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We present a dynamical cosmological solution that simultaneously accounts for the early inflationary
stage of the Universe and solves the supersymmetric little hierarchy problem via the relaxion mechanism.
First, we consider an inflationary potential arising from the D term of a new Uð1Þ gauge symmetry with a
Fayet-Iliopolous term that is independent of the relaxion. A technically natural, smallUð1Þ gauge coupling,
g≲ 10−8, allows for a low Hubble scale of inflation, HI ≲ 105 GeV, which is shown to be consistent with
Planck data. This feature is then used to realize a supersymmetric two-field relaxion mechanism, where the
second field is identified as the inflaton provided that HI ≲ 10 GeV. The inflaton controls the relaxion
barrier height allowing the relaxion to evolve in the early Universe and scan the supersymmetric soft
masses. After electroweak symmetry is broken, the relaxion settles at a local supersymmetry-breaking
minimum with a range of F-term values that can naturally explain supersymmetric soft mass scales up to
106 GeV.
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I. INTRODUCTION

A natural solution to the hierarchy problem in the
standard model (SM) has motivated the development of
particle physics for decades with predictions of new states
near the electroweak scale. However, to date, the exper-
imental results at the Large Hadron Collider (LHC) have
begun to call into question of whether naturalness is a
relevant guide for physics beyond the standard model. For
example, in supersymmetric (SUSY) models, colored
superpartner masses need to be heavier than the TeV scale
to evade LHC searches [1–3], exacerbating the tuning,
while constraints on other models addressing naturalness
(such as composite Higgs models [4]) lead to a similar
conclusion.
Recently a new approach to naturalness, which evades

the LHC constraints, used the idea of cosmological
relaxation [5] (for previous studies with a similar idea,
see Refs. [6–8]). In this process, an axionlike particle (the
relaxion) associated with a shift symmetry, is coupled
directly to the Higgs field during a nearly de Sitter phase
of the Universe. This coupling contributes to the mass
squared of the Higgs field, since initially the relaxion has a
very large field value. During the cosmological evolution of
the relaxion, caused by an explicit breaking of the shift
symmetry, the field value changes and the Higgs mass
squared is reduced. Eventually the Higgs mass squared
reaches a critical value where it flips sign, triggering
electroweak symmetry breaking (EWSB) with the Higgs
field developing a vacuum expectation value (VEV). The
generation of the Higgs VEV then backreacts on the
relaxion potential, causing the relaxion to stop at a local
minimum. The slope of the relaxion potential, which is

proportional to the shift-symmetry breaking parameter, can
then be chosen so that the Higgs VEV is naturally set to be
at the weak scale. This provides a technically natural
solution to the hierarchy problem.
However, the relaxion process itself is not a completely

satisfactory explanation of the hierarchy problem. First, it
can only address radiative corrections to the Higgs mass
that depend on a cutoff scale that is generally much lower
than the Planck scale [5]. The hierarchy problem is there-
fore only partly alleviated. Second, it requires a very low
inflation scale in order to naturally realize a weak scale
Higgs VEV. However low-scale inflation models often
introduce some new tuning that is not solved by the
relaxion process [9]. The first problem is not a concern
if the relaxion process is instead embedded into a super-
symmetric framework. Supersymmetric models with soft
mass scales near the PeV scale (106 GeV) are mesotuned,
but can easily accommodate a 125 GeV Higgs boson mass
[10–17]. Thus if the relaxion actually scans the super-
symmetric soft masses, then the cutoff scale in the relaxion
mechanism can be identified with the soft mass scale. This
naturally provides an explanation for the tuning using just
the relaxion [18], or else a two-field relaxion mechanism
[19] can be generalized to supersymmetry [20], which
preserves the QCD axion solution to the strong CP
problem. For other recent studies on the relaxion mecha-
nism, see Refs. [21–33].
In this paper we address the second problem in the

context ofD-term inflation [34–37] and identify the second
field in the two-field relaxion mechanism with the inflaton.
In order to realize an inflationary model with a very low
Hubble scale [38], the potential must be very flat or else the
density perturbations will not satisfy the cosmic microwave
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background (CMB) constraints [39]. One way of accom-
plishing this is to take small-field inflation and tune the
initial condition so that the potential is very flat. Although
this may work, it is not a very appealing approach to
inflation since it is difficult to justify why the initial value of
the field is so tuned. Furthermore, when applied to relaxion
models, this tuning destroys the naturalness of the relaxion
process and the tuning of the Higgs sector has merely been
transferred to the inflationary sector.
Large-field inflation, on the other hand, is in general

fairly insensitive to the initial field value. However, it is
difficult to naturally obtain a sufficiently flat potential to
realize the density perturbations if the scale of inflation is
too low. A model that combines low-scale inflation with the
insensitivity to initial conditions, typical of large-field
inflation, can be found in supersymmetry. In D-term
inflation [34–37], the Fayet-Iliopoulos (FI) term of some
new Uð1Þ gauge symmetry is responsible for inflation, and
therefore at tree level the potential is completely flat.
Although this flatness is broken at the loop level, it
provides the right conditions to obtain low-scale inflation.
We show that a successful model ofD-term inflation occurs
for a Uð1Þ gauge coupling, g≃ 7 × 10−9, corresponding to
a Hubble scale HI ≃ 105 GeV. Such a low value of g is
technically natural since radiative corrections vanish in the
limit g → 0. With this low Hubble scale, CMB modes are
produced approximately 39 e-folds before the end of
inflation (contrary to the 50–60 e-folds required in typical
models). Within D-term inflation this produces a spectral
tilt in agreement with observations. However after inflation
ends, there is the possibility that cosmic strings will form
because theUð1Þ phase has different values across different
patches in the sky. This problem can be evaded if one
considers a dynamical generation of the FI term [40], where
the Uð1Þ gauge symmetry is broken during inflation, by an
amount that negligibly affects the inflationary evolution.
This is achieved via a superpotential coupling that induces
a spatial alignment of the phase of the Uð1Þ breaking field
that prevents the formation of topological defects at the end
of inflation. Finally, we show that the fields responsible for
this breaking, together with two additional Uð1Þ singlets,
allow for a sufficiently fast conversion of the inflationary
energy to standard model fields (a decay through the D-
term potential is not fast enough, due to the smallness of the
gauge coupling g).
With a naturally flat, low-scale inflation model, the

inflaton in D-term inflation can be identified with the
second field (the “amplitudon”) of the supersymmetric two-
field relaxion model [20]. In this model the inflaton is
coupled to the relaxion and controls the barrier height of the
relaxion potential, and also helps to avoid a potential
isocurvature problem in the original two-field relaxion
model. The slow-roll evolution of the inflaton periodically
eliminates the relaxion barrier, allowing the relaxion to
move in a stepwise fashion until, after electroweak

symmetry is broken, it is eventually trapped at a local
supersymmetry-breaking minimum. A quadratic potential
with shift-symmetry breaking mass parameter,mS, controls
the slope of the relaxion potential. For a soft mass scale,
mSUSY ¼ 105 GeV, this parameter is constrained to be
10−9 GeV≲mS ≲ 10−6 GeV, provided that the Hubble
scale satisfies HI ≲ 10 GeV. This leads to a model that
simultaneously incorporates low-scale D-term inflation
consistent with Planck data, and solves the little hierarchy
problem in supersymmetric models, while preserving the
QCD axion solution to the strong CP problem.
The plan of the paper is as follows. In Sec. II we present a

phenomenologically viable D-term inflation model with a
low Hubble scale that is consistent with the CMB data, does
not form cosmic strings, and has a successful reheating to
standard model fields. This low-scale inflation model is
then combined with the supersymmetric relaxion mecha-
nism in Sec. III. In Sec. IV, we summarize our results and
provide some concluding remarks. The paper ends with two
appendixes that contain further details of our model. In
Appendix A we present the details of the dynamical
generation of the D term, which provides the breaking
of the Uð1Þ symmetry during inflation, preventing the
formation of cosmic strings, and helps to facilitate reheat-
ing. Other details concerning the quantum and thermal
corrections arising from the Uð1Þ symmetry breaking are
then discussed in Appendix B.

II. D-TERM INFLATION

A. D-term inflation model

Let us begin by reviewing the D-term inflation model
[34–37] in light of recent cosmological observations. The
basic model of D-term inflation contains three chiral
superfields, T, Φþ, and Φ−, which have charges of 0,
þ1, and −1 under a Uð1Þ gauge symmetry, respectively.
This model takes advantage of the FI term of the Uð1Þ
gauge symmetry, with which the auxiliary field of the Uð1Þ
gauge field is given by

D ¼ gðjϕþj2 − jϕ−j2 − ξÞ; ð1Þ

where g is theUð1Þ gauge coupling, ξ is the FI term, and ϕ�
are the scalar components of Φ�. We take ξ > 0 in what
follows. The superpotential for this model is

W ¼ κTΦþΦ−; ð2Þ

where κ is a dimensionless parameter, which is taken to be
real and positive. We write the scalar components of T as

T ¼ 1ffiffiffi
2

p ðτ þ iσÞ þ � � � : ð3Þ
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In the following discussion, we regard σ as the inflaton and
consider the case where jσj ≫ jτj.1 The tree-level scalar
potential for this model is then

V tree ¼ κ2
�
τ2 þ σ2

2
ðjϕ−j2 þ jϕþj2Þ þ jϕþϕ−j2

�

þ g2

2
½jϕþj2 − jϕ−j2 − ξ�2: ð4Þ

This potential has a SUSY-preserving minimum at τ ¼ σ ¼
ϕ− ¼ 0 and jϕþj ¼

ffiffiffi
ξ

p
with V tree ¼ 0.

If σ has a large field value, however, we can find a local
minimum with V tree > 0 at which ϕþ ¼ ϕ− ¼ 0, and the
charged fields ϕ� have a mass squared

m2
� ¼ κ2σ2

2
∓ g2ξ: ð5Þ

This local minimum becomes unstable when jσj is below
the critical field value

σc ≡ g
κ

ffiffiffiffiffi
2ξ

p
: ð6Þ

Thus, the initial field value of σ must satisfy σ ≫ σc. As
long as this condition is satisfied, the initial value of the
inflaton field is unimportant, like all large-scale inflation
models. At this local minimum, the tree-level potential for σ
is completely flat: V tree ¼ g2ξ2=2.
However, in order to realize a phenomenologically

acceptable model, the slope of the inflaton potential must
be nonzero. Fortunately, the correct slope is provided by the
quantum corrections encoded in the Coleman-Weinberg
term [41]. Since we consider the case σ ≫ σc, we can
expand the Coleman-Weinberg potential keeping the lead-
ing order term in g2ξ=ðκ2σ2Þ. In this limit, we find that the
potential is well approximated by

V ≃ g2ξ2

2

�
1þ g2

8π2
ln

�
κ2σ2

2Q2

��
; ð7Þ

whereQ is a renormalization scale. Using this potential, the
slow-roll parameters are found to be

ϵ≡ M2
P

2V2

�∂V
∂σ

�
2 ≃ g4

32π4

�
MP

σ

�
2

; ð8Þ

η≡M2
P

V
∂2V
∂σ2 ≃ −

g2

4π2

�
MP

σ

�
2

; ð9Þ

where MP ¼ 2.4 × 1018 GeV denotes the reduced Planck
mass. At this point, it is already clear that ϵ ≪ jηj, which
we later see is important for realizing an acceptable
inflation model in this context.

B. CMB constraints on D-term inflation

To determine the value of ϵ and η, which are constrained
by the CMB data, we need to obtain the value of σ at the
time when the CMB modes left the horizon. This value can
be determined in terms of the number of e-folds of inflation
that occurred after the CMB was set,

NCMB ¼
Z

HIdt ¼
Z

σCMB

σc

dσ

MP

ffiffiffiffiffi
2ϵ

p ¼ 2π2

g2M2
P
ðσ2CMB − σ2cÞ;

ð10Þ

where HI is the Hubble parameter during inflation, and
σCMB and σc are the field values when the CMBwas set and
inflation ends, respectively. We find that for κ ≪ 10−2, η is
suppressed and ns − 1≡ d lnP=d ln k is too large (where P
is the scalar power spectrum and k is the wave number). We
therefore assume that κ is large enough so that σCMB is not
near the critical point σc. In this case, σCMB ≫ σc, and thus
the expression (10) can be solved to give

σCMB ≃ gMP

π

ffiffiffiffiffiffiffiffiffiffiffiffi
NCMB

2

r
: ð11Þ

Notice that if g ≪ 1, we do not need super-Planckian
excursions for inflation to work. As we show below, low-
scale inflation requires g to be very small and inflation
occurs for field values well below MP.
Equation (11) allows us to determine the slow-roll

parameters in terms of NCMB,

ϵCMB ¼ g2

16π2
1

NCMB
; ηCMB ¼ −

1

2NCMB
: ð12Þ

Using these expressions, the spectral tilt is then found to be

ns − 1 ¼ 2ηCMB − 6ϵCMB ≃ 2ηCMB ¼ −
1

NCMB
; ð13Þ

where we can neglect ϵCMB since it is loop suppressed
relative to ηCMB. As can be seen from this expression, ηCMB,
and therefore ns, only depends on NCMB. Typically for
large-scale inflation the number of e-folds is ≃50–60. For
this model, this would give a spectral tilt ns ≳ 0.98, which
is already excluded by current Planck results [42].
However, since we now consider low-scale inflation,
NCMB is modified. In fact, the number of e-folds of
inflation after the CMB is set is significantly altered if
the scale of inflation is much lower than that assumed in
ordinary large-scale inflation models.

1The imaginary part is chosen to be the inflaton so that when
the relaxion mechanism is discussed, it can more readily be
identified with the amplitudon [20], i.e., the second field in the
two-field relaxion scenario [19].
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Let us determine the number of e-foldings after the CMB
is set for low-scale inflation. The number of e-foldings
NeðkÞ that corresponds to a wave number k is defined by

eNeðkÞ ≡ aend
ak

; ð14Þ

where aend is the value of the scale factor at the end of
inflation, and ak ≡ k=HI . Then, we obtain [43–45]

NeðkÞ¼−lnkþ lnHIþ ln

�
aend
areh

�
þ ln

�
areh
aeq

�
þ ln

�
aeq
a0

�

¼−lnkþ lnHIþ
1

3
ln

�
ρreh
ρend

�
þ1

4
ln

�
ρeq
ρreh

�
þ ln

�
aeq
a0

�
;

ð15Þ

where ρend, ρreh, ρeq are the energy densities at the end of
inflation, at the end of reheating, and at the time of matter-
radiation equality, respectively; aeq and a0 are the scale
factors at the time of matter-radiation equality and the
present Universe, respectively. In this derivation, we have
assumed instantaneous reheating with a sudden transition
from matter to radiation domination [where the matter
domination is due to the coherent oscillations of the field
ϕþ before it decays2; changes in the thermalization during
reheating modify the value of NeðkÞ, as discussed in [46]].
This radiation-dominated Universe persists until the time of
matter-radiation equality. Note that this estimation suffers
from uncertainty that originates from the assumption on the
cosmological history; for instance, we obtain a smaller
NeðkÞ if there is an additional matter-dominated period
between reheating and big bang nucleosynthesis.
Now we set k equal to the default pivot scale taken by the

Planck collaboration [42], k ¼ 0.05 Mpc−1. We then obtain

NCMB≡Neðk¼0.05Mpc−1Þ

≃38.9þ1

3
ln
�

HI

105 GeV

�
þ1

3
ln
�

ρ1=4reh

100GeV

�
; ð16Þ

where ρreh should be understood as the energy density at the
time at which the equation of state of the plasma formed at
reheating becomes w ¼ 1=3. We also note that we can
disregard the very small variation of the Hubble parameter,
and thus fix HI ≃ ρ1=2end=ð

ffiffiffi
3

p
MPÞ at Ne ¼ NCMB.

Using the expression (16) for the number of e-folds after
the CMB is set and the expression for the spectral tilt in
Eq. (13), we show in Fig. 1 the contours of the spectral tilt
as a function of the reheating energy density and Hubble
parameter. The blue area in this figure depicts the Planckþ
BICEP2þ Keck Array combined 1σ range for the spectral

tilt [47]. The limit obtained from only the PlanckTTþ
lowP [42] data extends the allowed 1σ region into the pink
area. The entire parameter space shown in Fig. 1 falls
within the 2σ error bands of both results. The gray shaded
region is theoretically excluded since ρreh exceeds the
energy density of the inflation potential. We thus find that
the D-term inflation model, with a low Hubble scale
HI ≲ 105 GeV, can actually explain the observed value
of ns with a sufficiently high (≳100 GeV) reheating
temperature for baryogenesis.
Now that we have seen that an acceptable spectral tilt can

be realized for low-scale inflation, we next need to verify
that this model can generate cosmological perturbations of
the right amplitude. The size of the cosmological pertur-
bations is determined by the power spectrum, which is
related to the inflation scale through

As ≃ V
24π2M4

PϵCMB
≃ ξ2

3ð1 − nsÞM4
P
; ð17Þ

where we have used the expression for ϵCMB in Eq. (12).
Therefore, the observational value of As determines

ffiffiffi
ξ

p
,

ffiffiffi
ξ

p ≃ 9.0 × 1015 GeV ×

�
1 − ns
0.03

�1
4

�
As

2.1 × 10−9

�1
4

: ð18Þ

FIG. 1. A plot of the reheating temperature (more precisely,
ρ1=4reh ) as a function of the Hubble parameter, HI , for various
contours of ns (0.975, 0.97, and 0.965 from top to bottom, which
correspond toNCMB ¼ 40, 33.3, and 28.6, respectively). The blue
area shows the 1σ range given by the Planckþ BICEP2þ
Keck Array combined results [47]. If one considers only the
Planck TTþ lowP result [42], also the pink area is included at 1σ.
The gray shaded region is theoretically excluded since ρreh
exceeds the energy density of the inflation potential.

2As we discuss later, this field carries most of the inflationary
energy right after inflation.
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The gauge coupling g is determined from the Hubble
parameter during inflation via the relation

3M2
PH

2
I ≃ g2ξ2

2
; ð19Þ

which, using (18), becomes

g≃ ffiffiffi
6

p MPHI

ξ
≃ 7.4 × 10−9

×

�
HI

105 GeV

��
1 − ns
0.03

�
−1
2

�
As

2.1 × 10−9

�
−1
2

: ð20Þ

Note that this very small value for g is technically natural
since the gauge coupling quantum corrections vanish in the
limit g → 0. This means that a small gauge coupling at a
high energy scale remains small at low energies, and there
is no need to tune the coupling against radiative corrections.
Finally, we study the mass spectrum of this model after

the Uð1Þ gauge symmetry is spontaneously broken. After
inflation, ϕþ develops a VEVof hϕþi ¼

ffiffiffi
ξ

p
. This causes T

and Φ− in the superpotential (2) to form a vectorlike mass
term with a mass, κ

ffiffiffi
ξ

p
. Notice that since hΦþi does not

break supersymmetry, the superfield description still holds.
As a consequence, the scalar and fermionic components of
T and Φ− have an identical mass of κ

ffiffiffi
ξ

p
. On the other

hand, Φþ is absorbed by the Uð1Þ gauge vector superfield
to form a massive vector superfield with a mass of

mZ0 ¼ g
ffiffiffiffiffi
2ξ

p
¼ 9.4 × 107 GeV

×

�
HI

105 GeV

��
1 − ns
0.03

�
−1
4

�
As

2.1 × 10−9

�
−1
4

: ð21Þ

More specifically, a massless Nambu-Goldstone boson that
originates from ϕþ is absorbed by the Uð1Þ gauge boson
via the gauge interaction, while the massless fermionic
component of Φþ combines with the Uð1Þ gaugino via the
gaugino interaction to form a massive Dirac fermion. The
radial component of ϕþ acquires a mass, g

ffiffiffiffiffi
2ξ

p
, which is

required by supersymmetry to form a massive vector
superfield. As a result, after inflation, we have a vectorlike
chiral superfield with a mass of κ

ffiffiffi
ξ

p
and a massive vector

superfield with a mass of mZ0 ¼ g
ffiffiffiffiffi
2ξ

p
.

C. Cosmic strings

1. Cosmic string problem

One complication of D-term inflation is that the gen-
eration of cosmic strings after inflation ends. When the
Uð1Þ symmetry is broken, the phase of the Uð1Þ breaking
field takes different values in different patches of the sky.
This leads to the formation of cosmic strings [48,49]. Since
the Uð1Þ symmetry is broken at the end of inflation, these
cosmic strings contribute to the CMB anisotropies, and thus

are stringently constrained by the CMB data [50–55]. The
contribution of cosmic strings to the CMB angular power

spectrum CðstrÞ
l is approximately given by

lðlþ 1ÞCðstrÞ
l ¼ Oð100Þ × T2

CMBðGμÞ2; ð22Þ

where TCMB is the CMB temperature, G is the gravitational
constant, and μ is the mass per unit length of the string,
which is given by3

μ ¼ 2πhϕþi2 ¼ 2πξ: ð23Þ

Therefore, in our model, the size of Gμ is predicted from
Eq. (18) to be

Gμ≃ 3.4 × 10−6 ×

�
1 − ns
0.03

�1
2

�
As

2.1 × 10−9

�1
2

: ð24Þ

On the other hand, the Planck 2015 data [42] give a severe
bound on this quantity: Gμ < 3.3 × 10−7. This clearly
shows that the minimal D-term inflation model is disfa-
vored due to the formation of cosmic strings.4

There are several proposed ways to solve this problem;
however, it is difficult to implement many of them in the
context of low-scale inflation. One possible solution [50] is
to assume that the cosmological fluctuations are due to
some curvaton. This mechanism, however, will not end up
working for the relaxion process, since there is also F-term
SUSY breaking during inflation that generically gives too
large of a mass to the curvaton. Another possible solution is
to take a nonminimal Kähler potential [51,56,57]. In these
scenarios, either ns is too large [51,56] or the power
spectrum scales down with g [57], and so the low-scale
implementation is ruled out by CMB measurements.
Another solution is to consider D-term inflation on the
part of the potential below the critical point [58]. In this
regime, inflation occurs after the Uð1Þ charged field, ϕþ,
obtains a VEVand so no cosmic strings can form. However,
this does not work for low-scale inflation since ϵ is much
too large. A more elaborate solution is to supplement the
Uð1Þ gauge symmetry by a global SUð2Þ symmetry so that
the vacuum manifold is simply connected. In this case,

3As discussed in Sec. II B, the masses of the scalar boson
and the Uð1Þ gauge boson are equal, and thus the cosmic
strings that are generated after the Uð1Þ symmetry breaking
are Bogomol’nyi-Prasad-Sommerfield (BPS) strings.

4It was previously argued [50] that this constraint may be
evaded by taking a very small κ. In this case, inflation occurs in
the vicinity of the critical value σc given in Eq. (6), and thus
σCMB ≃ σc. On the other hand, Eq. (17) shows that if ns is very
close to 1, we can obtain a sufficiently small ξ to evade the cosmic
string bound. Such a value of ns can be obtained by taking a very
small κ, which makes σCMB ≃ σc very large and thus jηj very
small. Nevertheless, this possibility is now excluded by the
Planck result, as it restricts the value of ns and thus ξ cannot
become sufficiently small.
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instead of topologically stable cosmic strings, semilocal
strings are produced when the symmetry is broken [59],
which are in general less dangerous compared with stable
strings. It turns out, however, that CMB measurements can
restrict even semilocal strings [60], and in fact this solution
is disfavored by the Planck result [42]. In addition, the
presence of a global SUð2Þ symmetry leads to the for-
mation of textures, which are again severely constrained by
the Planck data.
Instead in the next subsection we present one solution

that works for our parameter choices, and that we are later
able to use in the context of the relaxion mechanism.

2. Dynamical D terms

Cosmic strings form because the Uð1Þ gauge symmetry
breaks after inflation is over and each patch of the sky has a
different phase for the Uð1Þ breaking field. This can be
remedied by breaking the Uð1Þ symmetry before the CMB
modes exit the horizon during inflation. This can occur in
models where the D term is dynamically generated [40],
due to a hidden sector breaking of the Uð1Þ that generates
the FI term. Note that the breaking of this symmetry must
be sufficiently large, so that Hubble fluctuations do not
restore the symmetry in the inflationary sector. This will be
accomplished by adding a marginal coupling in the super-
potential. Dynamically generated D terms are appealing,
since they can more naturally explain a FI term much
smaller then the Planck scale. If the hidden Uð1Þ breaking
is appropriately coupled to the visible sector, it prevents
string formation. The details of how this works are given in
Appendix A; however, we summarize the main fea-
tures below.
Let us add the following superpotential terms to Eq. (2),

ΔW ¼ κþTMþΦ− þ κ−TM−Φþ; ð25Þ

where M� are the hidden sector fields, which develop
VEVs ofOð ffiffiffi

ξ
p Þwith hMþi ≠ hM−i to generate the FI term

dynamically. In order not to deform the D-term potential
considerably, we take jκ�j to be much smaller than the
Uð1Þ gauge coupling g.5 Then, using Eq. (A5), we have a
linear term for ϕþ during inflation,

V ⊃
σ2

2
ðκκ�þϕþM�þ þ H:c:Þ: ð26Þ

Because of this linear term, ϕþ has a nonzero VEV during
inflation, with the minimum of the potential occurring for a
particular phase. Since this is the only minimum of the

potential until inflation ends, κ2σ2=2≃ g2ξ, the VEV in all
patches of the sky is driven to the same phase, as shown in
Appendix B 1 b. This prevents the formation of CMB-
size cosmic strings, provided that the fluctuations in the
phase direction are sufficiently small. As discussed in
Appendix B 1 c, this requirement gives an upper bound,
(B15), on the Hubble parameter during inflation, which
becomes

HI < 1 × 109 TeV ×

� jκþj
10−12

�� jMþj
1016 GeV

�

×

�
κ

10−2

�
−1
2

�
As

2.1 × 10−9

�
−1
4

�
1 − ns
0.03

�
−1
2

: ð27Þ

Thus for the values of HI satisfying the CMB constraints
(see Fig. 1), we can always find a value6 of jκþj ≪ g, which
satisfies this condition for Mþ ≃ ffiffiffi

ξ
p

.
Once inflation ends, the Universe is reheated. If the

reheat temperature is large enough, thermal fluctuations
could generate strings that are much smaller than the CMB
size. Although these do not appear in the power spectrum,
they could form stable energy configurations, which could
overclose the Universe. However for this model, as the end
of inflation nears, the VEV of ϕþ grows. By the time
inflation ends, it is large enough that the VEV of ϕþ is
always larger than the maximum reheat temperature. Since
the temperature sets the size of the thermal fluctuations of
the VEV, no cosmic strings form from thermal fluctuations.
See Appendix B 2 for the relevant details.

D. Reheating

With knowledge of the mass spectrum of the fields in the
inflaton sector obtained in Sec. II B, we can discuss
reheating after inflation. In Refs. [61,62], kinetic mixing
between the gauge fields associated with the SM hyper-
charge and the Uð1Þ symmetry driving inflation was used
to reheat to SM fields. However, since the Uð1Þ gauge
coupling is very small, this kinetic mixing is too small to
reheat the SM above the weak scale.7 In Ref. [63], inflation
is driven by the quadratic part of the D-term potential.
Inflation models driven by a mass term are no longer
compatible with experimental results. Furthermore, the
method of reheating used there depends on the gauge
coupling g, and in our case it would lead to a reheat
temperature lower than the weak scale.
Since our low-scale inflation model is a hybrid inflation

model, the energy after inflation is divided between the

5Since the couplings κ� explicitly break the shift symmetry for
the T field, a mass term for the σ field is induced. However,
this contribution can be sufficiently small compared with the
Coleman-Weinberg effects (7) for jκ�j ≪ g. See Eq. (A15) for a
more detailed condition.

6The actual constraint on the relative size of these couplings
can be found in Eq. (A15) and the discussion that follows. As g,
and thus HI , increases this constraint becomes weaker, and
therefore CMB-sized cosmic strings can always be prevented by
choosing κþ appropriately.

7We assume that the reheating temperature is above the
electroweak scale to facilitate baryogenesis.
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inflaton, σ, and the radial part of ϕþ. This second
component is by far the dominant contribution for
g ≪ κ. We thus neglect the energy associated with the
inflaton oscillations in this analysis.8 Therefore, in order to
transfer the vacuum energy of inflation into radiation
energy, the field ϕþ needs to decay to lighter states.
Because the mass of ϕþ is much smaller than the scale
of its VEV, it is difficult to find viable decay modes.9 In
fact, generic decay of ϕþ to fields that couple with a
strength greater than g will be kinematically forbidden. On
the other hand, couplings of ϕþ smaller than g would be
kinematically allowed but would give a reheating temper-
ature smaller than the weak scale.
Nonrenormalizable couplings do not help. These non-

renormalizable operators arise from integrating out some
heavier fields. The mass of these heavier fields, in general,
is large since they couple directly to ϕþ, which has a large
VEV. A nonrenormalizable operator with a mass scale of
the order of the VEV of ϕþ leads to a suppression of
ðmϕþ=hϕþiÞ2ðn−4Þ, where n is the dimension of the oper-
ator, in the decay width. Even for n ¼ 5, this gives too
much suppression to obtain a reheating temperature above
the weak scale. If the field couples weakly to ϕþ it could
lead to a smaller mass scale when the particle is integrated
out. However, since it couples weakly to ϕþ this non-
renormalizable interaction gets additional suppression from
the small coupling it has with ϕþ, making it difficult to
obtain a reheating temperature larger then the weak scale.
The problem persists when we consider couplings in the

D-term potential. In the D term, other fields couple with
jϕþj2 − ξ, and so do not receive a large mass from the VEV
of ϕþ. However, these couplings are proportional to g, and,
due to the smallness of this parameter, they lead to a
reheating temperature smaller than the weak scale.
Nevertheless, this holds the key to reheating for our model.
If we couple particles to ϕþ in a combination where the
VEV cancels, it is possible to reheat above the weak scale.
A simple example of this method of solving this

rather difficult problem can be found if we again use the
fields, M�, which generate the dynamical D term.
Using these fields we can couple ϕþ to a singlet in the
following way,

ΔW ¼ κ1RΦþM− þ κ2RHuHd þmRRR̄; ð28Þ

where both R and R̄ are singlets and Hu;d are the minimal
supersymmetric standard model (MSSM) Higgs super-
fields. These new couplings modify the F term of ϕþ
and M− as can be seen in Appendix A.10 These effects are
small because R is stabilized quite close to the origin.
However, they also give new contributions to the potential11

ΔVF ¼ jκ1ϕþM− þ κ2HuHd þmRR̄j2 þ jmRRj2: ð29Þ

The cross terms of the above equation give an interaction
for ϕþ of the form

−L ⊃ κ2ðκ1hM−iϕþ þmRR̄ÞH†
uH

†
d þ H:c: ð30Þ

The potential in Eq. (29) gives an additional contribution to
the mass of ϕþ plus a mixing mass for ϕþ and R̄. If
κ1hM−i; mR ≲ g

ffiffiffiffiffi
2ξ

p
, the mass eigenstates discussed in

Sec. II B are fairly unchanged. In this case, the contribution
from R̄ can be removed from the interaction in Eq. (30) since
ϕþ and R̄ are approximately orthogonal fields. If either
κ1hM−i or mR is larger than g

ffiffiffiffiffi
2ξ

p
decays coming from this

interaction become suppressed. For κ1hM−i ≳ g
ffiffiffiffiffi
2ξ

p
, the

mass of the lightest mass eigenstate coming from R and ϕþ
becomes quite light and so cannot decay to Higgs bosons. If
mR is large, R decouples and all interactions in the super-
potential become suppressed by m−1

R , again leading to
suppression of this decay mode.
Given that κ1hM−i≲mϕþ , we obtain the constraint

κ1 ≲ g. Although this means κ1 is a very small coupling,
its smallness is offset by a large mass scale hM−i, and
therefore the trilinear coupling of ϕþ can be as large
as mϕþ .
Since the only state in Hu;d that is light enough for ϕþ to

decay to is the SM-like Higgs boson, this interaction
becomes

−L ⊃
1

2
κ1κ2 sin 2βhM−iϕþh2; ð31Þ

where h is the SM-like Higgs boson, hHu;di ¼ vu;d, and
tan β ¼ vu=vd. The interaction (31) then gives a decay rate
for the radial part of ϕþ,

Γϕþ ¼ jκ2j2
64π

sin2ð2βÞ
���� κ1hM−i

mϕþ

����2mϕþ : ð32Þ

8The energy stored in the inflaton can be easily dissipated by
adding an inflaton coupling to the right-handed neutrinos, if
necessary. Since the inflaton is quite heavy after inflation, this
decay mode can easily thermalize the remaining energy.

9In this context, we use the VEV to mean the time-evolving
homogeneous background value of the field. Because the VEVof
ϕþ begins small, some vacuum decay of ϕþ is possible for
couplings larger than g. However, this decay channel shuts off
once the VEV becomes large enough, leaving the majority of the
energy left in hϕþi.

10We assume that additional superpotential couplings among
these fields are negligibly small. This still maintains technical
naturalness.

11During inflation, R has a nonzero VEV. However, this VEV
is less than about a GeV for the parameters we consider. This,
plus the fact that κ2 generally is quite small in order to prevent
overclosing the Universe, leads to a very small correction to the
Higgs bilinear mass. This small correction to μ has a negligible
effect on the relaxion process.
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Recall that the radial part of ϕþ holds the remaining energy
of inflation, and therefore the decay produces the reheating
temperature

TR ¼ 485 GeV ×

�
106.75
gρ

�
1=4

� hM−i
1016 GeV

�

×

�
108 GeV
mϕþ

�
1=2

�
κ1

10−9

��
κ2

10−8

�
; ð33Þ

where gρ is the number of relativistic degrees of freedom
and we have taken sin 2β ¼ 1.
Now, if the mass of ϕþ is lighter then 2mh, ϕþ can no

longer decay to Higgs bosons. The ϕþ mass is also given by
(21), where it is clear that ifHI ≲ 0.1 GeV, the decay mode
to Higgs bosons shuts off. In this case, depending on its
mass, ϕþ decays into ZZ,WW, bb̄, etc., at tree level via the
mixing with the Higgs boson. Although these decay modes
are suppressed by a small mixing angle, it can still be
sufficiently large to allow a reheat temperature above the
weak scale.
If ~R, the fermionic component of R, is lighter than the

Higgsinos, then ~R could be produced via the Higgsino
decay, in addition to the annihilation of the Higgs fields.
Since ~R is stable in this case, it may overclose the Universe.
There are two ways this can be avoided. Since, as we
discussed above, ~R can be as heavy as ϕþ, it will have a
mass as heavy as that in Eq. (21). Experimental constraints
allow a bino mass that is lighter than this, especially ifHI is
pushed beyond the weak scale to make ϕþ, and thus ~R as
well, be heavy enough. In this case, ~R can decay into the
bino through the Higgsino exchange. In the relaxion model
below, this type of spectrum is only realized for some of the
parameter space where the bino mass can be as light
as 102 GeV.
The other way to prevent overclosure of the Universe

from Higgsinos decaying to ~R is to suppress the reheat
temperature below the Higgsino mass. In this case, the
Universe never produces Higgsinos and so there would be
no ~R produced from Higgsino decays. If the reheat temper-
ature is larger than the bino mass, ~R could still be produced
from bino decays due to bino-Higgsino mixing. Since the
bino can be produced in processes like hh → ~B ~B, its
production cannot be suppressed if the SM reheats to a
temperature above the bino mass. The simplest way to
avoid these problems is to just reheat below the bino mass,
which requires κ2 ≲ 10−9 for HI ¼ 105 GeV.12 However, it
may be possible to reheat above the bino mass in this
scenario if the decay of the bino to ~R is suppressed so that it
happens after the bino freezes out. In this case the relic
density of the bino could be suppressed during freeze-out
by some process such as coannihilation. Since this

effectively reduces the number of ~R produced from bino
decays, it may be possible to get a relic density of ~R that
does not overclose the Universe and may even be the dark
matter candidate.13 In the relaxion model we discuss below,
only gauginos can be much lighter than the SUSY-breaking
scale. Thus, candidates for the coannihilation partner of the
bino are the gluino or wino. For the bino-gluino coanni-
hilation case, the bino abundance falls into a desirable
value if the mass difference between the bino and gluino
is ≲100 GeV and squark masses are ≲Oð100Þ TeV
[64–66]. In the case of the bino-wino coannihilation, on
the other hand, the bino-wino mass difference should be
≲Oð10Þ GeV [67]. These coannihilation scenarios may be
probed at the LHC by searching for displaced vertex signals
[65,67,68]. For detailed discussions on these coannihilation
scenarios, see Refs. [64–67] and references therein.
Another option is to assume that there is a wino with a
mass of ≳500 GeV [69,70] or a gluino14 with a mass of
≳2 TeV [1–3], and the bino is heavier than these particles.
In this case, the bino mainly decays into these particles,
while the abundance of these particles is sufficiently
suppressed. A few TeV gluino can be probed at the
LHC in the multijets plus missing energy channel [71],
while an Oð100Þ GeV wino can be probed in the dis-
appearing-track searches [72,73]. Even in these cases, we
need to take κ2 to be a small value to suppress the direct ~R
production process hh → ~R ~R.

III. THE INFLATON AS AN AMPLITUDON

The aboveD-term inflation model provides a technically
natural realization of low-scale inflation that is consistent
with the current Planck results. Since low-scale inflation is
needed for the relaxion process and requires a very flat
potential, it suggests that the inflaton of this D-term
inflation model can be identified with the second (ampli-
tudon) field in the supersymmetric two-field relaxion
model discussed in Ref. [20]. We next present a relaxion
model that combines these two ideas, thereby relating
inflation with solving the supersymmetric little hierarchy
problem. In fact, regarding the amplitudon as the inflaton is
also desirable from the phenomenological point of view; in
the minimal setup discussed in Ref. [20], the light ampli-
tudon field may cause an isocurvature problem, but we can
evade this once we identify it with the inflaton.
In the supersymmetric relaxion mechanism, supersym-

metry breaking in the visible sector is determined by the F
term of the relaxion superfield. Because of this, the
determinant of the Higgs mass matrix is dependent on
the relaxion field value. Initially, the relaxion field value is

12Such a small κ2 also suppresses the hh → ~R ~R process.

13This is only possible when the gravitino is heavier than ~R,
which is not always the case.

14If the gluino is lighter than the bino, the wino or gravitino
needs to be lighter than the gluino in order to make it decay into
these particles.
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large and the determinant of the Higgs mass matrix is
positive. As the relaxion field rolls, the determinant of the
Higgs mass matrix eventually becomes negative and
electroweak symmetry breaking occurs. Electroweak sym-
metry breaking generates an additional contribution to the
relaxion potential that stops the relaxion from rolling. For
properly chosen parameters, the relaxion stops in a local
minimum that corresponds to a weak scale Higgs VEV.

A. The inflaton-relaxion model

In Ref. [20], a two-field relaxion model was considered
with an additional field coined the amplitudon. This field
was responsible for controlling the relaxion barrier height
and allowing the relaxion to roll. If we now identify the
inflaton of the previous section (contained in T) with this
amplitudon, the superpotential for this scenario becomes

W ¼ κTΦþΦ− þ 1

2
mTT2 þ 1

2
mSS2

þ
�
mN þ igSSþ igTT þ λ

ML
HuHd

�
NN̄; ð34Þ

where the imaginary scalar component of the superfield S is
the relaxion, N, N̄ are superfields charged under a strongly
coupled gauge group [SUðNÞ], and Hu;d are the Higgs
superfields. The couplings λ; κ; gS;T are dimensionless
[where κ was already introduced in Eq. (2)] and
mN;S;T;ML are mass parameters. Note that mS is a shift-
symmetry breaking parameter that causes the relaxion to
roll, and Φ� are again charged under some additional Uð1Þ
so that inflation proceeds as it did in the previous section. In
addition mT is a shift-symmetry breaking parameter that
controls the inflaton evolution during the relaxion epoch.
We also consider an identical D term to the one in Eq. (1).
Comparing this to the model in Ref. [20], the only differ-
ence in the superpotential is the addition of the coupling of
the amplitudon with two scalar fields, ϕ�. This is the same
interaction that we studied in the previous section for the
inflaton.
In addition to these superpotential interactions, the

relaxion superfield, S, is coupled to the gauge kinetic
function,

L ⊃
Z

d2θ

�
1

2g2a
− i

Θa

16π2
−

caS
16π2fϕ

�
TrðWaWaÞ þ H:c:;

ð35Þ

in a similar way to the QCD axion,15 where fϕ is the global
symmetry-breaking scale, ca is an order one constant, and a
runs over the SM gauge symmetries as well as an additional

confining SUðNÞ. When this SUðNÞ confines, the fer-
mionic components of N and N̄ condense and generate a
cosðϕ=fϕÞ potential, which is the backreaction that stops
the relaxion.
Writing the scalar field components as S ¼ sþiϕffiffi

2
p and

T ¼ τþiσffiffi
2

p , the relevant parts of these superfields for our

discussion are the relaxion ϕ, and the amplitudon (infla-
ton), σ. The relaxion and amplitudon correspond to the
Nambu-Goldstone boson of some broken symmetry, and
therefore transform under a shift symmetry. If these shift
symmetries are exact, the potential for these fields is
completely flat. This flatness is lifted by the explicit
breaking of the shift symmetry16 due to the couplings
mS, mT , and κ in Eq. (34). The scalar potential is then17

Vexplicit ¼
1

2
jmSj2ϕ2 þ 1

2
jmT j2σ2 þ

g4ξ2

16π2
ln

�jκj2σ2
2Q2

�
: ð36Þ

The explicit breaking of the shift symmetry for the
amplitudon arises from the mass term and from integrating
out the ϕ�, which are heavy during both the relaxion and
inflation epochs. As we see below, the shift-symmetry
breaking mass terms jmSj and jmT j are taken to be very
small; such small shift-symmetry breaking effects may be
explained by means of the “clockwork” mechanism
[74–76].18
To combine these two theories, we need the explicit mass

term for the inflaton to dominate during the relaxion epoch
and the loop-induced mass to dominate during inflation, as
schematically depicted in Fig. 2. The ratio of these two
masses is

Rm ¼ g4ξ2

8π2σ2
1

jmT j2
: ð37Þ

During the relaxion epoch the ratio is

Rm ¼ 3

4π2
1

Asð1 − nsÞ
H4

I

m2
SUSYf

2
ϕ

≃ 10−11 ×

�
As

2.1 × 10−9

�
−1
�
1 − ns
0.03

�
−1

×

�
HI

1 GeV

�
4
�
105 GeV
mSUSY

�
4
�
rSUSY
1

�
2

; ð38Þ

15The theta term, Θa, can be neglected since it is subdominant
compared to the effective value obtained in the early Universe
from the large ð≫ fϕÞ field value of ϕ.

16This shift symmetry preserves the very flat potential for
the inflaton, σ. Higher-order shift-symmetric terms in the
Kähler potential, K ¼ KðSþ S†; T þ T†Þ, stabilize s and τ near
the origin.

17For parameters that require super-Planckian excursions, we
consider a no-scale structure to prevent problematic unbounded
from below directions arising from the −3jWj2=M2

P contribution
to the potential. For a more detailed discussion, see [20].

18A similar idea was first considered in the context of inflation
model building [77].
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where we have used m2
Tσ

2 ∼m2
Sϕ

2 ∼m2
SUSYf

2
ϕ, which

comes from the constraints19 on the relaxion mechanism
in Sec. III B, and Eqs. (17) and (20) for g4ξ2. From this
expression, it is clear that mT dominates in this regime.
Note that we have changed our normalization of HI in this
section since HI ∼ 105 GeV is no longer compatible with
the relaxion process [see Eq. (58)]. During the CMB epoch,
on the other hand, the ratio is

Rm¼3

4
ð1−nsÞ

�
HI

jmT j
�

2

≃2×1012×

�
1−ns
0.03

��
HI

1GeV

�
2
�
10−7 GeV

jmT j
�

2

; ð39Þ

where we have used Eq. (11), or σCMB ¼HI=ðπð1− nsÞA
1
2
sÞ.

For this regime of the potential, the loop-induced mass
dominates. This is just the correct behavior that is needed to
use the σ field as both the amplitudon and the inflaton.
Therefore, we can ignore the Coleman-Weinberg contri-
bution to the mass during the relaxion epoch and the
constraints reduce to those found in Ref. [20], which are
summarized in Sec. III B.
The backreaction potential for the relaxion is generated

by the fields N, N̄ in Eq. (34). The N, N̄ fields are charged
under the same SUðNÞ gauge theory that S is coupled to in
Eq. (35). When the fermionic components of N, N̄ confine
at the scale ΛN , they give a contribution to the scalar
potential of the form

Aðϕ; σ;HuHdÞ ¼
�
mN −

1ffiffiffi
2

p ðgSϕþ gTσÞ þ
λ

ML
HuHd

�
;

Vperiod ¼ Aðϕ; σ;HuHdÞΛ3
N cos

�
ϕ

fϕ

�
; ð40Þ

where we have assumed ca ¼
ffiffiffi
2

p
. For the model we

consider, we take gS > 0 and gT < 0. When the σ field
value is very large, the above potential (40) provides a large
barrier for the relaxion and therefore the relaxion is initially
stabilized at some very large field value. However the
inflaton, σ, is free to roll. As σ rolls, the barrier height is
reduced until the mass term in Eq. (36) dominates and ϕ
begins to roll, tracking σ. This evolution continues until the
determinant of the Higgs mass matrix becomes negative
and electroweak symmetry is broken. As the Higgs VEV
increases, a new barrier develops in the relaxion potential
[from the λ term in Eq. (40)] eventually stopping the
relaxion at a local minimum. The explicit symmetry-
breaking parameter, mS, is chosen so that this minimum
corresponds to a Higgs field with a weak scale VEV.

B. The constraints on the cosmological evolution

Next we examine the constraints on the cosmological
evolution that limit the parameter space of the relaxion. To
determine these constraints, the relevant part of the scalar
potential is given as

V ¼ Vexplicit þ Vperiod; ð41Þ

which are given, respectively, in Eqs. (36) and (40).
However, as we argued above, we can ignore the
Coleman-Weinberg contribution during the relaxion epoch.
The main constraints on the parameter space are as
follows.20

(i) Inflaton/amplitudon slow roll: In order for the
relaxion process to work, we first need the slow
roll of the inflaton, σ, to proceed unimpeded, with
little effect from the coupling to the relaxion. The
equations of motion for σ in the slow-roll regime are

dσ
dt

¼ −
1

3HI

∂V
∂σ ¼ −

1

3HI

�
m2

Tσ −
gTffiffiffi
2

p Λ3
N cos

�
ϕ

fϕ

��
:

ð42Þ

Since we need the inflaton rolling to be unaffected
by the periodic potential piece in Eq. (42), we
require that

m2
Tσ ≫

gTffiffiffi
2

p Λ3
N: ð43Þ

We can remove the σ field dependence in this
expression by using the fact that right before EWSB,
gSϕ� ∼ −gTσ� [which follows from taking the ex-
pression in the square brackets of Eq. (40) to be 0]
and μ0 ∼mSUSY ∼mSϕ�=fϕ (which follows from

V( )

Coleman-Weinberg

Quadratic

CMBc Relaxion epoch

FIG. 2. Schematic description of the scalar potential as a
function of the inflaton/amplitudon field, σ. The dashed (dotted)
lines represent the pure Coleman-Weinberg (quadratic) potential,
while the solid line is the sum of the two potentials.

19Note that we have introduced the scalemSUSY ∼ F=fϕ where
F ∼mSϕ is the dominant supersymmetry-breaking contribution.
See Ref. [20] for further details.

20For the discussion of other conditions that lead to weaker
constraints, see Ref. [20].
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having a negative determinant of the Higgs mass
matrix; see Ref. [20]), with ϕ� and σ� being the field
values when the relaxion stops rolling. Using these
relationships, the condition (43) becomes

g2T
gS

≪
mSUSYfϕ

Λ3
N

jmT j2
jmSj

: ð44Þ

(ii) Relaxion initial condition: Next, we examine the
initial condition for the relaxion, ϕ, which we
require to be trapped at a local minimum. This
requires that the contribution to the mass of ϕ
coming from Vexplicit be subdominant compared to
the contribution coming from Vperiod. This results in
the following constraint,

jmSj2 ≪ gS
Λ3
N

fϕ
; ð45Þ

where we have again used the fact that right before
EWSB, gSϕ� ∼ −gTσ�.

(iii) Stability of the relaxion minimum: The next con-
straint we consider comes from requiring that the
Higgs VEV does indeed provide a barrier to even-
tually stop ϕ from rolling, and stabilize the relaxion
at a local minimum. This expression is found from
the minimization condition with the following in-
equality arising from taking sinð ϕfϕÞ ¼ 1,

jmSj≲ jλj sin 2β
4ML

v2Λ3
N

mSUSYf2ϕ
; ð46Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2u þ v2d

q
is the electroweak VEV. In

addition, the term in Vperiod proportional to λ gen-
erates a contribution to the soft SUSY breaking Bμ

term, which causes the determinant of the Higgs
mass matrix to oscillate. Requiring that the ampli-
tude of this oscillation be smaller than the electro-
weak scale gives the constraint

jλj≲ 4MLv2

Λ3
N sin 2β

: ð47Þ

Combining this with Eq. (46), we find

jmSj≲ v4

mSUSYf2ϕ
: ð48Þ

(iv) Classical rolling condition: Another relevant con-
straint to this scenario comes from requiring that the
relaxion, ϕ, and the inflaton, σ, undergo classical

rolling. The classical rolling conditions are deter-
mined from _σ=HI > HI, leading to the constraint

jmT j2
jmSj

gS
jgT j

mSUSYfϕ ≫ 3H3
I : ð49Þ

(v) ϕ tracks σ after EWSB: In order for ϕ to settle in its
minimum with the Higgs VEV of the order of
the weak scale, Aðϕ; σ; HuHdÞ needs to grow
quickly enough with the Higgs VEV so that ϕ
can stop tracking σ. By examining the evolution of
Aðϕ; σ; HuHdÞ as the Higgs VEV develops, we find
that as along as21

gS
sin 2β

m2
h

m2
SUSY

Λ3
N

fϕ

v2

f2ϕ
≲ jmSj2
1 − jmT j2

jmSj2
; ð50Þ

is satisfied, ϕ will discontinue its tracking of σ with
the Higgs VEV of the order of the weak scale.

(vi) Loop corrections to inflaton mass: A new constraint,
which is only present when the amplitudon is
identified as the inflaton, comes from loop correc-
tions to the mass of σ. First, because the coupling κ
breaks the shift symmetry, the Kähler potential is
affected by this shift-symmetry breaking at the loop
level,

ΔK ≃ κ2

16π2
jTj2: ð51Þ

Since κ is the order parameter of this shift-symmetry
breaking, it controls the size of all shift-symmetry
breaking in the Kähler potential. Because of the
inflation constraints discussed above, this parameter
must satisfy κ ≳ 10−2. If we include this loop-
corrected Kähler contribution in the supergravity
scalar potential,

VSUGRA ¼ e
K
M2
P

�
DiWKij̄Dj̄W̄ − 3

jWj2
M2

P

�
; ð52Þ

we see that there can be important affects on the
amplitudon. With the vacuum energy being nonzero
during the relaxion process, the exponential
expðK=M2

PÞ, which now depends on σ because of
the shift-symmetry breaking, generates a mass for

21The additional factors in Eq. (50) as compared to the
corresponding expression in Ref. [20] come from considering
the contribution to Bμ originating in the Higgs dependent part of
Aðϕ; σ; HuHdÞ. This oscillatory contribution to Bμ gives the

dominant contribution to ϕ dDðϕÞ
dϕ ∼m4

SUSY
f2ϕ

v2 sin 2β. Following
the same calculation as in Ref. [20], with this single change,
gives the constraint in Eq. (50).
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the inflaton. The exponential piece can be important
because the vacuum energy during the relaxion
process changes at least by an amount of the
order of

ΔV ¼ m2
Sϕ

2� ¼ m2
SUSYf

2
ϕ: ð53Þ

Expanding the exponential in Eq. (52), and using
Eq. (53) for the vacuum energy, we obtain an
inflaton mass of order

Δmσ ≃ κ

4π

mSUSYfϕ
MP

¼ 3.3 × 10−12 GeV

×
�

κ

10−2

��
mSUSY

105 GeV

��
fϕ

105 GeV

�
: ð54Þ

Now in order for the relaxion process to be viable,
this correction to the σ mass must be smaller thanmT
in the superpotential.

Second, the soft SUSY-breaking effects in the ϕ� fields
can induce the σ mass term via the Coleman-Weinberg
potential of the order of

Δmσ ≃ κ

4π
~mϕ� ; ð55Þ

where ~mϕ� denote the soft masses of ϕ�. If ~mϕ� is induced
by the Planck-suppressed ϕ�-relaxion operators, then we
expect ~mϕ� ∼mSUSYfϕ=MP and thus the contribution (55)
is of the same order as (54). If, on the other hand, there is
another source of SUSY breaking and it gives a larger
contribution to ~mϕ� , then this gives a more severe con-
straint, as we see in Appendix A.

1. Combined constraints

The relevant constraints can now be combined to restrict
the parameter space of the inflaton-relaxion model.
However, to simplify the parameter space, we redefine
the parameters in a similar manner as was done in Ref. [20],

gS ¼ ζ
mS

fϕ
; gS ¼ ζ

mT

fσ
; f≡fϕ¼ fσ;

rTS≡mT

mS
; rΛ≡ΛN

f
; rSUSY≡mSUSY

f
; ML ¼mSUSY;

ð56Þ

where ζ is a dimensionless parameter. Using this para-
metrization, we display the constraints in the mSUSY −mS
plane. Recall that the parameter mSUSY represents the
“cutoff scale” of the model while mS is the explicit
shift-symmetry breaking parameter. In Fig. 3, we have
taken ζ ¼ 10−8, rTS ¼ 0.1, rΛ ¼ 1, rSUSY ¼ 1, and
κ ¼ 10−2. The gray shaded region is excluded because
the periodic barrier formed when the Higgs VEV develops

cannot stop the relaxion rolling [Eq. (48)]. The blue shaded
region is excluded because ϕ never decouples from σ
[Eq. (50)]. In the red region, the shift-symmetry breaking
correction to the Kähler potential generates an inflaton
mass larger than mT [(54)]. The green-shaded region is
disfavored since the scalar potential may become unstable
in the direction of NN̄, as discussed in Ref. [20]. Above the
dash-dotted line, ϕ� < MP, and thus sub-Planckian field
values may be realized. The figure shows that supersym-
metric soft masses up to 3 × 105 GeV can be obtained for
the range 10−10 GeV≲mS ≲ 10−4 GeV. We see that the
PeV-scale SUSY region is now constrained by the con-
dition Δmσ < jmT j, which is a consequence of combining
the low-scale D-term inflation model with the two-field
relaxion model.
In Fig. 4, we take ζ ¼ 10−14, rTS ¼ 0.1, rΛ ¼ 1,

rSUSY ¼ 1, and κ ¼ 10−2. The color coding of the excluded
regions in Fig. 4 is the same as in Fig. 3. For these
parameter choices the allowed region now corresponds to
supersymmetric soft mass scales up to 106 GeV and
10−12 GeV≲mS ≲ 10−8 GeV. It is found that the new
condition Δmσ < jmT j gives a very severe limit on the
parameter space in this case.
Finally, in the allowed region, we can always find a value

of HI that satisfies the above constraints. The lower bound
on HI is given by

HI >max

�
jmSj;4×10−9 GeV×

�
mSUSY

105GeV

�
2
�

1

rSUSY

�	
;

ð57Þ
which comes from requiring that the slow roll of ϕ,
and the relaxion vacuum energy, is subdominant compared

FIG. 3. The allowed parameter region in the mSUSY–mS plane,
where ζ ¼ 10−8, rTS ¼ 0.1, rΛ ¼ 1, rSUSY ¼ 1, and κ ¼ 10−2.
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to that of the inflaton. The upper bound on the Hubble
scale is

HI < 4.6 GeV ×

�
rTS
0.1

�1
3

�
1

rSUSY

�1
3

×

� jmSj
10−7 GeV

�1
3

�
mSUSY

105 GeV

�2
3

; ð58Þ

which comes from Eq. (49). In addition, we have upper
limits on HI to evade the cosmic string problem as
discussed in Appendix B 1 c.

IV. CONCLUSION

In this paper, we have presented a low-scale inflationary
model embedded in a supersymmetric framework that
seeks to address the hierarchy problem and be consistent
with experimental data. Specifically, we consider a D-term
inflationary model, characterized by a new Uð1Þ symmetry
with a FI term. There are three parameters of the model that
are relevant for the CMB phenomenology: the Uð1Þ gauge
coupling, g, the FI scale,

ffiffiffi
ξ

p
, and the energy density ρreh at

reheating (assuming an instantaneous transition between
matter domination and radiation domination). To determine
the constraints on these parameters we trade the FI scale for
the Hubble scale, HI , at the moment at which the CMB
modes were produced. The measured values of the ampli-
tude and the spectral tilt of the primordial scalar perturba-
tions can then be used to obtain g and HI as a function of
ρreh. By requiring ρ

1=4
reh to be above the electroweak scale (in

order to facilitate baryogenesis), we find that a value of ns
compatible with the experimental limits (namely, a

sufficiently red scalar spectrum) can be achieved provided
g≲ 10−8 and HI ≲ 105 GeV. For this low scale of infla-
tion, the CMB modes are produced approximately
NCMB ≃ 39e-folds before the end of inflation (contrary
to the 50–60 e-folds typically required in high scale models
of inflation). InD-term inflation, this relatively low value of
NCMB is used to match the observed value of ns, since
deviations from scale invariance are inversely proportional
to NCMB.
Another issue typically associated with D-term inflation

is the formation of cosmic strings due to the spontaneous
breaking of the Uð1Þ symmetry at the end of inflation. We
prevent this from occurring by introducing a tiny breaking
of the Uð1Þ symmetry throughout the entire inflationary
epoch, due to a dynamical D-term mechanism. This
mechanism also allows the generation of a FI scale much
below the Planck scale. Finally, a low value of g is typically
problematic for reheating. For such a value, most of the
energy density after inflation is actually stored in the field
that spontaneously breaks the Uð1Þ symmetry (leading to
the end of inflation). This field obtains a VEV much greater
than its mass, and therefore typically gives a large effective
mass to any field that it is coupled to with a strength greater
than g, preventing its decay into these fields. Away to avoid
this kinematic barrier is to introduce superpotential cou-
plings that cancel the VEV, so as to allow the decay into the
MSSM Higgs fields, and the eventual reheating into
standard model fields. Thus, with the technically natural
superpotential couplings and the Uð1Þ gauge coupling g, a
low-scale model of supersymmetric inflation can be made
to be consistent with Planck data.
This low-scale D-term inflation model leads to an

interesting application. It can be combined with the
relaxion mechanism in order to identify the inflaton with
the second field (amplitudon) of a supersymmetric two-
field relaxion model that preserves the QCD axion solution
to the strong CP problem. The inflaton now also controls
the barrier height of the relaxion periodic potential. As the
inflaton rolls, it periodically reduces the barrier height
causing the relaxion to move and scan the supersymmetric
soft masses. Eventually electroweak symmetry breaking
occurs, which produces a new contribution to the relaxion
barrier height and traps the relaxion in a supersymmetry-
breaking local minimum. The correct electroweak VEV can
be obtained for supersymmetric soft masses up to the PeV
scale, provided the explicit shift-symmetry breaking
parameter mS ≲ 10−4 GeV, and the Hubble scale satisfies
HI ≲ 10 GeV. This dynamics takes place well before the
production of the CMB, at a time in which the energy
density of the inflaton is dominated by a quadratic (mass)
term, rather than by the Coleman-Weinberg term that
instead controls the motion of the inflaton at NCMB. The
switchover between these two potential terms is a natural
consequence of the flatness associated with the logarithmic
Coleman-Weinberg term, and it distinguishes our model

FIG. 4. The allowed parameter region in themSUSY −mS plane,
where ζ ¼ 10−14, rTS ¼ 0.1, rΛ ¼ 1, rSUSY ¼ 1, and κ ¼ 10−2.
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from other implementations of the relaxion mechanism.
Also by identifying the amplitudon as the inflaton, a
potential isocurvature problem in the original two-field
relaxion model is avoided. Therefore, the supersymmetric
inflaton-relaxion model successfully combines low-scale
D-term inflation, which is technically natural, with a
solution to the supersymmetric little hierarchy problem.
This intriguing connection between the inflaton and the
relaxion provides a new way to address the hierarchy
problem and deserves further study.
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APPENDIX A: DYNAMICAL D TERMS

Here, we review the dynamical generation of D terms.
We basically follow the arguments in Refs. [40,78] where
the dynamical generation of D terms is discussed based on
the IYIT model [79,80]. We focus on the case of the
SPð1Þ ≅ SUð2Þ strongly interacting gauge theory with
Nf ¼ 2 quark flavors. For more generic cases, see
Ref. [40]. In this case, we have four chiral quark superfields
Qi (i ¼ 1;…; 4), which are in the fundamental representa-
tion of SPð1Þ, and six singlet chiral superfields Zij ¼ −Zji

ði; j ¼ 1;…; 4Þ. We assign the Uð1Þ gauge charge þ1=2
(−1=2) to Q1;2 (Q3;4), −1 to Z− ≡ Z12, þ1 to Zþ ≡ Z34,
and 0 to Z13, Z14, Z23, Z24, respectively. The superpotential
terms for these fundamental fields are then given by

Wfund ¼
1

2

X
i;j

λijZijQiQj; ðA1Þ

with λij ¼ −λji dimensionless Yukawa couplings. We also
couple T and Φ� to this sector via the higher-dimensional
operators TΦ−Q1Q2 and TΦþQ3Q4. In order to facilitate
reheating, we include another shift-symmetric singlet, R,
and couple it to this strongly coupled sector through the
higher-dimensional operator RΦþQ1Q2 as well. There are
other renormalizable couplings allowed by the gauge
symmetries, such as TZþZ−, Z�Φ∓, Φ−Q1Q2, etc.—we
simply assume that all of these unwanted terms are
negligible in the following discussion. Such a situation
may be realized by geometrically separating the SPð1Þ
sector from the inflation/relaxion sector by means of, say,
branes in extra dimensions.
Below the confinement scale of the SPð1Þ gauge

interaction, Λ, the low-energy dynamical degrees of

freedom are given by the meson fields Mij ¼
−Mji ∼QiQj=Λ. The Uð1Þ charge assignment for these
meson fields follows from those for the constituent quark
fields;Mþ ≡M12 hasþ1,M− ≡M34 has −1, and the other
meson fields are neutral. The meson fields are subject to the
constraint [81]

PfðMijÞ ¼ M12M34 −M13M24 þM14M23 ¼ Λ2: ðA2Þ

As in Ref. [40], we assume that λ13, λ14, λ23, and λ24 are
much larger than λþ ≡ λ12 and λ− ≡ λ34 in order to make
sure that all of the neutral fields except T remain at the
origin. In this case, the condition (A2) leads to

MþM− ¼ Λ2; ðA3Þ

and the relevant part of the low-energy effective super-
potential is given by

Weff ¼ κTΦþΦ− þmT

2
T2 þ κþTMþΦ− þ κ−TM−Φþ

þ λþΛMþZ− þ λ−ΛM−Zþ þ κ1RΦþM−

þ κ2RHuHd þmRRR̄; ðA4Þ

where the third, fourth, and seventh terms in the right-hand
side of this equation come from the higher-dimensional
operators introduced above. Since these terms are generated
by nonrenormalizable interactions and/or break the shift
symmetry with respect to T or R, the couplings κ� and κ1;2
can be parametrically small.
From the superpotential (A4), we obtain the F-term

scalar potential as

VF¼
����κϕþϕ−þ

iffiffiffi
2

p mTσþκþMþϕ−þκ−M−ϕþ

����2

þ
����i σffiffiffi

2
p ðκϕ−þκ−M−Þþκ1RM−

����2

þ
����i σffiffiffi

2
p ðκϕþþκþMþÞ

����2

þ
����iκþffiffiffi

2
p σϕ−þλþΛZ−

����2þ
����iκ−ffiffiffi

2
p σϕþþλ−ΛZþþκ1Rϕþ

����2

þ
����κ1ϕþM−þκ2HuHdþmRR̄

����2þjmRRj2

þjλþΛMþj2þjλ−ΛM−j2; ðA5Þ

where we have assumed jσj ≫ jτj as in Sec. II A. There is
also a D-term contribution to the scalar potential

VD ¼ g2

2
ðjϕþj2 − jϕ−j2 þ jZþj2 − jZ−j2 þ jMþj2

− jM−j2 − ξtreeÞ2; ðA6Þ

EVANS, GHERGHETTA, NAGATA, and PELOSO PHYSICAL REVIEW D 95, 115027 (2017)

115027-14



where ξtree denotes the tree-level FI term, which can be
taken to be 0 when the dynamical sector generates a large
enough contribution for D-term inflation to work. This
amounts to the difference of the VEVs of M� being large
enough.
Now to leading order22 in κ�, κ1, and g, the F terms

vanish in the vacuum except for Z� and T with the fields
having the following VEVs,23

hM�i ¼
ffiffiffiffiffiffi
λ∓
λ�

s
Λ; ðA7Þ

hϕ�i ¼ −
κ�
κ

ffiffiffiffiffiffi
λ∓
λ�

s
Λ; ðA8Þ

hZ�i ¼
iκþκ−

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λþλ−

p σ; ðA9Þ

hRi ¼ −i
κ1κ−λþσΛ2

κ21λþΛ2 þ λ−m2
R
; ðA10Þ

and R̄ can be found by solving FR. We have assumed g ≪
λ� as in Ref. [40]. This condition can easily be satisfied in
the case of low-scale D-term inflation as can be seen from
Eq. (20). The details of the calculation for the VEVs ofM�
can be found in Ref. [40]. By using Eq. (A7), we then
obtain the dynamically generated FI term,

ξdyn ¼
�
λþ
λ−

−
λ−
λþ

�
Λ2: ðA11Þ

This can explain the required value shown in Eq. (18) if
Λ≃ 1016 GeV. Such a dynamically generated FI term has
several advantages. First, this can naturally explain why the
FI term is much smaller than the fundamental scale, such as
the Planck scale. In addition, this allows the model to
couple with supergravity in a consistent manner, which is
very difficult if the theory possesses a constant FI term.24 It
also provides a means to suppress cosmic strings and
facilitate reheating through additional couplings of the
dynamical sector to the inflaton sector.

As mentioned above, the fields Z� develop F terms

FZ� ¼ −
ffiffiffiffiffiffiffiffiffiffi
λþλ−

p
Λ2: ðA12Þ

Note that since we have assumed g ≪ λ�, this F-term VEV
is much larger than the dynamically generated D term
gξdyn ∼ gΛ2. The size of FZ� can, however, be much
smaller than Λ2 if one takes λ� to be very small.
Since this setup introduces another source of SUSY

breaking as well as the shift-symmetry breaking, this sector
may give rise to a sizable shift-symmetry breaking effect on
the inflaton/amplitudon field. For example, if FZ� induces
the gravity-mediated soft masses of ϕ�, this generates a
mass for σ via the Coleman-Weinberg potential as in
Eq. (55) of the order of

Δmσ ≃ κ

4π

jFZ�j
MP

; ðA13Þ

and thus the requirement25 of Δmσ < mT restricts
ffiffiffiffiffiffiffiffiffiffi
λþλ−

p
as26

ffiffiffiffiffiffiffiffiffiffi
λþλ−

p
< 3 × 10−18 ×

� jmT j
10−7 GeV

�

×

�
κ

10−2

�
−1
�

Λ
1016 GeV

�
−2
: ðA14Þ

This may be in contradiction with the condition g ≪ λ�.
However, if we consider the no-scale Kähler terms for ϕ�,
the gravity-mediated mass terms may vanish and thus the
dominant contribution comes from anomaly mediation
[85,86]. In this case, Δmσ is suppressed by another factor
of κ2=ð16π2Þ, which allows λ� to be larger than the gauge
coupling constant.
If Z� were to couple to T too strongly, their F terms,

FZ� , would generate a large mass for σ. However, Z does
not interact with T even at one-loop level, and thus FZ� do
not give sizable effects on σ through radiative corrections.
The F terms forM� vanish at the leading order with respect
to the small couplings g, λ�, and κ�, and thus their effects
are very tiny and can be completely neglected. On the other
hand, there are nonzero contributions to the F terms of ϕ�,
which can induce a mass term for the σ field through the
terms in the second line of Eq. (A5). From a straightforward
calculation, we find that this effect is smaller than the
Coleman-Weinberg effect if

22We have checked this perturbatively in the limit where g, κ�,
and κ1 are small.

23The leading order contributions to the VEVs of all fields
except ϕþ and M� can be taken to be 0 in the limit κ− → 0. This
has no adverse effect on the model we consider.

24As pointed out in Refs. [82,83], the Ferrara-Zumino current
multiplet [84], which contains the energy-momentum tensor and
the supersymmetry current, becomes gauge variant in the
presence of a constant FI term, and thus cannot be well defined.
This prevents the theory from coupling to minimal supergravity.

25Note, this constraint is only important if we wish to identify
the inflaton as the amplitudon. However, there is still a restriction
on the couplings λ� but it is much weaker.

26Although FZ� may be larger than FS, FZ� effects are only
communicated gravitationally and so give a subdominant con-
tribution to the MSSM soft masses.
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½jκþMþj2 þ jκ−M−j2�12 <
κg

ffiffiffi
ξ

p
4π

: ðA15Þ

Because hM�i ∼
ffiffiffi
ξ

p
, this roughly places a constraint offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jκþj2 þ jκ−j2
p ≲ κg

4π. Because g grows with the inflation
scale, this constraint on κ� becomes weaker for larger
inflation scales. Thus, we find that there is a sufficient range
of parameter space where both (27) and (A15) are satisfied.

APPENDIX B: COSMIC STRINGS
AND INFLATION

In this section, we discuss the effects of quantum and
thermal corrections on the Uð1Þ symmetry breaking during
inflation. This breaking can prevent the generation of
cosmic strings after inflation.

1. Quantum fluctuations and cosmic strings

a. General model of cosmic strings

First, we discuss the effects of quantum fluctuations on
the Uð1Þ-breaking scalar field during inflation. To that end,
we consider a simple toy model that is described by the
following Lagrangian,

L ¼ j∂μϕj2 − VðϕÞ; ðB1Þ

with

VðϕÞ ¼ ḡ2

2
ðjϕj2 − ξ̄Þ2 − ϕC − ϕ�C� þ jκ̄j2jIj2jϕj2; ðB2Þ

where I is the inflaton. In the limit that C ¼ 0, the theory
has a global Uð1Þ symmetry, and the vacuum corresponds
to ϕ ¼ 0 for jκ̄Ij2 > ḡ2ξ̄. Instead, when jκ̄Ij2 < ḡ2ξ̄ we
obtain

jϕj2 ¼ ξ̄: ðB3Þ

In this case, the global Uð1Þ symmetry is spontaneously
broken, and the vacuum manifold is Uð1Þ ≅ S1 as seen in
Eq. (B3). Since the first homotopy group of this manifold is
π1ðUð1ÞÞ ≅ Z, vortices and strings can form in three and
four spacetime dimensions, respectively. Here, we consider
four spacetime dimensions and take the z axis parallel to the
string. We use polar coordinates ðr; θÞ in the x–y plane,
with the origin located at the center of the cosmic string.27

Let us explicitly see how strings form after the Uð1Þ
symmetry is broken. In order for the energy per unit length
of the string, or string tension, to be finite, it is necessary
that jϕj →

ffiffiffī
ξ

p
as r → ∞. However, the phase of ϕ at

infinity is not necessarily the same in different directions;
for instance, we may have

ϕðxÞ →
ffiffiffī
ξ

q
einθ ðr → ∞Þ; ðB4Þ

with n being an integer. Such nontrivial field configurations
(for n ≠ 0) correspond to the formation of strings in the
system.
So far, we have considered global strings. It turns out,

however, that the string tension in this case diverges if the
spatial volume is infinite. On the other hand, if the Uð1Þ
symmetry is a gauge symmetry, then the tension becomes
finite thanks to nontrivial field configurations of the Uð1Þ
gauge field. In this case, the winding number n corresponds
to the magnetic flux in the string core. If the Uð1Þ charge
times the gauge coupling of ϕ is given by ḡ, then the masses
of the Uð1Þ gauge boson and ϕ in the broken phase are
equal; in this case, we have BPS strings whose string
tension is given by

μ ¼ 2πξ̄n: ðB5Þ

The model discussed in Sec. II C assumes a Uð1Þ gauge
symmetry that gives rise to BPS strings. The behavior of the
Uð1Þ symmetry breaking itself can, however, be captured
with the simplified model in Eq. (B1), and thus we focus on
this in what follows.

b. Effects of the linear term

Here we examine in detail what happens if C ≠ 0, which
explicitly breaks the Uð1Þ symmetry. To that end, let us
take

ϕ ¼ vreiα: ðB6Þ

Then, Eq. (B2) leads to

VðϕÞ ¼ ḡ2

2
ðv2r − ξ̄Þ2 − vreiαC − vre−iαC� þ jκ̄j2jIj2v2r ;

ðB7Þ

with the vacuum conditions

2ḡ2vrðv2r − ξ̄Þ þ 2jκ̄j2jIj2vr ¼ eiαCþ e−iαC�; ðB8Þ

e2iα ¼ C�

C
: ðB9Þ

From Eq. (B9), we see that the phase of hϕi is uniquely
selected by the phase of the Uð1Þ symmetry breaking term
such that

α≡ − argðCÞ ðmod 2πÞ; ðB10Þ

and therefore strings never form. We use this mechanism to
evade the formation of cosmic strings.

27The translational invariance in the theory is also
spontaneously broken.
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With the condition (B10), Eq. (B8) leads to

2ḡ2vrðv2r − ξ̄Þ þ 2jκ̄j2jIj2vr ¼ 2jCj: ðB11Þ

Assuming that ḡ is very small so that we can neglect the
first term, as justified in our D-term inflation model, we
obtain vr as

vr ≃ jCj
jκ̄Ij2 : ðB12Þ

In order for strings not to form, we require that this VEV is
larger than quantum fluctuations in vr induced by inflation
and thermal fluctuations. This would guarantee that all
patches of the sky have the same phase of hϕi in the end, so
no strings could form.

c. Cosmic strings for our model

If the quantum fluctuations around the time inflation
ends are large enough, cosmic strings could still form since
there could be fluctuations of ϕ which spoil the phase
alignment imposed by the Uð1Þ-breaking term.28 Here we
evaluate the size of the quantum fluctuations in α from
inflation; if the fluctuation δα can be as large as π, then
strings can form after inflation. During inflation, the size of
the fluctuations depends on the size of the field mass
in the α direction, mα, relative to the Hubble parameter
during inflation, HI . The mass mα can be obtained from
Eq. (B7) as29

m2
α ¼

1

2v2r

∂2V
∂α2

����
α¼− argðCÞ

¼ jCj
vr

≃ jκ̄Ij2; ðB13Þ

where we have used Eq. (B12). Since the cosmic strings
that can be see in the CMB have lengths that are of the order
of the current horizon size, the variations in the phases must
be in place when the inflaton has the field value corre-
sponding to NCMB. The fluctuations in the α direction at
this time are then estimated as [87]

hδα2i ¼ H3
I

24π2mαv2r
≃H3

I jκ̄ICMBj3
24π2jCj2 ; ðB14Þ

where ICMB denotes the field value of I at the time when the
CMB is set. The condition

ffiffiffiffiffiffiffiffiffiffiffi
hδα2i

p
< π imposes a lower

bound on jCj, given an inflation model.

We now apply this result to the model discussed in
Appendix A. This model can be mapped on to the
simplified model we considered above by setting ḡ ¼ g,
ξ̄ ¼ ξ, κ̄ ¼ κ, ϕ ¼ ϕþ, I ¼ iσ=

ffiffiffi
2

p
, and C ¼ κκ�þM�þσ2=2.

Note that from Eqs. (11), (13), (17), (18), and (20), we have
σCMB ¼ HI=ðπA1=2

s ð1 − nsÞÞ. The limit
ffiffiffiffiffiffiffiffiffiffiffi
hδα2i

p
< π then

reads

HI <

�
24π2jκþj2jMþj2ffiffiffi
2

p
κA

1
2
sð1 − nsÞ

�1
2

: ðB15Þ

We can easily find a set of parameters that satisfy this
condition as well as Eq. (A15).
Since the mass of ϕþ approaches 0 at the end of inflation,

it is possible that strings with size much smaller than the
current horizon could have formed if the fluctuations
during this period are too large. To verify that this is not
a problem, we examine the same constraint but in the case
that mα ¼ 0, which leads to fluctuations of order
hδα2i ¼ H2

I =ð8π2v2rÞ. In this case the constraint becomes

HI <23=2π2
jκþj
κ

jMþj¼2.8×107GeV

×

� jκþj
10−12

�� jMþj
1016GeV

��
κ

10−2

�
−1
:

ðB16Þ

This is again compatible with the condition (A15). Since
the constraints on strings with sizes much smaller than the
CMB scale may not be problematic, we only cite the
constraint in Eq. (B15) in the main text. However, since
(B16) scales with κþ, just like the constraint in Eq. (B15),
this constraint can be satisfied for any HI by choosing an
appropriate κþ that is consistent with Eq. (A15).

2. Thermal fluctuations after inflation

Finally, we need to consider the effect that thermal
fluctuations can have on the formation of cosmic strings.
Since we are only interested in an order of magnitude
estimate, we use

hδα2itherm ≃ T2=v2r ; ðB17Þ

where the fluctuations are probably a bit more mild than
this. By requiring

ffiffiffiffiffiffiffiffiffiffiffi
hδα2i

p
therm < π, we then obtain an

upper bound on the reheating temperature as TR < πvr.
This corresponds to TR < πjhϕþij in the D-term inflation
model.
During most of inflation, the nonzero VEV for ϕþ is

determined by the linear term and the mass term as we have
seen above. However, towards the end of inflation,

28This may not be a necessary condition for no strings, but it is
sufficient. As long as there is only one minimum of the potential
for some time after the CMB is set, the quantum fluctuations are
no longer correlated on superhorizon scales and large strings do
not form. Smaller strings may still form, but they lead to different
problems, such as overclosure, and are not constrained by the
CMB.

29To obtain a mass term for the canonically normalized field,
we need to rescale by

ffiffiffi
2

p
vr.
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jκTcj2 ¼
κ2

2
σ2c ¼ g2ξ; ðB18Þ

and so the ϕþ mass approaches 0. When Eq. (B18) is
satisfied, the mass term is 0, and the VEV is set by the
quartic term and the linear term, which can be read from
Eq. (B8) as

jhϕþij ¼
���� κþMþξ

κ

����
1
3

: ðB19Þ

Thus, the upper bound on TR is given by

TR < π

���� κþMþξ
κ

����
1
3

¼ 6.5 × 1014 GeV ×

� jκþj
10−12

�1
3

� jMþj
1016 GeV

�1
3

×

�
κ

10−2

�
−1
3

�
1 − ns
0.03

�1
6

�
As

2.1 × 10−9

�1
6

; ðB20Þ

where we have used Eq. (18). For the values of HI we are
considering, the reheating temperature can easily satisfy
this constraint. However, above we have assumed that the
field is not displaced from its minimum as the location of
the minimum moves near the end of inflation. If the field
can indeed track its minimum, there are no cosmic strings
from thermal fluctuations.
Now we need to verify that ϕþ can track the minimum as

the inflaton approaches the critical value, or at least track it
sufficiently long such that thermal fluctuations do not cause
strings to form. The minimum begins to move once
jκσj2 ∼ g2ξ. To approximate the actual size of the VEV

of ϕþ once σ hits its critical value, we estimate how far ϕþ
tracks its minimum. The field ϕþ tracks its minimum until
its mass mϕþ becomes equal to 3HI=2, a well-known
relationship. During inflation, the VEVof ϕþ has plenty of
time to settle into its minimum of jκþMþ=κj, where the
mass of ϕþ (both the radial and phase directions) is given
by m2

ϕþ ¼ κ2σ2

2
− g2ξ. The value of σ where ϕþ ceases to

track its minimum can then be found from mϕþ ¼ 3HI=2.
At this point, the ϕþ VEV is [see Eq. (B12)] given by

jhϕþij≃ jCj
m2

ϕþ

¼ 2jκκþMþσ2j
9H2

I
≃ 4g2ξjκþMþj

9κH2
I

≃ 8

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Asð1 − nsÞ

p ���� κþMþ
κ

����; ðB21Þ

where we have used κ2σ2

2
≃ g2ξ, Eq. (17), and Eq. (19). The

upper bound on TR is then given by

TR <
8π

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Asð1 − nsÞ

p ���� κþMþ
κ

����
¼ 1.5 × 1019 GeV ×

� jκþj
10−12

�� jMþj
1016 GeV

�

×

�
κ

10−2

�
−1
�
1 − ns
0.03

�
−1
2

�
As

2.1 × 10−9

�
−1
2

: ðB22Þ

This bound is satisfied for the entire parameter space that is
compatible with the CMB observation. Indeed, we can
show that the maximum possible reheat temperature is
always smaller than the VEV of ϕþ.
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