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We investigate the lower bounds of sfermion masses from the constraints of chromoelectric dipole
moments (CEDMs) in the natural SUSY-type sfermion mass spectrum, in which stop mass m~t is much
smaller than the other sfermion masses m0. The natural SUSY-type sfermion mass spectrum has been
studied since the supersymmetric (SUSY) flavor-changing neutral currents (FCNC) are suppressed because
of large sfermion masses of the first two generations, and the weak scale is stabilized because of the light
stop. However, this type of sfermion mass spectrum is severely constrained by CEDM, because the light
stop contributions to the up quark CEDM are not decoupled in the limit m0 → ∞, while the down quark
CEDM is decoupled in the limit. It is important that the constraints are severe even if SUSY-breaking
parameters (and Higgsino mass) are taken to be real because complex diagonalizing matrices of Yukawa
matrices, which are from complex Yukawa couplings, generate nonvanishing CP phases in off-diagonal
elements of sfermion mass matrices. We calculate the CEDM of up and down quarks numerically in the
minimal SUSY standard model, and give the lower bounds for stop mass and the other sfermion masses.
We show that the lower bound of stop mass becomes 7 TeV to satisfy the CEDM constraints from Hg EDM.
The result is not acceptable if the weak scale stability is considered seriously. We show that if the up-type
Yukawa couplings are taken to be real at the grand unification scale, the CEDM constraints are satisfied
even if m~t ∼ 1 TeV.
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I. INTRODUCTION

The supersymmetric (SUSY) extended standard model
(SM) is one of the most promising candidates as the model
beyond the SM. The minimal SUSY SM (MSSM) can
realize the stability of the weak scale and provide a
candidate of the dark matter. Moreover, it is consistent
with the grand unified theory (GUT) [1] since the three
gauge couplings meet at a scale which is called the
GUT scale.
However, the supersymmetry must be broken because

the supersymmetric partners of the quark and lepton, which
are the squark and slepton, have not been found yet, and the
scale is expected to be around the weak scale, not to
destabilize the weak scale. Generically, the SUSY-breaking
parameters which violate the flavor and CP symmetry
induce too large flavor-changing neutral current (FCNC)
processes (the SUSY flavor problem) and the CP-violating
processes (SUSY CP problem). To avoid these problems,
we usually assume the universal sfermion masses and/or
real SUSY-breaking parameters at a scale. One more
interesting possibility is the decoupling solution in which

the SUSY-breaking scale is taken to be much higher than
the weak scale. Then the SUSY contributions to the FCNC
processes and CP-violating processes are suppressed by
decoupling features. The sfermion masses are required to
be Oð1000Þ TeV to sufficiently suppress the contribution
to ϵK if off-diagonal elements of sfermion mass matrices
are not suppressed [2]. This possibility has been examined
more in detail since the observed Higgs mass 125 GeV [3]
requires a higher SUSY-breaking scale [4]. Unfortunately,
such higher SUSY-breaking parameters result in the desta-
bilization of the weak scale; i.e., strong fine-tuning is
needed to obtain the weak scale.
One possible way to improve the fine-tuning is to make

the stop mass lower, around 1 TeV, while the other scalar
fermions (sfermions) have much larger masses than 1 TeV
to suppress the FCNC and CP-violating processes. Such
sfermion mass spectrum is called effective SUSY-type
sfermion masses or natural SUSY [5]. Unfortunately, it
has been pointed out that the sufficiently large sfermion
masses are difficult to be taken since large sfermion masses
and small stop mass at the GUT scale tend to result in
negative stop mass square at the weak scale via two loop
renormalization group effects. Large gluino mass can
improve the situation, because it contributes to the stop
mass square positively. Roughly, squark masses except stop
mass must be smaller than 5 times gluino mass. Therefore,
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if the gluino mass is around 2–3 TeV, which is target of
LHC experiment, Oð10Þ TeV is the upper limit. Then, the
off-diagonal elements of sfermion mass matrices must be
suppressed. One way to suppress the off-diagonal elements
is to require the modified sfermion universality in which all
sfermion masses except third generation 10 dimensional
fields of SUð5Þ are universal at the GUT scale [6,7] as
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Such mass spectrum can be naturally obtained in E6 GUT
[8–10] with family
symmetry [6]. Here the universality for all 5̄ fields of

SUð5Þ is important to obtain sufficiently small FCNC
processes even if the diagonalizing matrices for 5̄ fields
have large mixings. Therefore, when the diagonalizing
matrices of 10 fields and 5̄ fields of SUð5Þ are estimated by
Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM and
Maki-Nakagawa-Sakata (MNS) matrix VMNS as
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which are expected in some GUT models [10,11],
off-diagonal elements of sfermion mass matrices can be
suppressed as
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and most of flavor and CP constraints can be satisfied.
Lepton flavor violation processes like μ → eγ or τ → μγ
may be seen [12] if m3 ∼Oð100Þ GeV, but unfortunately,
we lost the strong reason to take m3 ∼Oð100Þ GeV after
discovery of Higgs particle because lower bound of stop
masses becomes around 1 TeV in the MSSM in order to
realize the Higgs mass ∼125 GeV. Here λ ∼ 0.22 is the
Cabibbo mixing angle.

However, even if this modified universal sfermion mass
spectrum with real SUSY-breaking parameters are adopted,
the EDM constraints from the experimental bound [13] as

dN < 3.0 × 10−26 e cm ð4Þ
dHg < 7.4 × 10−30 e cm ð5Þ

become severe. The essential point is that the sfermion
mass matrices of 10 fields of SUð5Þ in super-CKM basis
where quark and lepton mass matrices are diagonal have
complex off-diagonal elements generically unless sfermion
masses are universal because Yukawa couplings are com-
plex, and therefore, diagonalizing matrices are complex to
obtain the Kobayashi-Maskawa (KM) phase. Therefore, the
diagram with the complex off-diagonal elements can
contribute to the (chromo) EDM, and give severe con-
straints to the off-diagonal elements [14]. Most of con-
tributions to (chromo) EDM are decoupled in the limit
m0 → ∞ with finitem3, but some contributions to up quark
(chromo) EDM are not decoupled in the limit [15]. The
constraint becomes
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which are obtained by the mass insertion approximation
(MIA)[16] with certain mass spectrum of SUSY particles.
Here we have used the relations between neutron (Hg)
EDMs and CEDM of quarks in Ref. [17]([18]) for neutron
(Hg) EDM. Although the ambiguity in theoretical calcu-
lation of EDMs is large especially for Hg [18,19], we give
the constraints to the model by neglecting the uncertainty in
this paper. Since ð ~m2

10Þ31=m2
0 ∼ ð ~m2

10Þ13=m2
0 ∼ λ3, the pre-

dicted EDM of Hg becomes about 20 times larger than the
experimental bound even if we take stop mass m~t ∼ 2 TeV
and the diagonalizing matrices of V10 have small mixings
like CKMmatrix. This severe constraint looks to be general
for almost all models with natural SUSY spectrum, and it is
important to study the solution to this problem if natural
SUSY spectrum is studied. Note that this problem cannot
be solved by real SUSY-breaking parameters, because the
CP phases of off-diagonal elements of sfermion mass
matrices come from the complex Yukawa couplings which
are usually assumed to obtain nonvanishing KM phase. We
call this (chromo) EDM problem new SUSY CP problem
in this paper.
In this paper, we focus on the new SUSY CP problem in

the models with natural SUSY spectrum. One easy solution
is to take large stop mass although large stop mass
destabilizes the weak scale. Another one is to take diagonal
up-type Yukawa matrix and therefore, diagonalizing matrix
of up-type quark becomes unit matrix, although it is not so
easy to obtain it in natural way. One more interesting
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solution to this new SUSY CP problem is to take real up-
type Yukawa couplings to suppress the (chromo) EDM and
complex down-type Yukawa couplings to obtain the KM
phase. That possibility has been proposed and discussed in
the E6 GUTwith family andCP symmetry[15,20], which is
spontaneously broken by a CP phase in Higgs vacuum
expectation value (VEV) which breaks the family sym-
metry also.
In this paper, we calculate the chromo EDMs (CEDMs)

of up and down quarks in the MSSM with different
boundary conditions because the CEDMs give more severe
constraints than the usual EDMs for natural SUSY-type
models with real SUSY-breaking parameters. (In the recent
paper [21], the EDM constraints in natural SUSY models
with complex SUSY-breaking parameters has been dis-
cussed. However, the contributions discussed in this paper
often give stronger constraints to the natural SUSY-type
models even if SUSY-breaking parameters are real.) We
also discuss the decoupling features of those constraints.
First, we show that the nondecoupling feature of the up-
quark CEDM contribution by the MIA and that the stop
mass must be larger than 10 TeV to satisfy the CEDM
constraints. Second, we calculate the up- and down-quark
CEDMs numerically in the MSSM and show that the stop
mass and the other squark masses must be larger than 7 TeV
to satisfy the up- and down-quark CEDMs. If the real up-
type Yukawa couplings are adopted, CEDM constraints can
be satisfied even if the stop mass isOð1Þ TeV, although the
other squark masses must be larger than 7 TeV. Finally, we
discuss the predictions.

II. ROUGH ESTIMATE OF CEDM

In this section, we calculate CEDM of up quark in the
modified universal sfermion mass spectrum by MIA, and
see the nondecoupling feature in the limit m0 → ∞ when
m3 and the other SUSY-breaking parameters are fixed.
The effective lagrangian for CEDM is described as

LCEDM ¼ −
igs
2
dCq q̄ðG · σÞγ5q; ð7Þ

where gs is the QCD coupling, G · σ ¼ GA
μνTAσμν, GA

μν is
field strength of gluon, TA ðA ¼ 1; 2;…; 8Þ are SUð3Þ
generators and σμν ¼ i

2
½γμ; γν�. dCq shows quark CEDM and

one can calculate this by computing diagrams shown in
Fig. 1(a). In particular, dCq is dominated by gluino con-
tributions in the SUSY model. In the natural SUSY-type
models, the diagram in Fig. 1(b) dominantly contributes to
dCu [14,15]. We estimate the magnitude of dCu by using the
diagram in Fig. 1(b) by MIA as
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where ðδuABÞij are the mass insertion parameters, defined as

ðδuABÞij ≡
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and Fðx; yÞ is a loop function. In this definition, ðΔu
ABÞij is

an element of the 6 × 6 sfermion mass matrix in the super-
CKM basis,
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where Au is a 3 × 3 matrix for scalar three point vertex, m2
Q

and m2
u are 3 × 3 soft SUSY-breaking mass matrices, and

vu and vd are MSSM Higgs VEVs. Here, Lu, Ru are
diagonalizing matrices for Yukawa coupling Yu as
LT
uYuRu ¼ Ŷu which is a diagonal matrix of Yu. In the

last similarity in Eq. (8), we have assumed that the gluino

(a) (b)

FIG. 1. Diagrams contribute to dCq (a) and dCu (b). ðΔu
ABÞijðA; B ¼ L orR; i; j ¼ 1; 2; 3Þ is the element of 6 × 6 sfermion mass matrix

[see Eq. (10)].
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mass M ~g and ðΔu
RLÞ33 ∼ Au33vu are real. Even if all SUSY-

breaking parameters and Higgsino mass μ are set to be
real, M2

~u becomes complex generically because Yukawa
couplings are taken to be complex to obtain the KM phase
and therefore diagonalizing matrices Lu and Ru are com-
plex. Quantitative constraint for mass insertion parameter
in Eq. (8) comes from the current CEDM bound,
jdCu j < 3.4 × 10−27ð1.0 × 10−25Þ cm, which are obtained
from the present upper limit of dHgðdNÞ in Eq. (5) [in
Eq. (4)], and the relation dHg ∼ 2.2 × 10−3eðdCu − dCd Þ[18].1
(dN ∼ −0.3eðdCu − dCd Þ[17]), as

Im½ðδuLLÞ31ðδuRRÞ13� <
�
5.3 × 10−6ðHgÞ
1.6 × 10−4ðneutronÞ

��
m~t

2 TeV

�
2

;

ð11Þ

where we have used gs ≃ 1, m~t ∼ Au33 ∼ 2 TeV,
M ~g ∼ 1.5m~t ∼ 3 TeV,2 m ~u ∼ 10 TeV, and the loop integral
function Fð0.09; 0.04Þ is 0.079 which is obtained from the
Appendix. When we assume that

Lu; Ru ∼ VCKM ∼

0
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andm ~u ¼ m~c ≫ m~t, the left-hand side of Eq. (11) becomes
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So this contribution does not decouple in the limit of
m ~u → ∞ and the size is about 10−4 that is about 20 times
larger than the constraint from Hg EDM. Therefore,
m~t > 10 TeV is required to satisfy the CEDM constraint
in this approximation.
On the other hand, for the CEDM of down quark, dCd ,

such contributions from flavor-violating mass insertion is
decoupled when sdown mass m ~d → ∞ because the right-
handed sbottom mass m ~b ∼m ~d. Therefore, m ~d > 10 TeV
is expected to be required to satisfy the experimental bound
of CEDM if the decoupling feature is similar to that of dCu
for m~t.

Therefore, the CEDM of up quark is more serious in
natural SUSY scenario. One simple solution is that real Yu
and Au are taken while Yd is complex that induces the KM
phase. In this case, diagonalizing matrices of up-type quark
mass matrix are also real and then dCu is strongly sup-
pressed. Note that Yu becomes complex through the
renormalization group equation (RGE), even if Yu is real
at the GUT scale. In such a case, however, dCu is small
enough to satisfy the current experimental bound as we will
show in Sec. III.

III. EVALUATIONS AND RESULTS

In this section, we numerically calculate the CEDM in
the MSSM with the modified universal sfermion mass
spectrum.
Now, we explain the procedure for the calculation of

CEDMs. First of all, input parameters, which are gauge
couplings gi, gaugino masses Mi, Yukawa couplings, A
parameters which are couplings of three scalar’s vertex,
sfermion mass matrices, and doublet Higgs masses are
given at the GUT scale, ΛG ¼ 2 × 1016 GeV, as

g1ðΛGÞ ¼ g2ðΛGÞ ¼ g3ðΛGÞ ¼ gGUT ¼ 0.7; ð14Þ
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Hu
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where A0 is the typical scale of A parameters, and sfermion
mass matrices ~m2

10 and ~m2
5̄ are for 10 and 5̄ fields,

respectively. The Higgsino mass μ is fixed by the value
of the Z boson mass mZ. (μ becomes comparatively large
(Oð1Þ TeV), which may destabilize the weak scale. But we
do not mind it because large μ does not contribute much to
dCu .) Next, in order to obtain low-energy parameters from

1Here, we use the bound for jdCu − dCd j as the bound for dCu .
This is justified in the limit m0 → ∞ because dCd is vanishing in
the limit. In this paper, we just use the bound for dCu − dCd as the
bound for dCu and dCd even with finite m0.

2If A-term is smaller, the constraints become weaker, although
A ≪ M ~g usually requires a tuning in the MSSM with SUSY-
breaking parameters given at the GUT scale because of the
renormalization group effects.
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these inputs, we use two-loop RGEs based on Ref. [22].
Note that, for simplicity, we consider MSSM from GUT
scale to the SUSY-breaking scale. Finally, we compute up,
down and strange quark CEDMs. These CEDMs denoted
as dCq ðq ¼ u; d; sÞ are evaluated by the following one-loop
formulas,
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where c ∼ 0.9 is QCD correction. M̂2
~q ðq ¼ u; dÞ are

diagonalized squark mass matrices which are obtained as
M̂2

~q ¼ U ~qM2
~qU

†
~q, where M

2
~q and U ~q are 6 × 6 squark mass

matrices and the diagonalizing matrices, respectively.
F1ðxÞ ¼ ðx2 − 4xþ 3þ 2 ln xÞ=2ð1 − xÞ3 and F2ðxÞ ¼
ðx2 − 1 − 2x ln xÞ=2ð1 − xÞ3 are coming from loop inte-

grals and xqj ¼
M2

~g

ðM̂2
~qÞjj
. The current bounds [13,14] are

jdCq j < 3.4 × 10−27 cm ðq ¼ u; dÞ; ðHgÞ ð23Þ

jdCq j < 1.0 × 10−25 cm ðq ¼ u; dÞ; ðneutronÞ ð24Þ

jdCs j < 1.1 × 10−25 cm: ð25Þ

We consider three types of inputs of Yukawa couplings
and A parameters. All of three types have the hierarchy
explained above, but have different type of Oð1Þ coeffi-
cients. To explain this, we show the explicit forms of these
matrices:
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(i) real Yu type
At the GUT scale, ydij, adij, yeij and aeij are

complex Oð1Þ coefficients, while yuij and auij are
real Oð1Þ coefficients (i, j ¼ 1, 2, 3).

(ii) complex Yu type
All yuij, auij, ydij, adij, yeij and aeij are complex

Oð1Þ coefficients (i, j ¼ 1, 2, 3).
(iii) E6 model (with family symmetry and spontaneous

CP violation) There are special relations obtained in
the model in Ref. [20]: yu11 ¼ yu13 ¼ yu31 ¼
ye13 ¼ ye21 ¼ 0, yu12¼−yu21¼yd13¼ 1

3
dq, yu23 ¼

yu32, yd23 ¼ ye32, yd33 ¼ ye33 and ye12 ¼ −ye31.
yd11, yd12, yd22, yd32, ye11, ye22 and ye23 are complex
Oð1Þ coefficients, and dq, yu22, yu23, yu33, yd21, yd23,
yd31, yd33 and ye12 are real Oð1Þ coefficients (there
are same structures in A parameters).

For all types, we take real parameters for M1=2, μ,
Au33 ¼ A0, and yu33 ¼ 0.8 at the GUT scale and we set
tan β ¼ 7. In these parameters, most of the usual contri-
butions to EDMs are strongly suppressed especially when
m0 → ∞. We take A parameters which have similar
hierarchies to the corresponding Yukawa couplings. This
situation can be realized in models in which hierarchies of
Yukawa couplings are explained by the Froggatt-Nielsen
mechanism[23]. In such situation, we think it reasonable
that Oð1Þ coefficients of A parameters are complex number
when the Oð1Þ coefficients of corresponding Yukawa
couplings are complex as in Ref. [6,15,20]. We checked
that the numerical results do not change at all if all Oð1Þ
coefficients of A parameters are taken to be real for all
types above.
We need to make a few comments on Oð1Þ coefficient.

The complex Oð1Þ coefficient C means that C ¼
jCj expðiθðCÞÞ as jCj is real Oð1Þ coefficient and θðCÞ is
random number in the ranges 0 ≤ θðCÞ ≤ 2π. In addition,
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real Oð1Þ coefficient means random number within the
interval 0.5 to 1.5 with þ or − signs3

We have calculated CEDMs in Oð100Þ model points
with different Oð1Þ coefficients and obtained the average
and the standard deviation of log10jdCq j which are shown in
Figs. 2–5 as the center value and the error bar, respectively.
For simplicity, we do not impose the conditions to obtain
realistic CKM matrix in our calculation. The result is
below. First we show m0ðm ~dÞ dependence of CEDMs in
Fig. 2. The vertical axis is log10jdCu j (upper panel) and

log10jdCd j (lower panel), and the horizontal axis is heavy
sfermion mass at low energy denoted as m ~d, which is
almost determined by m0 value. Red, blue and green plots
are real Yu type, complex Yu type and E6 model, respec-
tively. Black solid line is current bound from Hg EDM and
allowed region is lower area. Dashed line shows the current
bound from neutron EDM, and the dotted line is the bound
expected in future experiments of neutron EDM [24]. We
set A0 ¼ −1 TeV at the GUT scale. In these figures, we
choose M1=2 and m3 so that stop mass at the SUSY scale4

become about 2 TeV in each m0 case, and M ~g and jAu33j

FIG. 2. m ~d dependence of dCu (upper panel) and dCd (lower
panel). Red, Blue and Green plots are real Yu type, complex Yu
type andE6 model, respectively. Each error bar shows the standard
deviation for the predicted values of log10jdCq j ðq ¼ u; dÞ which
are obtained in various model points with different Oð1Þ coef-
ficients. The black solid line is the current bound from Hg EDM
and the allowed region is the lower area. The dashed line shows the
current bound from the neutron EDM, and the dotted line is the
bound expected in future experiments of neutron EDM.We choose
m3 and M1=2 to become light stop at the SUSY scale (1 TeV),
and in these figures, we set m~t ¼ ð2000� 250Þ GeV. We also
set A0 ¼ −1 TeV.

FIG. 3. m~t dependence of dCu (upper panel) and dCd (lower
panel). The red, blue, and green plots are real Yu type, complex
Yu type, and the E6 model, respectively. Each vertical error bar
shows the standard deviation for the predicted values of log10jdCq j
ðq ¼ u; dÞ which are obtained in various model points with
different Oð1Þ coefficients. The horizontal error bar shows the
distribution of stop masses by variation of Oð1Þ coefficients of
Yukawa couplings and A parameters. The black solid line is
current bound from Hg EDM and allowed region is lower area.
The dashed line shows the current bound from neutron EDM,
and the dotted line is the bound expected in future experiments
of neutron EDM. In these figures, we set m0 ¼ 10 TeV
and A0 ¼ −1 TeV.

3We don’t contain one-loop threshold corrections in the
calculation because Oð1Þ coefficients produce a much greater
difference in the results of CEDM than the threshold correction,
although we should take into account the one-loop threshold
corrections when we consider two-loop RGEs.

4In this paper, we take the SUSY scale ¼ 1 TeV as the
renormalization scale, even when the squark masses are much
larger than 1 TeV.
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value at the SUSY scale is shown in Table I. From Fig. 2, it
is clear that dCd is decoupled when m0 increases and we
found that roughly m ~d > 7 TeV is required to satisfy the
current bound from Hg EDM, corresponding to the
situation setting m0 > 7 TeV at GUT scale. (In this paper,
we discuss the limit of sfermion masses by using the center
value in the distribution.) However, because of nondecou-
pling effect caused by stop contribution, current bound for
dCu is severe if Yu is complex at GUT scale. In order to
satisfy the current bound in the complex Yu type, m~t must
be larger.
How largem~t is required to suppress d

C
u sufficiently? We

show m~t dependence of CEDMs in Fig. 3. The vertical axis
is log10jdCu j (upper panel) and log10jdCd j (lower panel), and
the horizontal axis is m~t. The colors of plots and shapes of

lines have the same meanings as in Fig. 2. In these figures,
we set m0 ¼ 20 TeV and A0 ¼ −1 TeV at GUT scale.
M ~g ¼ 3 TeV and m~t ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m~t1m~t2
p

are given at the SUSY
scale, where m2

~t1
and m2

~t2
are eigenvalues of the matrix ofFIG. 4. Up, down and strange quark CEDM in three type of

boundary condition of Yu. Upper panel is up and down quark
CEDM and lower panel is up and strange quark CEDM.
Diamond, square and circle plots are real Yu type, complex Yu
type and E6 model, respectively. Red, blue, green and orange
mean thatm0 is 5 TeV, 10 TeV, 20 TeVand 40 TeV. Each error bar
shows the standard deviation for the predicted values of log10jdCq j
ðq ¼ u; d; sÞ which are obtained in various model points with
different Oð1Þ coefficients. Black solid line is the current bound
from Hg EDM and allowed region is lower left area. Dashed line
shows the current bound from neutron EDM, and the dotted line
is the bound expected in future experiments of neutron EDM.

TABLE II. GUT scale parameters which we use in each m0

value.

m0 (TeV) m3 (TeV) M1=2 (TeV) A0 (TeV)

5 1.2 1.5 −5 TeV
10 1.5 1.8 −4.5 TeV
20 2 2.4 −2.5 TeV
40 3.5 4.5 −3.5 TeV

TABLE III. m~t and jAu33j at SUSY scale in each m0 value.

m0 (TeV) m~t (TeV) jAu33j (TeV)
5 1.9 3.4
10 2.3 3.7
20 2.6 4.1
40 4.3 7.4

FIG. 5. m~e dependence of de in three type of boundary
condition of Yu. Red, Blue and Green plots are real Yu type,
complex Yu type and E6 model, respectively. Each error bar shows
the standard deviation for the predicted values of log10 jdej which
are obtained in various model points with different Oð1Þ
coefficients. Black solid line is current bound and allowed region
is the lower area. Other input parameters are same as for the
Fig. 2. The dashed(dotted) line shows the future bound expected
by ACME II (III)[28].

TABLE I. M ~g and jAu33j at the SUSY scale (1 TeV) in each m0

value for calculation in Fig. 2.

m0 (TeV) M ~g (TeV) jAu33j (TeV)
5 2.7 2.0
10 2.8 2.1
20 4.3 3.1
30 6.2 4.4
40 8.4 5.8
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stop mass square. Then Au33 ∼ 2.2 TeV at the SUSY scale.
From Fig. 3, it is easy to understand that dCu is strongly
dependent on m~t, while d

C
d is almost independent. The flat

regions appear also in dCu , which are caused by the
contributions from the first two generation squarks.
Roughly, when m~t > 7 TeV, current bound of dCu from
Hg EDM is satisfied even if Yu is complex at GUT scale.
(Note that this lower limit for m~t is not so far from the
prediction obtained by the MIA as well as the lower limit
for m ~d.) However, from the point of view of naturalness, it
is preferable that m~t has smaller value, so such a large stop
mass may not be acceptable. real Yu type and E6 model are
satisfying dCu bound even if the stop mass is smaller than
1 TeV. Therefore, real Yu at GUT scale can be an important
condition to satisfy dCu bound when m~t ∼Oð1Þ TeV.
We have investigated m ~d or m~t dependence of strange

quark CEDM dCs . The results are very similar to dCd results
and constraints of dCs are much weaker than that of dCd (see
Fig. 4.), and therefore, we do not discuss the strange quark
CEDM in detail in this paper.
Finally, we check whether 125 GeV Higgs mass is really

obtained in our setup. To do this, we use FeynHiggs-
2.10 [25]. We set GUT scale parameters as shown in
Table II. M1=2, m3, and A0 are chosen so that all sfermions
have positive squared masses at SUSY scale. We also show
m~t and jAu33j at SUSY scale in Table III. We found that the
125 GeV Higgs mass is realized in all three types. The
values of CEDMs in each situation are shown in Fig. 4.
Upper panel is dCu versus dCd , and lower panel is dCu versus
dCs . In these figures, diamond, square and circle plots are
corresponding to real Yu type, complex Yu type and E6

model, respectively. Red, blue, green and orange means that
m0 is 5 TeV, 10 TeV, 20 TeV and 40 TeV. Each error bar
shows the standard deviation for the predicted values of
log10jdCq j ðq ¼ u; d; sÞ which are obtained in various model
points with different Oð1Þ coefficients. Black solid line is
current bound from Hg EDM and allowed region is lower
left area. Dashed line shows the current bound from neutron
EDM, and the dotted line is the bound expected in future
experiments of neutron EDM. From Fig. 4, it is clear that
dCu bound for complex Yu type is severe, even when
125 GeV Higgs mass is realized. In E6 model, each

CEDM value is smaller than that of the other two types
because of the special structures of Yu and Au at the GUT
scale. Therefore, these structures have some effects to
suppress jdCu j value.

IV. COMMENT ON ELECTRON EDM

Recently, the constraint of electron EDM, de, is
improved [26] and may be severe for this discussion.
Then we also check the constraint of de in the same
situations discussed above. Note that we evaluate de by
using the expression based on Ref. [27]. Although there are
mainly two types of contributions to de in SUSY model,
neutralino and chargino contributions, we ignore the
chargino contributions because Higgsinos are heavier than
wino. So, we will show the de result for the sum of four
neutralino contributions in our setup.
The result is shown in Fig. 5. The vertical axis is

log10jdej. In this case, we set horizontal axis as slepton
mass at low energy, which is almost determined by m0

value. Red, blue and green plots are the real Yu type,
complex Yu type, and E6 model, respectively. Black solid
line is current bound, jdej < 8.7 × 10−29 e cm [26], and
allowed region is lower area. Other input parameters which
are used for calculation are the same as for the Fig. 2.
Neutralino masses at SUSY scale in each m0 case are
shown in Table IV.
Compared with Figs. 2 and 5, we found that constraint of

de is weaker than that of dCd at least in the situation we
discussed in this paper. Roughly speaking, m~e > 6 or
7 TeV is required for the de bound in real Yu type and
complex Yu type while de bound is still satisfied withm~e >
5 TeV in the E6 model. This is because there are special
structures not only for Yu and Yd but also for the Ye in the
E6 model. Electron EDM experiments will be improved in
a few years [28], so we should care about not only the
CEDM bounds but also this bound. The expected future
bounds are presented in Fig. 5. Interestingly, we can expect
a signal of the electron EDM in the future. If it is not seen,
m0 must be larger than 40 TeV.

V. SUMMARY AND DISCUSSION

In this paper, we discussed the CEDM bounds in the
SUSY model with the natural SUSY-type sfermion mass
spectrum in which the stop masses m~t are Oð1Þ TeV while
the other squark masses m0 are much larger than m~t since
the CEDM constraints, especially from the Hg EDM, give
severe constraints to this natural SUSY-type sfermion mass
spectrum even if real SUSY-breaking parameters are
assumed. We calculated the CEDM of up, down, and
strange quarks numerically at the three boundary condi-
tions for Yukawa couplings at the GUT scale, the real Yu
type, complex Yu type, and the E6 model, and discussed

TABLE IV. Neutralino masses at SUSY scale in each m0 case.
In this calculation, the masses of two heavy neutralinos, mN3

and
mN4

, are almost degenerated.

m0 (TeV) mN1
(TeV) mN2

(TeV) mN3
, mN4

(TeV)

5 0.5 0.9 2.1
10 0.6 1.0 2.4
20 0.8 1.5 3.3
30 1.2 2.2 4.2
40 1.6 3.0 5.2
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their decoupling features. First, we concluded that the up-
quark CEDM becomes sufficiently small to satisfy the
experimental bound when up-quark Yukawa couplings are
real at the GUT scale even if we takem~t ∼Oð1Þ TeV not to
destabilize the weak scale, while it becomes too large when
the Yukawa couplings are complex even if m0 ≫ m~t. On
the other hand, the down and strange quark CEDM become
sufficiently small ifm0 > 7 TeV because of the decoupling
feature. Second, to satisfy the up-quark CEDM constraint
with complex Yu, m~t > 7 TeV is needed, which destabil-
izes the weak scale.
In the natural SUSY-type sfermion mass spectrum, off-

diagonal elements of ðΔd
RRÞ, which is defined as the same

rule in Eq. (10), are strongly suppressed because the masses
of the right-handed sdown type are almost degenerated. For
this reason, a dominant contribution to dCd is proportional to
Im½ðΔd

LLÞ31ðΔd
RLÞ13� (∝ Ad13 in the super-CKM basis)

rather than Im½ðΔd
LLÞ31ðΔd

RLÞ33ðΔd
RRÞ13�. When the A

parameters are proportional to the corresponding Yukawa
couplings Af ∝ Yf (f ¼ u, d, e) at the GUT scale, off-
diagonal elements of A parameters in the super-CKM basis
are suppressed at the SUSY-breaking scale and, therefore,
dCd is strongly suppressed (∼Oð10−32Þe cm). In such a case,
we cannot constrain the sfermion masses from the bound of
dCd even when the CEDM constraints are improved at the
level of the future neutron EDM sensitivity. Note that this
situation can be also realized when A0 ¼ 0 at the GUT
scale. On the other hand, in the case of Af ∝ Yf at the GUT
scale, dCu does not change so much in the natural SUSY-
type sfermion mass spectrum because the dominant con-
tribution to dCu is proportional to the diagonal element of the
A parameter Au33 in the super-CKM basis as discussed in
Eq. (8). The situation does not change so much in the case
of A0 ¼ 0 at the GUT scale since the A0 value does not
affect the value of the diagonal elements of the A param-
eters at the SUSY-breaking scale so much because of the
RGE running. We checked these behaviors numerically,
and the lower bounds of m~t from the bound of dCu are the
same as our results.
These constraints are dependent on explicit models for

Yukawa couplings and the sfermion mass spectrum. In this
paper, we have just demonstrated the constraints from the
EDMs in a certain model for the Yukawa couplings and the
sfermion mass spectrum, which are obtained from the E6

GUT with family symmetry. Therefore, the constraints
become different from ours if different models for
Yukawa couplings are adopted. However, we note that
our model will give comparatively weaker constraints than
the others because the diagonalizing matrices of the up-type
Yukawa matrix have small mixings. (Of course, we can
consider the models which give weaker constraints than
ours, for example, the diagonal up-type Yukawa matrix
model.) Therefore, our constraints to the natural SUSY-type
sfermion mass models from dCu are quite general.

In this paper, we have neglected the uncertainties in the
calculation of the relation between the Hg (neutron) EDM
and CEDMs and discussed the constraints. However, the
uncertainties for the coefficients are more than 100% for the
Hg EDM. Conservatively, we may have to use the con-
straints only from the neutron EDM. Then, we have almost
no constraints from the neutron EDM to the natural SUSY
model with Oð1Þ TeV stop mass. In that case, constraints
from the electron EDM become important and give lower
bounds of m0, although no constraint for m~t is given. Since
the experimental sensitivity of the electron EDM is
expected to be improved by about 2 orders of magnitude,
we can expect that nonvanishing electron EDM is observed
in future experiments. If it is not observed, the m0 is
expected to be larger than 40 TeV. To improve the bound
for m~t, future experiments of neutron EDM are important.
Since experimental sensitivity of the neutron EDM is
expected to be improved by more than two orders of
magnitude, the observation of nonvanishing EDM of
neutron is expected. No signal means m0 > 20 TeV, and
m~t > 20 TeV if Yu is complex, while almost no constraint
to m~t if Yu is real. One more way to improve the bound for
m~t is, of course, to reduce the uncertainties in theoretical
calculation of Hg EDM.
We conclude that the up quark CEDM constraint can be

severe in natural SUSY type sfermion mass spectrum. If
experimental bounds of EDM and/or theoretical calculation
of Hg EDM are improved in future, they will constrain the
lower bounds of stop mass and the other heavy sfermion
masses. In addition, if the sfermion masses, especially the
stop mass, are observed in future experiments, we may be
able to constrain the structure of Yu at GUT scale by the
CEDM constraints.
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APPENDIX: LOOP INTEGRAL FOR THE
DIAGRAM IN FIG. 1(b)

The expression of the up-quark CEDM dCu in the mass
insertion approximation is
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dCu ¼ αs
4π

M ~g

m2
~t

Im½ðδuLLÞ31ðδuRLÞ33ðδuRRÞ13� × FMIAðr~g; r~tÞ

ðA1Þ

FMIAðr~g;r~tÞ≡6r2~t

�
−3IGðr~g;r~tÞþ

1

3
IS1ðr~g;r~tÞþ

1

3
IS2ðr~g;r~tÞ

þ1

3
IS3ðr~g;r~tÞþ

1

3
IS4ðr~g;r~tÞ

�
; ðA2Þ

where r~g ¼
M2

~g

m2
~u
, r~t ¼ m2

~t
m2

~u
and Iiðr~g; r~tÞ are loop integrals.

Each integral is

IGðr~g; r~tÞ ¼
Z

1

0

dx1…dx4δðΣixi − 1Þ

×
2x1x3x4

½r~gðx1 þ x2Þ þ x3 þ r~tx4�4
; ðA3Þ

IS1ðr~g; r~tÞ ¼
Z

1

0

dx1…dx4δðΣixi − 1Þ

×
ð2x3 þ 2x4 − 1Þx3x4

½r~gx1 þ x2 þ x3 þ r~tx4�4
; ðA4Þ

IS2ðr~g; r~tÞ ¼
Z

1

0

dx1…dx5δðΣixi − 1Þ

×
ð2x3 þ 2x5 − 1Þx5

½r~gx1 þ x2 þ x3 þ r~tðx4 þ x5Þ�4
; ðA5Þ

IS3ðr~g; r~tÞ ¼
Z

1

0

dx1…dx5δðΣixi − 1Þ

×
ð2x3 þ 2x5 − 1Þx4

½r~gx1 þ x2 þ x3 þ r~tðx4 þ x5Þ�4
; ðA6Þ

IS4ðr~g; r~tÞ ¼
Z

1

0

dx1…dx4δðΣixi − 1Þ

×
ð2x3 − 1Þx2x4

½r~gx1 þ x2 þ x3 þ r~tx4�4
: ðA7Þ

We show the values of FMIAðr~g; r~tÞwith several values of
mass ratio, r~g and r~t (see Table V).
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