptotic freedom
ðb<0Þ and a positive IR fixed point ðc < 0Þ, we must have

8 ≤ Nf ≤ 16: ð46Þ

However, even if Nf satisfies the restrictions of Eq. (46),
the series of Eq. (44b) could be badly behaved, or
alternatively, if Eq. (46) is not satisfied, this series could
be well behaved. We are thus led to consider the finite sum
of Eq. (44a).
The equality

Rð1Þ ¼ Rð2Þ ð47Þ

is consistent with Eq. (24). However, since Rð2Þ involves an
infinite series whose convergence is not known, the IR
behavior of að2Þ is not necessarily a reflection on the IR
behavior of að1Þ since Rð1Þ only involves a finite series in
which convergence is no longer an issue. We contend that
in analyzing the IR behavior of Reþe− , it is the behavior of
að1Þ that is of relevance. We will now consider the IR
behavior of að1Þ up to a four loop order, and thereby find out
how Rð1Þ behaves as Q → 0.
Explicit calculation shows that with Nf ¼ 3 active

flavors of quarks [13],

τ1 ¼ 1.6401 ð48aÞ

τ2 ¼ −5.812885185 ð48bÞ

τ3 ¼ −81.73499303 ð48cÞ

etc.
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These values follow from the four-loop calculations of
Tn and βðaÞ done in the MS scheme [35,36]. With these
values of τ1, τ2, τ3, it follows from Eq. (42) that in the RS
associated with að1Þ,

c2 ¼ −5.812885185 ð49aÞ
c3 ¼ −125.3351844092 ð49bÞ

etc.
Since with Nf ¼ 3 [8,14–17]

b ¼ 9=4 ð50aÞ
and [33,34]

c ¼ 16=9; ð50bÞ
we see that the function βð1Þðað1ÞÞ is given by

βð1Þðað1ÞÞ ¼ −2.25a2ð1Þð1þ 1.77778að1Þ − 5.812885185a2ð1Þ

− 125.3351844092a3ð1Þ þ � � �Þ: ð51Þ

We now consider only the four-loop ðOða5ð1ÞÞÞ contri-

bution to βð1Þ in Eq. (51). The function

fðxÞ ¼ 1þ 1.77778x − 5.812885185x2

− 125.3351844092x3 ð52Þ
has only one positive zero, and that is found by Newton’s
Method to be at

x ≈ :20743211594: ð53Þ
Consequently, βð1Þ has an IR fixed point at

að1Þ ≈ :20743 ð54Þ
if we use only up to the four-loop contributions to βð1Þ. (In
MS, β̄ðāÞ has been computed to five-loop order [37], but to
get βð1Þðað1ÞÞ to this order we would also require Reþe− to
five-loop order; this is as yet unknown.) From Eqs. (1),
(44a), and (54), it follows that

Reþe−

��
3
X
i

q2i

�
¼ 1þ ð:20743Þ þ ð1.6401Þð:20743Þ2

≈ 1.278: ð55Þ
This is the limit of Reþe− as Q → 0 when we use Rð1Þ in
Eq. (44a) and keep contributions only up to the four-loop
order. This is consistent with Reþe− as presented
in Ref. [13].
Both c2 and c3, when using βð1Þ, are negative [see

Eq. (49)], and so it is not unreasonable to anticipate that c4
is also negative. In Fig. 1, we have plotted the possible
values of c4 versus zero of βð1Þ to the five-loop order (using

Eqs. (49), (50) for b, c, c2, c3) when there are three active
flavors of quarks. We see that for −2000 ≤ c4 ≤ 300, βð1Þ
to the five-loop order has zeros lying between .1 and .3,
which is quite reasonable. We note that by Eq. (41f), τ5 and
T5 both vary linearly with c4.
If we use Eq. (24) to relate að1Þ to að2Þ, we see from

Eq. (42) that

að2Þ ¼ að1Þ − τ2a3ð1Þ þ ð2τ1τ2 − τ3Þa4ð1Þ þ � � � : ð56Þ

Using Eq. (48), we find that the value of að2Þ corresponding
to að1Þ ¼ :20743 is

að2Þ ¼ :37533: ð57Þ

This clearly is not an IR fixed point for the function
βð2Þðað2ÞÞ; with βð2Þ given by Eq. (15), the only value of að2Þ
for which βð2Þ vanishes is given by að2Þ ¼ − 1

c, which for
Nf ¼ 3 is, by Eq. (50b), negative—an unacceptable value.
However, by Eq. (47), we see that as Q → 0,
1þ Rð1Þ → 1.278, then 1þ Rð2Þ must also approach this
value even though að2Þ approaches a value given by
Eq. (57), which is not an IR fixed point of βð2Þ.
Actually, að2Þ approaches this value only if we keep the
three terms of Eq. (24) given in Eq. (56); if we were to
simply consider integrating Eq. (2) to find að2Þðln Q

ΛÞ
exactly, it is evident that as Q → 0, að2Þ → ∞ if b > 0,
c > 0. This indicates that the full series of Eq. (56) diverges
as Q → 0 (when að1Þ approaches an exact IR fixed point
and að2Þ diverges).
We also note that with Nf ¼ 3, the β function in the MS

scheme at the four- and five-loop order has no positive

FIG. 1. Infrared Fixed Points (IRFPs) of the scheme-1 βð1Þ-
function at five loop order versus c4.
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roots, indicating that in the MS scheme, there is no IR fixed
point, at least to this order in perturbation theory. This is
discussed in Ref. [38].
An interesting third RS is one in which c2 is allowed to

vary while ciði > 2Þ vanishes. By Eq. (41), in this scheme
R is given by

Rð3Þ ¼ að3Þ þ τ1a2ð3Þ þð−c2þ τ2Þa3ð3Þ
þð−2c2τ1þ τ3Þa4ð3Þ þ

�
4

3
c22−3c2τ2þ τ4

�
a5ð3Þ þ �� � ;

while

β3ðað3ÞÞ ¼ −ba2ð3Þð1þ cað3Þ þ c2a2ð3ÞÞ:
It appears to be possible to have a value of c2 and an

acceptable value of að3Þ, such that βð3Þ ¼ 0 and at order a5ð3Þ,
Rð3Þ ¼ 1.278; we find that c2 ¼ −13.106 and að3Þ ¼ :3523.
We conclude that the perturbative expression for 1þRð2Þ

appearing in Eq. (44b) is an infinite series whose behavior as
Q → 0 is such that it approaches a fixed value even though
að2Þðln Q

ΛÞ is not an IR fixed point in this limit. This fixed
value for 1þ Rð2Þ is trivial to compute using Eq. (44a),
provided we can find an IR fixed point for βð1Þ. Upon only
employing the first four terms of the expansion of Eq. (51)
for βð1Þ, this IR fixed point is given by Eq. (54).

IV. DISCUSSION

We have examined various aspects of RS dependency in
perturbative QCD. First of all, we have considered within
the context of mass independent renormalization schemes

how the parameters yi appearing in the finite renormaliza-
tion of Eq. (11) are related to the parameters μ and ci of
Eq. (3); we led to Eqs. (25) (for yn, n > 2) and Eq. (29) (for
y2). Treating y2 as an independent parameter, as in
Ref. [19], should involve the mass scale parameter μ.
Second, the behavior of QCD predictions for physical
processes in the IR limit are considered. After using RG
summation to eliminate μ dependence, the RS scheme in
which perturbative calculations give rise to just a finite
number of contributions in powers of the coupling is taken
to be the scheme that can be used to consider this IR limit.
This is because in this scheme, one is not confronted with
an infinite series in powers of the coupling whose behavior
is unknown. (Indeed, it has been argued that this series
contains “renormalons” [9] and is at best asymptotic.) The
IR behavior when using this finite series is controlled by the
IR behavior of að1Þ in Eq. (51) (for Nf ¼ 3) if we only use
results up to the four-loop order.
We note that since the values of τi are determined by

Eq. (41) when Ti and ci are computed in a particular
renormalization scheme, it follows that the τi must be
computed separately for distinct processes. Thus, by
Eq. (42), the IR fixed point for βð1Þ is not the same in
different processes.
We also would like to outline how the “Principle of

Maximum Conformality” [38–40] (PMC), or its improve-
ment [41], is related to the renormalization group summa-
tion employed in this paper. Let us consider the sum of
Eq. (39) when using the RS of Eq. (43), so that R is given
by Eq. (44b). It is now possible to expand að2Þðln Q

ΛÞ in

terms of aðln Q
ΛÞ, where a is the couplant in some other RS

by using Eq. (24)

að2Þ

�
ln
Q
Λ

�
¼ a

�
ln
Q
Λ

�
þ ð−c2Þa3

�
ln
Q
Λ

�
þ 1

2
ð−c3Þa4

�
ln
Q
Λ

�

þ
�
1

6
ð−c22Þ þ

3

2
ð−c2Þ2 −

c
6
ð−c3Þ þ

1

3
ð−c4Þ

�
a5
�
ln
Q
Λ

�
þ � � � : ð58Þ

Now in turn, aðln Q
ΛÞ can be expanded in terms of aðln μn

ΛÞ using Eq. (28) when anð2Þðln Q
ΛÞ appears in Eq. (44b). This results in

(with an ¼ aðln μn
ΛÞ and ln ¼ b ln μn

Q)

Rð2Þ ¼ τ0

�
a1 þ l1a21 þ ðcl1 þ l2

1Þa31 þ
�
c2l1 þ

5

2
cl2

1 þ l3
1

�
a41 þ � � �

�

þ τ1

�
a2 þ l2a22 þ ðcl2 þ l2

2Þa32 þ
�
c2l2 þ

5

2
cl2

2 þ l3
2

�
a42 þ � � �

�
2

þ τ2

�
a3 þ l3a23 þ ðcl3 þ l2

3Þa33 þ
�
c2l3 þ

5

2
cl2

3 þ l3
3

�
a43 þ � � �

�
3

þ � � � : ð59Þ

Upon grouping terms in Eq. (59) in ascending powers of a, we obtain
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Rð2Þ ¼ τ0a1 þ ½ðτ0l1Þa21 þ τ1a22� þ f½τ0ðc1 þ l2
1Þa31 þ τ1ð2l2Þa32� þ τ2a33g

þ
��

τ0

�
c2l1 þ

5

2
cl2

1 þ l3
1

�
a41 þ τ1ðl2

2 þ 2ðc2l2 þ l2
2ÞÞa42 þ τ2ð3l3Þa43

�
þ τ3a44

�
þ � � � : ð60Þ

It is now possible to select μ1; μ2; μ3… so that Eq. (60)
reduces to

Rð2Þ ¼
X∞
n¼0

τna
nþ1
nþ1; ð61Þ

this entails solving

τ0l1 ¼ 0 ð62aÞ

τ0ðc1 þ l2
1Þa31 þ τ1ð2l2Þa32 ¼ 0 ð62bÞ

τ0

�
c2 þ l1 þ

5

2
cl2

1 þ l3
1

�
a41

þ τ1ðl2
2 þ 2ðc2l2 þ l2

2ÞÞa42 þ τ2ð3l3Þa43 ¼ 0 ð62cÞ

etc.
From Eq. (62a), we see that μ1 ¼ Q; solving for μ2; μ3…

etc. becomes progressively more difficult. The resulting

expression for Rð2Þ in Eq. (61) is now expressed in terms of
scheme independent quantities τn, and all dependence on μ
has disappeared; μ1; μ2… contain all of the explicit
dependence on c2; c3…. As a result, Eq. (61) is equivalent
to what is obtained using the approach to PMC used
in Ref. [39].
Wewish to note that the low energy behavior of aðQÞ has

also been examined using light cone holography [40]. Our
considerations have been limited to examining RS ambi-
guities that arise in using a conventional perturbative
evaluation of physical quantities in QCD.
In the future we hope to extend these considerations

of perturbative expansions in quantum field theory to
processes involving nontrivial masses and/or multiple
couplings [23].
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