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The scalar potential of the two-Higgs-doublet model may have more than one local minimum and the
usually considered vacuum could be located at one of them that could decay to another. This paper studies
the condition that the usually considered vacuum is the global minimum which, combined with the
bounded-from-below condition, will stabilize the vacuum at tree level. We further apply these conditions
to a specific two-Higgs-doublet model and obtain new constraints which could be important in
phenomenological studies.

DOI: 10.1103/PhysRevD.95.115019

I. INTRODUCTION

As a simple extension of the Standard Model (SM), the
two-Higgs-doublet model (2HDM) is well motivated in
many aspects, including supersymmetry [1], CP violation
[2], axion models [3], etc. Besides, it also provides a very
rich phenomenology in collider experiments [4–21].
Therefore the 2HDM, as well as many variations, have
been extensively studied in recent years (see, e.g., [22] for a
comprehensive review).
In the 2HDM, an additional Higgs doublet is introduced

to the scalar sector of the SM. The scalar potential contains
not only self-coupling terms of each Higgs doublet but also
several mixing terms of the two doublets. As a conse-
quence, the potential may contain several different minima
at which the scalar fields may obtain very different vacuum
expectation values (VEVs). Depending on the configura-
tion of the potential, it is possible that one of the doublets
does not acquire a VEV (which appears in inert 2HDMs—
see, e.g., [23–31]), or the VEVs break the CP symmetry
[32–36], or even break the electromagnetic Uð1Þ symmetry
which should be avoided in model building. In many
phenomenological studies on 2HDMs, the desired vacuum
is usually imposed without checking whether the potential
necessarily results in such vacuum. It has been discussed in
[37–56], however, that more than one local minimum could
coexist in the 2HDM potential, which implies the desired
vacuum1 might be only a local minimum that could decay
into a deeper one by quantum tunneling [57,58]. If this
could happen, the vacuum would be unstable.
To avoid vacuum instability we expect a global mini-

mum2 for the desired vacuum, which requires some new
constraints on the potential parameters, in addition to the

bounded-from-below (BFB) constraints [14,41,59,60].
Although it has been noticed in the literature [37–56] that
the vacuum could be unstable due to localness of the
minimum, in most phenomenological studies only the BFB
constraint is taken into account for the vacuum stability.3

Actually in the Higgs triplet model [the SM extended by an
SUð2ÞL triplet Higgs], recently we have derived explicit
expressions of the conditions to keep the desired vacuum
globally minimal [70]. It turns out that such conditions lead
to interesting constraints on the masses of the scalar bosons
in the Higgs triplet model. Therefore, we expect that in
2HDMs this issue may also have phenomenologically
interesting consequences and should be taken into consid-
eration in future studies on 2HDMs.
In this paper, we will investigate the 2HDM potential and

derive the condition for a selected minimum being the
global one in order to stabilize the corresponding vacuum.
The method is similar to [70], in which we first analytically
compute all possible local minima and then compare them
with each other. We will adopt the most general potential
including all renormalizable terms that respect the gauge
symmetries of the SM. In some specific models, e.g., the
type I and type II 2HDMs with Z2 symmetries4 to avoid
tree-level flavor-changing neutral currents, some terms in
the potential are absent. They can be regarded as special
cases of the most general potential we adopted so our
calculations also apply to these special cases. Based on the
analytical calculations, a numerical process is established
to determine whether a selected minimum is globally

1In this paper we refer to the vacuum that is compatible with all
experimental observations as the desired vacuum.

2In principle, if the vacuum is a local minimum but the decay
rate is low enough, then it can be metastable and the model is still
valid. We will discuss this issue in Sec. IV.

3In addition to the BFB constraint, the unitarity bound [61–69]
is another theoretical constraint on the potential which has been
taken into account in many phenomenological studies.

4The type I 2HDM couples all quarks to one Higgs doublet ϕ2

(denoting the other as ϕ1), which can be realized by the Z2

symmetry: ϕ1 →−ϕ1, ϕ2 → ϕ2. The type II 2HDM couples
down-type right-handed quarks dR and up-type right-handed
quarks uR to ϕ1 and ϕ2 respectively, which can be realized by
assigning the Z2 charge to dR and ϕ1. In both cases, terms in the
scalar potential containing odd numbers of ϕ1 should be absent.
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minimal. Applying this process to a specificCP-conserving
type I 2HDMwith softly brokenZ2 symmetry [4], we show
that the parameter space of the scalar potential can be
considerably constrained by the vacuum stability and in a
certain scenario the constraint is even stronger than the
LHC constraint.
The issue that the 2HDM vacuum could be unstable if it

was not the global minimum has been studied in the
literature for more than a decade [37–56]. In an early
work [37] it has been shown that, for a potential without
explicit CP breaking, if a minimum preserving the electro-
magnetic Uð1Þ and CP symmetries exists, then it is the
global one. However, it was also pointed out in [39,44]
that two neutral minima may coexist and have different
potential depths. References [41,43] adopt a geometric
approach by reformulating the 2HDM potential in terms of
3-quadrics in the Minkowski space and prove that the
potential can have at most two local minima. Furthermore,
if the two local minima coexist and there is a discrete
symmetry in the potential, then the two minima will both
break or both preserve the symmetry. In a recent study [56]
the criteria to guarantee that the desired minimum is global

have been proposed. The method involves calculating a
determinant and in some cases solving eigenvalues of a
4 × 4 matrix numerically, which is different from the
method we adopt in this paper.
The reminder of this paper is organized as follows. In

Sec. II we analyze the most general scalar potential in
2HDMs and analytically compute all possible types of local
minima. Then we discuss how to determine the global
minimum in Sec. III with a numerical example to illustrate
the method. In Sec. IV we study the vacuum stability with
both the BFB condition and the requirement of a global
minimum taken into account, focusing on the type I 2HDM
with softly broken Z2 symmetry. Finally, we summarize at
Sec. V. Some numerical examples which can be used to
verify our calculations are described in detail in Appendix.

II. THE SCALAR POTENTIAL
AND LOCAL MINIMA

With two Higgs doublets ϕ1 and ϕ2 (both have the same
hypercharge Y ¼ þ1), the most general renormalizable
scalar potential can be written as [71]

V ¼ m2
11ϕ

†
1ϕ1 þm2

22ϕ
†
2ϕ2 − ½m2

12ðϕ†
1ϕ2Þ þ H:c:�

þ λ1
2
ðϕ†

1ϕ1Þ2 þ
λ2
2
ðϕ†

2ϕ2Þ2 þ λ3ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ4jϕ†
1ϕ2j2

þ
�
λ5
2
ðϕ†

1ϕ2Þ2 þ λ6ðϕ†
1ϕ1Þðϕ†

1ϕ2Þ þ λ7ðϕ†
2ϕ2Þðϕ†

1ϕ2Þ þ H:c:

�
: ð1Þ

There are three quadratic terms and seven quartic terms in
Eq. (1), with four complex coefficients (m2

12, λ5;6;7) and six
real coefficients (m2

11,m
2
22, λ1;2;3;4), i.e., 14 real parameters in

total. However due to the unitary basis transformation
ðϕ1;ϕ2ÞT → Uðϕ1;ϕ2ÞT where U is an SUð2Þ matrix, three
unphysical degrees of freedom can be removed so actually
there are only 11 physical degrees of freedom [22]. In
some 2HDMs due to additional symmetries [e.g., Z2, Uð1Þ,
Uð2Þ, etc.], some terms are absent. To apply the calculations
below to these specific models, one only needs to set the
corresponding couplings to zero. There are 8 degrees of
freedom in the two doublets ϕ1 and ϕ2. After spontaneous
symmetry breaking, three of them become Goldstone bosons
and the remaining five form massive scalar particles,
including two CP-even scalar bosons (h, H), one CP-odd
scalar boson (A) and one charged scalar boson (H�).
An important feature of the above potential is that it is

a quadratic functions of three SUð2ÞL invariants of the
fields [72]

q1 ≡ ϕ†
1ϕ1; q2 ≡ ϕ†

2ϕ2; z≡ ϕ†
1ϕ2; ð2Þ

where q1;2 are real, non-negative and z is complex. Since ϕ1

and ϕ2 are not invariant under SUð2ÞL transformations, we

will use ðq1; q2; zÞ instead of ðϕ1;ϕ2Þ in the following
analysis. The potential expressed in terms of q1;2 and z is

V ¼ m2
11q1 þm2

22q2 − ½m2
12zþ H:c:�

þ λ1
2
q21 þ

λ2
2
q22 þ λ3q1q2 þ λ4jzj2

þ
�
λ5
2
z2 þ λ6q1zþ λ7q2zþ H:c:

�
: ð3Þ

Without boundary conditions, one can immediately find
a minimum (to distinguish it from other minima, we will
refer to it as the type A minimum) by solving

∂V
∂q1 ¼

∂V
∂q2 ¼

∂V
∂z ¼ 0. ðtype AÞ ð4Þ

Equation (4) is a combination of linear equations with
respect to ðq1; q2; zÞ, with the following explicit form:

8>><
>>:

m2
11 þ q1λ1 þ q2λ3 þ zλ6 þ λ�6z

� ¼ 0;

m2
22 þ q2λ2 þ q1λ3 þ zλ7 þ λ�7z

� ¼ 0;

−m2
12 þ q1λ6 þ q2λ7 þ zλ5 þ λ4z� ¼ 0:

ð5Þ
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The solution of the above linear equation is given by
[37,41,60,73]

0
BBB@

q1
q2
z

z�

1
CCCA ¼ Λ−1b; ð6Þ

where5

Λ≡

0
BBB@

λ1 λ3 λ6 λ�6
λ3 λ2 λ7 λ�7
λ6 λ7 λ5 λ4

λ�6 λ�7 λ4 λ�5

1
CCCA; b≡

0
BBB@

−m2
11

−m2
22

m2
12

m�2
12

1
CCCA: ð7Þ

The potential value at this minimum is

Vmin;A ¼ −
1

2
bTΛ−1b: ð8Þ

However, we should note that the three variables
ðq1; q2; zÞ are subjected to some boundary conditions.
From the definitions of q1 and q2 we have two boundary
conditions

ðiÞ∶ q1 ≥ 0; ð9Þ

ðiiÞ∶ q2 ≥ 0: ð10Þ

Besides, since z is a scalar product of two complex vectors,
its absolute value should be less than or equal to the product
of their lengths, which is

ffiffiffiffiffi
q1

p ffiffiffiffiffi
q2

p
. So we have

ðiiiÞ∶ q1q2 ≥ jzj2: ð11Þ

The type A minimum exists only if the point computed via
Eq. (6) is located in the region restricted by the above
conditions.
Apart from the type A minimum, other minima could

exist but they should be on the boundaries (9), (10), or (11);
otherwise they would be determined by the off-boundary
minimization equation (4) which has a unique solution, i.e.,
the type A minimum. There are four types of on-boundary
minima, which, depending on the boundaries, will be
referred to as the type B, C, D, and E minima:

type B∶ q1 ¼ 0; q2 > 0; z ¼ 0; ð12Þ

type C∶ q2 ¼ 0; q1 > 0; z ¼ 0; ð13Þ

type D∶ q1 > 0; q2 > 0; q1q2 ¼ jzj2; ð14Þ

type E∶ q1 ¼ 0; q2 ¼ 0; z ¼ 0: ð15Þ

Type B and C minima can be computed by setting q1 or
q2 to zero and minimizing the potential with respect to q2 or
q1. This gives

type B∶ q1 ¼ 0; q2 ¼ −
m2

22

λ2
; z ¼ 0; ð16Þ

type C∶ q2 ¼ 0; q1 ¼ −
m2

11

λ1
; z ¼ 0: ð17Þ

The corresponding potential values at these minima are
given by

Vmin;B ¼ −
m4

22

2λ2
; ð18Þ

Vmin;C ¼ −
m4

11

2λ1
: ð19Þ

Type E is the simplest case. All fields and the potential
value are zero at this minimum.
The remaining case, type D, is actually the desired

vacuum in many 2HDMs with nonvanishing hϕ1i and hϕ2i,
because q1q2 ¼ jzj2 implies the two complex vectors ϕ1

and ϕ2 are parallel to each other at the minimum, i.e.,
hϕ1i ∝ hϕ2i. Since the absolute value of z is fixed by q1q2,
the potential can be treated as a function of q1, q2 and

θ≡ arg z: ð20Þ

From ∂V=∂q1 ¼ ∂V=∂q2 ¼ ∂V=∂θ ¼ 0 we get

m2
11 ¼ m2

12Rtβ − q½λ1c2β þ ðλ3 þ λ4 þ λ5RÞs2β
þ 3λ6Rcβsβ þ λ7Rtβs2β�; ð21Þ

m2
22 ¼ m2

12Rt
−1
β − q½λ2s2β þ ðλ3 þ λ4 þ λ5RÞc2β

þ λ6Rt−1β c2β þ 3λ7Rcβsβ�; ð22Þ

m2
12I ¼ q½λ5Icβsβ þ λ6Ic2β þ λ7Is2β�; ð23Þ

where we have defined

q≡ q1 þ q2; ð24Þ

tan2β≡ q2
q1

; β ∈
�
0;
π

2

�
; ð25Þ

5Note that in many models due to some symmetries in the
potential, the matrix Λ could be noninvertible. For example, if
λ5;6;7 are real and λ5 ¼ λ4 then Λ−1 does not exist. However, one
can still use Eqs. (6) and (7) in this case by taking
Λ−1 ≡ limδΛ→0ðΛþ δΛÞ−1. In Sec. III we will present an
example in this case.
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ðm2
12R; λ5R; λ6R; λ7RÞ≡ Reðm2

12e
iθ; λ5e2iθ; λ6eiθ; λ7eiθÞ;

ð26Þ

ðm2
12I;λ5I;λ6I;λ7IÞ≡ Imðm2

12e
iθ;λ5e2iθ;λ6eiθ;λ7eiθÞ: ð27Þ

The above calculation is basis independent. However, to
represent it in a more conventional form, we may choose an
appropriate basis so that

hϕ1i ¼
1ffiffiffi
2

p
�

0

v1

�
; hϕ2i ¼

1ffiffiffi
2

p
�

0

v2eiθ

�
; ð28Þ

which implies that the type D minimum corresponds to the
vacuum usually adopted in many 2HDMs. In this basis, one
can interpret tan β as the well-known ratio

tan β ¼ v2
v1

; ð29Þ

and relate the value of q at the minimum to the electroweak
vacuum expectation value

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q
¼

ffiffiffiffiffiffi
2q

p
≈ 246 GeV: ð30Þ

One can solve Eqs. (21), (22), and (23) with respect to q
(or v2), β, and θ to get the type D minimum of the potential,
at least numerically. Since they are nonlinear equations, the
solutions may be not unique. In general, all solutions
should be taken into account, which makes the type D
minima a little more complicated than the other types. We
will show an example which has more than one type D
minimum in Sec. III.
Finally, let us summarize all possible local minima of the

scalar potential, as listed in Table I. There are five types of
minima, classified according to whether they locate on
some boundaries [cf. Eqs. (9), (10), and (11)] in the
ðq1; q2; zÞ space. Type A is not on any of the boundaries,
which implies it has the most degrees of freedom in the
minimization, while type E is actually on all the boundaries
so it is completely fixed by these boundaries. To provide a
straightforward understanding of them, the second row of
Table I shows the zero components of hϕ1i and hϕ2i, where

we use “×” and “�” to represent nonzero and arbitrary (zero
or nonzero) values, respectively. However, one should be
careful about the basis dependence. For any minimum of
the potential, the transformation

ϕ1 → Uϕ1; ϕ2 → Uϕ2; ð31Þ
where U is a 2 × 2 unitary matrix, would transform the
vacuum to another equivalent vacuum, while the appear-
ance of zero components in hϕ1i and hϕ2i is not invariant
under this transformation. Therefore, hϕ1i and hϕ2i in
Table I for each type of minima should be understood as a
category of VEVs that can be transformed to such a form.
For instance, if the potential is found to has a minimum at

hϕ1i ¼
�
×

×

�
; hϕ2i ¼

�
×

×

�
; ð32Þ

or

hϕ1i ¼
�
×

×

�
; hϕ2i ¼

�
0

×

�
; ð33Þ

then this minimum should be of type A (generally), since
the doublets can be transformed to the form Uhϕ1i ¼
ð0;×ÞT and Uhϕ2i ¼ ð×; ÞT . However, if it happens
coincidentally that hϕ1i ∝ hϕ2i in Eq. (32), then this falls
into type D, since the transformation will simultaneously
set the upper components of hϕ1i and hϕ2i to zero.
To avoid the basis dependence, we recommend using

ðq1; q2; zÞ instead of explicit forms of hϕ1i and hϕ2i. Once
a minimum is found, one can compute the values of
ðq1; q2; zÞ to see whether the minimum is located on some
of the boundaries of Eqs. (9), (10), and (11), which is the
original definition of the five types of minima.
For any given potential in 2HDMs, one can exhaustively

find all the possible minima by computing ðq1; q2; zÞ
according to the third row of Table I. But the corresponding
minima do not necessarily exist, e.g., q1 or q2 computed in
this way may be negative. So in Table I we also provide the
conditions of existence of these minima, which should be
checked after ðq1; q2; zÞ is computed. The existence con-
ditions listed here are only necessary conditions, not

TABLE I. All possible local minima of the scalar potential. “×” denotes a nonzero component, and “�” stands for an arbitrary value
(can be zero or nonzero).

Type A Type B Type C Type D Type E

hϕ1i, hϕ2i h
0

×

i
,
h×
�
i h

0

0

i
,
h
0

×

i h
0

×

i
,
h
0

0

i h
0

×

i
,
h
0

×

i h
0

0

i
,
h
0

0

i
ðq1; q2; zÞ Eq. (6)

�
0;− m2

22

λ2
; 0
� �

− m2
11

λ1
; 0; 0

�
Eqs. (21), (22), (23) (0,0,0)

Existence q1; q2 > 0
q2 > 0 q1 > 0

q1; q2 > 0
/aCondition jzj2 < q1q2 jzj2 ¼ q1q2

Vmin Eq. (8) − m4
22

2λ2
− m4

11

2λ1
/b 0

aNot required.
bNot unique.
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sufficient, which implies the locations could be saddle points
or even local maxima. But in the framework of this paper,
this does not concern us because by comparing the potential
values at these points we will take the lowest point among
these candidates as the vacuum of the model, which must be
the global minimum, provided that the potential is BFB.

III. GLOBAL MINIMA

As we have derived, there can be several types of minima
in the scalar potential so it is possible that the desired
vacuum is not located at a global minimum. This problem
in 2HDMs has been studied in Refs. [37,39,43,44] where
one can find some useful conclusions. First, it has been
proved that at most two physically inequivalent local
minima can coexist in the potential. This implies that
among the five possible types of local minima, only one or
two of them can actually exist in a certain potential while
the others should be saddle points or local maxima. Second,
the two minima (if they exist) violate or conserve a discrete
symmetry (if it exists in the potential) simultaneously, e.g.,
CP-conserving and CP-violating minima cannot coexist in
a CP-conserving potential.
Despite these conclusions, given a general 2HDM

potential and a minimum of the potential, one still cannot
determine the globalness of the minimum in a simple way.
However, since we know how to find all possible local
minima in the potential, there is a numerical process that
enables us to determine whether a minimum is global
or local.
For a given potential and one of its minima, denoting the

locationof thisminimumasP and the correspondingpotential
value as VP, if VP > 0 then obviously P is not a global
minimum because the potential value is larger than the type E
minimum. If VP ≤ 0, then one proceeds as follows:
(1) Compute ðq1; q2; zÞ for the minima of types A, B,

and C listed in Table I.

(2) Check the existence condition for each of them. If it
is violated then it will not be considered anymore.

(3) Compute the potential values at the remaining
minima; if any of them are lower than VP then P
is not a global minimum.

(4) Otherwise, numerically solve Eqs. (21), (22), and
(23) and compare VP with the potential values of
these solutions. If VP is still the lowest, then P is the
global minimum.

Here, in principle, we can also include type D in step 1
and remove step 4. However, type D involves solving
nonlinear equations numerically, which consumes much
more CPU usage for computers to work it out than types
A, B, and C. According to our numerical experience, if P
is not a global minimum, in many cases it can be excluded
by comparing with the first three types of minima.
Therefore we leave the calculation of type D minima as
the last step, which optimizes the program considerably.
The above process is simple to be realized in program-

ming so it can be readily included in numerical analyses of
2HDMs. Actually, the situation is similar to the BFB
condition. Despite that there have been some analytical
expressions of the BFB condition in some special cases
such as λ6 ¼ λ7 ¼ 0 [22], for the most general potential
there has not been a simple criterion for BFB. Currently a
numerical process that combines necessary analytical
results is able to achieve this, which has been adopted in
the program 2HDMC [74]. Likewise, one may also adopt the
similar numerical process proposed above to check whether
a minimum is global.
To illustrate the above process, we will analyze a specific

example, which also serves as a benchmark to show that
requiring the vacuum to be globally minimal provides new
constraints on the model. In a specific scenario of 2HDM
studied in [4], the potential parameters take the following
values6:

ðm2
11; m

2
22; m

2
12Þ ¼ ð−0.110625;−0.00831996; 0.00827196Þ TeV2; ð34Þ

λ1���7 ¼ ð11.8234; 0.270735; 15.8106;−1.98716;−1.98716; 0; 0Þ: ð35Þ
This example is well compatible with recent constraints from LHC [4,21], including both the observed Higgs signal and
nonobservation of additional Higgs states. The vacuum of this model is at v ¼ 246.2 GeV and tan β ¼ 30, corresponding to
a minimum at

P ¼ ðq1; q2; zÞ ¼ ð3.36 × 10−5; 3.03 × 10−2; 1.01 × 10−3Þ TeV2: ð36Þ
The potential value at this minimum is VP ¼ −1.36 × 10−4 TeV4.
Now we would like to know whether this minimum is global or local. Since VP < 0, we neglect the type E minimum.

Computing ðq1; q2; zÞ for type A, B, and C minima gives7

6Corresponding to mh ¼ 125 GeV, mH ¼ 500 GeV, cβ−α ¼ 0.1, Z4 ¼ −2, Z5 ¼ −2, Z7 ¼ 0, and tan β ¼ 30 in the hybrid basis [4],
which are taken as an input in the code 2HDMC [74] to generate the parameters in Eqs. (34) and (35).

7In this example we have λ4 ¼ λ5 which makes Λ noninvertible. Such cases appear occasionally in 2HDM potentials with some
symmetries. To validate Eqs. (6) and (7), one can simply add a small perturbation δλ5 to λ5 and compute limδλ5→0Λ−1.

TREE-LEVEL VACUUM STABILITY OF TWO-HIGGS- … PHYSICAL REVIEW D 95, 115019 (2017)

115019-5



ðq1; q2; zÞ
10−3 TeV2

¼

8>><
>>:

ð0.412; 6.69;−2.08Þ ðtype AÞ
ð0; 30.7; 0Þ ðtype BÞ
ð9.36; 0; 0Þ ðtype CÞ

: ð37Þ

However, the solution of type A violates its existence
condition since jzj2 > q1q2. Thus we only need to compute
the potential values at type B and C minima:

ðVB; VCÞ ¼ ð−1.28;−5.18Þ × 10−4 TeV4: ð38Þ

As we can see, VC < VP so we can conclude that P is not
the global minimum without solving the nonlinear equa-
tions of type D.
Nevertheless, if we further solve the equations of type D,

we will know the actual vacuum structure. According to the
results in Appendix, there are four solutions of type D in
this example, denoted as D1, D2, D3, and D4, with the
following potential values:

ðVD1; VD2; VD3; VD4Þ
¼ ð−5.24;−1.36;−1.04;−0.343Þ × 10−4 TeV4: ð39Þ

These values imply that the global minimum of this
potential is D1 while P is actually identical to D2 which
is a local minimum.8 Since there can be at most two
physically inequivalent minima in a 2HDM potential, we
immediately know that these two minima must be D1 and
D2. As a consequence, the other local minimum candidates
such as VB and VC in Eq. (38) can only be saddle points or
local maxima, despite that VC is lower than the local
minimum VP.

IV. TREE-LEVEL VACUUM STABILITY AND ITS
CONSTRAINTS ON 2HDMS

In the previous section, we have seen an example of the
2HDM potential in which the desired vacuum is not a
global minimum, though it is compatible with all con-
straints from LHC. In such case, the vacuum may decay
into a deeper minimum via quantum tunneling which
makes the vacuum unstable. This situation should be
avoided in any valid 2HDM. Consequently we will have
a new constraint on the model by requiring that the desired
vacuum is a global minimum.

We would like to comment here that this is not
completely equivalent to the vacuum stability. First, if
the decay rate is low enough, the vacuum can be metastable
which means the lifetime of the vacuum is longer than the
age of the Universe so that the metastable vacuum still
survives today. Second, even if the vacuum at tree level is
absolutely stable, in the effective potential including loop
corrections [75,76] the vacuum could be unstable. A well-
known example is the SM in which the potential would be
negative aroundOð1010Þ GeV due to large loop corrections
from the top quark [77]. An elaborate investigation [78]
suggests that with current best-fit values of top quark and
Higgs masses the SM vacuum is metastable.
In principle, one may take the metastability and loop

corrections into consideration in 2HDMs as well.
However, both of them are only important when the
parameters of the model are near some critical configu-
rations (e.g., the SM metastability depends critically on
the top quark mass). In 2HDMs many parameters are still
far from being precisely determined while in contrast, the
potential parameters of the SM have been known precisely
from the Higgs mass and the Fermi constant. Therefore at
the current stage, we should not be concerned with these
two issues. Instead, we only consider the absolute stability
of vacuum at tree level.
Next we will focus on a specific 2HDM to study the

constraint from the vacuum stability on some physical
quantities. In a CP-conserving 2HDM with a softly broken
Z2 symmetry that has been studied in Ref. [4], the quartic
terms are invariant under the Z2 transformation

ðϕ1;ϕ2Þ → ðϕ1;−ϕ2Þ; ð40Þ

which leads to

λ6 ¼ λ7 ¼ 0: ð41Þ

The quadratic termm2
12ϕ

†
1ϕ2, however, softly breaks the Z2

symmetry. All quartic and quadratic coefficients in the
potential are real due to the CP symmetry. After sponta-
neous symmetry breaking, the two Higgs doublets are
expected to acquire CP-conserving VEVs:

hϕ1i ¼
1ffiffiffi
2

p
�

0

v1

�
; hϕ2i ¼

1ffiffiffi
2

p
�

0

v2

�
: ð42Þ

Apart from three Goldstone bosons, there are four mass
eigenstates of the scalar fields, including two CP-even
Higgs fields h and H, a CP-odd field A, and a charged
Higgs H�. Their masses are given by [79]

m2
A ¼ m2

12

sβcβ
− λ5v2; ð43Þ

8In general, one needs to compute the second-order derivatives
(Hessian matrix) to make sure that it is not a saddle point or a
local maximum. However, this is not necessary for P since we
know the mass spectrum of the scalar bosons (see Appendix) is
above zero, which implies the eigenvalues of the Hessian matrix
are all positive.
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m2
H� ¼ m2

A þ 1

2
ðλ5 − λ4Þv2; ð44Þ

m2
H;h ¼

1

2

h
M2

11 þM2
22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

11 −M2
22Þ2 þ 4ðM2

12Þ2
q i

;

ð45Þ

where the matrix M2 is defined as

M2 ≡m2
A

� s2β −cβsβ
−cβsβ c2β

�

þ v2
� c2βλ1 þ s2βλ5 cβsβðλ3 þ λ4Þ
cβsβðλ3 þ λ4Þ s2βλ2 þ c2βλ5

�
:

Diagonalizing the matrix M2 gives the eigenvalues m2
H;h

and the mixing angle α (−π=2 ≤ α ≤ π=2) between the two
eigenstates,

α ¼ 1

2
argðM2

11 −M2
22 þ 2iM2

12Þ; α ∈
�
−
π

2
;
π

2

�
: ð46Þ

In Ref. [4], a “hybrid” basis is adopted in specifying the
input parameters of the model. The input parameters in the
hybrid basis are ðmh;mH; cβ−α; tan β; Z4; Z5; Z7Þ where
cβ−α ≡ cosðβ − αÞ and Z4;5;7 are defined as

Z4 ≡ 1

4
s22β½λ1 þ λ2 − 2λ345� þ λ4; ð47Þ

Z5 ≡ 1

4
s22β½λ1 þ λ2 − 2λ345� þ λ5; ð48Þ

Z7 ≡ −
1

2
s2β½λ1s2β − λ2c2β þ λ345c2β�: ð49Þ

This basis has already been included in the code 2HDMC
[74] which facilitates the input of valid model parameters.
Hence, we will use 2HDMC in scanning the parameter
space. We focus on a specific scenario with the major
portion of its parameter space still compatible with the
recent LHC constraints. In the hybrid basis, the input
parameters are

ðmh; cβ−α; Z4; Z5; Z7Þ ¼ ð125 GeV; 0.1;−2;−2; 0Þ; ð50Þ

and

300 GeV ≤ mH ≤ 1000 GeV; 1 ≤ tan β ≤ 50: ð51Þ

To show the constraint from the vacuum stability, we
randomly generate 104 samples with the input parameters
given in Eqs. (50) and (51). We use 2HDMC to compute the
corresponding potential parameters ðm2

11; m
2
22; m

2
12Þ and

λ1���7 and also to check the BFB condition of the potentials.

For those samples with BFB potentials, we proceed to
check whether the electroweak vacuum is a global mini-
mum, with the method introduced in Sec. III. For simplic-
ity, we call it the GM (global minimum) condition. The
result is presented in Fig. 1, where the red region is
excluded by the BFB bound, the orange points violate
the GM conditions and the green points satisfy both the
BFB and the GM conditions. Two examples (one of them
has been studied in Sec. III) are marked in Fig. 1 by black
points, with the numerical details given in Appendix, which
can be used to check the calculations. The gray region
represents the constraint from direct searches from LHC,
taken from [4]. The yellow region violates the unitarity
bound [61–69], checked by 2HDMC. As is shown in the
plot, there is a considerably large part of the parameter
space that can be excluded by the stability of the electro-
weak vacuum at tree level. In the specific scenario
considered here, the GM constraint is even stronger than
the LHC constraint and complementary to the unitarity
bound. One should note that this is based on the type I CP-
conserving 2HDM studied in Ref. [4] in a particular
scenario, which should not be regarded as a general
conclusion. Nevertheless, the result presented in Fig. 1
suggests that the vacuum stability at tree level should be
taken into account in theoretical constraints on 2HDMs.

V. CONCLUSION

In the most general scalar potential of 2HDMs, more
than one minimum may coexist while the usually consid-
ered vacuum could be located at a local minimum that
could decay into a deeper one. We have seen such an
example in Sec. III. To avoid vacuum instability at tree
level, we require a global minimum for the vacuum.

Valentine's Day 2017 I Jiajia
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FIG. 1. Constraints on ðmH; tan βÞ from absolute stability of the
vacuum at tree level. The green and orange points denote samples
of which the vacua are global and local minima respectively. The
red region and the yellow region violate the BFB and the unitarity
bounds respectively. The gray region is disfavored by direct
searches from LHC for the type I 2HDM [4]. The black points are
two examples with numerical details presented in Appendix.
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Therefore, in this paper we study on the local and global
minima of the 2HDM potential and try to find out the
condition of a selected minimum being globally minimal.
According to our analytical calculations, there are five

different possible types (denoted as type A to E) of minima,
which are all summarized in Table I. Regarding the
question of which is the global minimum, though there
has not been a simple answer, a numerical process is
proposed to address it, which is practically applicable in
phenomenological studies.
The requirement of a global minimum will generate a

new constraint on the model. In a CP-conserving 2HDM
with softly broken Z2 symmetry, we have shown in Fig. 1
that such a new constraint can be considerably significant in
reducing the allowed parameter space. In general, this
constraint can be applied to many other 2HDMs, which will
be studied in future work.
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APPENDIX: NUMERICAL EXAMPLES

In this appendix we show two examples with numerical
information in detail. One example violates the GM
condition which will be called example (1) below. The
other satisfying the GM condition is called example (2).
Both are displayed in Fig. 1.
The input parameters in the hybrid basis are [here and

henceforth we add superscripts (1) and (2) on the corre-
sponding quantities to distinguish between them]

ðmh;mH; cβ−α; Z4; Z5; Z7; tan βÞð1Þ ¼ ð125 GeV; 500 GeV; 0.1;−2;−2; 0; 30Þ; ðA1Þ

ðmh;mH; cβ−α; Z4; Z5; Z7; tan βÞð2Þ ¼ ð125 GeV; 400 GeV; 0.1;−2;−2; 0; 10Þ: ðA2Þ

The output potentials computed by 2HDMC are

ðm2
11; m

2
22; m

2
12Þð1Þ ¼ ð−0.110625;−0.00831996; 0.00827196Þ TeV2; ðA3Þ

λð1Þ1���7 ¼ ð11.8234; 0.270735; 15.8106;−1.98716;−1.98716;−7.24247 × 10−17;−8.88178 × 10−16Þ; ðA4Þ

ðm2
11; m

2
22; m

2
12Þð2Þ ¼ ð0.0780633;−0.0062319; 0.0158423Þ TeV2; ðA5Þ

λð2Þ1���7 ¼ ð2.62714; 0.233919; 6.60344;−1.97607;−1.97607; 1.38778 × 10−17; 2.498 × 10−16Þ: ðA6Þ

The masses of scalar bosons computed according to Eqs. (43), (44), and (45) are

ðmh;mH;mA;mH�Þð1Þ ¼ ð125.0; 500.0; 607.376; 607.376Þ GeV; ðA7Þ

ðmh;mH;mA;mH�Þð2Þ ¼ ð125.0; 400.0; 528.967; 528.967Þ GeV: ðA8Þ

The mixing angle α from Eq. (46) is

αð1Þ ¼ 0.0668463; αð2Þ ¼ 0.000498351: ðA9Þ

The first three types of minima computed according to Table I are

ðVA; VB; VCÞð1Þ ¼ ð−0.333809;−1.2784;−5.17533Þ × 10−4 TeV4; ðA10Þ

ðq1; q2; zÞð1ÞA ¼ ð0.411686; 6.68905;−2.08135Þ × 10−3 TeV2; ðA11Þ

ðq1; q2; zÞð1ÞB ¼ ð0; 30.731; 0Þ × 10−3 TeV2; ðA12Þ

ðq1; q2; zÞð1ÞC ¼ ð9.35648; 0; 0Þ × 10−3 TeV2; ðA13Þ

and
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ðVA; VB; VCÞð2Þ ¼ ð1.55994;−0.830128;−11.5979Þ × 10−4 TeV4; ðA14Þ

ðq1; q2; zÞð2ÞA ¼ ð1.38198;−12.3714;−4.00854Þ × 10−3 TeV2; ðA15Þ

ðq1; q2; zÞð2ÞB ¼ ð0; 26.6413; 0Þ × 10−3 TeV2; ðA16Þ

ðq1; q2; zÞð2ÞC ¼ ð−29.7142; 0; 0Þ × 10−3 TeV2: ðA17Þ

The type D minima are obtained by numerically solving the nonlinear equations (21), (22) and (23). There are four
different solutions in example (1) which are denoted as D1, D2, D3, and D4:�

q
10−3 TeV2

; tan β; θ

�ð1Þ

D1
¼ ð9.41293; 0.0807902; 7.21702 × 10−7Þ;

�
q

10−3 TeV2
; tan β; θ

�ð1Þ

D2
¼ ð30.3114; 29.9987; 6.28318Þ;

�
q

10−3 TeV2
; tan β; θ

�ð1Þ

D3
¼ ð12.5001; 4.51185; 3.71351 × 10−6Þ;

�
q

10−3 TeV2
; tan β; θ

�ð1Þ

D4
¼ ð6.5558; 3.99351; 3.14159Þ:

The corresponding potential values are

ðVD1; VD2; VD3; VD4Þð1Þ ¼ ð−5.23783;−1.36168;−1.03783;−0.342805Þ × 10−4 TeV4: ðA18Þ
So D1 is the global minimum.
As for example (2), there is only one solution at

�
q

10−3 TeV2
; tan β; θ

�ð2Þ

D
¼ ð30.3123; 10.0; 2.90367 × 10−6Þ; ðA19Þ

and the potential value is

Vð2Þ
D ¼ −1.29348 × 10−4 TeV4; ðA20Þ

which is the global minimum of the potential in example (2).

[1] A. Djouadi, Phys. Rep. 459, 1 (2008).
[2] T. D. Lee, Phys. Rev. D 8, 1226 (1973).
[3] J. E. Kim, Phys. Rep. 150, 1 (1987).
[4] H. E. Haber and O. Stal, Eur. Phys. J. C 75, 491 (2015);

Eur. Phys. J. C 76, 312(E) (2016).
[5] N. Chakrabarty and B. Mukhopadhyaya, arXiv:1702.08268.
[6] M. Capdequi Peyranere, H. E. Haber, and P. Irulegui,

Phys. Rev. D 44, 191 (1991).
[7] H. E. Haber, in International Workshop on Future

Linear Colliders (LCWS11) Granada, Spain, 2011
(2012), arXiv:1203.2631.

[8] P. M. Ferreira, R. Santos, H. E. Haber, and J. P. Silva,
Phys. Rev. D 87, 055009 (2013).

[9] P. M. Ferreira, J. F. Gunion, H. E. Haber, and R. Santos,
Phys. Rev. D 89, 115003 (2014).

[10] P. M. Ferreira, R. Guedes, J. F. Gunion, H. E. Haber, M. O.
P. Sampaio, and R. Santos, in Proceedings, 22nd
International Workshop on Deep-Inelastic Scattering and
Related Subjects (DIS 2014): Warsaw, Poland, 2014 (2014)
arXiv:1407.4396.

[11] A. Broggio, E. J. Chun, M. Passera, K. M. Patel, and S. K.
Vempati, J. High Energy Phys. 11 (2014) 058.

[12] J. Bernon, J. F. Gunion, H. E. Haber, Y. Jiang, and S. Kraml,
Phys. Rev. D 92, 075004 (2015).

[13] J. Bernon, J. F. Gunion, H. E. Haber, Y. Jiang, and S. Kraml,
Phys. Rev. D 93, 035027 (2016).

[14] P. M. Ferreira and D. R. T. Jones, J. High Energy Phys. 08
(2009) 069.

[15] P. M. Ferreira, R. Santos, M. Sher, and J. P. Silva, Phys. Rev.
D 85, 077703 (2012).

TREE-LEVEL VACUUM STABILITY OF TWO-HIGGS- … PHYSICAL REVIEW D 95, 115019 (2017)

115019-9

https://doi.org/10.1016/j.physrep.2007.10.005
https://doi.org/10.1103/PhysRevD.8.1226
https://doi.org/10.1016/0370-1573(87)90017-2
https://doi.org/10.1140/epjc/s10052-015-3697-x
https://doi.org/10.1140/epjc/s10052-016-4151-4
http://arXiv.org/abs/1702.08268
https://doi.org/10.1103/PhysRevD.44.191
http://arXiv.org/abs/1203.2631
https://doi.org/10.1103/PhysRevD.87.055009
https://doi.org/10.1103/PhysRevD.89.115003
http://arXiv.org/abs/1407.4396
https://doi.org/10.1007/JHEP11(2014)058
https://doi.org/10.1103/PhysRevD.92.075004
https://doi.org/10.1103/PhysRevD.93.035027
https://doi.org/10.1088/1126-6708/2009/08/069
https://doi.org/10.1088/1126-6708/2009/08/069
https://doi.org/10.1103/PhysRevD.85.077703
https://doi.org/10.1103/PhysRevD.85.077703


[16] P. M. Ferreira, R. Santos, M. Sher, and J. P. Silva, Phys. Rev.
D 85, 035020 (2012).

[17] A. Barroso, P. M. Ferreira, R. Santos, M. Sher, and J. P.
Silva, in Proceedings, 1st Toyama International Workshop
on Higgs as a Probe of New Physics 2013 (HPNP2013):
Toyama, Japan, 2013 (2013) arXiv:1304.5225.

[18] P. M. Ferreira, R. Santos, M. Sher, and J. P. Silva, in
Proceedings, 48th Rencontres de Moriond on QCD and
High Energy Interactions: La Thuile, Italy, 2013 (2013),
pp. 67–70, arXiv:1305.4587.

[19] P. M. Ferreira, R. Guedes, M. O. P. Sampaio, and R. Santos,
J. High Energy Phys. 12 (2014) 067.

[20] P. M. Ferreira, R. Guedes, J. F. Gunion, H. E. Haber, M. O. P.
Sampaio, and R. Santos, in Proceedings, 2nd Conference on
Large Hadron Collider Physics Conference (LHCP 2014):
New York, USA, 2014 (2014) arXiv:1410.1926.

[21] B. Dumont, J. F. Gunion, Y. Jiang, and S. Kraml, Phys. Rev.
D 90, 035021 (2014).

[22] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M.
Sher, and J. P. Silva, Phys. Rep. 516, 1 (2012).

[23] E. Ma, Phys. Rev. D 73, 077301 (2006).
[24] E. Ma, Mod. Phys. Lett. A 21, 1777 (2006).
[25] R. Barbieri, L. J. Hall, and V. S. Rychkov, Phys. Rev. D 74,

015007 (2006).
[26] D. Majumdar and A. Ghosal, Mod. Phys. Lett. A 23, 2011

(2008).
[27] L. Lopez Honorez, E. Nezri, J. F. Oliver, and M. H. G.

Tytgat, J. Cosmol. Astropart. Phys. 02 (2007) 028.
[28] N. Sahu and U. Sarkar, Phys. Rev. D 76, 045014 (2007).
[29] H. Martinez, A. Melfo, F. Nesti, and G. Senjanovic, Phys.

Rev. Lett. 106, 191802 (2011).
[30] A. Melfo, M. Nemevsek, F. Nesti, G. Senjanovic, and Y.

Zhang, Phys. Rev. D 84, 034009 (2011).
[31] N. Khan and S. Rakshit, Phys. Rev. D 92, 055006 (2005).
[32] M. N. Dubinin and A. V. Semenov, Eur. Phys. J. C 28, 223

(2003).
[33] J. F.Gunion andH. E.Haber, Phys.Rev.D 72, 095002 (2005).
[34] L. Bian and N. Chen, J. High Energy Phys. 09 (2016) 069.
[35] B. Grzadkowski, O. M. Ogreid, and P. Osland, Phys. Rev. D

94, 115002 (2016).
[36] M. Maniatis, A. von Manteuffel, and O. Nachtmann, Eur.

Phys. J. C 57, 719 (2008).
[37] P. M. Ferreira, R. Santos, and A. Barroso, Phys. Lett. B 603,

219 (2004); 629, 114(E) (2005).
[38] A. Barroso, P. M. Ferreira, and R. Santos, Afr. J. Math.

Phys. 3, 103 (2006).
[39] A. Barroso, P. M. Ferreira, and R. Santos, Phys. Lett. B 632,

684 (2006).
[40] A. Barroso, P. M. Ferreira, and R. Santos, Proc. Sci.,

HEP2005 (2006) 337.
[41] I. P. Ivanov, Phys. Rev. D 75, 035001 (2007); 76, 039902(E)

(2007).
[42] A. Barroso, P. M. Ferreira, R. Santos, and J. P. Silva, Phys.

Rev. D 74, 085016 (2006).
[43] I. P. Ivanov, Phys. Rev. D 77, 015017 (2008).
[44] A. Barroso, P. M. Ferreira, and R. Santos, Phys. Lett. B 652,

181 (2007).
[45] I. P. Ivanov, arXiv:0706.4332.
[46] I. P. Ivanov, Acta Phys. Pol. B 40, 2789 (2009).
[47] I. P. Ivanov and C. C. Nishi, Phys. Rev. D 82, 015014 (2010).

[48] N. Barros e Sa, A. Barroso, P. Ferreira, and R. Santos,
Proc. Sci., CHARGED2008 (2008) 014 [arXiv:0906.5453].

[49] I. F. Ginzburg, I. P. Ivanov, and K. A. Kanishev, Phys. Rev.
D 81, 085031 (2010).

[50] I. P. Ivanov, J. High Energy Phys. 07 (2010) 020.
[51] R. A. Battye, G. D. Brawn, and A. Pilaftsis, J. High Energy

Phys. 08 (2011) 020.
[52] A. Barroso, P. M. Ferreira, I. P. Ivanov, R. Santos, and J. P.

Silva, Eur. Phys. J. C 73, 2537 (2013).
[53] A. Barroso, P. M. Ferreira, I. Ivanov, R. Santos, and J. P.

Silva, J. Phys. Conf. Ser. 447, 012051 (2013).
[54] A. Barroso, P. M. Ferreira, I. P. Ivanov, and R. Santos,

J. High Energy Phys. 06 (2013) 045.
[55] A. Barroso, P. M. Ferreira, I. Ivanov, and R. Santos, in

Proceedings, 1st Toyama International Workshop on Higgs
as a Probe of New Physics 2013 (HPNP2013): Toyama,
Japan, 2013 (2013) arXiv:1305.1235.

[56] I. P. Ivanov and J. P. Silva, Phys. Rev. D 92, 055017 (2015).
[57] S. R. Coleman, Phys. Rev. D 15, 2929 (1977); 16, 1248(E)

(1977).
[58] C. G. Callan, Jr. and S. R. Coleman, Phys. Rev. D 16, 1762

(1977).
[59] K. G. Klimenko, Teor. Mat. Fiz. 62, 87 (1985) [Theor. Math.

Phys. 62, 58 (1985)].
[60] M. Maniatis, A. von Manteuffel, O. Nachtmann, and F.

Nagel, Eur. Phys. J. C 48, 805 (2006).
[61] R. Casalbuoni, D. Dominici, R. Gatto, and C. Giunti, Phys.

Lett. B 178, 235 (1986).
[62] R. Casalbuoni, D. Dominici, F. Feruglio, and R. Gatto,

Phys. Lett. B 200, 495 (1988).
[63] J. Maalampi, J. Sirkka, and I. Vilja, Phys. Lett. B 265, 371

(1991).
[64] S. Kanemura, T. Kubota, and E. Takasugi, Phys. Lett. B 313,

155 (1993).
[65] A. Arhrib, in Workshop on Noncommutative Geometry,

Superstrings and Particle Physics Rabat, Morocco, 2000
(2000), arXiv:hep-ph/0012353.

[66] A. G. Akeroyd, A. Arhrib, and E.-M. Naimi, Phys. Lett. B
490, 119 (2000).

[67] I. F. Ginzburg and I. P. Ivanov, arXiv:hep-ph/0312374.
[68] I. F. Ginzburg and I. P. Ivanov, Phys. Rev. D 72, 115010

(2005).
[69] J. Horejsi and M. Kladiva, Eur. Phys. J. C 46, 81 (2006).
[70] X.-J. Xu, Phys. Rev. D 94, 115025 (2016).
[71] Y. L. Wu and L. Wolfenstein, Phys. Rev. Lett. 73, 1762

(1994).
[72] F. J. Botella and J. P. Silva, Phys. Rev. D 51, 3870 (1995).
[73] C. C. Nishi, Phys. Rev. D 76, 055013 (2007).
[74] D. Eriksson, J. Rathsman, and O. Stal, Comput. Phys.

Commun. 181, 189 (2010).
[75] F. Staub, arXiv:1705.03677.
[76] G. C. Dorsch, S. J. Huber, K. Mimasu, and J. M. No,

arXiv:1705.09186.
[77] M. Lindner, M. Sher, and H.W. Zaglauer, Phys. Lett. B 228,

139 (1989).
[78] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F.

Sala, A. Salvio, and A. Strumia, J. High Energy Phys. 12
(2013) 089 (2013).

[79] J. F. Gunion and H. E. Haber, Phys. Rev. D 67, 075019
(2003).

XUN-JIE XU PHYSICAL REVIEW D 95, 115019 (2017)

115019-10

https://doi.org/10.1103/PhysRevD.85.035020
https://doi.org/10.1103/PhysRevD.85.035020
http://arXiv.org/abs/1304.5225
http://arXiv.org/abs/1305.4587
https://doi.org/10.1007/JHEP12(2014)067
http://arXiv.org/abs/1410.1926
https://doi.org/10.1103/PhysRevD.90.035021
https://doi.org/10.1103/PhysRevD.90.035021
https://doi.org/10.1016/j.physrep.2012.02.002
https://doi.org/10.1103/PhysRevD.73.077301
https://doi.org/10.1142/S0217732306021141
https://doi.org/10.1103/PhysRevD.74.015007
https://doi.org/10.1103/PhysRevD.74.015007
https://doi.org/10.1142/S0217732308025954
https://doi.org/10.1142/S0217732308025954
https://doi.org/10.1088/1475-7516/2007/02/028
https://doi.org/10.1103/PhysRevD.76.045014
https://doi.org/10.1103/PhysRevLett.106.191802
https://doi.org/10.1103/PhysRevLett.106.191802
https://doi.org/10.1103/PhysRevD.84.034009
https://doi.org/10.1103/PhysRevD.92.055006
https://doi.org/10.1140/epjc/s2003-01141-5
https://doi.org/10.1140/epjc/s2003-01141-5
https://doi.org/10.1103/PhysRevD.72.095002
https://doi.org/10.1007/JHEP09(2016)069
https://doi.org/10.1103/PhysRevD.94.115002
https://doi.org/10.1103/PhysRevD.94.115002
https://doi.org/10.1140/epjc/s10052-008-0712-5
https://doi.org/10.1140/epjc/s10052-008-0712-5
https://doi.org/10.1016/j.physletb.2004.10.022
https://doi.org/10.1016/j.physletb.2004.10.022
https://doi.org/10.1016/j.physletb.2005.09.074
https://doi.org/10.1016/j.physletb.2005.11.031
https://doi.org/10.1016/j.physletb.2005.11.031
https://doi.org/10.1103/PhysRevD.75.035001
https://doi.org/10.1103/PhysRevD.76.039902
https://doi.org/10.1103/PhysRevD.76.039902
https://doi.org/10.1103/PhysRevD.74.085016
https://doi.org/10.1103/PhysRevD.74.085016
https://doi.org/10.1103/PhysRevD.77.015017
https://doi.org/10.1016/j.physletb.2007.07.010
https://doi.org/10.1016/j.physletb.2007.07.010
http://arXiv.org/abs/0706.4332
https://doi.org/10.1103/PhysRevD.82.015014
http://arXiv.org/abs/0906.5453
https://doi.org/10.1103/PhysRevD.81.085031
https://doi.org/10.1103/PhysRevD.81.085031
https://doi.org/10.1007/JHEP07(2010)020
https://doi.org/10.1007/JHEP08(2011)020
https://doi.org/10.1007/JHEP08(2011)020
https://doi.org/10.1140/epjc/s10052-013-2537-0
https://doi.org/10.1088/1742-6596/447/1/012051
https://doi.org/10.1007/JHEP06(2013)045
http://arXiv.org/abs/1305.1235
https://doi.org/10.1103/PhysRevD.92.055017
https://doi.org/10.1103/PhysRevD.15.2929
https://doi.org/10.1103/PhysRevD.16.1248
https://doi.org/10.1103/PhysRevD.16.1248
https://doi.org/10.1103/PhysRevD.16.1762
https://doi.org/10.1103/PhysRevD.16.1762
https://doi.org/10.1007/BF01034825
https://doi.org/10.1007/BF01034825
https://doi.org/10.1140/epjc/s10052-006-0016-6
https://doi.org/10.1016/0370-2693(86)91502-9
https://doi.org/10.1016/0370-2693(86)91502-9
https://doi.org/10.1016/0370-2693(88)90158-X
https://doi.org/10.1016/0370-2693(91)90068-2
https://doi.org/10.1016/0370-2693(91)90068-2
https://doi.org/10.1016/0370-2693(93)91205-2
https://doi.org/10.1016/0370-2693(93)91205-2
http://arXiv.org/abs/hep-ph/0012353
https://doi.org/10.1016/S0370-2693(00)00962-X
https://doi.org/10.1016/S0370-2693(00)00962-X
http://arXiv.org/abs/hep-ph/0312374
https://doi.org/10.1103/PhysRevD.72.115010
https://doi.org/10.1103/PhysRevD.72.115010
https://doi.org/10.1140/epjc/s2006-02472-3
https://doi.org/10.1103/PhysRevD.94.115025
https://doi.org/10.1103/PhysRevLett.73.1762
https://doi.org/10.1103/PhysRevLett.73.1762
https://doi.org/10.1103/PhysRevD.51.3870
https://doi.org/10.1103/PhysRevD.76.055013
https://doi.org/10.1016/j.cpc.2009.09.011
https://doi.org/10.1016/j.cpc.2009.09.011
http://arXiv.org/abs/1705.03677
http://arXiv.org/abs/1705.09186
https://doi.org/10.1016/0370-2693(89)90540-6
https://doi.org/10.1016/0370-2693(89)90540-6
https://doi.org/10.1007/JHEP12(2013)089
https://doi.org/10.1007/JHEP12(2013)089
https://doi.org/10.1103/PhysRevD.67.075019
https://doi.org/10.1103/PhysRevD.67.075019

