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We consider a five dimensional anti–de Sitter (AdS) warped spacetime in presence of a massive scalar
field in the bulk. The scalar field potential fulfills the requirement of modulus stabilization even when the
effect of backreaction of the stabilizing field is taken into account. In such a scenario, we explore the role of
backreaction on the localization of bulk fermions which in turn determines the effective radion-fermion
coupling on the brane. Our result reveals that both the chiral modes of the zeroth Kaluza-Klein (KK)
fermions get localized near TeV brane as the backreaction of the scalar field increases. We also show that
the profile of massive KK fermions shifts towards the Planck brane with an increasing backreaction
parameter. Some implications in the context of LHC physics are discussed.
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I. INTRODUCTION

Ever since the original proposal of Kaluza-Klein (KK)
regarding the existence of extra spatial dimension(s), it is
often believed that our Universe is a three-brane embedded
in a higher dimensional spacetime and is described through
a low energy effective theory on the brane carrying the
signatures of extra dimensions [1,2]
Til date, theStandardModel (SM)of particle physics is the

best suited model for describing the possible interactions
between fundamental particles up to TeV scale. However,
the Standard Model carries a quadratic divergence in the
radiatively corrected Higgs mass which can be set to the
desired value 126GeVonly through an unnatural fine-tuning
of the parameters of the theory. Among various models
proposed to solve this fine-tuning problem [3–9] theRandall-
Sundrum (RS) warped geometry model [5] earns a special
attention since it resolves the gauge hierarchy problem
without introducing any intermediate scale between
Planck and the TeV scale. The interbrane separation, known
as modulus (or radion), is assumed to be ∼ Planck length in
order to generate the required hierarchy between the branes.
A suitable potential with a stable minimum is therefore
needed for modulus stabilization. Goldberger and Wise
(GW) proposed a useful stabilization mechanism [10] by
introducing amassive scalar field in thebulkwith appropriate
boundary values. Not only the stable value of the modulus
appear as a parameter in the low energy effective theory on
the brane, but it is a fluctuation about that stable value leads to
dynamical modulus (or radion) field, which couples to the
fields on the observable brane. This resulted into a large
volume of work on phenomenological and cosmological
implications [11–16] of modulus field in RS warped geom-
etry model. Though the backreaction of the stabilizing scalar

field was originally neglected in GW proposal, its implica-
tions are subsequently studied in [12,17]. It has been
demonstrated in [17] that the modulus of the RS scenario
can be stabilized using the GW prescription even by
incorporating the backreaction of the stabilizing field. In
such a braneworld scenario, several models were proposed
by placing the standard model fields inside the bulk.
Especially the localization property of a bulk fermion field
[18–25] has been a subject of great interest where explan-
ations for observed chiral nature of massless fermion and the
hierarchial masses of fermions among different generations
have been explored. In this context, it is observed that the
overlap of the bulk fermion wave function on our visible
brane plays crucial role in determining the effective radion-
fermion coupling which in turn determines phenomenology
of the radion with brane matter fields.
In view of above, it is worthwhile to address the role of

backreaction of the stabilizing field on fermion localization.
We aim to address this in the present work.
Our paper is organized as follows: The backreacted RS

scenario and its modulus stabilization is described in
Sec. II. Section III addresses the localization property of
bulk fermion field and its consequences. The paper ends
with some concluding remarks.

II. BACKREACTED RS MODEL AND ITS
MODULUS STABILIZATION

The action for the RS geometry with a stabilizing scalar
field Φ [12] is as follows:

S ¼
Z

d5x
ffiffiffiffi
G

p
½−M3Rþ Λ�

þ
Z

d5x
ffiffiffiffi
G

p
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−
Z

d4x
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p
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Z
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whereM is the five-dimensional Planck scale, Λ is the bulk
cosmological constant,GMN is the five-dimensional metric,
gvis and gvis are the induced metric on the hidden and visible
brane, respectively. λvis, λvis are the self interactions of
scalar field (including brane tensions) on the Planck and
TeV branes. The background metric ansatz is given by

ds2 ¼ exp ½−2AðyÞ�ημνdxμdxν − dy2; ð2Þ

where AðyÞ is the warp factor. The bulk scalar field is
assumed to depend only on the extra dimensional coor-
dinate (y) [12].
In order to get an analytic solution of the backreacted

geometry, the form of the scalar field potential is chosen
as [12]

VðΦÞ ¼ ð1=2ÞΦ2ðu2 þ 4ukÞ − ðκ2=6Þu2Φ4; ð3Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−κ2Λ=6

p
. The potential contains quadratic as

well as quartic self interaction of the scalar field, and the
two terms are connected by a common free parameter “u”.
Using this form of the potential, one obtains a solution of
coupled gravitational-scalar field equations as

AðyÞ ¼ kjyj þ ðκ2=12ÞΦ2
P exp ð−2ujyjÞ ð4Þ

ΦðφÞ ¼ ΦP exp ð−ujyjÞ; ð5Þ

where ΦP is the value of the scalar field on Planck brane.
From Eq. (4), it can be argued that κΦP controls the
deviation of the warp factor from RS model, and thus κΦP
is known as the scalar field backreaction parameter.
Moreover, λvis and λvis can be obtained from the boundary
conditions on branes as

λvis ¼ 6k=κ2 − uΦ2
P ð6Þ

λvis ¼ −6k=κ2 þ uΦ2
P exp ð−2uπrcÞ; ð7Þ

where rc is the compactification radius of the extra
dimension. Once the solutions of AðyÞ and ΦðyÞ are
obtained [see Eqs. (4) and (5)], the modulus can be
stabilized using GW prescription. It has been demonstrated
in [17] that the interbrane separation in a backreacted RS
scenario is stabilized at a value given by

kπrc ¼
k
u
ln

�
κΦP

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k

u

p �
: ð8Þ

In the original Randall-Sundrum (RS) model, all the
parameters are connected by a single dimensionful (mass
dimension [1]) quantity k (which is related to the bulk
cosmological constant). The parameter rc, namely the
modulus, is determined by krc ≈ 12 so that the gauge
hierarchy problem can be resolved. Subsequently, to

stabilize the value of the modulus to this value,
Goldberger and Wise (GW) introduced a bulk scalar field
with a mass parameter m, and the resulting stable value of
the modulus turned out to be proportional to k2

m2. By
choosing k

m appropriately, GW could stabilize the value
of rc to the desired value, krc ≈ 12. However, in GW
approach, the effect of backreaction of the bulk scalar on
warp factor was neglected. The goal of the present work is
to include the effect of backreaction of the bulk scalar on
the warp factor with the chosen form of the scalar potential
[see Eq. (3)]. Here, the scalar mass and couplings are
determined by the parameters u and k. Just as in GW work,
here the parameter u appears in the stable value of rc [in
Eq. (8)]. However, now due to inclusion of backreaction, u
(along with k) also explicitly appears in the warp factor
which in turn modifies the bulk field profile and the
resulting masses and couplings. It may be noted that the
present construction would not only help us to formulate a
stable braneworld model capable of addressing the gauge
hierarchy issue but may lead to a new phenomenological
scenario in the context of braneworld physics, which
includes the effects of the backreaction of the stabilizing
field. We now show how the scalar backreaction affects the
localization of fermion field within the five dimensional
spacetime.

III. FERMION LOCALIZATION

Consider a bulk massive fermion field propagating on a
background geometry model characterized by action in
Eq. (1). The Lagrangian for the Dirac fermions is given by

LDirac ¼ e−4AðyÞ½Ψ̄iΓaDaΨ −m5Ψ̄Ψ�;

where Ψ ¼ Ψðxμ; yÞ is the fermion field andm5 is its mass.
Γa ¼ ðeAðyÞγμ;−iγ5Þ denotes the five-dimensional gamma
matrices, where γμ and γ5 represent 4D gamma matrices in
chiral representation. Curved gamma matrices obey the
Clifford algebra, i.e., ½Γa;Γb� ¼ 2Gab. The covariant
derivative Da can be calculated by using the metric in
Eq. (2) and is given by

Dμ ¼ ∂μ −
1

2
ΓμΓ4A0ðyÞe−AðyÞ

D5 ¼ ∂y:

Using this setup, the Dirac Lagrangian LDirac turns out to be

LDirac ¼ e−4AðyÞΨ̄½ieAðyÞγμ∂μ

þ γ5ð∂y − 2A0ðyÞÞ −m5�Ψ: ð9Þ

We decompose the five-dimensional spinor via Kaluza-
Klein (KK) mode expansion as Ψðxμ; yÞ ¼P χnðxμÞξnðyÞ,
where the superscript n denotes the nth KK mode. χnðxμÞ is
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the projection of Ψðxμ; yÞ on the three-brane, and ξnðyÞ is
the extra dimensional component of 5D spinor. Left (χL)
and right (χR) states are constructed by χnL;R ¼ 1

2
ð1∓ γ5Þχn.

Thus, the KK mode expansion can be written in the
following way:

Ψðxμ; yÞ ¼
X

½χnLðxμÞξnLðyÞ þ χnRðxμÞξnRðyÞ�: ð10Þ

Substituting the KK mode expansion of Ψðxμ; yÞ in the
Dirac field lagrangian given in Eq. (9), we obtain the
following equations of motion for ξL;RðyÞ as follows:

e−AðyÞ½�ð∂y − 2A0ðyÞÞ þm5�ξnR;LðyÞ ¼ −mnξ
n
L;RðyÞ; ð11Þ

where mn is the mass of nth KK mode. The 4D fermions
obey the canonical equation of motion iγμ∂μχ

n
L;R ¼mnχ

n
L;R.

Moreover, Eq. (11) is obtained provided the following
normalization conditions hold:Z

π

0

dye−3AðyÞξmL;Rξ
n
L;R ¼ δm;n ð12Þ

Z
π

0

dye−3AðyÞξmL ξ
n
R ¼ 0: ð13Þ

In the next two subsections, we discuss the localization
scenario for massless and massive KK modes, respectively.

A. Massless KK mode

For massless mode, the equation of motion of ξL;R takes
the following form (taking κΦPffiffi

2
p ¼ l):

exp
�
−ky −

l2

6
e−2uy

��
�
�
∂y − 2kþ 2l2u

3
e−2uy

�
þm5

�
× ξR;LðyÞ ¼ 0; ð14Þ

where we use the form of warp factor, i.e., AðyÞ ¼
kyþ l2

6
e−2uy. Solution of Eq. (14) is given by

ξL;RðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
e2kπrc − 1

r �
1þ exp

�
2l2

3
e−uπrc

��
1=2

� exp
�
l2

6
e−2uy

�
e2ky ð15Þ

for m5 ¼ 0, and

ξL;RðyÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k

eð2k�m5Þπrc −1

r �
1þexp

�
2l2

3
e−uπrc ∓2m5

k

��
1=2

�exp
�
l2

6
e−2uy

�
eð2k�m5Þy ð16Þ

for m5 ≠ 0.

The overall normalization constants in Eqs. (15) and (16)
are determined by using the normalization condition
presented earlier in Eq. (12). It may be noticed that left
and right chiral modes have the same solution when
m5 ¼ 0, but the degeneracy between the two chiral modes
lifted in the presence of nonzero bulk fermionic mass term.
It is worthwhile to study how the localization scenario

depends on the backreaction parameter (l) as well as the
bulk mass parameter (m5).

1. Effect of backreaction parameter

From Eq. (15), we obtain the Fig. 1 between ξL;R and y
for various values of backreaction parameter. The constant
y hypersurfaces at y ¼ 0 and y ¼ 36 represent Planck and
TeV branes, respectively. We focus into the region near the
TeV brane (see Fig. 1) to depict the localization properties
of the left and right modes.
Figure 1 clearly demonstrates that for m5 ¼ 0, the two

chiral modes get more and more localized on TeV brane as
the backreaction parameter comes close to l ¼ 25 (needed
to solve the gauge hierarchy problem for u

k ¼ 0.2) from a
lower value. Thus, the solution of a hierarchy problem and
the localization of a fermion are linked with each other. The
figure also reveals that the larger the backreaction param-
eter l, the localization of both the chiral modes of massless
fermions becomes sharper near the visible brane.
On the other hand, for small values of l, the fermions are

clearly localized deep inside the bulk spacetime and without
any backreaction (i.e., l ¼ 0); we retrieve the RS solution
where the fermions are peaked away from the visible brane.
Thus, without any bulk mass term, the fermions can be
localized at different regions inside the bulk by adjusting the
value of the backreaction parameter.
From Eq. (16), we obtain the plots of left and right chiral

modes for various l in the presence of a nonzero bulk
fermionic mass.
Figures 2 and 3 reveal that as the backreaction parameter

increases, the peak of both the left and right chiral wave
function get shifted towards the visible brane.

Dashed Curve : l 0

Solid Curve : l 10

y

L,R

30 31 32 33 34 35 36

FIG. 1. ξL;R vs y for k ¼ 1, u
k ¼ 0.01, and m5 ¼ 0.
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Moreover, using the solution of ξL;RðyÞ [in Eq. (16)], we
obtain the effective coupling [26] between the radion and
zeroth order fermionic KK mode as follows:

λL ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k

24M3

r
eAðπrcÞ exp

�
l2

3
expð−2uπrcÞ

�

×

�
1þ exp

�
2l2

3
e−uπrc −

2m5

k

��

×

�
eðkþ2m5Þπrc

eðkþ2m5Þπrc − 1

�
ð17Þ

for a left-handed chiral mode and,

λR ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k

24M3

r
eAðπrcÞ exp

�
l2

3
expð−2uπrcÞ

�

×

�
1þ exp

�
2l2

3
e−uπrc þ 2m5

k

��

×

�
eðk−2m5Þπrc

eðk−2m5Þπrc − 1

�
ð18Þ

for a right-handed mode. It is evident that the effective
radion-fermion coupling increases (for both a left and right

chiral mode) with the backreaction parameter. It is expected
because the peak of both a left and right chiral wave
function gets shifted towards the visible brane as the
backreaction parameter increases. In the search of an extra
dimension in LHC, the physics of radion and its decay
channels play an important role. Among different decay
channels, it is worthwhile to search for flavor violating
radion decay channel through leptonic decay modes. It has
been shown that if the radion production cross section is
large, one can get a significant decay channel into lþl− in
comparison to a similar leptonic decay mode in a Standard
Model background (see [27] and references therein).
Moreover, the τþτ− decay channel has been shown to
contribute about 5% when the radion mass is 50 GeV with
coupling (fermion-radion) of the order of 500 GeV−1. It is
therefore considered to be an important channel for a very
light radion signal at the LHC. Additionally, if the radion
mass is greater than the top quark mass, then it can decay
also into a top and charm quark which is shown to be
significant for a radion mass ≈250 GeV and a coupling
≈100 GeV−1. For all such processes, the present scenario
with an enhanced radion-fermion coupling due to back-
reaction effect would allow a larger mass bound for the
radion and also should lead to an enhanced top production
whose signal from the background can give hint to flavor
violating decay of radion.

B. Massive KK mode

In this section, we study the localization of higher
Kaluza-Klein modes. For massive KK modes, the equation
of motion for a fermionic wave function is given as

exp

�
−ky −

l2

6
e−2uy

��
�
�
∂y − 2kþ 2l2u

3
e−2uy

�
þm5

�
× ξnR;LðyÞ ¼ −mnξ

n
L;RðyÞ: ð19Þ

Recall that mn is the mass of nth KK mode. Using the
rescaling ~ξL;R ¼ e

5
2
AðyÞξL;R, we find that the two helicity

states, ξL and ξR satisfy the same equation of motion and is
given by

~ξn00ðyÞ þ
�
−
k2

4

�
1þ l2

3

u
k

�
þ
�
m2

n −
k2

4

�
1þ l2

3

u
k

�
−m2

5

�

× exp

�
2kyþ l2

3
e−2uy

��
~ξnL;RðyÞ ¼ 0: ð20Þ

Solution of Eq. (20) is given by Bessel function as
follows:

Dashed Curve : l 0

Solid Curve : l 10

y

R

33.0 33.5 34.0 34.5 35.0 35.5 36.0

FIG. 3. ξR vs y for k ¼ 1, u
k ¼ 0.01 and m5 ¼ 0.5k.

Dashed Curve : l 0

Solid Curve : l 10

y

L

33.0 33.5 34.0 34.5 35.0 35.5 36.0

FIG. 2. ξL vs y for k ¼ 1, u
k ¼ 0.01 and m5 ¼ 0.5k.
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ξnL;RðyÞ ¼
ffiffiffi
k

p
exp

�
−
5l2

12
e−2uy

�

× Γ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kþ l2u

p

4
ffiffiffiffiffi
3k

p
�
BesselI

"
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kþ l2u

p

4
ffiffiffiffiffi
3k

p ;

e−ky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 þ 12m2

n þ 12m2
5 þ kl2u

q
4
ffiffiffi
3

p
k

#
: ð21Þ

The mass spectrum can be obtained from the requirement
that the wave function is well behaved on the brane.
Demanding the continuity of ξL;R at y ¼ 0 and at y ¼
πrc gives the mass term as follows:

m2
n ¼ e−2AðπÞ½k2ðn2 þ 2nþ 1Þ þm2

5�; ð22Þ

where n ¼ 1; 2; 3… Now from the requirement of solving
the gauge hierarchy problem, the warp factor at TeV brane
acquires the value as AðπÞ ¼ 36, which produces a large
suppression in the right-hand side of Eq. (22) through the
exponential factor. Since k,m5 ∼M, the mass of KKmodes
(n ¼ 1; 2; 3…) comes at TeV scale. Using the solution of
ξnL;RðyÞ [in Eq. (21)], we determine the coupling between
massive KK fermion modes and the radion field, given by

λðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k

24M3

r
eAðπÞ exp

�
−
5l2

6
e−2uπrc

�

×

 
Γ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kþ l2u

p

4
ffiffiffiffiffi
3k

p
�
BesselI

"
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kþ l2u

p

4
ffiffiffiffiffi
3k

p ;

e−kπrc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2 þ 12m2

n þ 12m2
5 þ kl2u

q
4
ffiffiffi
3

p
k

#!
2

; ð23Þ

where λðnÞ is the coupling between n th KK fermion mode
and the radion field. Equation (23) clearly indicates that λðnÞ
decreases with an increasing backreaction parameter.
Equation (21) indicates the relation between ξL;R and y

for various values of l from which one can find the
dependence of localization for massive KK fermion modes
on the backreaction parameter. From this, the behavior of
the first KK mode (n ¼ 1) is described in Fig. 4.
Figure 4 clearly depicts that the wave function for

first massive KK mode gets more and more localized
near Planck brane with an increasing value of the back-
reaction parameter. As a result, the coupling parameter
decreases near the visible brane as the backreaction
parameter increases. Moreover, it can also be shown [from
Eq. (21)] that as the order of KK mode increases from
n ¼ 1, the localization of fermions becomes sharper near
Planck brane.
Before concluding, it may be mentioned that the bulk

fermion mass term (m5) also affects the localization of the
fermion field. Using the solution of ξL;RðyÞ presented in

Eq. (16), it can be shown that for a fixed value of the
backreaction parameter, the left chiral mode of the zeroth
KK fermion has higher peak values on the TeV brane as the
bulk fermion mass increases, whereas the right chiral mode
shows the reverse nature, which is in agreement with [24].

IV. CONCLUSION

We consider a five-dimensional anti–de Sitter compac-
tified warped geometry model with two three-branes
embedded within the spacetime. For the purpose of
modulus stabilization, a massive scalar field is invoked
in the bulk and its backreaction on spacetime geometry is
taken into account. The present construction now addresses
the RS phenomenology when both the modulus stabiliza-
tion and the backreaction are taken into consideration. In
this scenario, we study how the backreaction parameter
affects the localization of a bulk fermion field within the
entire spacetime. Moreover, we also explore how the
fermion localization depends on the bulk mass parameter.
Our findings are as follows:
(1) For massless KK mode—

(i) In the absence of a bulk fermion mass, left and
right chiral modes can be localized at different
regions in the spacetime by adjusting the value
of the backreaction parameter (l). However,
the localization of both the chiral modes be-
comes sharper near TeV brane as the value of l
increases.

(ii) In the presence of a nonzero bulk fermion mass,
the left as well as right mode get more and more
localized as the backreaction parameter be-
comes larger. Correspondingly the overlap of
fermion wave function with the visible brane
increases with l, which is depicted in Figs. 2
and 3.

(iii) The effective coupling between the radion and
zeroth order fermionic KK mode is obtained [in
Eqs. (17) and (18)]. It is found that the radion-
fermion coupling (for both the left and right
chiral mode) increases with the increasing value

Dashed Curve : l 0

Solid Curve : l 10

y

1
L,R

0.0 0.5 1.0 1.5 2.0

FIG. 4. ξ1L;R vs y for k ¼ 1, u
k ¼ 0.01 and m5

k ¼ 0.5.
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of the backreaction parameter. This is a direct
consequence of the fact that the peak of the left
and right chiral mode gets shifted towards the
visible brane as the backreaction parameter
increases. This in turn enhances the radion to
fermion decay amplitude.

(iv) For a fixed value of the backreaction parameter,
the left chiral mode has higher peak values on
the TeV brane as the bulk fermions become
more and more massive, whereas the right
chiral mode shows a reverse nature.

(2) For massive KK mode—
(i) The requirement of solving the gauge hierarchy

problem confines the mass of higher KK modes
at the TeV scale. Moreover, the mass squared
gap (Δm2

n ¼ m2
nþ1 −m2

n) depends linearly on n,

which is also evident from the mass spectrum
in Eq. (22).

(ii) The coupling between the radion and massive
KK fermionic mode is determined in Eq. (23). It
is found that the coupling parameter decreases
with the increasing backreaction parameter.

(iii) From the perspective of a localization scenario,
the wave function of massive KK modes are
localized near the Planck brane, which in-
creases with the order of the KK mode. As a
result, the couplings of the massive KK fer-
mionic modes with the visible brane matter
fields become extremely weak and therefore,
drastically reduces the possibility of finding the
signatures of such massive fermion KK modes
on a TeV brane.
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