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Neutrino masses and the number of light neutrino species can be tested in a variety of laboratory
experiments and also can be constrained by particle astrophysics and precision cosmology. A conflict
between these various results could be an indication of new physics in the neutrino sector. In this paper, we
explore the possibility for reconciliation of otherwise discrepant results in a simple model containing a light
scalar field which produces mass-varying neutrinos. We extend previous work on mass-varying neutrinos
to consider issues of neutrino clumping, the effects of additional contributions to neutrino mass, and
reconciliation of eV mass sterile neutrinos with cosmology.
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I. INTRODUCTION

Over the past 20 years, definitive evidence for neutrino
oscillations from a host of experiments has revealed that
neutrino masses are nonzero. Because neutrino masses
cannot be accounted for in the standard model (SM), this is
a clue to physics beyond the SM. Since oscillation experi-
ments are only sensitive to the difference in (squared)
masses, the overall mass scale is not known, and only two
mass differences have been conclusively established, the
so-called solar and atmospheric mass splittings, Δm2⊙ ≃
7.5 × 10−5 eV2 and Δm2

atm ≃ 2.4 × 10−3 eV2. It has also
been well established that the neutrino mixing matrix,
characterizing the mismatch between weak interaction and
mass eigenstates, involves large mixing angles, in stark
contrast to the quark sector. While they may seem like an
uninteresting example of new physics—we have seen other
chiral fermions obtain masses in the SM—neutrino masses
could differ in a fundamental way from other fermion
masses. Because neutrinos are not charged under electro-
magnetism, their mass generation mechanism could
involve Majorana masses, violating lepton number, while
the nonzero charges of the other fermions require their
masses to be of purely Dirac form. To generate neutrino
masses in a way that does not disturb the successful picture
we have of electroweak symmetry breaking, new neutrino
states that are uncharged under the electroweak gauge
group (or “sterile” neutrinos, as opposed to the “active”
ones that carry electroweak charge) are typically invoked.
Since they are gauge singlets, mass terms for these sterile
neutrinos need not involve Higgs fields, which means that
the mass scale in the sterile neutrino sector is largely a free
parameter. While there may be theoretical bias for this scale
to be very large compared to the weak scale, it is entirely

possible and self-consistent that it is within reach of current
experiments.
Indeed, there are phenomenological reasons to consider

a mass scale in the sterile neutrino sector as small as an eV.
Alongside this standard three neutrino picture, there have
been a number of experimental hints of neutrino oscilla-
tions characterized by a squared mass splitting of Δm2 ∼
Oð1 eV2Þ and a mixing angle θ ∼Oð0.1Þ; these include
short-baseline reactor experiments [1], the flux of neutrinos
from radioactive sources in gallium solar neutrino experi-
ments [2], and electron (anti)neutrino appearance in muon
(anti)neutrino beams [3]. To interpret these data in terms of
neutrino oscillations requires an additional (sterile) neu-
trino around an eVand a large mixing angle with the active
neutrinos. For detailed analyses, see, e.g., Ref. [4]. It should
be noted that there is generally tension between disappear-
ance and appearance data, as a recent search for νμ and ν̄μ
disappearance at IceCube [5] shows, disfavoring the sterile
neutrino interpretation of electron (anti)neutrino appear-
ance data. However, a global fit including the IceCube
results claims that a relatively large active-sterile mixing is
allowed [6].
Additionally, progress in the direct search for neutrino

masses has been ongoing. Searches using the end point in
tritium β-decay currently limit the electron neutrino mass to
less 2.05 eV at 95% C.L. [7]. The upcoming KATRIN [8]
and Project-8 [9] experiments hope to probe masses down
to about 0.1–0.2 eV in the near future. Conceivably, the
PTOLEMY experiment could use inverse beta decay to be
sensitive to cosmological neutrinos [10].
In parallel with progress in neutrino measurements,

cosmology has entered an era of impressive precision,
enabling cosmological tests of physics beyond the standard
model. We have direct observational evidence of the
state of the Universe up to temperatures of a few MeV,
corresponding to the time of neutrino decoupling and
primordial nucleosynthesis (BBN). The precise picture
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of the Universe we now have at these temperatures and
below allows for new physics below an MeV, even if
weakly coupled, to be confronted with observation.
Because (active or sterile) neutrinos interact very weakly

with the rest of the Universe after decoupling—acting as a
form of noninteracting radiation until they become non-
relativistic when they begin to act like dark matter—their
observational consequences are relatively easy to under-
stand. At early times, the cosmic microwave background
(CMB), structure formation, and BBN are all sensitive to
the energy density in neutrinos, which can be related to
their masses and, in the case of sterile neutrinos, their
mixing with the active neutrinos. The general agreement of
these data with the standard cosmological picture based on
three (essentially massless) neutrinos allows constraints to
be placed on additional sterile neutrinos or on the masses of
the active neutrinos. However, at late times, the neutrino
energy density is the only SM component that can have
nonstandard cosmology, which makes finding probes of
this behavior crucial.
In the case of a single massive sterile neutrino that is fully

thermalized at early times, an up-to-date fit to cosmological
observations gives an upper bound on its mass (assuming
the light, mostly active neutrinos’ masses are negligible) of
0.53 eV [11]. In the standard case of only three (active)
neutrinos, the Planck analysis of only CMB data constrains
the sum of the light neutrino masses to 0.675 eV [12].
Including further cosmological data improves the bounds to
0.3 eV [12,13]. Note that these upper limits are all at
95% C.L. Improved observations could allow values of the
sum of the active neutrino masses as small as 0.06 eV to be
probed [14]. Sterile neutrinos which are much lighter than
an eVand have similar abundance to the active neutrinos are
disfavored by the Planck determination of Neff [12].
At first glance, the null results from cosmological

analyses are in strong tension with the sterile neutrino
interpretation of the short-baseline anomalies. In addition,
the projected reach in the limit on the sum of the neutrino
masses in the standard three neutrino scenario coming from
cosmology seems to imply that current laboratory searches
will not be sensitive enough to see nonzero neutrino
masses. However, these conclusions rely on the assumption
of a standard cosmological history. Thus, one should view
contemporary terrestrial experiments seeking to measure
neutrino masses or to test the sterile neutrino solution to
short-baseline anomalies as nontrivial probes of cosmol-
ogy. Some scenarios that allow for cosmological observa-
tions to be compatible with eV mass neutrinos include
coupling the sterile (with respect to the SM) neutrinos to a
new U(1) gauge boson [15] or pseudoscalar [11,16],
allowing the sterile neutrinos to be chiral under a new
gauge group [17], or the possibility of resonant conversions
to lighter states at temperatures around a keV [18].
In this paper, we will focus on the reconciliation of eV

mass neutrinos with cosmology via the dependence of the

neutrino masses and mixing angles on the expectation
value of a nonconstant light scalar field. Neutrino masses
that vary cosmologically have been considered before to
address problems with dark matter [19] and the puzzle of
dark energy [20,21], but we will consider this possibility
more generally, including the possibility of additional
contributions to neutrino mass, the effects of neutrino
clustering, and models which do not give dark energy.
We will consider two scenarios. In Sec. II, we consider a
mass-varying neutrino (MaVaN) model containing a light
scalar field with a logarithmic potential. We find parameters
that allow for an eV mass sterile neutrino with sizable
mixing today, which does not conflict with cosmological
observation since the sterile neutrino was heavier at early
times. In Sec. III, we consider a scenario which allows the
observed, active neutrinos to have a mass which is today
around an eV. Because the masses were much lighter at
high redshift, cosmological observations indicate a much
smaller mass. In Sec. IV, we discuss a cosmologically
viable supersymmetric MaVaN scenario which could
allow eV mass sterile neutrinos to appear in terrestrial
experiments.

II. LOGARITHMIC POTENTIAL
AND AN eV STERILE NEUTRINO

A. Single active neutrino

We begin by describing a framework with one active
flavor and will discuss incorporating three flavors in
Sec. II B. We introduce an active (i.e., electroweak doublet)
neutrino, ν, and a sterile (i.e., electroweak singlet) neutrino,
N. After electroweak symmetry breaking, their masses are
generated by

Lmass ¼ −mDνN −mNNN þ H:c: ð1Þ

As is well known, in the limit mD ≪ mN , this leads to a
light, mostly active neutrino, ν̂ ¼ νþ θN, with a massm≃
m2

D=mN and a heavy, mostly sterile neutrino, N̂ ¼ N − θν,
with mass M ≃mN . (We use hats here and below to
denote mass eigenstates.) The active-sterile mixing angle is
θ≃ ffiffiffiffiffiffiffiffiffiffiffi

m=M
p

.
The short-baseline reactor anomaly suggests oscillations

between active (electron in this case) and sterile neutrinos
with a mixing angle of Oð0.1Þ and a squared mass splitting
of Oð1 eV2Þ. This can easily be accounted for by choosing
m ∼ 0.01 eV and M ∼ 1 eV. This simple explanation of
short-baseline anomalies is in tension with cosmological
observations because the heavy neutrino with a mass
∼1 eV will be in thermal equilibrium at the time neutrinos
decouple, due to its relatively large admixture of active
neutrinos [22].
However, as mentioned above, there are well-motivated

scenarios where this conclusion does not hold. One of
the simplest possibilities is when the sterile neutrino’s
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Majorana mass depends on the value of a scalar field which
we call A. Because the light neutrino mass is determined by
the Majorana mass, it also depends on A, and therefore a
finite density background of light neutrinos can give
corrections to the potential for A. Since the density of
neutrinos is determined by the temperature, these correc-
tions can cause the value of A to vary with temperature (or,
equivalently, time, as the Universe cools).
To see this, consider the contribution at a temperature T

to the energy density from the light neutrino, the mass
mðAÞ of which varies with the scalar field A,

δVðA; TÞ ¼ 2 ×
Z

d3p
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2ðAÞ

p
ep=T þ 1

: ð2Þ

The effective potential for A is given by its zero temperature
scalar potential, V0, and the contribution from the neutrino
background,

VðA; TÞ ¼ V0ðAÞ þ δVðA; TÞ: ð3Þ

We first consider a logarithmic scalar potential [20],

V0 ¼ Λ4 log

�
1þ

����Aσ
����
�
; ð4Þ

with σ small compared to the range of relevant A values.
We will discuss a quadratic potential in Sec. IV when we
introduce the supersymmetry (SUSY) version of theory.
Taking the light neutrino to be relativistic, the full scalar
potential at finite T is

VðA;TÞ¼Λ4 log

�
1þ

����Aσ
����
�
þm2ðAÞT2

24
þOðm4ðAÞÞ: ð5Þ

We assume, quite generally, that the sterile neutrino mass
has A-dependent and -independent terms,

mNðAÞ ¼ m0 þ κA: ð6Þ

In this case, the light neutrino mass is mðAÞ ¼
m2

D=ðm0 þ κAÞ, resulting in an effective potential of

VðA; TÞ ¼ Λ4 log
�
1þ

����Aσ
����
�
þ m4

DT
2

24ðm0 þ κAÞ2 : ð7Þ

The first term tends to push the scalar field toward smaller
values, while the second (the importance of which increases
at high T) prefers larger values of A; the interplay of the two
determines the value of A that minimizes the effective
potential. At high temperatures, κA can be large compared
to m0. When this is the case, minimizing the effective
potential results in A ∝ T so that the heavy (mostly sterile)
neutrino tracks the temperature, M ∝ T. The light neutrino
mass is therefore smaller at large temperatures, mν ∝ T−1.

At some temperature, κA becomes comparable to m0.
A then moves toward its minimum as determined by V0,
and the neutrino masses approach the temperature-
independent values M ≃m0 and m≃m2

D=m0.
We illustrate this behavior in Fig. 1, showing the

neutrino masses and A as functions of temperature for
Λ¼3.4×10−2 eV, mD¼0.22 eV, m0¼1 eV, and κ¼10−6.
We have also taken σ ¼ 0.01 eV, although, so long as
jA=σj ≫ 1 during the time that A significantly affects the
neutrino masses, the precise value of σ is unimportant.
(The region of insensitivity to the value of σ can then be
translated to m0=κσ ≫ 1.)
Although the heavy neutrino’s mass is chosen to be 1 eV

today, it is always large compared to the temperature so that
its number density is exponentially suppressed and it has no
cosmological impact. Correspondingly, the light neutrino
mass grows until it reaches a present-day value of 0.05 eV
around T ¼ 0.1 eV. Since the active neutrino becomes
nonrelativistic after its mass becomes independent of
temperature, it will act as having a mass m≃m2

D=m0 ¼
0.05 eV with regard to its impact on cosmology. (Note that,
although mD=mN ∼ 0.2 at late times, this leading value for
the light neutrino mass is accurate to better than 10% which
does not noticeably affect our analysis.) The active-sterile
mixing angle is θ≃ ffiffiffiffiffiffiffiffiffiffiffi

m=M
p ¼ 0.2 today and decreases

like T−1 for T > 0.1 eV.

B. Including three active neutrinos

Expanding this simple scenario to incorporate three
active flavors so that the broad range of neutrino oscillation
data can be described is straightforward. The Dirac and
Majorana masses become matrices,

FIG. 1. Mostly active and mostly sterile neutrino masses,m and
M, respectively (solid, black), as functions of the temperature for
a logarithmic scalar potential of Eq. (4) with Λ ¼ 3.4 × 10−2 eV
and σ ¼ 0.01 eV. The Majorana mass depends on the scalar field
A as in Eq. (6) with m0 ¼ 1 eV and κ ¼ 10−6. The Dirac mass is
taken to bemD ¼ 0.22 eV. Also shown is the value of κA (dotted,
red). For convenience, the gray, dashed line shows where the
mass is equal to the temperature.
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Lmass ¼ −mDαiναNi −mNijNiNj þ H:c:; ð8Þ

where α ¼ e, μ, τ labels the active flavors while i, j label
the sterile neutrinos (there must be at least two to generate
the solar and atmospheric mass splittings). For definiteness,
we use three sterile neutrinos. In the basis where mNij ¼
mNiδij is diagonal, taking a Dirac mass matrix of the form

mD ¼

0
BBBBB@

−
ffiffi
2
3

q
m̄1

ffiffi
1
3

q
m̄2 0ffiffi

1
6

q
m̄1

ffiffi
1
3

q
m̄2

ffiffi
1
2

q
m̄3ffiffi

1
6

q
m̄1

ffiffi
1
3

q
m̄2 −

ffiffi
1
2

q
m̄3

1
CCCCCA ð9Þ

leads to light neutrinos, ν̂i, with masses mi ¼ m̄2
i =mNi and

a light neutrino mixing matrix, U, that is approximately
tribimaximal.1 The effective potential in Eq. (5) now reads

VðA; TÞ ¼ Λ4 log

�
1þ

����Aσ
����
�
þ
X
i

m2
i ðAÞT2

24
; ð10Þ

where the sum runs over each of the light neutrinos.2

Allowing the sterile neutrino masses to depend on the
scalar via mNi ¼ m0i þ κiA results in heavy, mostly sterile
neutrinos with masses Mi ∝ T at large T and Mi ≃m0i at
low temperatures. This pattern of couplings results in three
active-sterile mixing angles θi ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=Mi

p
. Just as in the

simple one-flavor case described above, in the early
Universe, the light, mostly active neutrinos have masses
that scale like T−1, while the heavy mostly sterile
neutrinos’ masses go like the temperature, kinematically
blocking their production, rendering them cosmologically
unimportant.
The mass splittingsΔm2

ij ¼m2
i −m2

j can be fixed to have
present-day values of Δm2

21¼Δm2⊙≃7.5×10−5 eV2 and
jΔm2

31j ¼ Δm2
atm ≃ 2.4 × 10−3 eV2. If we wish to explain

the short-baseline reactor anomaly, then we are forced to
take m1 ≃m2 ∼Oð0.01 − 0.1 eVÞ (and most naturally
M1 ≃M2 ∼ 1 eV) since the anomalies involve either
electron neutrino appearance or disappearance and only
ν̂1 and ν̂2 have appreciable admixtures of νe. The third light
neutrino, ν̂3, can either be taken to be much lighter than
the other two, which requires m1 ≃m2 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p ≃
0.05 eV, or roughly degenerate with ν̂1;2, with

m1;2;3 ∼ 0.1 eV. The mixing angle controlling electron
neutrino disappearance is then θee ≃ θ1;2 ∼ 0.1, as needed
to explain the reactor anomaly. Electron (anti)neutrino
appearance data are more difficult to fit in this model
because the νμ → νe probability is suppressed by the
typical factor of θ41;2 [4] as well as by a further factor of
θ213 ≪ 1.
In Fig. 2, we show the neutrino masses as a function of

temperature in the three flavor case with an inverted
hierarchy. In this case, the value of the scalar field is
determined by Eq. (10). We have taken κ1¼κ2¼κ3¼10−6,
m01 ¼ m02 ¼ 1 eV, and m03 ¼ 10 eV. The Dirac mass
matrix is given by Eq. (9) with m̄1 ¼ 0.22 eV≃ m̄2 and
m̄3 ¼ 0.1 eV. As in Sec. II A, Λ ¼ 3.4 × 10−2 eV, and
σ ¼ 0.01 eV.

C. Acceleron as dark energy

In the simple model above, the scalar field A is no longer
held away from its true vacuum value at late times, and,
consequently, it has no connection to dark energy. Here, we
describe a way of modifying the model above to allow
for one of the light neutrinos to continue holding A, the
“acceleron,” away from its true vacuum value, allowing for
an explanation of the dark energy we observe. Explaining
dark energy was the original motivation for the mass-
varying neutrino scenarios we have been considering
[20,21]. This dark energy explanation assumes that the
true cosmological constant is zero for some reason that
does not show up in new particle physics, as in Ref. [24].
We do not address why the true cosmological constant is
zero—for a discussion of this problem, see review articles
such as Refs. [25].
We will begin with the three-flavor model with a

logarithmic scalar potential described above, but assume

FIG. 2. The masses of the mostly active and mostly sterile
neutrinos, mi and Mi, respectively, in the three flavor case as
functions of the temperature for a logarithmic scalar potential of
Eq. (10). The hierarchy is inverted, and m1, M1 are shown in
black, solid; m2, M2 are shown in black, dashed; and m3, M3 are
shown in black, dotted. We also plot the value of κA (dotted, red)
and the line where the mass is equal to the temperature (gray,
dashed). For details, see Sec. II B.

1Deviating from exact tribimaximal mixing to accommodate
the data, in particular Ue3 ≠ 0, is easy to accomplish by
modifying the texture of the Dirac mass matrix slightly.

2For now, the temperature-dependent contributions to the
effective potential only matter when each of the light neutrinos
is relativistic, so we do not have to worry about whether the
neutrino background is unstable when they go nonrelativistic, as
discussed in Ref. [23]. We return to this point in Sec. II C.

GHALSASI, MCKEEN, and NELSON PHYSICAL REVIEW D 95, 115039 (2017)

115039-4



that the A-independent contributions to the sterile neutrino
Majorana masses are negligible,m0i ¼ 0 so thatmNi ¼ κiA
(as before, we work in a basis where the Majorana mass
matrix is diagonal). We use a Dirac mass matrix as given in
Eq. (9) and will be assuming that ν̂1 ∝ 2νe − νμ − ντ and
ν̂2 ∝ νe þ νμ þ ντ are nearly degenerate (as before, we
assume a tribimaximal mixing matrix). We now add
Majorana masses for the active neutrinos of the form

Lmass ⊃ −μ
�
νeνe þ

1

2
ðνμ þ ντÞ2

�
þ H:c:

¼ −μðν̂1ν̂1 þ ν̂2ν̂2Þ þ H:c: ð11Þ

This gives a common Majorana mass of μ for ν̂1 and ν̂2.
Such masses could be generated by integrating out another
set of Majorana sterile fermions (that do not couple
strongly to A). Given a hierarchy between the Dirac masses
and the sterile Majorana masses, the heavy neutrino masses
are simply Mi ≃ κiA, and the masses of the light, mostly
active neutrinos are m1≃m2≃ jμ− m̄2

1;2=κ1;2Aj and m3 ≃
m̄2

3=κ3A. The active-sterile mixing angles are θi ≃ m̄i=Mi.
An important consideration in this scenario is the

instability to collapse which occurs when a neutrino
becomes nonrelativistic [23,26]. These nonrelativistic neu-
trinos form “nuggets” and are no longer a cosmologically
relevant background when computing the effective poten-
tial of the acceleron. Hence, they no longer help to “hold
up” the acceleron vacuum expectation value (vev). In the
Appendix, we show details of the calculation of the
temperature at which this instability develops.
Because of this, we work with an inverted hierarchy

m3 ≪ m1;2; the lightest neutrino is responsible for support-
ing A today, while the heavier two, which have an
appreciable admixture of electron neutrinos, provide for
oscillations into sterile neutrinos withΔm2 ≃ 1 eV2. In this
case, at high temperatures when all of the light neutrinos
are relativistic, the sum in the effective potential of Eq. (10)
runs over i ¼ 1, 2, 3, and ν̂1 and ν̂2 are dominantly
responsible for keeping the acceleron away from its true
minimum. The potential at this time is

VðA; TÞ≃ Λ4 log

���� μ0
mþ μ

����þmnν; ð12Þ

wherem ¼ m1 ≃m2 and nν is the sum of ν̂1 and ν̂2 number
densities. Minimizing the potential then leads to A ∝ T2. At
some point after ν̂1 and ν̂2 go nonrelativistic, the sum in
Eq. (10) only includes i ¼ 3. The value of A that minimizes
the effective potential is determined by ν̂3, so that A ∝ T.
We show the masses of the neutrinos as functions of the
temperature in Fig. 3, setting μ¼−0.05 eV, m̄1;2 ¼ 0.1 eV,
m̄3 ¼ 0.031 eV, κ1;2¼ 1, κ3 ¼ 3.3, andΛ ¼ 9.3 × 10−5 eV.
As shown in the Appendix, given these parameters, ν̂1;2
stop supporting the A vev at T ≃ 2 × 10−4 eV. Note that,

due to the presence of a Majorana mass for the active
neutrinos, the conclusion of Ref. [27] where a cascade of
nugget formation occurs after the heaviest neutrino goes
nonrelativistic does not apply.
To get a vacuum energy density ∼10−11 eV4 requires a

very large value for the logarithm in the scalar potential.
This could perhaps be most natural in a scenario where
a dilatonlike field, ϕ, is the dynamical origin of the
A-dependent contribution to the Majorana mass and
A ¼ A0 exp ðϕ2=f2Þ. Another possibility is a more conven-
tional quintessence model with an acceleron Compton
wavelength on the order of the Hubble scale. In such a
model, neutrino masses evolve but do not collapse to form
nuggets, even when nonrelativistic. In this case, the light
neutrinos can be quite massive today, of order an eV.3

The effects of such massive MaVaNs on CMB and structure
have been explored in Ref. [28].

III. LOGARITHMIC POTENTIAL AND ACTIVE
NEUTRINOS AT AN eV

We now turn to the question of whether the observed
active neutrinos can have masses around an eV today.
Neutrinos can free stream over cosmological distances

and thus damp perturbations on a scales smaller than the
free streaming scale. For standard neutrinos with the sum of
their masses Σmν ∼ 1 eV, this effect is observable via the
suppression of the matter power spectrum on scales smaller
than the free streaming scale. The larger the neutrino

FIG. 3. Mostly active and mostly sterile neutrino masses, mi
and Mi respectively, as functions of the temperature for a
logarithmic scalar potential of Eq. (4), with Λ¼ 9.3×10−5 eV,
in the case where ν̂1;2 have (equal) nonzero, A-independent
Majorana masses, μ ¼ −0.05 eV. The sterile neutrino Majorana
masses are mNi ¼ κiA with κ1;2 ¼ 1, κ3 ¼ 3.3. The Dirac masses
are m̄1;2 ¼ 0.1 eV, m̄3 ¼ 0.031 eV. The gray, dashed line shows
where the mass is equal to the temperature. ν̂1;2 no longer
contribute to the effective A potential when T ≲ 2 × 10−4 eV (see
Appendix for details).

3The neutrinos’ masses locally today in this case would be
smaller due to the relative overdensity of neutrinos in our galaxy
cluster.
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masses, the larger the energy density contained in them
around matter-radiation equality when structures start to
grow. Hence, the damping of the matter power spectrum on
scales smaller than the free streaming scale is more
pronounced as the masses of the neutrinos are increased.
Large scale structure surveys which are sensitive to the
matter power spectrum can therefore put an upper limit on
Σmν (for details, see, e.g. Ref. [29]).
However, mass-varying neutrinos can act like massless

neutrinos during and after matter-radiation equality and
become massive at much lower redshifts. Here, we con-
struct a phenomenologically viable scenario using the
framework described in Sec. II, with a logarithmic scalar
potential for the field A. For simplicity, let us consider the
case of one active and one sterile neutrino, leading to an
effective potential like that in Eqs. (5) and (7). Generalizing
this, as in Sec. II B, to three flavors (that are nearly
degenerate since we will be describing active neutrinos
with a mass around an eV today) is straightforward.
We assume that m0 ¼ 0 in Eq. (6). At high temperatures,
when the light neutrino is relativistic, minimizing the
potential in Eq. (7) leads to a light, mostly active, neutrino
of mass mðTÞ≃ ffiffiffiffiffi

12
p

Λ2=T and a heavy, mostly sterile
neutrino with mass MðTÞ≃m2

DT=
ffiffiffiffiffi
12

p
Λ2. As mentioned

in the previous section, the light neutrinos condense to form
nuggets after going nonrelativistic and stop supporting
the scalar field, which settles to its minimum at A ¼ 0. We
show in the Appendix that this occurs when T ≃mðTÞ=10.
The energy density stored in the cosmological neutrinos is
now stored in the nuggets which redshift like matter. Since
the Majorana mass of the active neutrinos vanishes when
A ¼ 0 after the acceleron is no longer held up, the active
and sterile neutrinos pair up to form a Dirac fermion of
mass mD. This mass is independent of the temperature and
can be much larger than the mass of the light neutrinos
when they went nonrelativistic.
In order to illustrate our point, let us consider mD ¼

1 eV and Λ ¼ 10−3 eV. We plot the light neutrino mass vs
temperature in Fig. 4. As can be seen, the neutrino acts
effectively massless around the matter-radiation equality.
After the neutrino becomes nonrelativistic at T ∼ Λ, it stops
supporting the acceleron, and the sterile neutrino Majorana
mass vanishes. The sterile and active neutrinos then form
a Dirac fermion of mass mD which is independent of
temperature. This is the mass that is relevant for terrestrial
neutrino mass experiments, e.g., searches for end points
in β-decay spectra. However, the relevant mass of the
neutrino from the standpoint of experiments which measure
the matter power spectrum can be approximated to be
the mass when the neutrino becomes nonrelativistic, i.e.
m ∼ Λ ≪ mD.
To see this in further detail, we show the energy density

stored in the neutrinos (and nuggets after their formation) as
the temperature varies in Fig. 5. We also show the energy
density of a constant 0.1 eV mass neutrino, which is

roughly the upper limit on
P

mν=3 from cosmological
observations. We see that the energy density in the mass-
varying neutrino in this case is never greater than that in
the constant 0.1 eV neutrino. Indeed, the temperature-
dependent energy density in the mass-varying neutrino is
roughly what one would find for a constant mass neutrino
of mass ∼Λ ¼ 10−3 eV.
A signal of this mechanism would be detection of an eV

scale neutrino mass in tritium beta decay of Refs. [8,9], but
with no signature in double beta decay or in searches for
massive cosmological neutrinos [10], since the cosmologi-
cal neutrinos would be clustered and it is unlikely that we
would be inside a nugget.

IV. SUPERSYMMETRIC POTENTIAL

MaVaNs theories can be made supersymmetric [21,30],
which is well motivated by the necessity of including a light
scalar. In this case, however, the scalar potential is con-
strained to be quadratic in the acceleron field, and not

FIG. 4. The masses of the light, mostly active and heavy, mostly
sterile neutrinos, m and M respectively, in a single active flavor
scheme as a function of temperature form0 ¼ 0,mD ¼ 1 eV, and
Λ ¼ 10−3 eV. When T ≃m=10, the light neutrino ceases sup-
porting the A vev and the sterile Majorana mass vanishes. The
sterile and active neutrinos then form a Dirac fermion.

FIG. 5. The neutrino energy density as a function of temper-
ature for m0 ¼ 0, mD ¼ 1 eV, and Λ ¼ 10−3 eV (solid, black).
Also show are the energy densities for constantmass neutrinos of
mass 0.1 eV (dashed, red) and zero (dotted, gray).
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logarithmic as we have so far considered. Dark energy may
be obtained via the acceleron-sneutrino coupling, which
creates an effective sneutrino potential with a minimum
which differs from the vacuum configuration.
Let us begin by briefly describing the supersymmetric

MaVaNs theory of a single active neutrino. The super-
potential of this theory after electroweak symmetry break-
ing is

W ¼ κannþmDνn; ð13Þ

where ν, n, and a are the superfields containing the
active neutrino, sterile neutrino, and acceleron, respec-
tively. Including both SUSY-preserving and -breaking
interactions, the scalar potential is

Vscalar ¼ μ ~N
2j ~Nj2 þm2

AjAj2 þ 4κ2jAj2j ~Nj2
þ κ2j ~Nj4 þ const; ð14Þ

with ~N the sterile sneutrino and the constant such that the
true minimum of the potential is at Vscalar ¼ 0. Radiative
corrections drive μ ~N

2 to negative values of order −m2
D,

which means that h ~Ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ ~N

2=2κ2
q

∼OðmD=κÞ at the

true minimum of the potential. As before, the acceleron
field is driven to large values at finite temperature due to
the contribution to the effective potential from the light

neutrino density. If A >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ ~N

2=4κ2
q

∼OðmD=κÞ, then the
sneutrino is trapped at a local minimum with energy
density μ ~N

4=4κ2 ∼Oðm4
D=κ

2Þ.
The effective potential that determines the finite-

temperature value of the acceleron is

VðA; TÞ ¼ m2
AjAj2 þ

m2ðAÞT2

24

¼ m2
AjAj2 þ

m4
DT

2

24κ2jAj2 ; ð15Þ

where we have assumed that the neutrino mass matrix is of
the seesaw form. Minimizing this results in

AðTÞ ¼ mD

241=4

ffiffiffiffiffiffiffiffiffi
T

κmA

s
; ð16Þ

in contrast to the case of a logarithmic potential where
A ∝ T.
The acceleron mass term receives SUSY-breaking radi-

ative corrections, and, in the absence of fine tuning, we
expect m2

A ≳ κ2m2
D. Therefore, to keep the sneutrino in the

false minimum today when T ¼ T0 ≃ 10−4 eV requires
that mD ≲ T0 in a natural theory.
We now discuss how to extend this treatment to the case

of three active neutrinos which means that the couplings κ

and mD are now matrices. As in Ref. [21], a viable set of
parameters involves the acceleron vev being held up by
the lightest neutrino, which remains relativistic today.
To connect with short-baseline anomalies, it is phenom-
enologically motivated to take an inverted mass hierarchy
so that the smallest neutrino mass is m3. Like in Sec. II B,
we work in a basis where the matrix κij ¼ κiδij is diagonal
and the Dirac mass matrix is of the form in Eq. (9). We
take the Dirac mass corresponding to the lightest neutrino
to be m̄3¼ 10−5 eV and κ3 ¼ 10−5. This gives a present-
day dark energy density of the correct order of magnitude
∼10−11 eV4.
To avoid having to fine-tune away large radiative

contributions to the acceleron mass coming from the
neutrinos of larger mass, we take κ1;2 ≪ κ3. (We will state
more precise values for κ1;2 below.) If this is the end of
the story for the neutrino masses, then ν̂1;2 are essentially
Dirac fermions containing the active and sterile neutrinos
orthogonal to ν̂3 and N̂3, which does not allow for any mass
splitting in this system ∼1 eV. To fix this, we can add an
acceleron-independent contribution to the sterile neutrino
masses as we did in Sec. II through the superpotential term
W ⊃ mNijninj which leads to terms in the scalar potential
mN

2
ij
~Ni

~N�
j . If we assume that the terms in this mass matrix

involving i, j ¼ 3 are suppressed and the nonzero eigen-
values of this matrix are Oð1 eVÞ, then there will be a pair
of a sterile neutrinos mass of around an eV, allowing for
oscillations of the active neutrinos with Δm2 ≃ 1 eV2.
Furthermore, the contribution to the scalar potential from
mNij pushes ~N1;2 → 0, simplifying the analysis of the
scalar potential which is then essentially that of a single
sterile state as in Eq. (14), involving only the acceleron
and ~N3. Describing atmospheric neutrino oscillations then
requires m̄1 ≃ m̄2 ≃ 0.22 eV so that m1 ≃m2 ≃ 0.05 eV.
Because, as we see in Eq. (16), A ∝

ffiffiffiffi
T

p
, the sterile

neutrinos are not kinematically forbidden from being
produced in the early Universe, unlike the case of the
logarithmic potential. This could be in strong conflict
with cosmological bounds, and furthermore a large sterile
neutrino density will affect the acceleron potential,
driving the acceleron to small values, ruining this mecha-
nism as an explanation of the dark energy. This can be
simply avoided by a Planck-suppressed coupling of the
acceleron to electrons, L ⊃ βeðme=MPlÞAēe, where βe is a
coupling and MPl is the Planck mass, as described in
Ref. [31]. Fifth force tests limit jβej≲ 4. At temperatures
above the electron mass, the (mostly) neutrino masses are
roughly

Mi ≃ 3 MeVβe

�
κi

10−10

��
T

1 MeV

�
2
�
10−11 eV

mA

�
2

: ð17Þ

As previously mentioned, the acceleron receives
quantum corrections, and in a natural theory we expect
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m2
A ≳P

iκ
2
i m̄

2
i . For the values of m̄3 and κ3 given above,

an acceleron mass of around 10−11 eV requires a modest
10% fine-tuning and limits κ1;2 ≲Oð10−4κ3Þ ∼ 10−9.
Production of sterile neutrinos at T ≳MeV is therefore
suppressed if βe ∼Oð1Þ, which is enough to bring the
scenario into agreement with cosmological limits. For
further details and constraints, see Ref. [31].

V. CONCLUSIONS

In this paper, we have described several situations
involving mass-varying neutrinos that allow for either
active neutrinos or sterile neutrinos with a large active-
sterile mixing to have masses around an eV and yet still be
compatible with strong limits from cosmological observa-
tions. Along with “secret” neutrino interactions [11,15–18],
this possibility illustrates the necessity of combining
cosmological probes of neutrino properties with terrestrial
experiments. Combining both probes allows us to test
whether neutrinos have richer structure than expected in
ways that cosmological observations or terrestrial experi-
ments alone cannot.
MaVaNs are motivated by attempts to understand dark

energy. It is interesting that they can also modify neutrino
cosmology to allow recent hints for eV-scale sterile
neutrinos to be reconciled with cosmological observa-
tions or for the active neutrinos to have masses within the
reach of near future experiments today. In addition, it is
worth mentioning that, unlike the case of other secret
neutrino interactions, the (mostly) sterile neutrinos in this
scenario with a logarithmic potential are kinematically
forbidden from being produced at late times and therefore
do not suffer from the problem that they are produced in
late-time collisions, upsetting agreement with cosmologi-
cal observations [32].
In the case of a logarithmic tree-level potential, keeping

the scalar potential flat enough for a dark energy solution in
the presence of quantum corrections requires that the
neutrinos the scalar couples to are lighter than ∼eV today.
In the phenomenological cases with this potential that we
studied in Secs. II and III, we were forced to abandon this
explanation of the dark energy, and loop-level corrections
to the scalar potential do not alter our discussion. For
detailed discussion of quantum corrections in the loga-
rithmic potential case, see Ref. [20]. The requirement of a
light scalar field for the MaVaNs scenario to explain dark
energy suggests that this sector could be supersymmetric
[21]. Properly supersymmetrizing the theory adds addi-
tional constraints and requires introducing very weak
couplings of this light field to charged fermions in order
to make the sterile neutrinos heavy at early times. Besides
cosmological observations and neutrino experiments, these
weak couplings offer perhaps the best way of testing the
scenario, through, e.g., searches for fifth forces at large
distance scales [33] or electron-density-dependent neutrino
masses [34,35].

Interactions between light scalars and active neutrinos
can prevent active neutrinos from freely streaming and lead
to observable signatures in the CMB [36]. In the scenarios
we have considered, the active neutrino-scalar coupling
is too small to be constrained by these considerations.
It would be interesting to study such CMB signatures and
their complementarity with other terrestrial observables in
nonstandard neutrino scenarios.
We have extended earlier work on MaVaNs to take into

account the effects of neutrino clustering, to add additional
contributions to neutrino mass and additional couplings in
the scalar sector. We have been able to exhibit models in
which eV mass sterile neutrinos appear in present day
neutrino oscillation experiments but do not affect precision
cosmology and in which active neutrinos could have eV
scale masses today but not in the early Universe.
Neutrino masses, inflation, dark matter, baryogenesis,

and dark energy all show that there must be new physics
beyond the standard model. We do not know the energy
scale, but neutrino masses and dark energy indicate a
physical scale of order 10−4–10−2 eV. It would be remiss of
us to simply adopt theoretical prejudice and assume that
such new physics does not involve any new light particles.
If there is such a new physics, then precision cosmology
and laboratory measurements are not necessarily simply
different ways of measuring the same neutrino properties.
As an illustration of the possibilities, in this paper, we have
explored models containing light sterile neutrinos coupled
to a light scalar in which laboratory and cosmological
measurements which would give seemingly inconsistent
results can instead be interpreted as evidence for a new light
sector, which could be the origin of dark energy.
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APPENDIX: INSTABILITY IN MAVANS

As pointed out in Ref. [23], there is a inherent instability
in the neutrino-acceleron fluid when the neutrinos go
nonrelativistic. The end result of the instability is that
the neutrinos condense to form “neutrino nuggets” which
then redshift like matter. To see this easily, one can treat the
neutrino-acceleron fluid hydrodynamically. Let us do an
illustrative back of the envelope calculation to demonstrate
the instability. The accurate result from the full Boltzmann
calculation is given by (A4).
To simply illustrate the instability, let us first assume that

there is just one light neutrino and that its mass is inversely
proportional to the scalar field, m ∝ 1=A. We will general-
ize to the case of more than one active neutrino flavor and
other functional forms for the light neutrino mass below.
When the neutrinos are nonrelativistic, the effective poten-
tial from Eqs. (2) and (3) is
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VðA; TÞ ¼ Λ4 log

���� σ0m
����þmnν; ðA1Þ

where σ0 is a scale and nν is the light neutrino number
density. Minimizing this potential with respect to A gives

nν ¼ −
∂V0

∂m ≃ Λ4

m
; ðA2Þ

so that the light neutrino energy density is roughly constant,
ρν ≃mnν ≃ Λ4.
Now, we calculate the speed of sound of the neutrino-

acceleron fluid. The fluid’s pressure is P ¼ −ρa þ wνρν
where ρa ¼ V0 is the energy density stored in the acceleron
field and wν is the neutrino’s equation of state parameter.
Since the neutrino is nonrelativistic, wν ≃ 0. The energy
density of the fluid is given by ρ ¼ ρν þ ρa. The speed of
sound is related to the rate of change of the pressure and
energy density,

c2s ¼
_P
_ρ
≃ −

_ρa
_ρa
¼ −1; ðA3Þ

where we have used the fact that ρν is approximately
constant. Because density perturbations evolve in time as
e−icst, an imaginary component to cs signals an instability,
and we see that the neutrino-acceleron fluid is unstable
when the neutrinos are nonrelativistic.
A more sophisticated picture can be obtained from a

kinetic theory treatment where the speed of sound is
determined by [23]

c2s ¼
1

m
∂V0

∂m
�∂2V0

∂m2

�−1

×

�
1þhp2i

T2
ðc2s þ c−2s − 2Þ

�
T
m

�
2

þO

�
T
m

�
4
�
: ðA4Þ

Again, the fluid becomes unstable when the speed of
sound, as found by this relationship, develops an imaginary
component. Below, we use this expression to determine the
temperature at which the neutrino-acceleron fluid becomes
unstable for the scenarios considered in Secs. II C and III.
In Sec. II C the heavier, mostly active neutrinos ν̂1

and ν̂2 get contributions to their masses from the active
Majorana mass μwhich are independent of acceleron vev as
well as contributions that depend on the acceleron vev.

Taking m1 ≃m2 ≡m, we rewrite the logarithmic part of
the acceleron potential in terms of the neutrino mass as

VðA; TÞ ¼ V0 þmnν ¼ Λ4 log

���� μ0
mþ μ

����þmnν: ðA5Þ

Here, nν is the sum of the number densities of the two
nearly degenerate neutrinos ν̂1;2. This gives

1

m
∂V0

∂m
�∂2V0

∂m2

�−1
¼ −

1

m

m̄2
1;2

κ1;2A
: ðA6Þ

Minimizing the effective potential implies that

m̄2
1;2

κ1;2A
≃ 2π2

3ζð3Þ
Λ4

T3
: ðA7Þ

Λ is determined by the present-day mass of the lightest
neutrino and temperature, Λ4 ¼ m2

3ðT0ÞT2
0=12, and we can

approximate m with jμj. Thus, we can write Eq. (A4) as

c2s ¼−
π2

18ζð3Þ
m2

3ðT0ÞT2
0

jμjT3

×

�
1þ 12.9ðc2s þ c−2s − 2Þ

�
T
m

�
2

þO

�
T
m

�
4
�

¼−0.23×
m2

3ðT0ÞT2
0

jμj4
�
m
T

�
3

×

�
1þ 12.9ðc2s þ c−2s − 2Þ

�
T
m

�
2

þO

�
T
m

�
4
�
: ðA8Þ

For the parameter values specified in Sec, II C, we get
the temperature at which the nuggets are formed to be
T ≃ 2 × 10−4 eV.
A similar calculation can be done for the scenario

described in Sec. III. In that case, there is no active
Majorana mass, and

1

m
∂V0

∂m
�∂2V0

∂m2

�−1
¼ −1: ðA9Þ

As before, Eq. (A4) can then be solved to determine when
nuggets form. We find that this occurs at the temperature
T ≃m=10.
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