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Van der Waals interactions between two neutral but polarizable systems at a separation R much larger
than the typical size of the systems are at the core of a broad sweep of contemporary problems in settings
ranging from atomic, molecular and condensed matter physics to strong interactions and gravity. In this
paper, we reexamine the dispersive van der Waals interactions between two hydrogen atoms. The novelty of
the analysis resides in the usage of nonrelativistic effective field theories of quantum electrodynamics. In
this framework, the van der Waals potential acquires the meaning of a matching coefficient in an effective
field theory, dubbed van der Waals effective field theory, suited to describe the low-energy dynamics of an
atom pair. It may be computed systematically as a series in R times some typical atomic scale and in the
fine-structure constant α. The van der Waals potential gets short-range contributions and radiative
corrections, which we compute in dimensional regularization and renormalize here for the first time.
Results are given in d space-time dimensions. One can distinguish among different regimes depending on
the relative size between 1=R and the typical atomic bound-state energy, which is of order mα2. Each
regime is characterized by a specific hierarchy of scales and a corresponding tower of effective field
theories. The short-distance regime is characterized by 1=R ≫ mα2 and the leading-order van der Waals
potential is the London potential. We also compute next-to-next-to-next-to-leading-order corrections. In the
long-distance regime we have 1=R ≪ mα2. In this regime, the van der Waals potential contains contact
terms, which are parametrically larger than the Casimir-Polder potential that describes the potential at large
distances. In the effective field theory, the Casimir-Polder potential counts as a next-to-next-to-next-to-
leading-order effect. In the intermediate-distance regime, 1=R ∼mα2, a significantly more complex
potential is obtained. We compare this exact result with the two previous limiting cases. We conclude by
commenting on the van der Waals interactions in the hadronic case.
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I. INTRODUCTION

Long-range electromagnetic forces between neutral par-
ticles in the absence of external electromagnetic fields have
been studied for a long time, and are called van der Waals
interactions. In this context, forces are of long range if they
act at distances R between the neutral particles much larger
than the typical size of the particles. In the case of atoms,
van der Waals forces act at distances R ≫ a0, where a0 is
the Bohr radius.
Van der Waals interactions can be of different nature

depending on whether they are generated by permanent
dipoles (or higher multipole moments) or by instantane-
ously induced dipoles (or higher multipoles). In the latter
case, the first studies were done by London in 1930 [1] and
included only the electrostatic Coulomb interaction, i.e., in
a field theory language, only potential or Coulombic
photons. London realized that systems without permanent
dipole moments can still interact electromagnetically at
second order in quantum-mechanical perturbation theory
due to the mutually induced electric dipole moments. More
precisely, they give rise to an attractive interaction that
depends on the distance of the neutral particles as 1=R6:

WLon ¼ −
C6

R6
; ð1Þ

which is known as the London potential. The positive
coefficient C6 is a function of the instantaneous dipole
moments of the interacting systems computed for all
intermediate states and their energies. The computation
of C6 may be quite challenging for complex atomic and
molecular systems. Furthermore, London related the
strength of this interaction to the oscillator strengths of
the system. Since the oscillator strengths are also related to
the dispersion of light by the system, this type of van der
Waals interactions are sometimes referred to as dispersion
forces. Dispersion forces in this framework are therefore
electromagnetic forces acting between well-separated neu-
tral, unpolarized and unmagnetized atoms or bodies in the
absence of any applied electromagnetic field.
To consider only potential photons is a good approxi-

mation as long as the interactions occur over small enough
distances that the photon travel time is negligible. Casimir
and Polder (CP) showed that retardation effects are
important for the long-range regime, i.e., when R is much
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larger than the typical time scale of the interacting particles
[2]. They calculated a general form for the interaction from
quantum mechanics using two-photon exchanges. Their
result reproduces the London form at short distances, but at
large distances, where retardation effects are important, the
van der Waals potential shows a different R dependence:

WCP ¼ −
C7

R7
; ð2Þ

where C7 is a positive coefficient. The potential (2) is also
known as the Casimir-Polder potential. The results for the
shorter distance regime, Eq. [1], and for the longer distance
regime, Eq. (2), were later reproduced using dispersive
methods by Feinberg and Sucher [3,4].
Dispersive forces are theweakest and at the same time the

most persistent of all electromagnetic interactions. For this
reason they play an important role across molecular physics,
surface physics, colloid science, biology and even astro-
physics. For the strong interactions, van derWaals potentials
play a similar prominent dynamical role in systems made of
at least two heavy quarks as they do in quantum electro-
dynamics (QED). The long-range interaction of small color
dipoles [well realized in nature by heavy quarkonium states
like the J=ψ orϒð1SÞ] has been the subject of studies since
the first years of quantum chromodynamics (QCD) [5]. The
interest in these systems is motivated by computing nuclear
cross sections for quarkonium propagating in nuclear matter
(relevant, e.g., for experiments at FAIR) or disentangling
cold matter from deconfinement effects in heavy-ion colli-
sions (relevant, e.g., for experiments at RHIC and LHC).
The heavy quarkonium-nucleon scattering appears to be
dominated by gluonic van derWaals interactions [6–9]. The
quarkonium-quarkonium van derWaals interactions contain
nontrivial information about low-energy QCD [10,11] and
about quarkonium (chromo)polarizabilities [12]. As in
QED, the QCD van der Waals potential is attractive and
in principle could lead to molecular-like bound states of
heavy quarkonia with nuclei. This could possibly explain
[11,13], for instance, the structure of the charmonium
pentaquark observed at the LHCb experiment at CERN
[14]. Van der Waals interactions are also prominent in
studies of Feshbach resonances [15] and in the computation
of quantum corrections to the gravitational potential
between a pair of polarizable objects [16].
The broad interest for van der Waals interactions calls for

a flexible, rigorous and systematic computational method
that allows to properly define and efficiently compute van
der Waals interactions in quantum field theory at any
precision. Nonrelativistic effective field theories (EFTs)
[17] provide such a method. Recently there have been some
studies of the electromagnetic van der Waals interactions in
the framework of EFTs by Holstein [18]. In this paper, we
will construct a complete set of effective field theories
suited to compute the van der Waals interactions between
two hydrogen atoms in different regimes. As we will see,

our approach gives a clear definition and a computational
framework for the potentials, without additional require-
ments [19]. The EFT approach developed here for the
simpler case of QED will possibly provide a useful
guideline for more complicated cases, like the study of
van der Waals interactions in QCD that may also require
dealing with nonperturbative effects.
The most simple polarizable neutral system is the

hydrogen atom. The hydrogen atom is a nonrelativistic
bound state characterized by three well-separated energy
scales, which are the mass of the electron, m, the typical
relative momentum, given by the inverse Bohr radius
1=a0 ∼mα, and the typical binding energy, which is of
order mα2, where α ¼ e2=ð4πÞ ≈ 1=137 ≪ 1 is the fine-
structure constant. These are usually referred to as hard,
soft and ultrasoft scales respectively. The presence of a set
of well-separated energy scales makes the hydrogen atom a
perfect system to apply nonrelativistic EFT techniques.
Owing to their power counting, EFTs significantly simplify
bound-state calculations. Moreover, they are renormaliz-
able (finite) order by order in the expansion parameters,
which are α and ratios among the energy scales of the
system.
The EFT that follows from QED by integrating out the

hard scale is nonrelativistic QED (NRQED) [20,21].
NRQED exploits the nonrelativistic nature of the electron
and nucleus, but it does not yet take full advantage of the
hierarchy of scales present in the system. The latter is
achieved by potential NRQED (pNRQED) [22,23], where
both the hard and soft scales are integrated out. pNRQED
provides a systematic description of the hydrogen atom
derived from QED and a simpler and more efficient scheme
for calculating all of the hydrogen properties in perturba-
tion theory. In particular potentials appear in pNRQED as
matching coefficients and the leading-order equation of
motion of the nucleus-electron field is the Schrödinger
equation.
When considering the van der Waals interactions

between two hydrogen atoms the distance R between them
provides a new scale. As mentioned at the beginning, these
interactions are well defined at a distance large enough that
the internal structure of the atoms cannot be resolved, i.e.,
when R is much larger than the Bohr radius: R ≫ a0.
The interplay between the scale R and the typical time

scale of the hydrogen atom, which is of order 1=ðmα2Þ,
leads to different forms of the van der Waals interactions.
There are three possible regimes: (i) the short-distance
regime when R ≪ 1=mα2, (ii) the long-distance regime
when R ≫ 1=mα2 [24], and (iii) the intermediate-distance
regime when R ∼ 1=mα2. The aim of this paper is to work
out an appropriate EFT and to compute the van der Waals
potential between two hydrogen atoms for each of these
physical situations. Results will be given in d space-time
dimensions and renormalized. The proper renormalization
of the van der Waals interactions is one of the original
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contributions of the present work. In the main body of the
paper we will focus on atoms in S-wave states. More
general results can be found in the appendices.
The paper is organized as follows. In Sec. II, we

summarize pNRQED. The van der Waals potentials are
defined in the low-energy EFT of Sec. III, which we call
van der Waals EFT (WEFT). The short-, long- and inter-
mediate-distance van der Waals potentials are computed in
Secs. IV–VI respectively. Our summary and conclusions are
in Sec. VII, where we also briefly discuss the relevance of
the EFT framework for hadronic van derWaals interactions.
The expressions for the loop integrals are given in
Appendix A. In Appendix B, we provide expressions for
the dispersive van der Waals potentials for hydrogen atoms
in any angular momentum state as well as the potentials
generated by magnetic interactions. In Appendix C, we
show some cases where the sum over the intermediate states
can be performed explicitly. Finally, in Appendix D we list
the Fourier transforms necessary to obtain the potentials in
coordinate space.

II. pNRQED

Nonrelativistic bound states, such as the hydrogen atom,
exhibit a hierarchy of well-separated scales. Integrating out
the hard scale leads to NRQED. The EFT that results from
integrating out the soft scale of order 1=a0 ∼mα from
NRQED is pNRQED,1 which we briefly review in this
section. The hydrogen atom is most suitably described in
pNRQED.
The matching from QED to NRQED at one loop in the

bilinear fermion sector was carried out using dimensional
regularization in Ref. [25]. The NRQED Lagrangian
density for two fermion species corresponding to electrons,
ψ , and protons, N, up to 1=m corrections reads

L2-fermion
NRQED ¼ ψ†

�
iD0 þ D2

2m
− cF

σ · eB
2m

�
ψ

þ N†iD0N −
1

4
FμνFμν; ð3Þ

where m is the electron mass and −e, with e > 0, is the
electron charge. Here Fμν ¼ ∂μAν − ∂νAμ is the electro-
magnetic field-strength tensor and Aμ is the photon field.
Throughout this paper we use bold font to specify Cartesian
components of 4-vectors. The covariant derivatives acting
on the electron field are defined as iD0 ¼ i∂0 þ eA0,
iD ¼ i∇ − eA, and the one acting on the proton field is
defined as iD0 ¼ i∂0 − eA0. The proton massM is taken to
be much larger than the electron mass, and therefore
operators proportional to powers of 1=M are beyond the

precision we are aiming at and will be neglected. The
matching coefficient cF is one half of the electron magnetic
moment; at order α it reads

cF ¼ 1þ α

2π
: ð4Þ

Requiring that the electric charge in Eq. (3) is the one
measured in low-energy experiments (e.g., Thomson scat-
tering) guarantees that the matching coefficient of the
operator −FμνFμν=4 remains one to all orders [26]. The
matching coefficient of the kinetic energy operator is also
constrained to be one to all orders by reparametrization/
Poincaré invariance.
For the purpose of renormalizing the van der Waals

interactions, as we will see, we need to add to Eq. (3) four-
electron operators. The four-electron operators of dimen-
sion six are

L4-fermion
NRQED ¼ ds

m2
ðψ†ψÞ2 þ dv

m2
ðψ†σψÞ2: ð5Þ

The matching coefficients at one loop in the MS renorm-
alization scheme read [26,27]

ds ¼ α2
�
log

�
m2

ν2

�
−
2

3

�
; dv ¼ α2; ð6Þ

where ν is the renormalization scale. The divergence in ds
is of infrared origin and cancels in physical observables
against ultraviolet divergences coming from low-energy
modes.
To obtain pNRQED we integrate out electrons and

photons with a soft momentum. The soft scale is given
by the typical relative momentum between the electron and
the proton, which is of size mα. Since the energies and
momenta that we are integrating out are of order mα, we
can use static propagators for the electron field to perform
the matching. This allows to match NRQED to pNRQED at
any given order in 1=m and α.
It is convenient to introduce the center-of-mass coor-

dinate X ≈ xpð1þOðm=MÞÞ and the electron-proton dis-
tance x ¼ xe − xp, where xe and xp are the coordinates of
the electron and proton respectively. Variations in the
center-of-mass coordinate due to recoiling of the atom
against low-energy photons are of the order of the inverse
of the ultrasoft scale, and hence much smaller than the
typical magnitude of x, which is of the order of the inverse
of the soft scale. The dynamical degrees of freedom of
pNRQED are the field Sðt; x;XÞ, which is invariant under
Uð1Þ gauge transformations, and encodes the proton and
electron fields, and photons Aμðt;XÞ. The photon fields
have been multipole expanded in x to guarantee that they
are ultrasoft. The Lagrangian also contains potential terms,
that is, terms that are independent of time and nonlocal in

1Note that it is also possible to define pNRQED as the EFT at
the ultrasoft scale. The two definitions are equivalent in the one-
atom sector, but differ in the two-atom one.
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space, which naturally arise in the matching of NRQED to
pNRQED.
Showing only operators that are relevant for our study,

the pNRQED Lagrangian density at Oðx; 1=mÞ reads [22]

L1-atom
pNRQED ¼

Z
d3xS†ðt; x;XÞ

�
i∂0 þ

∇2
x

2m
þ α

jxj

− x · eE −
μ · eB
2m

�
Sðt; x;XÞ − 1

4
FμνFμν; ð7Þ

where the total magnetic moment of the electron is defined
as μ ¼ Lþ 2cFS, where S ¼ σ=2 and L ¼ −iðx × ∇xÞ are
the electron spin and orbital angular momentum operators.
The operators x · eE and μ · eB=ð2mÞ are the electric and
magnetic dipoles respectively. All electromagnetic fields in
the Lagrangian density are located at ðt;XÞ. The size of
each term in Eq. (7) can be evaluated as follows. Each
relative momentum −i∇x and inverse relative coordinate
1=x have a size of mα. Time derivatives acting on the atom
field Sðt; x;XÞ have a size of mα2. Each ultrasoft photon
field and derivatives acting on it are of order mα2, which
leads to E ∼ B ∼m2α4. In the two-atom sector the four-
electron operators of Eq. (5) induce at leading order in the
multipole expansion a contact interaction between S fields,
which is

L2-atom
pNRQED ¼

Z
d3x1d3x2

�
ds
m2

S†Sðt; x1;XÞS†Sðt; x2;XÞ

þ dv
m2

S†σSðt; x1;XÞ · S†σSðt; x2;XÞ
�
: ð8Þ

III. VAN DER WAALS EFT

The energy scale, Q, at which the dynamics of the two
hydrogen atoms happens is of order k2=M, where k is the
typical momentum transfer between the atoms and M is
the proton mass, which here is a good approximation of the
total mass of the electron-nucleus system. If we restrict
ourselves to interactions over distances larger than the Bohr
radius of the atoms, R ≫ a0, then the typical momentum k
is much smaller than mα and the energy scale of the two-
atom dynamics is much smaller than the ultrasoft scale. At
an energy scaleQ photons of higher energy are not resolved
and their effect is taken into account by potential terms. We
are going to refer to these latter terms as van der Waals
potentials and to the EFT that lives at the scale Q and
describes the dynamics of hydrogen atoms interacting
through them as van der Waals EFT (WEFT). For the
QCD equivalent of this EFT see Ref. [11].
The degrees of freedom of WEFT are Uð1Þ singlet

fields, Sn, describing atoms with quantum numbers n,
and low-energy photons carrying momentum and energy
of order Q. At energies much below the typical binding
energy En ∼mα2, the different atomic states are frozen, for

photons are not energetic enough to excite them, and have
to be considered as independent fields. Hence, in the
absence of external interactions, the fields Sn are plane
waves of energy En, where En is the binding energy of
the state jni solution of the Schrödinger equation for the
hydrogen atom, at leading order En ¼ −mα2=ð2n2Þ. The
Lagrangian is built by coupling these states to electromag-
netic fields and to each other. Since Sn are nonrelativistic
fields, the couplings to the electromagnetic fields are better
expressed in terms of the electric field, E, and magnetic
field, B. The couplings between Sn are expressed in the
Lagrangian by potentials.
In the one-atom sector, in going from QED to WEFTwe

integrate out the scales m, mα and mα2, and thus one
should be able to organize theWEFT Lagrangian as a series
in the ratios

mα

m
;

mα2

mα
;

Q
mα2

: ð9Þ

The scaling of the singlet field is Sn ∼Q3=2. Space and time
derivatives acting on the electromagnetic field A and the
field itself are of order Q. Temporal derivatives acting on
the singlet field scale like Q but space derivatives scale
like

ffiffiffiffiffiffiffiffiffi
MQ

p
.

The Lagrangian of WEFT in the one-atom sector reads

L1-atom
WEFT ¼

Z
d3X

X
n

S†nðt;XÞ
�
i∂0 −En þ

∇2
X

2M
þ 2παijnEiEj

þ 2πβijnBiBj −
hnjμjni · eB

2m
þ � � �

�
Snðt;XÞ; ð10Þ

where the dots stand for multipolar couplings and higher-
order terms. Note that, in general, En is a matrix with an
imaginary part accounting for transitions between energy
levels. Because the mixing of states is irrelevant for this
paper, we have neglected it in Eq. (10).
In the one-atom sector the matching is performed by

equating Green’s functions calculated in WEFT to the ones
calculated in pNRQED in the limit of the external energies
being much smaller than the bound-state energies. The
matchings of the kinetic operator and of the coupling to the
magnetic field are trivial. The two electromagnetic field
operators are obtained by matching the right-hand side of
Fig. 1 with the left-hand side:

αijn ¼ 1

2π

X0

m

pEðn;mÞij
ΔEnm

; βijn ¼ 1

2π

X0

m

pBðn;mÞij
ΔEnm

:

ð11Þ

A prime in the sum sign, here and in the following, signifies
that it runs over all values of the index/indices except the
one/ones labeling the incoming energy [in Eq. (11) this is
n]. The sum is a shorthand notation that also encompasses
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the integral over the continuum states. Moreover, we have
used the following notations: ΔEnm ¼ En − Em, and

pEðn;mÞij ¼ e2hnjxijmihmjxjjni; ð12Þ

pBðn;mÞij ¼ e2

4m2
hnjμijmihmjμjjni: ð13Þ

The couplings αijn and βijn are called the static electric and
magnetic polarizability tensors [28].
For the hydrogen atom the dipole moment hnjxjni

vanishes due to parity; however, higher multipole moments
are allowed. For instance, for states with L ≥ 2 the quadru-
pole moment does not vanish. In the present work, we will
mostly focus on the study of the dispersive van der Waals
interactions between S-wave states in which all multipole
moments vanish. In this case the electric polarizability
takes a scalar form αijn ¼ αnδ

ij and the magnetic dipole is
given by the spin only: hnjμjni ¼ 2cFhnjSjni.
If both electric and magnetic polarizabilities take a scalar

form, then the corresponding part of the Lagrangian
simplifies to 2παnE2 þ 2πβnB2, which can be found in
studies of neutral particles interacting with electromagnetic
fields (see, e.g., Refs. [29–31]). However, for the hydrogen
atom the magnetic polarizability never takes the scalar form
since the hydrogen atom has a permanent magnetic dipole
due to the spin of the electron.
In the two-atom sector the WEFT Lagrangian contains

potential interactions between atoms:

L2-atom
WEFT ¼ −

Z
d3X1d3X2

X
ni;nj

S†niðt;X1ÞSniðt;X1Þ

×Wni;njðX1 − X2ÞS†njðt;X2ÞSnjðt;X2Þ: ð14Þ

The potential Wni;nj corresponds to the van der Waals
potential between two atoms in a jnii and jnji state
respectively. Note that, in general, the theory will also
contain potential interactions that change the state of the
hydrogen atoms involved, and couplings of the two atoms
with photons of energy Q. However, neither of them is
going to contribute to the atom-atom interaction at the
accuracy of this work. In the following, we will often omit
the indication of the states and denote the van der Waals

potential simply by W and its Fourier transform in
momentum space by ~W.
A new physical scale appears in the van der Waals

potentials of Eq. (14): the distance R ¼ X1 − X2 between
the two interacting atoms, whose conjugate variable is the
momentum transfer between the atoms, which we denote
by k. The potential in the two-atom sector can be expressed
as an expansion in the ratios of scales of Eq. (9) as well as
an expansion in ðmα2RÞ for the short-distance regime
(R ≪ 1=ðmα2Þ) and in 1=ðmα2RÞ for the long-distance
regime (R ≫ 1=ðmα2Þ). In the intermediate-distance
regime, where 1=R ∼mα2, we cannot expand R with
respect to 1=ðmα2Þ. In the following sections, we will
obtain W for these different regimes.

IV. SHORT-RANGE VAN DER
WAALS INTERACTIONS

In this section, we study the van der Waals interactions in
the short-distance regime. The physical situation is
sketched in the left-hand panel of Fig. 2. The characteristic
of this regime is that the distance between the atoms is
much smaller than the time scale between the emission of
the two photons, which is of the order of the inverse of the
ultrasoft scale: R ≪ 1=ðmα2Þ. On the other hand, the
distance between the atoms is much larger than the Bohr
radius, namely the typical size of a hydrogen atom:
R ≫ a0. Photons exchanged between the atoms carry a
typical momentum, k, that is of the order of the inverse of
the distance between the atoms or mα2 or smaller. Finally,
the energy scale of the atoms is set by the kinetic energy
Q ∼ k2=M. SinceM provides a very strong suppression, the
dynamics of the atoms occurs at a scale much smaller than
any of the previous ones. In practice, for the purpose of
computing the van der Waals potential we may consider the
atoms as static. In the right-hand panel of Fig. 2 we have
plotted the hierarchy of scales involved together with the
corresponding EFTs.
In the following sections we will provide the details of

the matching between the hierarchy of EFTs in the right-
hand panel of Fig. 2. In Sec. IVAwe integrate out photons

FIG. 1. Tree-level matching of the couplings of the hydrogen
atom with external radiation fields. On the left-hand side we have
the pNRQED diagram [photons couple to atoms either via
electric or magnetic dipoles; see Eq. (7)] and on the right-hand
side the WEFT one.

FIG. 2. Left panel: Sketch of the physical picture of the van der
Waals interactions in the short-range regime. The distance
between the atoms is much smaller than the typical time scale
of the hydrogen atom but much larger than the Bohr radius. Right
panel: Hierarchy of scales and the corresponding EFTs in the
short-distance regime.
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carrying momentum of order 1=R and obtain pNRQED0. In
the one-atom sector, pNRQED0 is similar to the theory
described in Sec. II, but in the two-atom sector new
potentials appear. The van der Waals interactions are
obtained in Sec. IV B by integrating out photons with
energy and momentum of order mα2 and virtual atomic
states, whose energy is also of order mα2, and matching
pNRQED0 to WEFT.
In order to make the counting homogeneous, it is

convenient to assign a specific size to 1=R in terms of
m and α. A natural choice, given the scale hierarchy in the
short-distance regime, is to take 1=R ∼mα

ffiffiffi
α

p
. From this

assignment it follows that ðmα2RÞ ∼ ffiffiffi
α

p
. In the short-

distance regime, we aim at computing the van der Waals
interactions, W (in coordinate space), up to order mα6

ffiffiffi
α

p
.

A. Matching pNRQED0

To obtain pNRQED0 we have to integrate out photons
whose momentum and energy scale like 1=R. The one-
atom sector does not change in matching pNRQED to
pNRQED0 and is given by Eq. (7), whereas new potential
interactions, V, arise in the two-atom sector:

L2-atom
pNRQED0 ¼ −

Z
d3X1d3X2d3x1d3x2S†Sðt; x1;X1Þ

× VðX1 − X2ÞS†Sðt; x2;X2Þ: ð15Þ

The matching of pNRQED to pNRQED0 in the two-atom
sector is given at tree level by the exchange of one photon
(Fig. 3) and (at the order we are interested in) the contact
interaction of Eq. (8). First, we consider the one-photon
exchange diagram. Since the energy of the atoms is the
smallest scale in the problem, the photon propagator can be
expanded in it. Hence, the momentum of the photon scales
with the only scale in the diagram, which is 1=R ∼mα

ffiffiffi
α

p
.

The leading-order (LO) contribution to Eq. (15) is an
electric dipole exchange. This is of Oð1=ðm2αÞÞ in
momentum space and reads

~V tree
LO;E ¼ −e2

x1 · kx2 · k
k2

; ð16Þ

where x1 and x2 are the electron-proton distances in the two
atoms. Using the Fourier transforms of Appendix D we can
obtain the dipole potential in position space with its
characteristic R−3 dependence. In coordinate space the
potential is of order mα3

ffiffiffi
α

p
.

At next-to-leading order (NLO) [Oð1=m2Þ in momentum
space], we obtain

~V tree
NLO;E ¼ e2

v1 · kv2 · k − v1 · v2k2

k4
: ð17Þ

The NLO term is proportional to v ¼ −i½x; ĥ0�, where
ĥ0 ¼ −∇2

x=ð2mÞ − α=jxj. This dependence arises from the
fact that the NLO contribution is proportional to the square
of the energy carried by the photon. Using the equations of
motion for the S field it can be shown that2

k0S†xS ¼ ið∂0S†xSþ S†x∂0SÞ
¼ −ðS†ĥ0xS − S†xĥ0SÞ
¼ S†½x; ĥ0�S ¼ iS†vS: ð18Þ

In coordinate space the NLO potential is of order mα4
ffiffiffi
α

p
.

The tree-level diagram on the left-hand side of Fig. 3
may also be understood as an exchange between two
magnetic dipoles or an electric dipole and a magnetic
dipole. For the case of two magnetic dipoles we have

~V tree
LO;B ¼ e2

4m2

1

k2
ðk2μ1 · μ2 − μ1 · kμ2 · kÞ; ð19Þ

where the subindices on μ and S identify the atom. This is a
contribution of order α=m2 in momentum space (of order
mα5

ffiffiffi
α

p
in coordinate space).

Unlike the two former cases, the electric-magnetic dipole
interaction is proportional to k0 at leading order. We use
Eq. (18) to convert the k0 factor into a time derivative of S
and write

~V tree
LO;M ¼ i

e2

2m
k
k2

· ðv1 × μ2 − μ1 × v2Þ: ð20Þ

This contribution is of order
ffiffiffi
α

p
=m2 in momentum space

(of order mα5 in coordinate space).
The matching of the contact interaction of Eq. (8) is

trivial since it is independent of the momentum:

FIG. 3. Tree-level matching of the two hydrogen atom poten-
tials of pNRQED0. The pNRQED diagram (the photon couples
with electric or magnetic dipoles) is on the left-hand side and the
pNRQED0 ones are on the right-hand side.

2By means of Eq. (18) the subleading term in the expansion of
the one-photon exchange can be identified with a pNRQED
potential. In principle, one could absorb both energy factors in
either singlet pair or one factor per singlet pair. These choices are
related by partial integration and correspond to different operator
basis. In Eq. (17) we have chosen to absorb one energy factor for
each singlet pair as it leads to a simpler one-loop matching
calculation.
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~Vcont ¼ −
ds
m2

−
4dv
m2

S1 · S2: ð21Þ

This contribution is of Oðα2=m2Þ in momentum space
[Oðmα6

ffiffiffi
α

p Þ in coordinate space].
Note that, by considering the power counting only,

further subleading contributions from electric dipole,
magnetic dipole and electric-magnetic dipole tree-level
exchanges could, in principle, be of order α2=m2 or larger
in momentum space. Nevertheless, these terms do not
eventually contribute to the van der Waals interactions. In
fact the characteristic feature of dispersive van der Waals
interactions is that they appear at the one-loop level. The
reason is that the expectation value of the electric dipole for
eigenstates of the hydrogen atom vanishes due to parity, as
well as higher multipole moments for S-wave states.
Moreover all contributions proportional to the energy
transfer, like higher-order electric and magnetic dipole
potentials, and electric-magnetic dipole potentials vanish
once evaluated on static initial- and final-state atoms with
the same quantum numbers. In the case of hydrogen atoms,
the only tree-level exchange that contributes to the atom-
atom interaction is the exchange of two magnetic dipoles: it
does not depend on the energy transfer and the hydrogen
atom has a permanent magnetic dipole generated by the
spin of the electron. In addition, for nonzero orbital angular
momentum, there is also an orbital contribution to the
magnetic dipole. As a result, out of all potentials generated
by a tree-level photon exchange, only ~V tree

LO;B gives a
nonvanishing contribution to the hydrogen-hydrogen
interaction.
The situation changes at the loop level due to virtual

intermediate states. Loops involving electric dipoles do not
necessarily vanish because they are proportional to hnjxjmi
with jmi being an intermediate state different from jni. The
intermediate states are the solutions of the Schrödinger
equation with Hamiltonian ĥ0 for the hydrogen atom; n
collects all discrete and continuum quantum numbers
necessary to label the spectrum of ĥ0. To perform the
one-loop matching is, therefore, of paramount importance
to compute the van der Waals interactions.
We proceed to analyze the one-loop contributions to the

two-atom potential of Eq. (15) up to Oðα2=m2Þ in
momentum space. The scheme of the one-loop matching
can be found in Fig. 4, with pNRQED diagrams on the left-
hand side matching the pNRQED0 diagram on the right-
hand side. In the loop, we integrate over a photon
momentum qμ such that q0 ∼ jqj ∼ 1=R. The one-loop
diagrams give rise to new terms for the potential of
Eq. (15) starting at Oðα=m2Þ in momentum space.
Subleading contributions are suppressed by powers offfiffiffi
α

p
, and thus the first three terms are needed to reach an

accuracy of Oðα2=m2Þ. Pinch singularities cancel against
the two dipole potential exchanges in pNRQED0 [17].

In these new potential terms powers of the energy gap
factors ΔEnm appear in the numerator; however the
matching coefficients of pNRQED0 cannot depend on a
specific state. This dependence on ΔEnm is fictitious and
can be eliminated by using the results of Appendix C to
perform the sums over the intermediate states. In the case
that all the vertices are electric dipole couplings, it turns out
that after summing over the intermediate states the LO and
NLO contributions vanish. Only the next-to-next-to-
leading-order (N2LO) term survives:

~V1 loop
N2LO;E ¼ −

2π2α2

3m2
ðd − 2Þð4d − 9ÞA3=2ðk2Þ; ð22Þ

where A3=2 is a loop integral defined in Appendix A and d
is the space-time dimension. The expression in Eq. (22) is,
indeed, independent of the initial and final states consid-
ered. The potential ~V1 loop

N2LO;E
is of order α2=m2, whereas the

corresponding expression in coordinate space, V1 loop
N2LO;E, is

of order mα6
ffiffiffi
α

p
. Analogous matching contributions can be

obtained by replacing two or four of the electric dipole
couplings by magnetic dipole ones. These are suppressed
by α and α3 respectively with respect to the four electric
dipole interaction computed in Eq. (22), and are, therefore,
beyond the precision we are aiming at. Nevertheless the
corresponding expressions are given in Appendix B.

B. Matching WEFT

The last remaining step to obtain the van der Waals
potential in the short-distance regime consists in integrating
out ultrasoft photons with energy and momentum of order
mα2 and virtual atomic states, whose energy is also of order
mα2. This is done by matching the two-atom sector of
pNRQED0 from the previous section to WEFT. The
relevant contributions to the van der Waals potential
defined in Eq. (14) can be found on the left-hand side
of Fig. 5. The tree-level contribution is the magnetic dipole
potential of Eq. (19). There are four one-loop diagrams to
be considered: diagram (a) with two LO electric dipole
potential exchanges, which is of Oð ffiffiffi

α
p

=m2Þ (mα5 in
coordinate space), diagram (b) with one LO and one
NLO electric dipole potential, which is of Oðα ffiffiffi

α
p

=m2Þ
(mα6 in coordinate space), and diagrams (d) and (e) with

FIG. 4. One-loop matching of the two-atom potential of
pNRQED0. The pNRQED diagrams are on the left-hand side
and the pNRQED0 one is on the right-hand side.
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one LO electric dipole potential and one ultrasoft photon,
which are of Oðα2=m2Þ (mα6

ffiffiffi
α

p
in coordinate space). Of

the same order as the latter are also diagram (c), which is
the potential of Eq. (22), and the last diagram, which is the
contact term of Eq. (21). Diagrams involving more than
two potential exchanges, either vanish because of parity or
give contributions beyond our accuracy. Diagrams consist-
ing of the exchange of two ultrasoft photons contribute at
order α2=m2 in momentum space but only at order mα8 in
coordinate space and are therefore also beyond our accu-
racy for the computation of W.
The contribution from diagram (a) reads

~WðaÞ
E ¼ k4A2ðk2Þ

4

X0

m1;m2

pEðn1; m1ÞpEðn2; m2Þ
ΔEn1m1

þ ΔEn2m2

; ð23Þ

where n1 and n2 label the hydrogen atom states and A2 is a
loop integral defined in Appendix A. We have used that for
S-wave states, due to rotational symmetry, pEðn;mÞij ¼
pEðn;mÞδij (where a sum over all degenerate intermediate
Coulomb states is understood).
The contribution from diagram (b) reads

~WðbÞ
E ¼ k2A2ðk2Þ

X0

m1;m2

pEðn1; m1ÞpEðn2; m2Þ

×
ΔEn1m1

ΔEn2m2

ΔEn1m1
þ ΔEn2m2

; ð24Þ

where we have used hnjvjmi ¼ iΔEnmhnjxjmi.
Diagrams (d) and (e) involve one ultrasoft photon. Their

contribution reads

~WðdþeÞ
E ¼ 4ðd− 2Þ

d− 1

X0

m1;m2

pEðn1;m1ÞpEðn2;m2Þ

×
ΔEn1m1

ΔEn2m2

ΔE2
n1m1

−ΔE2
n2m2

× ½ΔEn1m1
JðΔEn1m1

Þ−ΔEn2m2
JðΔEn2m2

Þ�; ð25Þ

where JðΔEnmÞ is a loop integral that can be found in
Appendix A and d is the space-time dimension.

Finally, adding the contributions from the left-hand
side of Fig. 5, we obtain all terms relevant to compute the
van der Waals potential, W, up to order mα6

ffiffiffi
α

p
. In

momentum space they read

~Wð0Þ ¼ ~WðaÞ
E ; ð26Þ

~Wð1=2Þ ¼hn1; n2j ~V tree
LO;Bjn1; n2i; ð27Þ

~Wð1Þ ¼ ~WðbÞ
E ; ð28Þ

~Wð3=2Þ ¼ ~WðdþeÞ
E þhn1;n2jð ~V1 loop

N2LO;E
þ ~VcontÞjn1;n2i; ð29Þ

where jn1i and jn2i are the hydrogen atom states. The LO
term is ~Wð0Þ. The suppressions of Eqs. (27), (28) and (29)
relative to Eq. (26) are

ffiffiffi
α

p
, α and α

ffiffiffi
α

p
respectively, as

indicated by the superindices.
The first two terms of Eq. (29) carry divergent pieces.

These can be recast into local terms by using the results of
Appendix C and after M̄S subtraction the residual scale
dependence cancels against the one of ds in ~Vcont. [see
Eq. (6)]:

~WðdþeÞ
E þhn1;n2j ~V1 loop

N2LO;E
jn1;n2iþ hn1;n2j ~Vcontjn1;n2ijlogν

¼ 8α2

3m2
logν−

14α2

3m2
logνþ 2α2

m2
logν¼ 0: ð30Þ

The one-loop contributions including magnetic dipole
vertices are strongly suppressed. The first one, involving
two electric-magnetic dipole potentials, is α3 suppressed
with respect to the LO term Wð0Þ. The expressions for the
analogous diagrams of Fig. 5 with magnetic dipole inter-
actions are given in Appendix B.
Using the Fourier transforms of Appendix D, the van der

Waals potential can be written in position space. The LO
van der Waals potential, given in Eq. (26), corresponds to
the exchange of two electric dipole potentials and has an
R−6 dependence in position space

Wð0Þ ¼ 3

8π2R6

X0

m1;m2

pEðn1; m1ÞpEðn2; m2Þ
ΔEn1m1

þ ΔEn2m2

: ð31Þ

(a) (b) (c) (d) (e)

FIG. 5. Matching of the van der Waals potential between two hydrogen atoms. The pNRQED0 diagrams are on the left-hand side and
the WEFT one is on the right-hand side. The symmetric diagrams of (b), (d) and (e) have not been displayed, but are understood.
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Comparing with the London potential (1) we obtain

C6 ¼ −
3

8π2
X0

m1;m2

pEðn1; m1ÞpEðn2; m2Þ
ΔEn1m1

þ ΔEn2m2

: ð32Þ

If the hydrogen atoms are in the ground state the London
potential (31) is attractive, and a numerical evaluation that
includes discrete and continuum intermediate states gives
C6 ¼ 1.73123…10−3 keV−5 [32]. Moreover, an approxi-
mation that holds for the ground state n1 ¼ n2 ¼ 1,

3

8
E1 ≥

ΔE1m1
ΔE1m2

ΔE1m1
þ ΔE1m2

≥
1

2
E1; ð33Þ

where E1 is the ground-state energy, allows to write
Eq. (31) in the traditional form obtained by London [1]
using second-order time-independent perturbation theory:

Wð0Þ ≈ −
3

2

w0α
2
1

R6
; ð34Þ

where w0 ≈ −E1=2 and α1 is the polarizability of the
ground-state hydrogen atom.
Following the counting, after the LO London potential

the most important interaction is given by the magnetic
dipole potential Wð1=2Þ:

Wð1=2Þ ¼ α

m2

�
2π

3
δð3ÞðRÞhn1jμjn1i · hn2jμjn2i

þ 3

4R3
R̂ · hn1jμjn1iR̂ · hn2jμjn2i

�
: ð35Þ

This term does not appear in Ref. [4], since only spinless
particles were considered there. The magnetic dipole
potential can be attractive or repulsive depending on the
orientation of the angular momenta of the atoms.
The first correction to the London potential that does not

depend on the intrinsic magnetic dipole moments of the
atoms is given by Wð1Þ, which reads

Wð1Þ ¼ −
1

8π2R4

X0

m1;m2

pEðn1; m1ÞpEðn2; m2Þ

×
ΔEn1m1

ΔEn2m2

ΔEn1m1
þ ΔEn2m2

: ð36Þ

Wð1Þ is also attractive for atoms in the ground state. This
subleading term for S-wave states was derived by
Hirschfelder and Meath [33] and also by Feinberg,
Sucher and Au [4] using dispersion theory. However, in
those previous works the potentials were presented depend-
ing on integrals over the Compton scattering form factors of
a neutral spinless particle. These form factors can be
obtained for S-wave hydrogen atoms by adding to the
diagram on the left-hand side of Fig. 1 (with incoming

energy En þ ω) the equivalent one with the photon lines
crossed:

FEðωÞ ¼
X0

m

pEðn;mÞ 2ΔEnm

ΔE2
nm − ω2

;

FMðωÞ ¼
X0

m

pBðn;mÞ 2ΔEnm

ΔE2
nm − ω2

: ð37Þ

Using the form factors of Eq. (37) in the formulas of
Ref. [4] for the short-distance potentials we obtain the
leading and subleading terms of the London potential of
Eqs. (26) and (28) (cf. Appendix B for the formulas with
magnetic dipoles). The form factors of Eq. (37) can be
interpreted as a frequency-dependent version of the polar-
izabilities of Eq. (11).
The remaining contribution from Wð3=2Þ contains both a

R−3 part and a Dirac-delta potential:

Wð3=2Þ ¼ −
7α2

6πm2R3
þ � � � ; ð38Þ

where the dots denote the Dirac-delta piece.
In this section, we have build the EFTs suited to study

the van der Waals interactions in the short-distance regime.
This regime is characterized by the time scale between the
emission of the two photons, which is of order 1=ðmα2Þ,
being much larger than the distance between the atoms, R.
In a first step, we have integrated out modes scaling like
1=R and matched pNRQED to pNRQED0. This leads to the
appearance of the well-known electric and magnetic dipole
potentials as well as to subleading velocity-dependent
potentials. Loop contributions, stemming from two-photon
exchanges, contribute to the pNRQED0 two-atom potential
at N2LO. In a second step, we have integrated out modes
scaling like mα2 and matched pNRQED0 to WEFT
obtaining the van der Waals potentials. The exchange of
two electric-dipole potentials in Eq. (31) corresponds to the
London potential. The N2LO van der Waals potential in
Eq. (36) is obtained by considering the exchange of one
leading and one subleading dipole potential. The N2LO
pNRQED0 two-atom potential trivially matches the N3LO
van der Waals potential, and turns out to contain a
previously unknown R−3 term shown in Eq. (38), and a
local term. Further subleading matching contributions
produce only local terms that are however crucial for
renormalization.

V. LONG-RANGE VAN DER WAALS
INTERACTIONS

In this section, a different physical setting is explored.
We consider the case of the long-distance van der Waals
interactions. We have sketched the physical picture in the
left-hand panel of Fig. 6. In this regime the distance
between the atoms is much larger than the time scale
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between the emission of the two photons, which is of the
order of the inverse of the ultrasoft scale: R ≫ 1=ðmα2Þ.
Photons exchanged between the atoms carry a typical
momentum, k, that is of the order of mα2 or the inverse
of the distance between the atoms or smaller. Again, the
energy scale of the atoms, Q ∼ k2=M, is much smaller than
any other scale due to the strong suppression in M. In the
right-hand panel of Fig. 6 we show the hierarchy of scales
in the long-distance regime together with the suitable EFT
at each scale. The results in this section are valid for
arbitrarily long distances, since the hierarchy between the
scales in the right-hand panel of Fig. 6 does not change as
the distance R increases.
In the following sections, we will provide the details of

the matching between the hierarchy of EFTs in the right-
hand panel of Fig. 6. In Sec. VAwe integrate out ultrasoft
photons carrying energy and momentum of order mα2 and
virtual atomic states, whose energy is also of order mα2,
and obtain WEFT0. In the one-atom sector WEFT0 is
equivalent to WEFT (see Sec. III). In the two-atom
sector WEFT0 differs from WEFT in that photons with
momenta of order 1=R are still dynamical. The van der
Waals potential between hydrogen atoms in S-wave states
is obtained in Sec. V B by integrating out photons with
momenta of order 1=R and matching WEFT0 to WEFT.
In order to make the counting homogeneous, it is

convenient to assign a specific size to 1=R in terms of
m and α. A natural choice, given the scale hierarchy in the
long-distance regime, is to take 1=R ∼mα2

ffiffiffi
α

p
. From this

assignment it follows that ðmα2RÞ ∼ 1=
ffiffiffi
α

p
. In the long-

distance regime, we aim at computing the nonlocal van der
Waals interactions up to ordermα11

ffiffiffi
α

p
in coordinate space.

A. Matching WEFT0

To aid in the computation of the van der Waals potential
we introduce WEFT0, an EFT for momenta much smaller
than the typical binding energies, but of the same order as

the inverse distance between hydrogen atoms. WEFT0
follows from pNRQED by integrating out ultrasoft photons
carrying energy and momentum of order mα2 and virtual
atomic states, whose energy is also of order mα2. The
Lagrangian for WEFT0 in the one-atom sector is the same
as for WEFT, and is given in Eq. (10). We will now
compute the two-atom sector of WEFT0.
Since we are integrating out photons and virtual atomic

states carrying an energy of ordermα2, and since the energy
scalemα2 is generated only in loops if the initial- and final-
state atoms have the same quantum numbers, the only tree-
level contributions to consider are potentials taken over
from pNRQED to WEFT0. The leading potential from
pNRQED is the contact interaction of Eq. (8), which gives

ð ~W0Þcont ¼ −
ds
m2

−
4dv
m2

hn1jSjn1i · hn2jSjn2i: ð39Þ

The dominant one-loop contributions to the two-atom
potential of WEFT0 are given by the two-photon exchange
diagrams on the left-hand side of Fig. 7. The two photons
are ultrasoft, which means that they carry a momentum qμ

that scales like q0 ∼ jqj ∼mα2. The LO contribution,
involving four electric-dipole vertices is of order α2=m2

in momentum space (mα9
ffiffiffi
α

p
in coordinate space accord-

ing to the counting 1=R ∼mα2
ffiffiffi
α

p
). Subsequent contri-

butions are suppressed by powers of 1=ðmα2RÞ2 ∼ α.
Furthermore, replacing an electric dipole coupling by a
magnetic one adds at least an extra α suppression.
As we will see in the next section, the Casimir-Polder

potential is generated by the one-loop diagram with two-
photon exchange through the electric-polarizability seagull
vertices of WEFT0 (fourth diagram in Fig. 8), and it is α2

suppressed with respect to the LO contribution. To match
that precision we have to compute the one-loop diagrams of
Fig. 7 up to N2LO. The different contributions to the
WEFT0 potential for S-wave states read in momentum
space

ð ~W0Þ1 loopLO;E ¼ −ðd2 − 5dþ 6Þ
X0

m1;m2

pEðn1; m1ÞpEðn2; m2Þ
ΔE2

n1m1
− ΔE2

n2m2

× ΔEn1m1
ΔEn2m2

½ΔEn1m1
JðΔEn1m1

Þ
− ΔEn2m2

JðΔEn2m2
Þ�; ð40Þ

FIG. 7. One-loop matching of the two hydrogen atom potentials
of WEFT0. The pNRQED diagrams are on the left-hand side and
the WEFT0 one is on the right-hand side.

FIG. 6. Left panel: Sketch of the physical picture of the van der
Waals interactions in the long-range regime. The distance
between the two atoms is much larger than the typical time
interval in which the photons are exchanged. Right panel:
Hierarchy of scales and the corresponding EFTs in the long-
range regime.
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ð ~W0Þ1 loopNLO;E ¼ −ðd − 2Þðd2 − 8dþ 27Þ k
2

12

X0

m1;m2

pEðn1; m1ÞpEðn2; m2Þ
ΔE2

n1m1
− ΔE2

n2m2

½ΔEn1m1
JðΔEn2m2

Þ − ΔEn2m2
JðΔEn1m1

Þ�; ð41Þ

ð ~W0Þ1 loop
N2LO;E

¼ ðd − 3Þðd − 2Þðd2 − 12dþ 55Þ k4

240

X0

m1;m2

pEðn1; m1ÞpEðn2; m2Þ
ΔE2

n1m1
ΔE2

n2m2
½ΔE2

n1m1
− ΔE2

n2m2
�

× ½ΔE3
n1m1

JðΔEn2m2
Þ − ΔE3

n2m2
JðΔEn1m1

Þ�; ð42Þ

ð ~W0Þ1 loopLO;M ¼ −ðd − 2Þ
X0

m1;m2

pEðn1; m1ÞpBðn2; m2Þii þ pBðn1; m1ÞiipEðn2; m2Þ
ΔE2

n1m1
− ΔE2

n2m2

× ΔEn1m1
ΔEn2m2

½ΔEn1m1
JðΔEn1m1

Þ − ΔEn2m2
JðΔEn2m2

Þ�; ð43Þ

where J is a loop integral whose explicit expression
can be found in Appendix A, d is the space-time dimension
and summation over the index i is understood. We have
used the subscripts E and M to indicate that the contribu-
tion is generated in pNRQED by four electric dipole
couplings, and two electric and two magnetic dipoles,
respectively.

B. Matching WEFT

The matching of WEFT0 to WEFT consists in integrating
out photons with momenta scaling like 1=R. This is shown
diagrammatically in Fig. 8.
The first contribution to the two-atom potential of WEFT

is given by the one-photon exchange diagram when the
momentum transfer is of order 1=R. Since we are interested
in the case when initial- and final-state atoms have the same
quantum numbers, the energy transferred by the photon in
the tree-level diagram is zero. Furthermore the electric
dipole vertex vanishes when evaluated between initial and
final states that are equal. Hence the only contribution
comes from the two magnetic dipole potential:

~Wtree ¼ e2

4m2

�
hn1jμjn1i · hn2jμjn2i

−
hn1jμjn1i · khn2jμjn2i · k

k2

�
: ð44Þ

The second and third contributions take over the potentials
(39)–(43) of WEFT0. The fourth contribution is a one-loop
diagram in WEFT0 made of the seagull vertices defined

on the right-hand side of Fig. 1. Further higher-order
contact terms like radiative corrections to the matching
coefficients ds and dv, higher-order terms in the multipole
expansion of the four-electron operators of NRQED or
four-electron operators of dimension eight have not been
displayed.
The different contributions to the WEFT potential for

S-wave states read in momentum space

~Wð−1Þ ¼ ~Wtree; ð45Þ

~Wð0Þ ¼ ð ~W0Þ1 loopLO;E þ ð ~W0Þcont; ð46Þ

~Wð1Þ ¼ ð ~W0Þ1 loopNLO;E þ � � � ; ð47Þ

~Wð2Þ ¼ ð ~W0Þ1 loop
N2LO;E

þ ~Wseg
E þ ð ~W0Þ1 loopLO;M þ � � � ; ð48Þ

where the dots stand for the higher-order contact inter-
actions that have not been computed here. The superindex
in brackets indicates the suppression in powers of α with
respect to Eq. (46), which is of order α2=m2 in momentum
space and of order mα9

ffiffiffi
α

p
in coordinate space.

The term ~Wseg
E is the contribution from the fourth

diagram of Fig. 8. The photon momenta and energies scale
like 1=R. In dimensional regularization ~Wseg

E reads in
momentum space

~Wseg
E ¼ −

ðd − 2Þð4dþ 7Þπ2
8ðd − 1Þðdþ 1Þ αn1αn2k

4A3=2ðk2Þ; ð49Þ

FIG. 8. Matching of the van der Waals potential between two hydrogen atoms in the long-range regime. The WEFT0 diagrams are on
the left-hand side and the WEFT one is on the right-hand side.
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where αn is the electric polarizability of the hydrogen atom
as defined in Sec. III, A3=2 can be found in Appendix A and
d is the space-time dimension.
Ultraviolet divergences are present in Eqs. (46)–(48). In

the case of the seagull diagram, the divergence and scale
dependence in ~Wseg

E cancels with the corresponding ones in
ð ~W0Þ1 loop

N2LO;E
:

~Wseg
E þ ð ~W0Þ1 loopN2LO;Ej1=ð4−dÞ;log ν

¼ −
46

240
k4αn1αn2

�
1

4 − d
þ log ν

�

þ 46

240
k4

1

4π2
X0

m1;m2

pEðn1; m1Þ
ΔEn1m1

pEðn2; m2Þ
ΔEn2m2

×

�
1

4 − d
þ log ν

�
¼ 0: ð50Þ

The divergence in ð ~W0Þ1 loopLO;E can be recast as a local term
when summing over the intermediate states (see
Appendix C) and, once M̄S renormalized, its scale depend-
ence cancels against that of ð ~W0Þcont.:

ð ~W0Þ1loopLO;E þð ~W0Þcontjlogν¼−
2α2

m2
logνþ2α2

m2
logν¼0: ð51Þ

The divergences in ð ~W0Þ1 loopNLO;E carried by the J loop integrals

cancel each other making ð ~W0Þ1 loopNLO;E finite. Finally, diver-

gences in ð ~W0Þ1 loopLO;M, are at least of order α
6=m2 and hence

beyond our accuracy.
The position-space representation of the potentials can

be obtained using the results of Appendix D. All contri-
butions proportional to positive even powers of the transfer
momentum are proportional to Dirac-delta potentials
except for the ones that contain a log k2. Therefore, for
long-distance van der Waals interactions the only nonlocal
terms are Wseg

E and the magnetic dipole potential, Wð−1Þ,
given in coordinate space in Eq. (35).
The part of Wseg

E containing log k2 is proportional
to R−7, whereas the part containing the finite pieces of
the loop integral is proportional to a Dirac delta in position
space. The former corresponds to the van der Waals
potential derived by Casimir and Polder by using two-
photon exchange and fourth-order noncovariant perturba-
tion theory [2]:

Wseg
E ¼ −

23

4πR7
αn1αn2 þ � � � : ð52Þ

Comparing with the Casimir-Polder potential (2) we obtain

C7 ¼
23

4π
αn1αn2 : ð53Þ

A derivation of the Casimir-Polder potential in Eq. (52)
using dispersivemethods was given by Feinberg and Sucher
in Refs. [3,4]. Feinberg and Sucher also provided the long-
range potentials due to magnetic polarizabilities and mixed
interactions between electric and magnetic polarizabilities.
These can be recovered respectively from our results
for Wseg

B and Wseg
M in Appendix B. Assuming scalar

magnetic polarizabilities, βijn ¼ βnδ
ij, we can write Wseg

B ¼
− 23

4πR7 βn1βn2 þ � � � and Wseg
M ¼ 7

4πR7ðαn1βn2þβn1αn2Þþ���.
According to our counting, these two cases are suppressed
by a factor α4 and α2 respectively compared to Wseg

E . We
note, however, that the magnetic polarizability of a hydro-
gen atom cannot be a scalar since hydrogen possesses a
permanent magnetic dipole. The above results for Wseg

E ,
Wseg

B and Wseg
M were also obtained by Holstein [18] using a

phenomenological Hamiltonian for the Compton scattering
of neutral scalar particles constrained by gauge symmetry,
invariance under parity and time reversal.
We have considered the van der Waals interactions in

the long-distance regime. In this case, the distance
between the atoms, R, is much larger than the time scale,
1=ðmα2Þ, between the emission of the two photons. First,
we have integrated out ultrasoft photons carrying energy
and momentum of order mα2 and matched pNRQED to
WEFT0. The matching produces the polarizability oper-
ators in the one-atom sector, and several new local terms
in the two-atom sector. In a second step, modes scaling
like 1=R have been integrated out and the van der Waals
potential has been generated as a matching coefficient
of WEFT. The two-photon exchange induced by the
polarizability operators produces the Casimir-Polder
potential (52). The new local terms cancel all ultraviolet
divergences in the Casimir-Polder diagram. These results
are valid for arbitrarily long distances, since the hierarchy
between the scales does not change as the distance R
increases.

VI. INTERMEDIATE-RANGE VAN DER WAALS
INTERACTIONS

The last possible physical situation to consider is when
the range of the van derWaals interactions, R, is of the same
order as the intrinsic time scale of the hydrogen atom,
1=ðmα2Þ. A visual representation of this case is sketched in
the left panel of Fig. 9. In this regime the distance between
the atoms is of the same order as the time scale between the
emission of the two photons, which is of the order of the
inverse of the ultrasoft scale: R ∼ 1=ðmα2Þ. The hierarchy
of the two energy scales in the intermediate-distance regime
is plotted in the right-hand panel of Fig. 9. In this section
we obtain the van der Waals potential by integrating out at
the same time photons and virtual atomic states with
momenta and energies of order 1=R andmα2, and matching
pNRQED directly to WEFT.
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The diagrams involved in the matching are shown in
Fig. 10. The dominant contribution for interactions
between atoms in S-wave states is given by a photon
exchange between the permanent magnetic dipoles. The

expression is in Eq. (44). It is of Oðα=m2Þ in momentum
space and of Oðmα7Þ in coordinate space.
The contribution of the one-loop pNRQED diagrams

is

~W1 loop
E ¼

X0

m1;m2

pEðn1; m1ÞpEðn2; m2Þ
�

1

2ðΔE2
n1m1

− ΔE2
n2m2

Þ ½k
2ðΔEn2m2

JðΔEn1m1
Þ − ΔEn1m1

JðΔEn2m2
ÞÞ

− ðk4 − 4k2ΔE2
n1m1

þ 4ðd − 2ÞΔE4
n1m1

ÞΔEn2m2
Kðk2;ΔEn1m1

Þ

þ ðk4 − 4k2ΔE2
n2m2

þ 4ðd − 2ÞΔE4
n2m2

ÞΔEn1m1
Kðk2;ΔEn2m2

Þ� − d − 2

2
ΔEn1m1

ΔEn2m2
A3=2ðk2Þ

�
: ð54Þ

The explicit definitions of the loop integrals J, K and A3=2
can be found in Appendix A.
The remaining contribution is the contact term

~Wcont ¼ −
ds
m2

−
4dv
m2

hn1jSjn1i · hn2jSjn2i: ð55Þ

The one-loop electric dipole diagrams and the contact term
are of Oðα2=m2Þ in momentum space and of Oðmα8Þ in
coordinate space. The rest of the terms are suppressed by
one power of α for each magnetic dipole replacing an
electric dipole.
In summary, we have that

~Wð−1Þ ¼ ~Wtree; ð56Þ

~Wð0Þ ¼ ~W1 loop
E þ ~Wcont; ð57Þ

where the superindex indicates that ~Wð0Þ is suppressed by
one power of α compared to ~Wð−1Þ. The ultraviolet
divergence in ~W1 loop can be recast as a local term when
summing over the intermediate states (see Appendix C)
and, once M̄S renormalized, its scale dependence cancels
against that of ~Wcont.:

~W1 loop
E þ ~Wcontjlog ν ¼ −

2α2

m2
log νþ 2α2

m2
log ν ¼ 0: ð58Þ

As a cross-check, the expression in Eq. (54) can be
expanded in powers of ΔEnm=jkj, yielding the short-
distance van der Waals interactions of Eqs. (22)–(25) from
Sec. IV. Analogously, expanding in powers of jkj=ΔEnm
results in the long-distance van der Waals expressions of
Eqs. (40)–(42) and Eq. (49) from Sec. V.
The potential in coordinate space is obtained by Fourier

transforming Eq. (57). However, in the one-loop term
~W1 loop
E there are nonanalytic pieces that cannot be trans-

formed using the results of Appendix D. The coordinate-
space potential associated to these pieces can be obtained
by using a dispersive representation of the momentum
space potential (see, e.g., Refs. [4,11]).
The coordinate space potential is given by

WðRÞ ¼
Z

d3k
ð2πÞ3 e

ik·R ~WðkÞ: ð59Þ

FIG. 9. Left panel: Sketch of the physical picture of the van der
Waals interactions in the intermediate-range regime. The distance
between the two atoms is of the same size as the intrinsic time
scale of the hydrogen atom. Right panel: Hierarchy of scales and
the corresponding EFTs in the intermediate-distance regime.

FIG. 10. Matching of the van der Waals potential between two hydrogen atoms in the intermediate-range regime. The pNRQED
diagrams are on the left-hand side and the WEFT one is on the right-hand side.
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Since for k2 → ∞ the momentum-space potential ~W1 loop
E

diverges as k4, its corresponding dispersion relation should
be twice subtracted. The subtraction constants are inde-
pendent of the momentum and as such correspond to Dirac-
delta potentials. The nonlocal part of the potential is given
by the following dispersive representation corresponding to
the two-photon cut:

~WðkÞ ¼ 2

π

Z
∞

0

dμ
μIm½ ~Wðη − iμÞ�

μ2 þ k2
; ð60Þ

where the limit η → 0 is understood. Plugging Eq. (60) into
Eq. (59) and changing the order of the dispersive and
Fourier integrals we arrive at

WðRÞ ¼ 1

2π2R

Z
∞

0

dμe−μRμIm½ ~Wðη − iμÞ�: ð61Þ

The imaginary part of ~W1 loop
E can be easily obtained after

inserting the explicit values of the loop integrals J, K and
A3=2 from Appendix A into Eq. (54). This yields

Im½ ~W1 loop
E ðη − iμÞ� ¼ −

X0

m1;m2

pEðn1; m1ÞpEðn2; m2Þ
16π

�
4ΔEn1m1ΔEn2m2

þ 1

μðΔE2
n1m1

− ΔE2
n2m2

Þ
�
ðμ4 þ 4μ2ΔE2

n1m1
þ 8ΔE4

n1m1
ÞΔEn2m2

arccot

�
2jΔEn1m1

j
μ

�

− ðμ4 þ 4μ2ΔE2
n2m2

þ 8ΔE4
n2m2

ÞΔEn1m1
arccot

�
2jΔEn2m2

j
μ

���
: ð62Þ

In Fig. 11 we plot the relative difference between
the intermediate-range van der Waals potential given in
Eqs. (61) and (62) with the London potential from Eq. (31)
and the Casimir-Polder potential from Eq. (52) for both
atoms in the ground state. As expected, the London
potential and the Casimir-Polder potential are good approx-
imations in the short and long distances respectively. Due to
a conspiracy of numerical factors and cancellations, the
convergence towards the London potential is, however,
somewhat faster than the one towards the Casimir-Polder
potential.
In summary, in this section we have explored for the first

time the intermediate-distance regime 1=R ∼mα2 for the

van der Waals interaction between two S-wave hydrogen
atoms. In this regime, pNRQED is directly matched to
WEFT, unlike in the short- and long-distance cases where
the matching was done in two steps. The van der Waals
potential is obtained by integrating out at the same time
photons and virtual atomic states with momenta and
energies of order 1=R and mα2. The ultraviolet divergence
in the two-photon exchange diagram that generates the van
der Waals potential is removed by contact interactions in
the two-atom sector of pNRQED. The coordinate-space
representation of the potential in Eq. (61) is obtained
by using a dispersive representation of the momentum
space potential in Eq. (54). Figure 11 shows the relative
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FIG. 11. Plots of the relative difference between the intermediate van der Waals potential and the London (a) and Casimir-Polder (b)
potentials for both atoms in the ground state as a function of the distance R in units of 1=jΔE12j.WInt is the intermediate-range potential
in Eq. (61), WLon is the London potential in Eq. (31) and WCP is the Casimir-Polder potential in Eq. (52).
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difference between the intermediate-range van der Waals
potential and the London and the Casimir-Polder potentials
for both atoms in the ground state as a function of R.

VII. CONCLUSIONS

A hydrogen atom is a nonrelativistic bound state
characterized by a hierarchy of well-separated scales.
These are the mass of the particle that forms the bound
state (hard), the inverse of the Bohr radius, namely the
relative momentum (soft), and the typical bound-state
energy (ultrasoft). Integrating out the hard scale produces
NRQED, and integrating out the soft scale leads to
pNRQED, which is the theory best suited to study the
bound state.
In systems with two hydrogen atoms two distinct

physical regimes exist depending on the distance between
the nuclei. If the distance between the nuclei is of the order
of the Bohr radius, the system is configured as a diatomic
molecule. On the other hand, if this distance is larger than
the Bohr radius, the system consists of two atoms interact-
ing through van der Waals interactions. In both cases a new
energy scale, different from the intrinsic ones characteriz-
ing a single atom, appears. In diatomic molecules, the two-
nuclei dynamics takes place at a lower energy scale than the
ultrasoft scale in which the electrons bind to the nuclei.
This is nothing else than restating the usual assumption that
the electron and nuclei dynamics occur at very different
time scales, which is at the basis of the Born-Oppenheimer
approximation [34]. In the van der Waals case, the new
scale is the distance between the atoms, which can be larger
or smaller than the ultrasoft scale.
In this work, we have presented a study of the dispersive

van der Waals interactions between two hydrogen atoms in
the framework of nonrelativistic EFTs of QED. We have
focused on S-wave states, since these do not have perma-
nent electric multipolar moments and their interaction
proceeds through dispersive van der Waals forces in
addition to the magnetic-dipole coupling. We have intro-
duced a new EFT, WEFT, to describe the dynamics of the
degrees of freedom that live at the low-energy scale where a
van der Waals potential is naturally defined. Then the van
der Waals potential was obtained by sequentially integrat-
ing out the physical scales of the two hydrogen atoms. The
EFT setting allows to compute all local terms needed to
renormalize the van der Waals interactions, which is the
most original result of the present work.
Different hierarchies of scales correspond to different

physical scenarios and lead to different results for the
dispersive van der Waals potential. We have explored three
possible scenarios: short, long and intermediate distances
between the atoms.
In the short-distance regime, 1=R ≫ mα2, integrating

out modes scaling like 1=R leads to the well-known electric
and magnetic dipole potentials as well as to subleading
velocity-dependent potentials. Integrating out the ultrasoft

scale leads to the van der Waals potential. The leading
contribution of Eq. (31) stems from the exchange of two
electric-dipole potentials and corresponds to the London
potential [1]. Replacing one of the leading dipole potentials
with a subleading one, the N2LO term, Eq. (36), is
obtained. This term is equivalent to the one obtained by
Hirschfelder and Meath [4,33]. In addition we have
investigated the N3LO van der Waals potential, previously
unknown, which turns out to contain a R−3 term, shown in
Eq. (38), and a local term.
The long-distance regime corresponds to 1=R ≪ mα2.

Integrating out the ultrasoft scale defines the polarizability
operators in the one-atom sector, while in the two-atom
sector several local terms are generated. Integrating out the
1=R scale, the two-photon exchange induced by the
polarizability operators generates the Casimir-Polder
potential [2,3,18] of Eq. (52). The newly computed local
terms turn out to be crucial to cancel all ultraviolet
divergences in the Casimir-Polder diagram, which, to
our knowledge, has been renormalized in this context here
for the first time.
In the last part of the paper, we explored for the first time

the intermediate-distance regime 1=R ∼mα2. In this regime
the van der Waals potential is obtained by integrating
out the ultrasoft and 1=R scales simultaneously. We have
obtained a coordinate-space representation for the nonlocal
part of the van der Waals potential by using a dispersive
representation of the momentum space potential. Figure 11
summarizes our findings. It shows the relative difference
between the intermediate-range van der Waals potential and
the London and the Casimir-Polder potentials for both
atoms in the ground state as a function of R. The plot shows
that the intermediate-range potential is needed to accurately
describe (with an accuracy better than about 15%) the van
der Waals interaction in the distance range between 400 to
2000 times the Bohr radius. Results for the dispersive van
der Waals potentials in the three different regimes have
been generalized to states with any angular momentum in
Appendix B.
We conclude with a possible outlook. The EFT descrip-

tion of the van der Waals interactions between two hydro-
gen atoms obtained here also offers a framework to
appropriately define and systematically calculate van der
Waals interactions for other physical systems starting from
the underlying quantum field theory. A prominent case is
that of the hadronic van der Waals interactions, whose
underlying field theory is QCD. The multigluon interaction
is a QCD analogue of the van der Waals force of atomic
physics. A color van der Waals force arises in hadron-
hadron interactions due to the chromopolarizability of the
color-neutral hadrons, similar to the electric polarizability
in the case of the hydrogen atom. Contrary to the situation
in QED, not much is presently known about color van der
Waals forces: one reason is that they are a long-wavelength
feature of QCD and therefore of nonperturbative nature,
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which makes it difficult to assess them from first principles.
The potential relevance of color van der Waals forces for
the study of the new hadrons, which may arise as a result of
such interaction, demands a better understanding of their
properties within QCD.
Quarkonia are hadronsmade of a heavy quark and a heavy

antiquark. Their hierarchy of energy scales is similar to the
one described in this paper for the hydrogen atom, but now
the hard, soft and ultrasoft scales aremQ,mQvQ andmQv2Q,
with mQ being the heavy quark mass and vQ the quark’s
relative velocity. The velocity vQ may be identified with the
strong coupling constant, αs, only if the quarkonium is a
Coulombic bound state, which holds for the lowest quarko-
nium states. Moreover, color provides a richer set of degrees
of freedom with respect to QED. In particular, static quark-
antiquark pairs may exist at small distances in two possible
color configurations. Nevertheless, the hierarchy of EFTs
relevant for describing quarkonium-quarkonium inter-
actions is similar to the one discussed in this paper for
QED, starting from potential nonrelativistic QCD [35,36] to
the ultimate van der Waals EFT [11]. We have investigated
van derWaals interactions for Coulombic quarkonia in [11],
whereas van der Waals interactions for nonperturbatively
bound quarkonia have been addressed with numerical
methods in Ref. [37]. For long-distance dipole-dipole
interactions analytic nonperturbative exact expressions as
well as lattice results can be found in Refs. [38,39]. Effective
field theoriesmay provide further insights into these systems
and link the findings with other processes and systems like
quarkonium hadronic transitions, quarkonium-nuclei inter-
actions and exotic multiquark systems.
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APPENDIX A: LOOP INTEGRALS

Throughout this work we have used dimensional regu-
larization. We define

K ¼ q2 þ xð1 − xÞk2: ðA1Þ
The loop integrals that depend only on k2 are of the form

Afðk2Þ ¼ ν4−d
Z

1

0

dx
Z

dðd−1Þq
ð2πÞðd−1Þ

1

Kf ; ðA2Þ

where ν is the renormalization scale. Only A3=2ðk2Þ and
A2ðk2Þ appear in our results:

A3=2ðk2Þ ¼
1

4π2

�
λþ 2 − log

�
k2

ν2

��
;

with λ ¼ 2

4 − d
− γE þ log 4π; ðA3Þ

A2ðk2Þ ¼
1

8jkj ; ðA4Þ

where here and in the following one-loop results of this
appendix [Eqs. (A6) and (A10)–(A14)] we have neglected
terms of Oð4 − dÞ or smaller; γE is the Euler-Mascheroni
constant. The ultraviolet divergence can be renormalized in
the M̄S scheme by absorbing the pieces proportional to λ in
the counterterms. In the intermediate calculations other
powers in the denominator of Af may appear. These can be
related to A3=2 and A2 using the following recurrence
relation:

Afþ1ðk2Þ ¼
2ð2f − dÞ

fk2
Afðk2Þ: ðA5Þ

A loop integral that depends only on ΔEnm appears in
Secs. IV B and VA:

JðΔEnmÞÞ ¼ ν4−d
Z

dðd−1Þq
ð2πÞðd−1Þ

1

2jqjðjqj − ΔEnmÞ

¼ ΔEnm

8π2

�
λþ 2 − 2 log 2þ 2iπθðΔEnmÞ

− log

�
ΔE2

n

ν2

��
: ðA6Þ

In Sec. VI loop integrals depending simultaneously on k2

and ΔEnm occur. These can be reduced to the master
integrals

Bfðk2;ΔEnmÞ ¼ ν4−d
Z

1

0

dx
Z

dðd−1Þq
ð2πÞðd−1Þ

1

ðK − ΔE2
nmÞf

;

ðA7Þ

Cfðk2;ΔEnmÞ ¼ ν4−d
Z

1

0

dx
Z

dðd−1Þq
ð2πÞðd−1Þ

1ffiffiffiffi
K

p ðK−ΔE2
nmÞf

;

ðA8Þ

which always appear in the combination

Kðk2;ΔEnmÞ ¼ −
1

4ΔEnm
A3=2ðk2Þ þ

1

2
B2ðk2;ΔEnmÞ

þ 1

4ΔEnm
C1ðk2;ΔEnmÞ

þ ΔEnm

2
C2ðk2;ΔEnmÞ: ðA9Þ
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An explicit analytic result for B2 reads

B2ðk2;ΔEnmÞ ¼
1

8πjkj
�
πþ 2iarctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ΔE2

nm

k2

r �
: ðA10Þ

This expression is correct in the momentum region
k2 > 4ΔE2

nm. The analytic continuation to the region
k2 < 4ΔE2

nm is obtained by using the prescription ΔE2
nm →

ΔE2
nm þ iη.
An analytic integration of the Feynman parameters is not

possible for C1 and C2. Different expressions for C1 and C2

are possible:

C1ðk2;ΔEnmÞ

¼ 1

4π2

2
4λþ 4− log

4ΔE2
nm

ν2
þ iπ

−
Z

1

0

dx
1ffiffiffiffiffiffiffiffiffiffi
1− x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x

4ΔE2
nm

k2

r
arctanh

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x 4ΔE2

nm
k2

q
3
5;

ðA11Þ
which is valid in the momentum region k2 > 4ΔE2

nm and
can be analytically continued to the region k2 < 4ΔE2

nm by
using the prescription ΔE2

nm → ΔE2
nm þ iη. The integrand

in Eq. (A11) can be expanded for large values of k2 but not
for small ones. This is because there is always a small
enough value of x that makes x=k2 ∼ 1 for any arbitrarily
small value of k2. To expand for small k2 one can use the
following expression, which is valid for k2 < 4ΔE2

nm:

C1ðk2;ΔEnmÞ

¼ 1

4π2

2
4λþ 4− log

�
k2

ν2

�

−
Z

1

0

dx
1ffiffiffiffiffiffiffiffiffiffi
1− x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x

k2

4ΔE2
nm

s
arctanh

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x k2

4ΔE2
nm

q
3
5:

ðA12Þ
The last integral is

C2ðk2;ΔEnmÞ ¼
1

8π2ΔE2
nm

Z
1

0

dx
x 4ΔE2

nm
k2ffiffiffiffiffiffiffiffiffiffiffi

1 − x
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x 4ΔE2
nm

k2

q
× arctanh

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x 4ΔE2

nm
k2

q : ðA13Þ

This expression is correct in the momentum region
k2 > 4ΔE2

nm and can be expanded for k2 ≫ ΔE2
nm. The

analytic continuation to the region k2 < 4ΔE2
nm is obtained

by using the prescription ΔE2
nm → ΔE2

nm þ iη and reads

C2ðk2;ΔEnmÞ

¼ −
1

8π2ΔE2
nm

2
42þ Z

1

0

dx
x k2

4ΔE2
nmffiffiffiffiffiffiffiffiffiffiffi

1 − x
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x k2

4ΔE2
nm

q

× arctanh
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x k2

4ΔE2
nm

q
3
5: ðA14Þ

This expression can be expanded for k2 ≪ ΔE2
nm.

APPENDIX B: GENERALIZED ONE-LOOP
DIAGRAM EXPRESSIONS

In this appendix, we generalize the results of the one-loop
contributions with electric dipole interactions to initial and
final states of the hydrogen atoms with any value of the
angular momentum. Nevertheless, when considering the
interaction between two hydrogen atoms in an arbitrary
angular momentum state, one should keep in mind that
quadrupole and higher multipole moments may not vanish.
These multipole couplings can give rise to tree-level inter-
actions that can be as ormore important than theone-loopvan
der Waals potential. For example quadrupole-quadrupole
potentials, which appear when both atoms are in a state with
L ≥ 2, are parametrically larger by

ffiffiffi
α

p
and α2 respectively

than the London and Casimir-Polder potentials.
Furthermore, we also provide the expressions for the

analogous loop contributions obtained by replacing electric
dipoles with magnetic dipoles. From the pNRQED
Lagrangian of Eq. (7) we can see that the magnetic dipole
operator is smaller than the electric dipole operator by a factor
of orderα. Since, due to parity, the two couplings on the same
atom must either be both magnetic or both electric dipoles
this gives two new kinds of loop contributions: one with two
electric dipoles and two magnetic dipoles, and one with four
magnetic dipoles. In general, all these contributions aremuch
smaller than the ones produced with only electric dipoles.
Throughout this appendix we use the notation E, B, M to

label contributions from one-loop diagrams with four electric
dipoles (E), two electric dipoles and twomagnetic dipoles (M),
and four magnetic dipoles (B). The explicit expressions for the
loop integrals A3=2, A2, J andK can be found in Appendix A.
Results will be given in d space-time dimensions.

1. Short-range regime

The one-loop matching contributions from pNRQED to
the two-atom pNRQED0 potential with four electric dipole
vertices given in Sec. IVA are independent of the initial and
final states and thus valid for any angular momentum. We,
now, provide the analogous contributions with four mag-
netic dipole vertices, and with two magnetic dipole vertices
on one atom and two electric dipole vertices on the other
one. The subscripts 1 and 2 of μ and L indicate the atom. In
the first case the contributions read
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~V1 loop
LO;B ¼ π2α2A3=2ðk2Þ

16ðd − 1Þm4
μ1iμ1jμ2kμ2l½ðd − 2Þðkiklδjk þ kjkkδil − kikkδjl − kjklδikÞ þ 3k2ðδilδjk − δikδjlÞ�; ðB1Þ

~V1 loop
NLO;B ¼ π2α2A2ðk2Þ

16ðd − 2Þm4
½ðμ1i _μ1j − _μ1iμ1jÞμ2kμ2l þ μ1iμ1jðμ2k _μ2l − _μ2kμ2lÞ�

× ½kikkδjl þ kjklδik − kiklδjk − kjkkδil þ 2k2ðδilδjk − δikδjlÞ�; ðB2Þ

~V1 loop
N2LO;B ¼ −

π2α2A3=2ðk2Þ
12m4

�
½ _μ1i _μ1jμ2kμ2l þ μ1iμ1j _μ2k _μ2l −

1

4
ðμ1i _μ1j − _μ1iμ1jÞðμ2k _μ2l − _μ2kμ2lÞ�λijklN2LO;B

− ½ _μ1i _μ1jμ2kμ2l þ μ1iμ1j _μ2k _μ2l þ
1

4
ðμ1i _μ1j − _μ1iμ1jÞðμ2k _μ2l − _μ2kμ2lÞ�λijlkN2LO;B

�
; ðB3Þ

where _μ ¼ i½μ; ĥ0�, and

λijkl
N2LO;B

¼
�
ðd − 6Þðd − 4Þ k

ikjkkkl

k4
þ ðδijδkl þ δilδjk − 2δikδjlÞ

þ 1

k2
½ðd − 4Þðkikjδkl þ kiklδjk þ kkklδij þ kjkkδilÞ þ 2ðd − 2Þðkikkδjl þ kjklδikÞ�

�
: ðB4Þ

For electric-magnetic dipole interactions the LO contribution vanishes, the following two terms read

~V1 loop
NLO;M ¼ −

iπ2α2A2ðk2Þ
ðd − 2Þm3

½Li
1ðμ2 × μ2Þj þ Li

2ðμ1 × μ1Þj�½ðd − 3Þkikj þ k2δij�; ðB5Þ

~V1 loop
N2LO;M ¼ i2π2α2A3=2ðk2Þ

m3k2
½ðμ1 · _μ1 þ μ2 · _μ2Þδij − μi1 _μ

j
1 − μi2 _μ

j
2�½ðd − 4Þkikj þ k2δij�: ðB6Þ

Next we provide the one-loop matching contributions from pNRQED0 to the WEFT potential of Sec. IV B generalized to
any state of the hydrogen atoms. The first contribution corresponds to the two dipole potential exchange [diagram (a) of
Fig. 5]

~WðaÞ
y ¼

X0

m1;m2

pyðn1; m1Þijpyðn2; m2ÞklλijklðaÞ
A2ðk2Þ

ΔEn1m2
þ ΔEn2m2

; y ¼ E;B; ðB7Þ

with

λijklðaÞ ¼ 1

16dðd − 2Þ ½ðd
2 − 4dþ 3Þkikjkkkl þ k4ðδijδkl þ δilδjk þ δikδjlÞ

þ ðd − 1Þk2ðkikjδkl þ kiklδjk þ kkklδij þ kjkkδilÞ − ðdþ 1Þk2ðkikkδjl þ kjklδikÞ�: ðB8Þ

The second type of diagrams corresponds to the exchange of a LO and a NLO dipole potential [diagram (b) of Fig. 5]

~WðbÞ
y ¼

X0

m1;m2

pyðn1; m1Þijpyðn2; m2ÞklλijklðbÞ
A2ðk2ÞΔEn1m1

ΔEn2m2

ΔEn1m1
þ ΔEn2m2

; y ¼ E;B; ðB9Þ

with

λijklðbÞ ¼ 1

8ðd − 2Þ
�
ðd − 5Þðd − 3Þ k

ikjkkkl

k2
þ ðd − 1Þðkikkδjl þ kjklδikÞ þ k2ðδijδkl þ δilδjk − 3δikδjlÞ

þ ðd − 3Þðkikjδkl þ kiklδjk þ kkklδij þ kjkkδilÞ
�
: ðB10Þ
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The velocity v (or _μ in the magnetic case) that appears in the NLO pNRQED0 potential, involved in the calculation of
diagram (b) of Fig. 5, does not appear in Eq. (B9) for we have used hnjvjmi ¼ iΔEnmhnjxjmi (or the equivalent for the
magnetic case).
Since the LO electric-magnetic dipole potential is proportional to the energy, the corresponding two LO potential

exchange diagrams give a contribution more similar to Eq. (B9) than Eq. (B7):

~WðaÞ
M ¼

X0

m1;m1

½pEðn1; m2ÞijpBðn2; m2Þkl þ pBðn1; m1ÞijpEðn2; m2Þkl�

× ½ðd − 3Þkrks þ k2δrs�ϵrikϵsjl A2ðk2ÞΔEn1m1
ΔEn2m2

4ðd − 2ÞðΔEn1m1
þ ΔEn2m2

Þ : ðB11Þ

The last type of diagrams are formed by a potential interaction and an ultrasoft photon [diagrams (d) and (e) of Fig. 5].
The potential can be written as

~WðdþeÞ
y ¼ −

X0

m1;m2

pyðn1; m1Þijpyðn2; m2Þkl
�
λijklðdþeÞ;y

ΔE2
n1m1

JðΔEn1m1
Þ þ ΔE2

n2m2
JðΔEn2m2

Þ
ΔEn1m1

þ ΔEn2m2

− λijlkðdþeÞ;y
ΔE2

n1m1
JðΔEn1m1

Þ − ΔE2
n2m2

JðΔEn2m2
Þ

ΔEn1m1
− ΔEn2m2

�
; y ¼ E;B; ðB12Þ

with

λijklðdþeÞ;E ¼ 2ðd − 2Þ
d − 1

kjklδik

k2
; ðB13Þ

λijklðdþeÞ;B ¼ 2ðd − 2Þ
d − 1

ðkjkl − k2δjlÞδik
k2

: ðB14Þ

The equivalent contribution with two electric dipoles and two magnetic dipoles vanishes.

2. Long-range regime

The contributions to the WEFT0 potential of Sec. VA from the two-photon exchange diagrams in pNRQED (see Fig. 7)
generalized to any hydrogen atom state read

ð ~W0Þ1 loopLO;y ¼ −
X0

m1;m2

pyðn1; m1Þijpyðn2; m2Þkl
�

σijklLO;y

ΔEn1m1
þ ΔEn2m2

ðΔE2
n1m1

JðΔEn1m1
Þ þ ΔE2

n2m2
JðΔEn2m2

ÞÞ

−
σijlkLO;y

ΔEn1m1
− ΔEn2m2

ðΔE2
n1m1

JðΔEn1m1
Þ − ΔE2

n2m2
JðΔEn2m2

ÞÞ
�
; ðB15Þ

ð ~W0Þ1 loopNLO;y ¼ −
X0

m1;m2

pyðn1; m1Þijpyðn2; m2Þkl
�

σijklNLO;y

ΔEn1m1
þ ΔEn2m2

ðJðΔEn1m1
Þ þ JðΔEn2m2

ÞÞ

−
σijlkNLO;y

ΔEn1m1
− ΔEn2m2

ðJðΔEn1m1
Þ − JðΔEn2m2

ÞÞ
�
; ðB16Þ

ð ~W0Þ1 loop
N2LO;y

¼ −
X0

m1;m2

pyðn1; m1Þijpyðn2; m2Þkl
ΔE2

n1m1
ΔE2

n2m2

� σijkl
N2LO;y

ΔEn1m1
þ ΔEn2m2

ðΔE2
n2m2

JðΔEn1m1
Þ þ ΔE2

n1m1
JðΔEn2m2

ÞÞ

−
σijlk
N2LO;y

ΔEn1m1
− ΔEn2m2

ðΔE2
n2m2

JðΔEn1m1
Þ − ΔE2

n1m1
JðΔEn2m2

ÞÞ
�
; ðB17Þ
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where y ¼ E, B, M. In the case of electric dipole interactions we have

σijklLO;E ¼ −
1

2ðd − 1Þ ½δ
ijδkl þ δilδjk þ ðd2 − 6dþ 6Þδikδjl�; ðB18Þ

σijklNLO;E ¼ 1

24
½2ðkikjδkl þ kkklδij þ kiklδjk þ kjkkδilÞ þ 4ðd − 4Þðkikkδjl þ kjklδikÞ

þ k2ðδijδkl þ δilδjk þ ðd2 − 10dþ 22ÞδikδjlÞ�; ðB19Þ

σijkl
N2LO;E

¼ −
1

480
½ðd − 3Þk4ðδijδkl þ δilδjk þ ðd2 − 14dþ 46ÞδikδjlÞ þ 8ðd − 3Þkikjkkkl

þ 4ðd − 3Þk2ðkikjδkl þ kkklδij þ kiklδjk þ kjkkδilÞ þ 6ðd2 − 9dþ 18Þk2ðkikkδjl þ kjklδikÞ�; ðB20Þ

and, when the interaction is mediated by magnetic dipoles,

σijklLO;B ¼ −
1

2ðd − 1Þ ½δ
ijδkl þ δilδjk þ ðd2 − 2d − 2Þδikδjl�; ðB21Þ

σijklNLO;B ¼ σijklNLO;E; ðB22Þ

σijkl
N2LO;B

¼ σijkl
N2LO;E

: ðB23Þ

For electric dipoles interacting with magnetic dipoles the instantaneous dipole factor pMðn1; m1ÞijpMðn2; m2Þkl should be
understood as pEðn1; m1ÞijpBðn2; m2Þkl þ pBðn1; m1ÞijpEðn2; m2Þkl, and

σijklLO;M ¼ −
1

2
ðδijδkl − δilδjkÞ; ðB24Þ

σijklNLO;M ¼ d − 3

24
ϵrikϵsjlðk2δrs þ 2krksÞ; ðB25Þ

σijkl
N2LO;M

¼ −
ðd − 5Þðd − 3Þk2

480
ϵrikϵsjlðk2δrs þ 4krksÞ: ðB26Þ

The contribution to the WEFT potential from the one-loop diagram with seagull vertices in Fig. 8 for an arbitrary electric
polarization tensor [see Eq. (11)] reads

~Wseg
E ¼ −

π2αijn1α
kl
n2

16ðd − 1Þðdþ 1Þ ½2dðd − 2Þkikjkkkl − ðdþ 4Þk2ðkiklδkj þ kjkkδil þ kikkδjl þ kjklδikÞ

þ 2dk2ðkikjδkl þ kkklδijÞ þ k4ð2δijδkl þ 7ðδjkδil þ δikδjlÞÞ�A3=2ðk2Þ: ðB27Þ

Replacing the electric polarizabilities with the magnetic ones yields ~Wseg
B . For the case with electric-magnetic polarizability

couplings, we obtain

~Wseg
M ¼ π2

16ðd − 1Þðdþ 1Þ ðα
ij
n1β

kl
n2 þ βijn1α

kl
n2Þðϵrikϵsjl þ ϵrilϵsjkÞk2ðk2δrs þ dkrksÞA3=2ðk2Þ: ðB28Þ

3. Intermediate-range regime

The contribution of the one-loop pNRQED diagrams with two-photon exchanges of Fig. 10 to the WEFT potential for an
arbitrary hydrogen atom state is
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~W1 loop
y ¼ −

X0

m1;m2

pyðn1; m1Þijpyðn2; m2Þkl
��

κijlky02 þ κijlky22ΔE2
n1m1

ΔEn1m1
− ΔEn2m2

−
κijkly02 þ κijkly22ΔE2

n1m1

ΔEn1m1
þ ΔEn2m2

�
JðΔEn1m1

Þ

−
�
κijlky02 þ κijlky22ΔE2

n2m2

ΔEn1m1
− ΔEn2m2

þ κijkly02 þ κijkly22ΔE2
n2m2

ΔEn1m1
þ ΔEn2m2

�
JðΔEn2m2

Þ

þ
�
κijlky00 þ κijlky20ΔE2

n1m1
þ κijlky40ΔE4

n1m1

ΔEn1m1
− ΔEn2m2

−
κijkly00 þ κijkly20ΔE2

n1m1
þ κijkly40ΔE4

n1m1

ΔEn1m1
þ ΔEn2m2

�
Kðk2;ΔEn1m1

Þ

−
�
κijlky00 þ κijlky20ΔE2

n2m2
þ κijlky40ΔE4

n2m2

ΔEn1m1
− ΔEn2m2

þ κijkly00 þ κijkly20ΔE2
n2m2

þ κijkly40ΔE4
n2m2

ΔEn1m1
þ ΔEn2m2

�
Kðk2;ΔEn2m2

Þ

−
1

4

�
ðκijkly40 − κijlky40Þ

�
k2

4ðd − 1Þ þ ΔE2
n1m1

þ ΔE2
n2m2

�

− ðκijkly40 þ κijlky40ÞΔEn1m1
ΔEn2m2

þ ðκijkly20 − κijlky20Þ
�
A3=2ðk2Þ

�
; y ¼ E; B;M: ðB29Þ

The momentum-transfer-dependent coefficients read, for electric dipole interactions

κijklE40 ¼
1

dðd − 2Þ
�
3

k4
kikjkkkl þ 1

k2
½ðd − 1Þðkikkδjl þ kjklδikÞ − kikjδkl − kkklδij − kiklδkj − kjkkδil�

þ ½δijδkl þ δilδkj þ ðd2 − 4dþ 1Þδikδjl�
�
; ðB30Þ

κijklE20 ¼
1

4dðd − 2Þ
�
2ðd − 3Þ

k2
kikjkkkl − ðd − 2Þðkikjδkl þ kkklδij þ kiklδkj þ kjkkδilÞ

− ðd2 − 2d − 2Þðkikkδjl þ kjklδikÞ − 2k2½δijδkl þ δilδkj − ðd − 1Þδikδjl�
�
; ðB31Þ

κijklE00 ¼
1

16dðd − 2Þ ½ðd − 3Þðd − 1Þkikjkkkl þ ðd − 1Þk2ðkikjδkl þ kkklδij þ kiklδkj þ kjkkδilÞ

− ðdþ 1Þk2ðkikkδjl þ kjklδikÞ þ k4ðδijδkl þ δilδkj þ δikδjlÞ�; ðB32Þ

κijklE22 ¼
1

2dðd − 2Þ
�
3ð3 − dÞ

k4
kikjkkkl þ d − 3

k2
½kikjδkl þ kkklδij þ kiklδkj þ kjkkδil − ðd − 1Þðkikkδjl þ kjklδikÞ�

þ 2d − 3

d − 1
ðδijδkl þ δilδkjÞ − 2d2 − 4dþ 3

d − 1
δikδjl

�
; ðB33Þ

κijklE02 ¼
1

8dðd − 2Þ
�ð3 − dÞðd − 1Þ

k2
kikjkkkl − ðd − 1Þðkikjδkl þ kkklδij þ kiklδkj þ kjkkδilÞ þ ðdþ 1Þðkikkδjl þ kjklδikÞ

− k2ðδijδkl þ δilδkj þ δikδjlÞ
�
; ðB34Þ

and for magnetic dipole interactions

κijklB40 ¼ κijklE40; ðB35Þ

κijklB20 ¼ κijklE20; ðB36Þ

κijklB00 ¼ κijklE00; ðB37Þ

κijklB22 ¼ κijklE22 þ
2ðd − 2Þ
ðd − 1Þ δikδjl; ðB38Þ

κijklB02 ¼ κijklE02: ðB39Þ
For electric-magnetic dipole interactions the instantaneous
dipole factorpMðn1; m1ÞijpMðn2; m2Þkl shouldbeunderstood
aspEðn1;m1ÞijpBðn2;m2ÞklþpBðn1;m1ÞijpEðn2;m2Þkl, and
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κijklM40 ¼
ϵrikϵsjl

ðd − 2Þk2 ð−k
rks þ k2δrsÞ; ðB40Þ

κijklM20 ¼ −
ϵrikϵsjl

4ðd − 2Þ ½ðd − 3Þkrks þ k2δrs�; ðB41Þ

κijklM00 ¼ 0; ðB42Þ

κijklM22 ¼
ϵrikϵsjl

2ðd − 2Þk2 ½ðd − 3Þkrks þ k2δrs�; ðB43Þ

κijklM02 ¼ 0: ðB44Þ

APPENDIX C: SUMS OVER
INTERMEDIATE STATES

In this appendix, we present some cases in which the
sum over states can be explicitly performed. First, using
1 ¼ P

mjmihmj, we have

X
m

hnjxijmihmjxjjni ¼ hnjxixjjni ¼ hnjðxiÞ2jniδij; ðC1Þ

where in the last step we have made use of the reflection
symmetry xi → −xi for i ¼ 1, 2, 3. Everywhere in this
appendix the index i is understood as not summed.
Let ĥ0 ¼ −∇2

x=ð2mÞ − α=jxj; then it holds that

X
m

hnjxijmiΔEnmhmjxijni

¼ hnjxiðEn − ĥ0Þxijni

¼ 1

2
hnj½xi; En − ĥ0�xi þ xi½En − ĥ0; xi�jni

¼ i
2m

hnj½xi; pi�jni ¼ −
1

2m
; ðC2Þ

and for the case i ≠ j

X
m

hnjxijmiΔEnmhmjxjjni

¼ hnjxiðEn − ĥ0Þxjjni

¼ 1

2
hnj½xi; En − ĥ0�xj þ xi½En − ĥ0; xj�jni

¼ i
2m

hnjxipj − pixjjni ¼ i
2m

ϵijkhnjLkjni: ðC3Þ

Finally, when the sum over the states contains ΔE2
nm, it

holds that

X
m

hnjxijmiΔE2
nmhmjxjjni

¼ hnjxiðEn − ĥ0Þ2xjjni ¼ hnj½xi;En − ĥ0�½En − ĥ0;xj�jni

¼ 1

m2
hnjpipjjni ¼ 1

m2
hnjðpiÞ2jniδij: ðC4Þ

APPENDIX D: FOURIER TRANSFORMS

To evaluate the van derWaals potentials in position space
we have encountered the following Fourier transforms:

In;i1;…iLðRÞ ¼
Z

d3k
ð2πÞ3 e

ik·Rknk̂i1…k̂iL ; ðD1Þ

Hn;i1;…iLðRÞ ¼
Z

d3k
ð2πÞ3 e

ik·Rkn log k2k̂i1…k̂iL ; ðD2Þ

where k̂i ¼ ki=k, and k is the modulus of k. The product of
unit vectors can be decomposed into a sum of spherical
harmonics with angular momentum up to the total number
of unit vectors:

k̂i1…k̂iL ¼
XL
l¼0

Xl

m¼−l
Clm
i1…iL

Ym
l ðk̂Þ: ðD3Þ

Due to parity, Clm
i1…iL

vanishes for even (odd) values of l if
the number of unit vectors is odd (even). After substituting
Eq. (D3) into Eq. (D1) we obtain

In;i1;…iLðRÞ¼
XL
l¼0

Xl

m¼−l
Clm
i1…iL

Z
d3k
ð2πÞ3e

ik·RknYm
l ðk̂Þ: ðD4Þ

Using the Rayleigh expansion of the exponential, the
addition theorem and orthogonality of the spherical har-
monics we arrive at

In;i1;…iLðRÞ ¼
XL
l¼0

Xl

m¼−l
Clm
i1…iL

Ym
l ðR̂ÞIRnl; ðD5Þ

where IRnl is defined as

IRnl ¼
il

2π2

Z
∞

0

dkknþ2jlðRkÞ; ðD6Þ

with jl being the spherical Bessel functions and R the
modulus of R.
It may be convenient to rewrite Eq. (D5) as

In;i1;…iLðRÞ ¼
XL
l¼0

ðR̂i1…R̂iLÞlIRnl; ðD7Þ

with
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ðR̂i1…R̂iLÞl ¼
Xl

m¼−l
Clm
i1…iL

Ym
l ðR̂Þ; ðD8Þ

which is the sum of all the terms with angular momentum l.
The same procedure can be used for Hn;i1;…iL leading to a
formula analogous to Eq. (D7) but with IRnl replaced by

HR
nl ¼

il

2π2

Z
∞

0

dkknþ2 log k2jlðRkÞ: ðD9Þ

The coefficientsClm
i1…iL

can be obtained from R̂i1…R̂iL ¼P
L
l¼0

P
l
m¼−l C

lm
i1…iL

Ym
l ðR̂Þ using the orthogonality rela-

tions of the spherical harmonics. Then the sum in
Eq. (D8) can be performed using the addition theorem:

ðR̂i1…R̂iLÞl ¼ ð2lþ 1Þ
Z

dΩ0

4π
R̂0i1…R̂0iLPlðR̂0 ˆ·RÞ; ðD10Þ

where Pl are Legendre polynomials. Equation (D10) can be
evaluated usingZ

dΩ
4π

R̂i1…R̂iN

¼ δN;even

ðN þ 1Þ!! ðδ
i1i2…δiN−1iN þ permutationsÞ: ðD11Þ

The problem of finding the Fourier transforms of
Eqs. (D1) and (D2) reduces then to the problem of
computing the integrals IRnl and HR

nl [40]. We have that

IRnl ¼ il
2n

π3=2Rnþ3

Γðnþlþ3
2

Þ
Γðl−n

2
Þ ; −ðlþ 3Þ < n and

n ≠ lþ 2s; ∀ s ∈ N: ðD12Þ

The case n ¼ l can be obtained from the completion
integral of the spherical Bessel functions

IRll ¼ il
ð2lþ 1Þ!!

Rl δ3ðRÞ: ðD13Þ

This expression can be generalized to cases when
n ¼ lþ 2s, ∀s ∈ N by using the recurrence relations for
the spherical Bessel functions and proceeding by induction:

IRðlþ2sÞl ¼ ilð−1Þs ð2sÞ!!ð2lþ 2sþ 1Þ!!
Rlþ2s δ3ðRÞ; ∀ s ∈ N:

ðD14Þ

The integral HR
nl can be evaluated from Eq. (D12) by

noticing that log k2 ¼ ðk2ϵ − 1Þ=ϵ in the limit ϵ → 0, which
implies

HR
nl ¼ 2

dIRxl
dx

				
x¼n

: ðD15Þ

In Table I and Table II we list the radial integrals of
the Fourier transforms from n ¼ −2 to n ¼ 4 and for
l ¼ 0, 2, 4 for the cases without and with a log k2

respectively.
Finally, we reproduce the partial-wave decompositions

(D8) for two and four unit vectors [40]:

ðR̂iR̂jÞ2 ¼ R̂iR̂j −
1

3
δij; ðD16Þ

ðR̂iR̂jÞ0 ¼
1

3
δij; ðD17Þ

ðR̂iR̂jR̂kR̂lÞ4 ¼ R̂iR̂jR̂kR̂l −
1

7
ðR̂iR̂jδkl þ permutationsÞ

þ 1

35
ðδijδkl þ permutationsÞ; ðD18Þ

ðR̂iR̂jR̂kR̂lÞ2 ¼
1

7
ððR̂iR̂jÞ2δkl þ permutationsÞ; ðD19Þ

ðR̂iR̂jR̂kR̂lÞ0 ¼
1

15
ðδijδkl þ permutationsÞ; ðD20Þ

where in the parentheses all the index permutations have to
be added.

TABLE I. Results for the radial integrals Inl for n ¼ −2;…; 4 and l ¼ 0, 2, 4.

n In0 In2 In4

−2 1=ð4πRÞ −1=ð8πRÞ 3=ð32πRÞ
−1 1=ð2π2R2Þ −1=ðπ2R2Þ 4=ð3π2R2Þ
0 δ3ðRÞ −3=ð4πR3Þ 15=ð8πR3Þ
1 −1=ðπ2R4Þ −4=ðπ2R4Þ 24=ðπ2R4Þ
2 −6δ3ðRÞ=R2 −15δ3ðRÞ=R2 105=ð4πR5Þ
3 12=ðπ2R6Þ 24=ðπ2R6Þ 192=ðπ2R6Þ
4 120δ3ðRÞ=R4 210δ3ðRÞ=R4 945δ3ðRÞ=R4
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