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Mesonic and nucleon fluctuation effects are investigated in medium. We couple the nucleon field to the
2þ 1 flavor meson model and investigate the finite temperature and density behavior of the system, in
particular, the axial anomaly function. Somewhat contrary to earlier expectations, we find that it tends to
strengthen at finite density. At lower temperatures, nucleon density fluctuations can cause a relative
difference in the UAð1Þ axial anomaly of about 20%. This has important consequences on the mesonic
spectra, especially on the η − η0 system, as we observe no drop in the η0 mass as a function of the
baryochemical potential, irrespective of the temperature. Based on the details of chiral symmetry
restoration, it is argued that there has to be a competition between underlying QCD effects of the
anomaly and fluctuations of the low energy hadronic degrees of freedom, and the fate of the UAð1Þ
coefficient should be decided by taking into account both effects simultaneously.
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I. INTRODUCTION

Chiral invariance, being an approximate symmetry of the
theory of quantum chromodynamics (QCD), has played an
important role in understanding the properties of light
mesons both in vacuum and in medium. In particular, the
η0 mass problemwas solved via the discovery of the quantum
anomaly of the UAð1Þ subgroup of chiral symmetry [1].
Based on the underlying mechanism of topological fluctua-
tions and instanton configurations of QCD, it is often argued
that the axial symmetry should (partially) recover at finite
temperature and/or baryon density [2]. If so, it would affect
the mesonic spectrum, and, in particular, the mass of the η0
meson could decrease by a significant amount. It is also
argued that in nuclear medium, the chiral condensate drops
about 30% at the normal nuclear density [3], which could
also imply a partial restoration of the UAð1Þ symmetry.
Earlier model calculations found that the reduction of the

mass of the η0 meson can be of the order of 100 MeV at
normal nuclear density [4,5], which effectively implies an
attractive interaction between the η0 meson and the nucleon.
Similarly to the Λð1405Þ resonance, which is strongly
believed to be a K̄N bound state, this suggests that an η0N
bound state may also likely to be formed, given that the
attraction between the two particles is indeed strong enough
[6,7]. Recently, there has been an increasing interest in
searching for traces of such an object [8].
Regarding the (partial) restoration of the axial anomaly

at finite temperature and/or density, little is known about its
nature. Lattice QCD results are controversial at the moment
having different predictions in the restoration of the UAð1Þ
subgroup at finite temperature [9–11]. Concerning effective
model calculations for 2þ 1 flavors, due to the melting of

the chiral condensate at finite temperature, they predict a
drop in the η0 mass around the critical temperature [12–14],
but a common feature of these calculations is to treat the
anomaly parameter without being affected by fluctuations.
In [15], we introduced a scale-dependent anomaly function
and investigated the effect of mesonic fluctuations (both
quantum and thermal) on it. We found that these fluctua-
tions are significant and cannot be neglected, as the axial
anomaly tend to strengthen toward the critical temperature
once they are taken into account.
Concerning the η0 − N interaction, despite experimental

efforts [16,17], very little is known about its nature. In
addition to the UAð1Þ anomaly, the interaction seems to be
dictated by scalar meson exchange [6], and one is also
interested in the role of various vector mesons [18,19].
The main goal of this paper is to investigate the evolution

of the UAð1Þ anomaly, and in addition to mesonic fluctua-
tions, investigate the role of the nucleon at finite baryochem-
ical potential. The most natural way to tackle the problem is
to take the2þ 1 flavor linear sigmamodel (LσM) and couple
the meson field to the nucleon via a Yukawa type interaction
[6,7]. For the appropriate treatment of the short-range
nucleon-nucleon interaction, the model can be extended
with the ω and ρ mesons [20], see also a recent review for
the two-flavor version in [21].We note that even though these
degrees of freedom are necessary to generate a first order
nuclear liquid-gas transition, and thus important from the
point of view of a proper description of nuclear matter, we do
not include them in our framework. The reason is that our
main focus is on the evolution of the ‘t Hooft coupling, and in
a minimal nucleon-meson model, neither ω nor ρ couples to
the scalar (and pseudoscalar) mesons (and therefore to the
anomaly) directly [20,21].
For the inclusion of quantum, thermal, and density

fluctuations, we use the functional renormalization group
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(FRG) method [22]. The used approximation scheme is the
leading order of the derivative expansion, equipped with
the so-called chiral invariant expansion technique [15]. The
introduction of nucleons into the system allows us to
investigate directly at a finite nuclear density (or equiv-
alently, at finite baryochemical potential μB), and within the
present method, we are able to obtain the fluctuation
induced field, temperature, and chemical potential depend-
ence of the anomaly coefficient.
The paper is organized as follows. In Sec. II, we

introduce the model and the basics of the FRG method.
In Sec. III, we review the approximation scheme and the
details of the solution of our equations. The reader finds
the main results and corresponding figures in Sec. IV,
together with discussions on various aspects of our find-
ings. Section V is dedicated for the conclusions.

II. MODEL AND METHOD

As announced in the Introduction, we are using the 2þ 1
flavor linear sigma model coupled to a two-component
isospinor describing the nucleon field. We neglect isospin
asymmetry and thus, the neutron and the proton are
treated on an equal footing. The dynamical fields that
we are introducing is as follows. We denote the meson
field by M,

MðxÞ ¼
X8
a¼0

TaðsaðxÞ þ iπaðxÞÞ; ð1Þ

which belongs to a Uð3Þ Lie algebra [Ta are Uð3Þ
generators], and the sa and πa fields contain the scalar
and pseudoscalar mesons, respectively. The nucleons are
described by a two-component isospinor ψ,

ψTðxÞ ¼ ðpðxÞ; nðxÞÞ: ð2Þ
We introduce meson-nucleon couplings in the linear sigma
model (LσM) via a Yukawa-type interaction, and the action
of the model is the following:

S ¼
Z
x
ðTrð∂μM†∂μMÞ −m2TrðM†MÞ

−
g1
9
ðTrðM†MÞÞ2 − g2

3
TrðM†MM†MÞ

− TrðHðM† þMÞÞ − aðdetM† þ detMÞ
þ ψ̄ði∂ − μBγ0 −mNÞψ − gψ̄ ~M5ψÞ: ð3Þ

The first three lines correspond purely to the LσM (note that
no isospin breaking is present, thus H¼h0T0þh8T8),
which (apart from the explicit breaking term containing
H) reflects ULð3Þ × URð3Þ chiral symmetry via the trans-
formation M → LMR†, where L and R are independent
Uð3Þ matrices. The fourth line contains the dynamics of the
nucleon field, where μB denotes the baryochemical potential,
and the coupling term to the mesons. We have six free

parameters in the LσM part (i.e., m2, g1, g2, a, h0, h8), and
two additional ones regarding the nucleons (mN , g). Note
that the physical nucleon mass consists of two parts: the
fermion mass term containing mN , which breaks chiral
symmetry explicitly, and a piece arising from the Yukawa
interaction term, which leads to a nonzero contribution once
spontaneous symmetry breaking occurred.
Since the mesons are described by a 3 × 3 matrix, and ψ

is a two-component object, the last term in (3) needs
explanation. The nucleon has no strangeness; thus, we have
to select an embedded Uð2Þ algebra in flavor Uð3Þ that
corresponds to a purely isospin subalgebra GI. The way to
do so is that we interchange the T0 generator with the
nonstrange one when defining GI . Note that the change
from the 0–8 basis to ns-s (nonstrange-strange) is done via
the ideal mixing�

Tns

Ts

�
¼ 1ffiffiffi

3
p
� ffiffiffi

2
p

1

1 −
ffiffiffi
2

p
��

T0

T8

�
: ð4Þ

The four matrices that span GI is then fTns; T1; T2; T3g.
The corresponding ~M meson field will become effectively a
2 × 2 matrix,

~M ¼
X

a¼ns;1;2;3

Taðsa þ iπaÞ; ð5Þ

which can couple to ψ , but we need the Lagrangian to be a
scalar; thus, we define

~M5 ¼
X

a¼ns;1;2;3

Taðsa þ iγ5πaÞ: ð6Þ

This allows the combination ψ̄ ~M5ψ to have the appropriate
transformation properties.
In this paper, we are interested in fluctuation effects of

the mesons and the nucleon. These effects will be calcu-
lated in the language of the quantum effective action Γ,
which is related to the Legendre transform of the logarithm
of the partition function Z. For the set of fields
Φ ¼ ðsa; πa; p; nÞ, we have

Z½J� ¼
Z

DΦeiðSþ
R

J·ΦÞ;

Γ½Φ� ¼ −i logZ½J� −
Z

J ·Φ; ð7Þ

where J represents source fields. The fluctuations are
included with the help of the functional renormalization
group (FRG) method. In this framework, one defines a
scale dependent effective action Γk, which includes fluc-
tuations only with momenta q ≳ k, where k is the
so-called scale parameter. This is achieved by adding a
regulator term to the classical action S,

S → Sþ
Z
x

Z
y
Φ†ðxÞRkðx; yÞΦðyÞ; ð8Þ

G. FEJŐS and A. HOSAKA PHYSICAL REVIEW D 95, 116011 (2017)

116011-2



which (in Fourier space) can be interpreted as a momentum
dependent mass term. Note that Rk is a matrix in
accordance with the set of fields of Φ. By choosing Rk
such that it suppresses low momentum (q ≲ k) fluctuations,
while leaving high momentum ones (q ≳ k) unaffected,
we can readily construct Γk. There are several types of
regulator functions available; in this paper, we choose the
so-called 3D Litim regulator [23], which, for given modes
in Fourier space is as follows:

RB
k ðq; pÞ ¼ ðk2 − q2ÞΘðk2 − q2Þδðqþ pÞ ð9Þ

for bosons (i.e., sa, πa), and

RF
k ðq; pÞ ¼ ip

 ffiffiffiffiffi
k2

p2

s
− 1

!
Θðk2 − q2Þδðqþ pÞ ð10Þ

for fermions (i.e., n, p) [note that p and q are three-
momenta]. The nice feature of this construction is that the
effective action Γk generated by (8), and defined as

Γk½Φ� ¼ −i logZk½J� −
Z

JΦ −
ZZ

Φ†RkΦ: ð11Þ

[Zk receives k dependence via (8)] obeys the following flow
equation [22]:

∂kΓk ¼
1

2

Z
p

Z
q
Tr½ð−2ÞFðΓð2Þ

k þRkÞ−1ðq; pÞ∂kRkðp; qÞ�;

ð12Þ
where Γð2Þ

k is the second functional derivative matrix of Γk

in Fourier space, and the factor of ð−2ÞF indicates that
when evaluating the trace, if one encounters a fermionic

variable in Γð2Þ
k , it has to be taken with a negative sign due

to their Grassmannian nature and a multiplicative sym-
metry factor of 2. Note that, at k ¼ 0, all fluctuations are
included and thus, Γk¼0 ¼ Γ, while at the highest (UV)
scale Λ, as no fluctuations are present, it has to be equal to
the classical action, Γk¼Λ ¼ S.
Since (12) is an exact relation, it can only be solved in

approximation schemes. Practically, one chooses an ansatz
for Γk and integrate (12) from k ¼ Λ to k ¼ 0 with the
boundary condition Γk¼Λ ¼ S. If the theory in question is
renormalizable, and it is expected that the UV cutoff does
not interfere with the low energy behavior, then Λ might
also be chosen (formally) to be infinity. We, however, deal
with an effective theory of the strong interaction and
even though the model defined by (3) is renormalizable,
it makes no sense to apply an infinite UV cutoff limit.
The LσM is expected to be valid up to ∼Oð1 GeVÞ; thus,
we employ Λ ¼ 1 GeV.

III. SOLUTION OF THE FLOW EQUATION

In this section, we discuss the approximate solution of
the flow equation (12). First of all, we need an ansatz for Γk.

We split it into three parts: ΓM
k;M and ΓN

k;M refers to mesonic
interactions, which arise from mesonic and nucleon fluc-
tuations, respectively, while Γk;N is purely the nucleon part
of the effective action,

Γk ¼ ΓM
k;M þ ΓN

k;M þ Γk;N: ð13Þ
The reason why it is worth to separate ΓM

k;M and ΓN
k;M is that

nucleon interactions with mesons with nonzero strangeness
are omitted in our framework; thus, ΓM

k;M has to reflect the
original ULð3Þ ×URð3Þ symmetry, but ΓN

k;M should only
have ULð2Þ ×URð2Þ invariance.
We are going to work with the leading order of the

derivative expansion. As for ΓM
k;M, we also apply the chiral

invariant expansion technique [15],

ΓM
k;M ¼

Z
x
ðTrð∂μM†∂μMÞ − VM

k;MÞ;

VM
k;M ¼ Ukðρ2Þ þ Ckðρ2Þρ4 þ Tr½HkðM† þMÞ�

þ Akðρ2Þρdet; ð14Þ
where

ρ2 ¼ Tr½M†M�;
ρ4 ¼ Tr½M†M − TrðM†MÞ=3�2;
ρdet ¼ detM† þ detM ð15Þ

are invariants of ULð3Þ ×URð3Þ [note that the last one is
not invariant under theUAð1Þ subgroup]. For ΓN

k;M and Γk;N ,
we simply assume a form compatible with the classical
action but with k-dependent couplings,

ΓN
k;M ¼ −

Z
x
VM
k;M;

VM
k;M ¼ f1;kTr½ ~M† ~M� þ f2;kTr½ ~M† ~M ~M† ~M�; ð16Þ

Γk;N ¼
Z
x
ðψ̄ði∂ − μBγ0Þψ − Vk;NÞ;

Vk;N ¼ mN;kψ̄ψ þ gkψ̄ ~M5ψ : ð17Þ
Collecting (14), (16), and (17), then substituting (13) to
(12), by the use of the regulators (9) and (10), we arrive at
the following equation for the complete effective potential
Vk ≡ VM

k;M þ VN
k;M þ Vk;N :

∂kVk ¼
k4

6π2

�
T
X
ωn

X8
a¼0

X
l¼sa;πa

1

ω2
n þ k2 þm2

l;k

− 4T
X
ωj

X
b¼p;n

1

ðωj − iμBÞ2 þ k2 þm2
b;k

�
; ð18Þ

wherem2
sa;k,m

2
πa;k refer to the eigenmasses of the scalar and

pseudoscalar sectors (i.e., their physical masses at scale k),
respectively, while m2

p;k and m2
n;k are those for the protons

and neutrons (i.e., eigenvalues of the m2
N;k1þ g2k ~M

† ~M
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matrix). The momentum integrals have been evaluated at
finite temperature T; thus, summations over ωn ¼ 2πnT
bosonic and ωj ¼ 2πðjþ 1=2ÞT fermionic Matsubara
frequencies also appeared. The masses, being second
derivatives of Vk, depend on the scale parameter k and
also on the actual field value of M (note that, we are
interested only in homogeneous configurations). The right-
hand side of (18) has to be projected onto each operator in
VM
k;M, V

N
k;M, and Vk;N to obtain individual flow equations for

the coefficient functions Uk, Ck, Ak, and for the parameters
Hk, f1;k, f2;k, mN;k, and gk.
First, let us consider Vk;N. Note that, in (18), we

implicitly assumed that ψ ¼ 0. Had we considered a
general background where both M;ψ ≠ 0 (one should
think of appropriate sources that imply them), the meson
and nucleon propagators would have mixed due to the
Yukawa coupling. Concerning our ansatz (14), this mixing
would solely be responsible for the flow of Vk;N (a
diagrammatically evaluation is also possible [14]), but
here we do not calculate it and thus, set Vk;N ≡ VΛ;N .
This also means that mN;k ≡mN and gk ≡ g (and also
m2

p=n;k ≡m2
p=n, accordingly). We note that the neglected

terms are of the Oðg3Þ and within our parametrization,
expected to be small.
We are definitely interested in the k dependence of VM

k;M
and VN

k;M. Details of establishing the flow of VM
k;M can be

found in [15]. Let us briefly recall the procedure. By
definition, contributions in the rhs of (18) for VM

k;M come
only from the first term in the bracket. First, one sets the
anomaly to zero (Ak ¼ 0) and calculates the mass matrices
∂2VM

k;M=∂sa∂sb, ∂2VM
k;M=∂πa∂πb in a background defined

by M ¼ v0T0 þ v8T8 [note that a similar basis change is
possible as of (4) to obtain vns=s ↔ v0=8]. At this point, it is
important to emphasize that herewe do not take into account
contributions of VN

k;M when calculating the masses, as it
corresponds to mesonic fluctuations induced solely by the
fermions, and thus, they would ruin the three-flavor chiral
symmetry of VM

k;M. After diagonalization, one expands the
mesonic part of the rhs of (18) around v8 ¼ 0 and identifies
the flows ofUk and Ck (for the latter it is crucial to combine
terms into the ρ4 invariant), and finds that Hk does not
depend on k, Hk ≡H. Then, as a second step, one turns on
the anomaly and expands around the zero anomaly con-
figuration. This consists of recalculating the mass matrices
in the presence ofAk and keeping in the first termof the rhs of
(18), the leading order piece around Ak ¼ 0. The procedure
leads to the formation of the ρdet invariant, and thus, one
obtains the flow of Ak. The reader is referred to Appendix A
for detailed expressions of ∂kUk, ∂kCk, ∂kAk, and for field
derivatives of the action. Regarding the procedure in more
detail, the reader should consult with [15].
Now we are only left with the flow of VN

k;M, i.e., the
flows of couplings that correspond to the two-flavor chiral
invariants made up by the 2 × 2 matrix ~M, i.e., that of f1;k

and f2;k. These, by definition, come entirely from the
second term in the bracket of the rhs of (18). The neutron
and proton masses are

m2
p=n ¼ m2

N þ g2

4
ðs2ns þ s21 þ s22 þ s23

þ π2ns þ π21 þ π22 þ π23Þ �
g2

2

ffiffiffiffi
Δ

p
; ð19Þ

where

Δ ¼ π2ns
X

i¼1;2;3

π2i þ s2ns
X

i¼1;2;3

s2i

þ 1

2

X
i;j;k¼1;2;3

ϵ2ijkπ
2
i ðs2j þ s2kÞ

þ 2πnssns
X

i¼1;2;3

πisi −
X

i≠j¼1;2;3

πiπjsisj: ð20Þ

Inserting m2
p=n into the corresponding term in the flow

equation (18), we expand the obtained expression in terms
of g2 and arrive at

∂kVN
k;M ¼ 2k4g2

3π2
T
X
ωj

1

½ðωj − iμBÞ2 þ k2 þm2
N �2

Tr½ ~M† ~M�

−
2k4g4

3π2
T
X
ωj

1

½ðωj − iμBÞ2 þ k2 þm2
N �3

× Tr½ ~M† ~M ~M† ~M� þOðg6Þ: ð21Þ

This shows that via the complicated expressions of m2
p=n

the rhs of the flow equation indeed led to the formation
of Tr½ ~M† ~M� and Tr½ ~M† ~M ~M† ~M�, as expected from the
ansatz (17). The flows of f1;k and f2;k are found to be

∂kf1;k ¼
2k4g2

3π2
T
X
ωj

1

½ðωj − iμBÞ2 þ E2
k�2

; ð22aÞ

∂kf2;k ¼ −
2k4g4

3π2
T
X
ωj

1

½ðωj − iμBÞ2 þ E2
k�3

; ð22bÞ

where the Matsubara sums can be performed analytically,
see details in Appendix B.
The boundary condition for the effective action at the

UV scale k ¼ Λ is ΓΛ ¼ S, thus,

UΛðρ2Þ ¼ m2ρ2 þ
g1 þ g2

9
ρ22;

CΛðρ2Þ ¼
g2
3
; AΛðρ2Þ ¼ a;

HΛ ¼ H; f1;Λ ¼ 0; f2;Λ ¼ 0;

mN;Λ ¼ mN; gΛ ¼ g: ð23Þ
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Now we are ready to solve the coupled equations (A2),
(A3), and (A4) together with (22a) and (22b). In the
numerics, all calculations are carried out in GeV units.
For Ukðρ2Þ, Ckðρ2Þ, and Akðρ2Þ, we set up grids in the
interval [0:2] with a step size of 10−2 and solve (A2), (A3),
and (A4) at each point. All necessary field derivatives are
calculated with the seven-point formula, except for those
close to the boundaries, where the five- and three-point
formulas are used. Equations (22a) and (22b) can be treated
separately. In k space, we integrate all equations from the
UV cutoff Λ to zero using the Runge-Kutta algorithm.

IV. RESULTS

Once the effective action (13) is obtained, one is able to
extract information on the mesonic spectrum (take the
second derivatives), the vacuum expectation value for vns
and vs (search for the lowest energy configuration), the
anomaly function Ak, etc. Note that in order to do so, it is
required to calculate various field derivatives of the
effective action. The necessary formulas can be found in
Appendix B and in [15]. In this section, we review the
numerical results that have been obtained at finite temper-
ature and a finite baryochemical potential.
The model needs to be parametrized, i.e., one has to

determine the UV parameters in the vacuum (i.e., at T ¼ 0,
μB ¼ 0) via some physical input. First, we determine h0
and h8 from the partially conserved axialvector current
(PCAC) relations (we use values of fπ , fK decay constants
[24]), in accordance with [15], then fit the masses of π, K,
η, η0,N, and finally, choose g in a way that the nucleon mass
gets as much contribution from the symmetry breaking as
possible. The following values were employed for para-
metrization [24]:

fπ ¼ 93 MeV; fK ¼ 113 MeV;

Mπ ¼ 140 MeV; MK ¼ 494 MeV;

Mη0 ¼ 958 MeV; Mη ¼ 548 MeV;

Mnucl ¼ 939 MeV: ð24Þ

One observes that the bare nucleon mass parameter, mN ,
turns out to be quite large, see Table I for the details. The
reason for the largeness of mN is that the mass component
[see (19)] that comes entirely from spontaneous symmetry
breaking (i.e., g2v2ns=4) has a maximum as a function of g,
and it is not enough to cover the most part of the nucleon
mass. If g is small, then obviously gvns goes to zero;
however, if g is large, nucleon fluctuations significantly
backreact on the mesonic vacuum and push vns to a lower
value. It is important to note that a large mN violates chiral
symmetry explicitly, which is not expected based on the
underlying theory of QCD. Because of the reason described
above, we think of this violation as an artifact of the
evolution of the UAð1Þ anomaly and the absence of

instanton effects in the present approximation. The reason
why we do not think of it as a severe issue is that even
though the largeness of mN certainly affects the fermionic
fluctuation contributions quantitatively, we have done
several runs by varying mN , and obtained the same
behaviors qualitatively. These are summarized in Table II.
In Fig. 1, we show the mass spectrum of the complete

system (i.e., all the mesons and the nucleon itself) at finite
temperature with zero chemical potential. The results are in
accordance with the findings of [15], the nucleon fluctua-
tions do not produce any significant changes at zero

TABLE II. Absolute value of the ‘t Hooft coupling jAj≡ jAjk¼0

in the minimum of the effective potential at T ¼ 0 for
μB ¼ 0; 0.5; 1 GeV, respectively, varying the nucleon mass
parameter.

Mass parameter jAjμB¼0 GeV jAjμB¼0.5 GeV jAjμB¼1.0 GeV

mN 4.64 GeV 4.64 GeV 5.19 GeV
mN=2 4.38 GeV 4.46 GeV 6.09 GeV
mN=5 4.28 GeV 4.60 GeV 6.19 GeV
mN=10 4.29 GeV 4.63 GeV 6.12 GeV

TABLE I. Set of parameters at the UV scale determined in the
vacuum, i.e., at T ¼ 0, μB ¼ 0.

Parameter Value

h0 ð286 MeVÞ3
h8 −ð311 MeVÞ3
μ2 −0.95 GeV2

g1 70
g2 160
a −3.0 GeV
g 3.8
mN 755 MeV
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FIG. 1. Mass spectrum at finite temperature with μB ¼ 0. The
plot shows a similar behavior of the spectrum as found in [15].
The η0 mass does not drop around the critical temperature.
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density. We observe the peculiar behavior of the η0 mass,
which shows no drop around the critical temperature due to
the strengthening anomaly, as reported in [15].
One of the goals of the current study is to investigate the

behavior of the spectrum at a finite chemical potential. As
mentioned in the Introduction, if the η0 mass had a drop of
the order of ∼100 MeV at the saturation density, one might
expect the formation of an η0N bound state due to an
effective attractive interaction between the two particles. In
Fig. 2, we show the heavier part of the mesonic spectrum at
T ¼ 0 (left) and at T ¼ 100 MeV (right). First of all, we
observe that a violation of the baryon Silver Blaze property
[25] seems to occur, as at T ¼ 0, nucleon fluctuations start
to show up not at the critical chemical potential, but at
μB ¼ mN , where mN is the nucleon mass parameter of the
Lagrangian. This can be traced back to the expansion (21),
where the structure of the summations clearly shows that at
T ¼ 0, nonzero contributions do arise, if μB > mN . The
violation, however, is not that severe, as up to the critical
chemical potential μc ¼ Mnucl − B ≈ 923 MeV (here, B
denotes the binding energy), the change in the chiral
condensates and masses are typically less than ∼10%. In
terms of the FRG formalism, a possible resolution of the
Silver Blaze violation was addressed in [26].
More importantly, on the contrary to usual expectations,

the η0 mass does not decrease as the chemical potential is
increased. This tendency does not depend qualitatively on
the temperature, and it indicates that fluctuation effects
push the η0 mass into a higher value, which again can be
traced back to the high increase of the fluctuation corrected
axial anomaly function [i.e., Ak¼0]. This is shown in Fig. 3.
We define an anomaly difference function ΔjAj as

ΔjAjðμB; TÞ ¼ jAjk¼0ðμB; TÞmin − jAjk¼0ð0; TÞmin; ð25Þ

which gives account at a given temperature T how the
absolute value of the anomaly (in the minimum of the
effective potential) changes due to nucleon density fluctu-
ations, compared to its value at μB ¼ 0. In the temperature

range T ≃ 0�200 MeV, the anomaly function Ak¼0 in the
minimum of the effective potential (Vk¼0) is around 5 GeV;
thus, Fig. 3 shows that density fluctuations can cause even
up to a 20% difference.
In Fig. 4, we show the behavior of the condensates at

finite density and at finite temperature. We see again that at
T ¼ 0, fluctuations show up at μB ¼ mN , but by reaching
μc, the relative changes are less than 10%; thus, the SB
violation remains small. Note that no first order chiral
transition is observed beyond μc, similarly as found in [20]
(the other jump in the order parameters, related to the
nuclear liquid-gas transition, is in turn missing due to the
absence of the dynamics of a neutral vector meson [27,28]).
As for the finite temperature case, it turns out that nucleon

fluctuations further push TC to a higher value compared to
the case of their absence [15]. This results in a TC that is
missed by a factor of 2 compared to recent lattice simulations
[29]. The reason can be again found in the increase of the
anomaly function, which leads us to the conclusion that the
UAð1Þ effects of QCD, which are inexplicable in terms of
the effective theory framework, are also important from the
point of view of the finite temperature dynamics. These
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effects could be put in by hand via the temperature (and/or
density) dependence of the bare anomaly coefficient a, and
there should be a competition between mesonic and nucleon
fluctuations versus the underlying UAð1Þ dynamics. The
investigation of this issue is beyond the scope of the current
study; nevertheless, what we have found is that both of them
are necessary to be taken into account in order to reproduce
experimental and lattice data properly.

V. CONCLUSIONS

In this paper, we have investigated fluctuation effects in
nuclear medium. Our main finding is that nucleon fluctua-
tions are non-negligible at finite baryochemical potential μB
and have a strong effect on the axial anomaly of the
underlying theory of QCD. As a consequence, it turns out
that the mass of the η0 meson does not decrease as a
function of the chemical potential, somewhat contradictory
to earlier assumptions. This phenomenon can be traced
back to the fact that the axial anomaly function, which
becomes field, temperature, and chemical potential depen-
dent via mesonic and nucleon fluctuation effects, may
increase up to 20% as a function of μB.
The increasing mass of η0 may raise doubts on a possible

η0N bound state in nuclear medium, but a final conclusion
should not be drawn at the moment. The reason is that even
though we have demonstrated that nucleon fluctuations
are non-negligible and produce an increasing anomaly at
finite temperature T and chemical potential μB, the under-
lying instanton effects of QCD might also have a relevant
contribution. This stems from the fact that 1) a large bare
nucleon mass mN had to be introduced, because due to the
strong anomaly, solely chiral symmetry breaking was not
able to explain the physical nucleon mass and 2) the critical
temperature TC is missed by a factor of 2 at zero chemical
potential, compared to recent lattice simulations. These
problems could be circumvented by introducing a bare
anomaly parameter at the level of the classical action that

depends explicitly on both T and μB, representing under-
lying instanton dynamics.
Another important contribution may arise from explicit

quark degrees of freedom, which was completely neglected
in the current framework. Nevertheless, if we consider the
theory valid up to Oð1 GeVÞ, quarks may also play a
significant role in the dynamics. Vector mesons, in particular,
ρ and ω-meson exchange should also be included for a
more complete treatment of the system. These extensions
represent future works that will be reported elsewhere.
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APPENDIX A: FLOWS IN THE
MESONIC SECTOR

The purely mesonic component of the effective potential,
VM
k;M, is approximated as,

VM
k;M ¼ Ukðρ2Þ þ Ckðρ2Þρ4 þ Tr½HkðM† þMÞ�

þ Akðρ2Þρdet; ðA1Þ

see (14). Following the procedure of [15], and projecting
the mesonic part of the flow equation (18) onto each
operator, one derives evolution equations for Ukðρ2Þ,
Ckðρ2Þ, Akðρ2Þ, and Hk,

∂kUkðρ2Þ ¼
k4T
6π2

X∞
n¼−∞

�
9

ω2
n þ E2

π
þ 8
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a0

þ 1
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MESONIC AND NUCLEON FLUCTUATION EFFECTS AT … PHYSICAL REVIEW D 95, 116011 (2017)

116011-7



∂kCkðρ2Þ ¼
k4T
6π2

X∞
n¼−∞

�
4ð3Ck þ 2ρ2C0

kÞ2=3
ðω2

n þ E2
a0Þ2ðω2

n þ E2
σÞ

þ 128C5
kρ

3
2=9

ðω2
n þ E2

πÞ3ðω2
n þ E2

a0Þ3
þ 24CkðCk − ρ2C0

kÞ
ðω2

n þ E2
a0Þ3

þ 4ð3CkC0
kρ2 þ 4ρ22C

0
k
2 þ Ckð3Ck − 2C00

kρ
2
2ÞÞ=3

ðω2
n þ E2

a0Þðω2
n þ E2

σÞ2
þ 64C3

kρ
2
2ðCk − ρ2C0

kÞ=3
ðω2

n þ E2
πÞ2ðω2

n þ E2
a0Þ3

−
48C2

kρ
2
2C

0
k

ðω2
n þ E2

πÞðω2
n þ E2

a0Þ3

þ 6Ck − 17ρ2C0
k

ðω2
n þ E2

a0Þ2
1

ρ2
−
6Ck þ 9ρ2C0

k þ 2ρ22C
00
k

ðω2
n þ E2

σÞ2
1

ρ2
þ 4Ckð6Ck þ 9ρ2C0

k þ 2ρ22C
00
kÞ=3

ðω2
n þ E2

a0Þðω2
n þ E2

σÞ2
�
; ðA3Þ

∂kAkðρ2Þ ¼
k4T
6π2

X∞
n¼−∞

�
−

9A0
k

ðω2
n þ E2

πÞ2
−

9Ak

ρ2ðω2
n þ E2

πÞ2
−

8A0
k

ðω2
n þ E2

a0Þ2
þ 12Ak

ρ2ðω2
n þ E2

a0Þ2

−
3Ak

ðω2
n þ E2

σÞ2ρ2
þ 7A0

k

ðω2
n þ E2

σÞ2
þ 2ρ2A00

k

ðω2
n þ E2

σÞ2
�
; ðA4Þ

and ∂kHk ¼ 0, where

E2
π ¼ k2 þ U0

kðρ2Þ;

E2
a0 ¼ k2 þ U0

kðρ2Þ þ
4

3
ρ2Ckðρ2Þ;

E2
σ ¼ k2 þ U0

kðρ2Þ þ 2ρ2U00
kðρ2Þ; ðA5Þ

and ωn ¼ 2πnT denote bosonic Matsubara frequencies. The summations can be done analytically, see details in [15].

APPENDIX B: FERMIONIC EFFECTS

In the effective action Γk, nucleon induced mesonic interactions are represented by ΓN
k;M. The corresponding flow

equations (22) of the couplings f1;k and f2;k contain fermionic Matsubara sums. They read as

T
X
j

1

½ðωj − iμBÞ2 þ E2
k�2

¼
X
�

�
tanhðEk�μB

2T Þ
8E3

k

−
cosh−2ðEk�μB

2T Þ
16E2

kT

�
; ðB1Þ

T
X
j

1

½ðωj − iμBÞ2 þ E2
k�3

¼
X
�

�
3 tanhðEk�μB

2T Þ
32E5

k

−
3cosh−2ðEk�μB

2T Þ
64E4

kT
−
cosh−2ðEk�μB

2T Þ tanhðEk�μB
2T Þ

64E3
kT

2

�
: ðB2Þ

At T ¼ 0, appropriate limits are

T
X
j

1

½ðωj − iμBÞ2 þ E2
k�2
����
T¼0

¼ ΘðEk − μBÞ
4E3

k

−
δðEk − μBÞ

4Ekk
; ðB3Þ

T
X
j

1

½ðωj − iμBÞ2 þ E2
k�3
����
T¼0

¼ 3ΘðEk − μBÞ
16E5

k

−
3δðEk − μBÞ

16E4
k

þ δ0ðEk − μBÞ
16E3

k

: ðB4Þ

Furthermore, one also needs field derivatives of the effective potential in order to calculate the nucleon fluctuation
corrected meson masses and the condensate values of minimum energy. The corresponding formulas for VM

k;M can be found
in [15], here, we take care of VN

k;M. One obtains the following expressions:

∂VN
k;M

∂si
����
v0;v8

¼

8>><
>>:

ffiffi
2

p
f1;k
3

ð ffiffiffi
2

p
v0 þ v8Þ þ f2;k

9
ffiffi
2

p ð ffiffiffi
2

p
v0 þ v8Þ3; if i ¼ 0

f1;k
3
ð ffiffiffi

2
p

v0 þ v8Þ þ f2;k
6
ð ffiffiffi

2
p

v0 þ v8Þ3; if i ¼ 8

0; else

ðB5Þ

for the relevant first derivatives, and
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∂2VN
k;M

∂sisj
����
v0;v8

¼

8>>>>>>>><
>>>>>>>>:

1
3
ð2f1;k þ f2;kð2v20 þ 2

ffiffiffi
2

p
v0v8 þ v28ÞÞ; if i ¼ j ¼ 0

1

3
ffiffi
2

p ðf1;k þ f2;kð2v20 þ 2
ffiffiffi
2

p
v0v8 þ v28ÞÞ; if i ¼ 0; j ¼ 8 or i ¼ 8; j ¼ 0

1
6
ð2f1;k þ f2;kð2v20 þ 2

ffiffiffi
2

p
v0v8 þ v28ÞÞ; if i ¼ j ¼ 8

f1;k þ f2;kðv20 þ
ffiffiffi
2

p
v0v8 þ v28=2Þ; if i ¼ j ¼ 1; 2; 3

0; else

ðB6aÞ

∂2VN
k;M

∂πiπj
����
v0;v8

¼

8>><
>>:

1
18
ð6ð3þ ffiffiffi

2
p Þf1;k þ f2;kð½6þ 4

ffiffiffi
2

p �v20 þ ½8þ 6
ffiffiffi
2

p �v0v8 þ ½3þ 2
ffiffiffi
2

p �v28ÞÞ; if i ¼ j ¼ 0

1
6
ð6f1;k þ f2;kð2v20 þ 2

ffiffiffi
2

p
v0v8 þ v28ÞÞ; if i ¼ j ¼ 1; 2; 3

0. else

ðB6bÞ

for the second derivatives.
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