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The measured B̄ → Dð�Þlν̄ decay rates for light leptons (l ¼ e, μ) constrain all B̄ → Dð�Þ semileptonic
form factors, by including both the leading and OðΛQCD=mc;bÞ subleading Isgur-Wise functions in the

heavy quark effective theory. We perform a novel combined fit to the B̄ → Dð�Þlν̄ decay distributions to
predict the B̄ → Dð�Þτν̄ rates and determine the Cabibbo-Kobayashi-Maskawa matrix element jVcbj. Most
theoretical and experimental papers have neglected uncertainties in the predictions for form factor ratios at
order ΛQCD=mc;b, which we include. We also calculate OðΛQCD=mc;bÞ and OðαsÞ contributions to

semileptonic B̄ → Dð�Þlν̄ decays for all possible b → c currents. This result has not been available for the
tensor current form factors, and for two of those, which are OðΛQCD=mc;bÞ, the corrections are of the same
order as approximations used in the literature. These results allow us to determine with improved precision
how new physics may affect the B̄ → Dð�Þτν̄ rates. Our predictions can be systematically improved with
more data; they need not rely on lattice QCD results, although these can be incorporated.
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I. INTRODUCTION

Heavy quark symmetry [1,2] plays an essential role in
understanding exclusive semileptonic b → clν̄ mediated
transitions, by providing relations between hadronic form
factors. At leading order in ΛQCD=mc;b, the symmetry also
determines the absolute normalization of form factors at the
“zero recoil” point, vB ¼ vDð�Þ , corresponding to maximal
invariantmass, q2, of the outgoing lepton pair. Incorporating
small corrections to the symmetry limit permits a (hadronic)
model-independent determination of jVcbj from exclusive
decays. Recently, the BABAR [3,4], Belle [5–7], and LHCb
[8] measurements of the jVcbj-independent ratios

RðDð�ÞÞ ¼ ΓðB → Dð�Þτν̄Þ
ΓðB → Dð�Þlν̄Þ ; l ¼ μ; e; ð1Þ

renewed interest in these decays. Theworld average ofRðDÞ
and RðD�Þ is in tension with the standard model (SM)
expectation at the 4σ level [9]. This is intriguing as it occurs
in a tree-level SM process, while most new physics (NP)
explanations require new states at or below one TeV [10].
Besides the search for new physics, understanding

b → clν̄ mediated semileptonic decays as precisely as
possible is also important for future improvements of the
determinations of the Cabibbo-Kobayashi-Maskawa ele-
ments jVcbj and jVubj, both from exclusive and inclusive B
decays, which exhibit some tensions [9]. Depending on the
particular measurement, some decay modes contribute to
the signals, some to the backgrounds. Future progress is

essential for increasing the scale of new physics probed by
the Belle II and LHCb experiments [11].
The main uncertainty in predicting RðDð�ÞÞ comes from

the fact that the B → Dð�Þτν̄ decay rates depend on certain
form factors, that only give m2

l =m
2
B suppressed contribu-

tions to the differential rates for the precisely measured
light lepton channels. Using heavy quark effective theory
(HQET), however, all B → Dð�Þ form factors are described
by a single Isgur-Wise function in the mc;b ≫ ΛQCD limit.
At order ΛQCD=mc;b, only three additional functions of q2

are needed to parametrize all form factors.
We perform the first combined fit to B → Dð�Þlν̄

differential rates and angular distributions, including
OðΛQCD=mc;b; αsÞ terms in HQET, to constrain both the
leading and three subleading Isgur-Wise functions. This
fit constrains all form factors, up to higher-order correc-
tions, with uncertainties suppressed by OðΛQCD

2 =m2
c;b;

αsΛQCD=mc;b; α2sÞ. We extract jVcbj and form factor ratios
under various fit scenarios, that include or omit lattice QCD
and/or QCD sum rule inputs, and which provide checks of
previously untested theory assumptions or results. Most
prior theoretical and experimental studies neglected
HQET relations for the form factors at order ΛQCD=mc;b

or the correlations of the uncertainties in the deviations
from the heavy quark limit. Our fits fully incorporate these.
These fits also allow precise predictions of the B → Dð�Þτν̄
rates and RðDð�ÞÞ. Our predictions can be systematically
improved with more B → Dð�Þlν̄ data, and need not
rely on lattice QCD results. A similar approach to
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analyze B → D��lν̄ decays was recently carried out
in Ref. [12].
We also compute, for all possible b → c currents, the

OðΛQCD=mc;bÞ andOðαsÞ contributions to the form factors.
While the OðΛQCD=mc;bÞ corrections to the vector and
axial-vector matrix elements have been known for over
25 years [13,14], the corrections for the tensor current form
factors are not explicitly available in past literature. Two of
these form factors vanish in the heavy quark limit, and
receive unsuppressed corrections to the partial results, also
of order ΛQCD=mc;b, used previously in the literature.
Section II contains the HQET calculations of the form

factors, including order ΛQCD=mc;b and αs contributions,
corresponding expressions for form factor ratios, and some
details of our numerical evaluations in the 1S scheme to
avoid known bad behaviors in the perturbation expansions.
In Sec. III we review analyticity constraints on the form
factors, parametrizations of the Isgur-Wise functions, and
develop several fit scenarios consistent with HQET, which
we apply to the data. The results for jVcbj, form factor
ratios, and RðDð�ÞÞ are discussed. Section IV concludes.

II. ELEMENTS OF HQET

A. Matrix elements to order ΛQCD=mc;b and αs

We are concerned with matrix elements hDð�ÞjOΓjBi,
where a full operator basis is

OS ¼ cb; OP ¼ cγ5b; OV ¼ cγμb;

OA ¼ cγμγ5b; OT ¼ cσμνb; ð2Þ

with σμν ≡ ði=2Þ½γμ; γν�. [The sign convention is fixed by
σμνγ5 ≡ −ði=2Þϵμνρσσρσ, which implies Tr½γμγνγσγργ5� ¼
þ4iϵμνρσ.] The construction of the HQET expansion to
orderOðΛQCD=mc;bÞ andOðαsÞ was developed in the early
1990s [15,16]; we summarize here the central elements to
establish our conventions.
The HQETallows model-independent parametrization of

the spectroscopy of heavy mesons and some hadronic
matrix elements between them. The ground-state heavy
quark spin symmetry doublet pseudoscalar (P) and
vector (V) mesons correspond to the light degrees of
freedom (the “brown muck”) in a spin-1

2
state combined

with the heavy quark spin. They form two states with
angular momentum JV;P ¼ 1

2
� 1

2
. Their masses can be

expressed as

mV;P ¼ mQ þ Λ̄ −
λ1

2mQ
� ð2JP;V þ 1Þλ2

2mQ
þ � � � ; ð3Þ

where mQ is the heavy quark mass parameter of HQET,
Λ̄ ¼ OðΛQCDÞ, λ1;2 ¼ OðΛQCD

2 Þ, etc. To evaluate matrix
elements relevant for semileptonic decays, it is simplest to
use the trace formalism [17–19]. Including ΛQCD=mc;b

corrections, the B → Dð�Þ matrix elements can be written
as [20]

hDð�Þjc̄ΓbjBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mDð�ÞmB

p ¼ −ξðwÞfTr½H̄ðcÞ
v0 ΓH

ðbÞ
v � þ εcTr½H̄ðc;1Þ

v0;v ΓHðbÞ
v �

þ εbTr½H̄ðcÞ
v0 ΓH

ðb;1Þ
v;v0 �g; ð4Þ

where εc;b ¼ Λ̄=ð2mc;bÞ and Γ is an arbitrary Dirac matrix.
The pseudoscalar and vector mesons can be represented by
a “superfield,” which has the right transformation proper-
ties under heavy quark and Lorentz symmetry,

HðQÞ
v ¼ 1þ v

2
ðVðQÞ

v ϵ − PðQÞ
v γ5Þ: ð5Þ

The ΛQCD=mc;b corrections can be parametrized via [20]

HðQ;1Þ
v;v0 ¼1þv

2
fVðQÞ

v ½ϵL̂2ðwÞþϵ ·v0L̂3ðwÞ�−PðQÞ
v γ5L̂1ðwÞg

þ1−v
2

fVðQÞ
v ½ϵL̂5ðwÞþϵ ·v0L̂6ðwÞ�−PðQÞ

v γ5L̂4ðwÞg:
ð6Þ

It is convenient to use the dimensionless kinematic variable
w instead of q2 ¼ ðpB − pDð�Þ Þ2,

w¼v ·v0 ¼m2
Bþm2

Dð�Þ −q2

2mBmDð�Þ
; v¼ pB

mB
; v0 ¼ pDð�Þ

mDð�Þ
: ð7Þ

In Eq. (4) and hereafter, we absorb into the leading-order
Isgur-Wise function a heavy quark spin symmetry con-
serving OðΛQCD=mc;bÞ subleading term, which does not
affect any model-independent predictions of HQET, via
ξðwÞ → ξðwÞ þ 2ðεc þ εbÞχ1ðwÞ. The function χ1 para-
metrizes the matrix element of the time-ordered product
of the kinetic operator in the subleading HQET Lagrangian,
Okin ¼ h̄vðiDÞ2hv=ð2mQÞ, with the leading-order current.
It satisfies χ1ð1Þ ¼ 0 [13], and hence ξð1Þ ¼ 1 is main-
tained. Reparametrization invariance [21] ensures that this
redefinition of ξðwÞ is scale independent.
The w-dependent L1…6 functions are [20]

L̂1 ¼ −4ðw − 1Þχ̂2 þ 12χ̂3; L̂2 ¼ −4χ̂3; L̂3 ¼ 4χ̂2;

L̂4 ¼ 2η− 1; L̂5 ¼ −1; L̂6 ¼ −2ð1þ ηÞ=ðwþ 1Þ:
ð8Þ

Here the χ̂2;3 terms in L̂1;2;3 originate from the matrix
elements of the time-ordered product of the leading-
order current with the chromomagnetic correction to
the Lagrangian, Omag¼ðgs=2Þh̄vσμνGμνhv=ð2mQÞ. Luke’s
theorem implies χ̂3ð1Þ ¼ 0 [13]. The L̂4;5;6 terms arise
from ΛQCD=mc;b corrections in the matching of the
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c̄Γb heavy quark current onto HQET, cΓb→
cv0 ½Γ− iD⃖Γ=ð2mcÞ þΓiD⃗=ð2mbÞ þ � � ��bv.1
The perturbative corrections to the heavy quark currents

may be computed by matching QCD onto HQET
[17,26,27]. At OðαsÞ, the following operators are gener-
ated:

c̄b → c̄v0 ð1þ α̂sCSÞbv;
c̄γ5b → c̄v0 ð1þ α̂sCPÞγ5bv;
c̄γμb → c̄v0 ½ð1þ α̂sCV1

Þγμ þ α̂sCV2
vμ þ α̂sCV3

v0μ�bv;
c̄γμγ5b → c̄v0 ½ð1þ α̂sCA1

Þγμ þ α̂sCA2
vμ þ α̂sCA3

v0μ�γ5bv
c̄σμνb → c̄v0 ½ð1þ α̂sCT1

Þσμν þ α̂sCT2
iðvμγν − vνγμÞ

þ α̂sCT3
iðv0μγν − v0νγμÞ

þ CT4
ðv0μvν − v0νvμÞ�bv; ð9Þ

where the CΓi
are functions of w and z ¼ mc=mb, and

α̂s ¼ αs=π. (We follow the notation of Ref. [15], while
Ref. [16] used Ci ¼ α̂sCVi

þ δi1 and C5
i ¼ α̂sCAi

þ δi1.)
Evaluating these contributions using the leading-order trace
in Eq. (4) leads toOðαsÞmodifications of the coefficients of
the Isgur-Wise function, ξðwÞ. In this paper we neglect
Oðαsεc;bÞ corrections, which can also be included straight-
forwardly (and should be, if NP is established).
The αs corrections for all five currents were computed in

Ref. [27]. Appendix A contains their explicit expressions,
at arbitrary matching scale μ. The vector and axial-vector
currents are not renormalized in QCD, but the correspond-
ing heavy quark currents have nonzero anomalous dimen-
sions, leading to μ dependence for CV1

and CA1
for w ≠ 1.

The scalar, pseudoscalar, and tensor currents are renormal-
ized in QCD, and thus CS, CP, and CT1

are also μ

dependent. In the MS scheme with dimensional regulari-
zation, the remaining CΓj

(j ≥ 2) are scale independent.

B. B → Dð�Þ form factors

We use the standard definitions of the form factors. For
B → D decays,

hDjc̄bjBi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p
hSðwþ 1Þ; ð10aÞ

hDjc̄γ5bjBi ¼ hDjc̄γμγ5bjBi ¼ 0; ð10bÞ

hDjc̄γμbjBi¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ½hþðvþv0Þμþh−ðv−v0Þμ�; ð10cÞ

hDjc̄σμνbjBi ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ½hTðv0μvν − v0νvμÞ�; ð10dÞ

while for the B → D� transitions,

hD�jc̄bjBi ¼ 0; ð11aÞ

hD�jc̄γ5bjBi ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p
hPðϵ� · vÞ; ð11bÞ

hD�jc̄γμbjBi ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p
hVεμναβϵ�νv0αvβ; ð11cÞ

hD�jc̄γμγ5bjBi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p ½hA1
ðwþ 1Þϵ�μ

− hA2
ðϵ� · vÞvμ − hA3

ðϵ� · vÞv0μ�; ð11dÞ

hD�jc̄σμνbjBi ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p
εμναβ½hT1

ϵ�αðvþ v0Þβ
þ hT2

ϵ�αðv − v0Þβ
þ hT3

ðϵ� · vÞvαv0β�: ð11eÞ

The i, −1, and wþ 1 factors are chosen such that in the
heavy quark limit each form factor either vanishes or equals
the leading-order Isgur-Wise function,

h− ¼ hA2
¼ hT2

¼ hT3
¼ 0;

hþ ¼ hV ¼ hA1
¼ hA3

¼ hS ¼ hP ¼ hT ¼ hT1
¼ ξ: ð12Þ

Using Eqs. (4) and (9), one can compute all form factors
to order OðΛQCD=mc;bÞ and OðαsÞ. It is convenient to
factor out ξðwÞ, defining

ĥðwÞ ¼ hðwÞ=ξðwÞ: ð13Þ

By virtue of Eq. (6), the B → Dlν̄ form factors only depend
on two linear combinations of subleading Isgur-Wise
functions, L̂1 and L̂4,

ĥþ ¼ 1þ α̂s

�
CV1

þwþ1

2
ðCV2

þCV3
Þ
�
þðεcþ εbÞL̂1;

ĥ−¼ α̂s
wþ1

2
ðCV2

−CV3
Þþðεc− εbÞL̂4;

ĥS¼ 1þ α̂sCSþðεcþ εbÞ
�
L̂1− L̂4

w−1

wþ1

�
;

ĥT ¼ 1þ α̂sðCT1
−CT2

þCT3
Þþðεcþ εbÞðL̂1− L̂4Þ: ð14Þ

For the B → D�lν̄ form factors we obtain

1Our definitions of the subleading Isgur-Wise functions, χ1;2;3,
η, and hence L̂1…6, are dimensionless due to factoring out Λ̄, as
done, e.g., in Refs. [16,22] but not in Refs. [13,15]; the
correspondence is obvious. The QCD sum rule calculations
[23–25] also compute these functions with the dimensionless
definitions.
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ĥV ¼ 1þ α̂sCV1
þ εcðL̂2 − L̂5Þ þ εbðL̂1 − L̂4Þ;

ĥA1
¼ 1þ α̂sCA1

þ εc

�
L̂2 − L̂5

w − 1

wþ 1

�

þ εb

�
L̂1 − L̂4

w − 1

wþ 1

�
;

ĥA2
¼ α̂sCA2

þ εcðL̂3 þ L̂6Þ;
ĥA3

¼ 1þ α̂sðCA1
þ CA3

Þ þ εcðL̂2 − L̂3 þ L̂6 − L̂5Þ
þ εbðL̂1 − L̂4Þ;

ĥP ¼ 1þ α̂sCP þ εc½L̂2 þ L̂3ðw − 1Þ þ L̂5 − L̂6ðwþ 1Þ�
þ εbðL̂1 − L̂4Þ;

ĥT1
¼ 1þ α̂s

�
CT1

þ w − 1

2
ðCT2

− CT3
Þ
�
þ εcL̂2 þ εbL̂1;

ĥT2
¼ α̂s

wþ 1

2
ðCT2

þ CT3
Þ þ εcL̂5 − εbL̂4;

ĥT3
¼ α̂sCT2

þ εcðL̂6 − L̂3Þ: ð15Þ

In Eqs. (14) and (15), the relations for the SM currents—that
is, hþ, h−, hV , hA1

, hA2
, and hA3

—agree with the literature,
e.g., Refs. [16,20]. Because of Luke’s theorem, the
OðΛQCD=mc;bÞ corrections to hþ, hS, hA1

, and hT1
vanish

at zero recoil. To the best of our knowledge, the expressions
forhT andhT1;2;3

cannot be found in the literature. ForhT2
and

hT3
, which start at order ΛQCD=mc;b, the partial results used

in the literature (e.g., Ref. [28]) kept and left out terms,
which are both order OðΛQCD=mc;bÞ.
The scalar and vector matrix elements in B → D tran-

sitions, and the pseudoscalar and axial vector ones in
B → D�, are related by the equations of motion

½mbðμÞ −mcðμÞ�hDjcbjBi ¼ hDjcqbjBi;
−½mbðμÞ þmcðμÞ�hD�jcγ5bjBi ¼ hD�jcqγ5bjBi; ð16Þ

in which mQðμÞ are the MS quark masses at a common
scale μ, obeying

mQ ¼ mQðμÞ
�
1þ α̂s

�
4

3
− ln

m2
Q

μ2

�
þ � � �

�
: ð17Þ

One can verify using mb ¼ mB − Λ̄þOðΛQCD
2 =mbÞ and

mc ¼ mDð�Þ − Λ̄þOðΛQCD
2 =mcÞ that the form factor

expansions in Eqs. (14) and (15) satisfy these relations,
including all Oðεc;bÞ and OðαsÞ terms. We emphasize that
this only holds using the MS masses at the common scale μ.
Using mbðmbÞ and mcðmcÞ [29] in Eq. (16), as done in
some papers, is inconsistent.
We prefer to evaluate the scalar and pseudoscalar matrix

elements using Eqs. (14) and (15) instead of Eq. (16),
because the natural choice for μ is below mb (or sometimes

well below, as in the small-velocity limit [30,31]). In the
MS scheme fermions do not decouple for μ < m, intro-
ducing artificially large corrections in the running, com-
pensated by corresponding spurious terms in the β function
computed without integrating out heavy quarks [32].

C. Decay rates and form factor ratios

The B → Dð�Þlν̄ differential rates have the well-known
expressions in the SM,

dΓðB → Dlν̄Þ
dw

¼ G2
FjVcbj2η2EWm5

B

48π3
ðw2 − 1Þ3=2

× r3Dð1þ rDÞ2GðwÞ2; ð18aÞ

dΓðB → D�lν̄Þ
dw

¼ G2
FjVcbj2η2EWm5

B

48π3
ðw2 − 1Þ1=2ðwþ 1Þ2

× r3D� ð1 − rD� Þ2

×

�
1þ 4w

wþ 1

1 − 2wrD� þ r2D�

ð1 − rD� Þ2
�
F ðwÞ2;

ð18bÞ
where rDð�Þ ¼ mDð�Þ=mB and ηEW ≃ 1.0066 [33] is the
electroweak correction. In addition,

GðwÞ ¼ hþ −
1 − rD
1þ rD

h−; ð19aÞ

F ðwÞ2 ¼ h2A1

�
2ð1 − 2wrD� þ r2D�Þ

�
1þ R1

w − 1

wþ 1

�

þ ½ð1 − rD�Þ þ ðw − 1Þð1 − R2Þ�2
�

×

�
ð1 − rD� Þ2 þ 4w

wþ 1
ð1 − 2wrD� þ r2D� Þ

�
−1
;

ð19bÞ
and the form-factor ratios are defined as

R1ðwÞ ¼
hV
hA1

; R2ðwÞ ¼
hA3

þ rD�hA2

hA1

: ð20Þ

In the heavy quark limit, R1;2ðwÞ ¼ 1 and F ðwÞ ¼ GðwÞ ¼
ξðwÞ, the leading Isgur-Wise function. It is common to fit
the measured B → D�lν̄ angular distributions to R1;2ðwÞ.
To Oðεc;b; αsÞ, the SM predictions are

R1ðwÞ ¼ 1þ α̂sðCV1
− CA1

Þ − 2

wþ 1
ðεbL̂4 þ εcL̂5Þ;

R2ðwÞ ¼ 1þ α̂sðCA3
þ rD�CA2

Þ − 2

wþ 1
ðεbL̂4 þ εcL̂5Þ

þ εc½L̂6ð1þ rD� Þ − L̂3ð1 − rD� Þ�: ð21Þ

BERNLOCHNER, LIGETI, PAPUCCI, and ROBINSON PHYSICAL REVIEW D 95, 115008 (2017)

115008-4



To include the lepton mass suppressed terms, one
sometimes defines [28,34] additional form factor ratios

R3ðwÞ¼
hA3

− rD�hA2

hA1

;

R0ðwÞ¼
hA1

ðwþ1Þ−hA3
ðw− rD� Þ−hA2

ð1−wrD� Þ
ð1þ rD� ÞhA1

: ð22Þ

All contributions of R0;3ðwÞ are proportional to m2
l. (The

authors of Ref. [34] defined R3 ¼ hA3
=hA1

.) They are not
linearly independent from R1;2ðwÞ, as there are only three
form factor ratios in B → D�lν̄ in the SM. In the heavy
quark limit, R3ðwÞ ¼ R0ðwÞ ¼ 1. At Oðεc;b; αsÞ, the SM
predictions are

R3ðwÞ ¼ 1þ α̂sðCA3
− rD�CA2

Þ − 2

wþ 1
ðεbL̂4 þ εcL̂5Þ

þ εc½L̂6ð1 − rD�Þ − L̂3ð1þ rD� Þ�;

R0ðwÞ ¼ 1þ α̂s
CA3

ðrD� − wÞ − ð1 − rD�wÞCA2

1þ rD�

þ 2ðw − rD� Þ
ð1þ rD� Þð1þ wÞ ðεbL̂4 þ εcL̂5Þ

þ εc

�
L̂3ðw − 1Þ − L̂6ðwþ 1Þ 1 − rD�

1þ rD�

�
: ð23Þ

D. The 1S scheme and numerical results

The CΓ coefficients defined in Eq. (9) are functions of w
and z ¼ mc=mb, and thus depend on the quark masses. As
is well known, the pole mass of a heavy quark contains
a leading renormalon ambiguity of order ΛQCD, and so
does the HQET parameter Λ̄, as they are ill-defined
beyond perturbation theory. The ambiguity is canceled
by a corresponding ambiguity in the perturbation series,
connected to the factorial growth of the coefficients of
α̂s
n [35–39]. The cancellation comes about as a nonana-

lytic term connected to the asymptotic nature of the
perturbation series, e−c=αsðMÞ ∼ ðΛQCD=MÞcβ0=ð4πÞ, where
β0 ¼ ð11 − 2nf=3Þ is the first coefficient in the expansion
of the β function. For example, Eq. (21) implies at zero
recoil, R1ð1Þ≃ 1þ 4α̂s=3þ εc þ εb − 2εbηð1Þ, where the
order α̂s

2β0 terms are also known [22]. The leading
renormalon corresponding to the worst behavior of the
α̂s

n power series is canceled by the ambiguity in Λ̄ within
the εc þ εb term. The −2εbηð1Þ term, however, does not
contribute to this leading renormalon cancellation, as the
only participating terms are those Λ̄=mc;b terms not
multiplied by any subleading Isgur-Wise functions.
The αs perturbation series is known to be poorly

convergent for many B decay processes already at
Oðα2sÞ, when expressed in terms of the pole mass. To
ensure the order-by-order cancellation of the fastest

factorially growing terms, it is convenient to reorganize
the perturbation series in terms of a suitable short-distance
mass scheme, instead of the pole mass. We use the 1S
scheme [40–42], which has been tested in the calculations
of numerous observables. (Using the MS mass yields a
poorly behaved perturbation series, for the reasons men-
tioned at the end of Sec. II B. Other possible short-distance
mass schemes include the potential-subtracted (PS) mass
[43] or the kinetic mass [44].)
The 1S scheme defines m1S

b as half of the perturbatively
computed ϒð1SÞ mass. It is related to the pole mass
as m1S

b ¼ mbð1 − 2α2s=9þ � � �Þ [40–42], so that we
may treat the pole mass as the function mbðm1S

b Þ ¼
m1S

b ð1þ 2α2s=9þ � � �Þ. Neglecting higher-order terms,
as done throughout this paper, is a good approximation
in all cases where they are known, including the evalu-
ation of R1;2 [22]. We adopt the inputs [45],

m1S
b ¼ ð4.71� 0.05Þ GeV;

δmbc ¼ mb −mc ¼ ð3.40� 0.02Þ GeV; ð24Þ

from fits to inclusive B → Xclν̄ spectra and other
determinations of m1S

b . We eliminate mc using mc ¼
mbðm1S

b Þ − δmbc, and extract Λ̄ via

Λ̄ ¼ mB −mbðm1S
b Þ þ λ1=ð2m1S

b Þ: ð25Þ

Here mB ¼ ðmB þ 3mB� Þ=4≃ 5.313 GeV is the spin-
averaged meson mass, and we use λ1 ¼ −0.3 GeV2

[45]. Enforcing the cancellation of the leading renormalon
is equivalent to using mbðm1S

b Þ→m1S
b everywhere in

Eqs. (14) and (15), except in the Λ̄=mc;b terms that are
not multiplied by subleading Isgur-Wise functions.
We match the QCD and HQET theories at the scale

μ2 ¼ mbmc, corresponding to αs ≃ 0.26. The 1S scheme
then yields, for example, the following SM predictions for
R1;2ð1Þ:

R1ð1Þ≃ 1.34 − 0.12ηð1Þ;
R2ð1Þ≃ 0.98 − 0.42ηð1Þ − 0.54χ̂2ð1Þ: ð26Þ

For R0
1;2ð1Þ we obtain

R0
1ð1Þ≃ −0.15þ 0.06ηð1Þ − 0.12η0ð1Þ;

R0
2ð1Þ≃ 0.01 − 0.54χ̂02ð1Þ þ 0.21ηð1Þ − 0.42η0ð1Þ: ð27Þ

For completeness, the similar relations for R0;3 are
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R3ð1Þ≃1.19−0.26ηð1Þ−1.20χ̂2ð1Þ;
R0ð1Þ≃1.09þ0.25ηð1Þ;
R0
3ð1Þ≃−0.08−1.20χ̂02ð1Þþ0.13ηð1Þ−0.26η0ð1Þ;

R0
0ð1Þ≃−0.18þ0.87χ̂2ð1Þþ0.06ηð1Þþ0.25η0ð1Þ: ð28Þ

III. COMBINED FIT TO B → D�lν̄ AND B → Dlν̄

A. Parametrization of the w dependence

Unitarity and analyticity provide strong constraints on
the shapes of the B → Dð�Þlν̄ form factors [46–51]. It is
common to employ a parametrization of the B → Dlν̄ form
factor GðwÞ, defined in Eq. (19), via the conformal mapping
zðwÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

w þ 1
p

−
ffiffiffi
2

p Þ=ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
w þ 1

p þ ffiffiffi
2

p Þ. Unitarity con-
straints yield, e.g., GðwÞ=Gð1Þ≃1�8ρ2zþð51:ρ2−10:Þz2−
ð252:ρ2−84:Þz3, in which ρ2 ¼ −G0ð1Þ=Gð1Þ is a slope
parameter [48]. The convergence of this expansion may be
optimized by parametrizing it in a way that minimizes the
range of the expansion parameter, via

z�ðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p
−

ffiffiffi
2

p
affiffiffiffiffiffiffiffiffiffiffiffi

wþ 1
p þ ffiffiffi

2
p

a
; a ¼

�
1þ rD
2

ffiffiffiffiffi
rD

p
�

1=2
: ð29Þ

For B → Dlν̄, jz�j ≤ 0.032. The unitarity constraints sug-
gest a form factor parametrization of the form

GðwÞ
Gðw0Þ

≃ 1 − 8a2ρ2�z� þ ðV21ρ
2� − V20Þz2�: ð30Þ

Here w0 ¼ 2a2 − 1≃ 1.28 is defined such that z�ðw0Þ ¼ 0,
while V21 ≃ 57. and V20 ≃ 7.5 are obtained numerically
from Ref. [48]. The uncertainty in the coefficient of the z2�
term in Eq. (30) may be sizable [48]. However, the impact
of this term on the physical fit results is expected to
be small.
The leading-order Isgur-Wise function, ξðwÞ, may be

extracted from the parametrization in Eq. (30) by using
Eqs. (14) and (13). Keeping terms to Oðεc;bðw − 1ÞÞ, we
can approximate the subleading Isgur-Wise functions as

χ̂2ðwÞ≃ χ̂2ð1Þ þ χ̂02ð1Þðw− 1Þ; χ̂3ðwÞ≃ χ̂03ð1Þðw− 1Þ;
ηðwÞ≃ ηð1Þ þ η0ð1Þðw− 1Þ; ð31Þ

since χ̂3ð1Þ ¼ 0. One finds at Oðεc;b; αsÞ,

ξðwÞ
ξðw0Þ

≃ 1 − 8a2ρ̄2�z� þ z2�

�
V21ρ̄

2� − V20 þ ðεb − εcÞ
�
2Ξη0ð1Þ 1 − rD

1þ rD

�

þ ðεb þ εcÞ
h
Ξ½12χ̂03ð1Þ − 4χ̂2ð1Þ� − 16½ða2 − 1ÞΞ − 16a4� χ̂02ð1Þ

i

þ α̂s

�
Ξ
�
C0
V1
ðw0Þ þ

CV3
ðw0Þ þ rDCV2

ðw0Þ
1þ rD

�
þ 2a2ðΞ − 32a2ÞC

0
V3
ðw0Þ þ rDC0

V2
ðw0Þ

1þ rD

− 64a6
C00
V3
ðw0Þ þ rDC00

V2
ðw0Þ

1þ rD
− 32a4C00

V1
ðw0Þ

��
; ð32Þ

where Ξ ¼ 64a4ρ̄2� − 16a2 − V21. The slope parameter
ρ̄2� ¼ −ξ0ðw0Þ=ξðw0Þ is related to the slope ρ2� ¼
−G0ðw0Þ=Gðw0Þ via

ρ̄2� − ρ2� ¼ ðεb þ εcÞ
h
12χ̂03ð1Þ − 4χ̂2ð1Þ − 16ða2 − 1Þχ̂02ð1Þ

i

þ 2ðεb − εcÞη0ð1Þ
1 − rD
1þ rD

þ α̂s

�
rDCV2

ðw0Þ þ CV3
ðw0Þ

1þ rD
þ C0

V1
ðw0Þ

þ 2a2
rDC0

V2
ðw0Þ þ C0

V3
ðw0Þ

1þ rD

�
: ð33Þ

Enforcing ξð1Þ ¼ 1, one may directly extract ξðw0Þ via
evaluation of Eq. (32) at the zero recoil point, z�ðw ¼ 1Þ ¼
ð1 − aÞ=ð1þ aÞ, and thereby obtain a properly normalized
parametrization for ξðwÞ. Since ηð1Þ does not appear in

Eq. (32), this implies that constraining ξðwÞ in itself does
not constrain ηð1Þ, which is the largest unknown contri-
bution in R1;2ð1Þ.
This expression for ξðwÞ, combined with the HQET

expansions in Eqs. (14) and (15), allows one to parametrize
all B → Dð�Þ form factors in terms of six parameters: ρ̄2�,
χ̂2ð1Þ, χ̂02ð1Þ, χ̂03ð1Þ, ηð1Þ and η0ð1Þ. The normalizations of
the form factors are also fixed by Eq. (32), and thus jVcbj
may be determined from a global fit to overall rates without
using lattice results.

B. QCD sum rule inputs

The subleading Isgur-Wise functions have only been
calculated using model-dependent methods, and are not yet
available from lattice QCD. The two-loop QCD sum
rule (QCDSR) calculations [23–25] imply that the sub-
leading Isgur-Wise function ηðwÞ is approximately con-
stant. The functions χ̂2;3, which parametrize corrections
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from the chromomagnetic term in the subleading HQET
Lagrangian, are small, in agreement with quark model
intuition.
The QCD sum rule results are obtained at a fixed scale.

The scale dependence can be removed from χ̂2;3 by
defining “renormalization improved” functions, χ̂ren2;3 [16].
These are obtained by multiplying the results of
Refs. [23,24] for χ̂2;3 by ½αsðΛÞ�3=β0 ∼ 1.4, where Λ ∼
1 GeV and β0 ¼ 9 for three light flavors. For these
renormalized subleading Isgur-Wise functions, we use

χ̂ren2 ð1Þ ¼ −0.06� 0.02; χ̂0ren2 ð1Þ ¼ 0� 0.02;

χ̂0ren3 ð1Þ ¼ 0.04� 0.02; ηð1Þ ¼ 0.62� 0.2;

η0ð1Þ ¼ 0� 0.2: ð34Þ

These central values reproduce L̂1…6 in Ref. [48], often
used to predict R1;2 and RðDð�ÞÞ.
We assign relatively large uncertainties, to permit

assessment of possible pulls of the experimental data from
these QCDSR predictions. Replacing χ̂2;3 with χ̂ren2;3, the
Wilson coefficient of the chromomagnetic operator
receives a corresponding αsðμÞ3=β0 factor at the matching
scale μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

mbmc
p

, partly canceling the above ½αsðΛÞ�3=β0
enhancement. For ease of comparison with the literature we
ignore this, as it can be viewed as a higher-order correction,
and is in any case covered by the large assigned uncer-
tainties. We ignore correlations in the QCDSR results
(arising from the common calculational method), which
is conservative.
Using Eq. (34) in Eq. (21) yields expressions for R1;2ðwÞ

as polynomials in (w − 1), with the coefficients and their
uncertainties correlated by HQET. In Ref. [48], the central
values in Eq. (34) were used to write R1;2ðwÞ as quadratic
polynomials, without quoting any theory uncertainties on
their slopes and curvatures. It subsequently become stan-
dard practice in experimental jVcbj and R1;2 measurements
to fit for R1;2ð1Þ, while fixing R0

1;2ð1Þ and R00
1;2ð1Þ to their

quoted central values [48]. Such an approach is inconsistent
with the simultaneous use of the HQET constraints and the
QCDSR results. For example, the present world average
central value, R1ð1Þ≃ 1.4, cannot simultaneously satisfy
the HQET prediction for R1ð1Þ in Eq. (26) and the QCDSR
expectation ηð1Þ > 0, which holds at the 3σ level, and is
used elsewhere in the same fit. A consistent treatment of
these form factor ratios is absent from the derivations of the
state-of-the-art predictions for RðDð�ÞÞ in the SM [except
for lattice QCD (LQCD) RðDÞ predictions] and in the
presence of new physics [28,34].
We now proceed to assess the importance of obeying the

HQET relations between different form factors, and of
including the uncertainties in the QCDSR predictions in
Eq. (34). These effects will be important in the future, to
systematically improve the SM predictions.

C. Fit scenarios

A simultaneous fit of the six parameters ρ̄2�, χ̂2ð1Þ, χ̂02ð1Þ,
χ̂03ð1Þ, ηð1Þ, and η0ð1Þ to the B → Dð�Þlν̄ rates can be carried
out with the present data. Such a fit fixes both the shapes
and normalizations of the B → Dð�Þlν̄ rates, without any
theory input other than the HQETexpansion. However, one
expects large uncertainties at present, because of the limited
experimental precision and the number of subleading
HQET parameters. One may instead use QCD sum rule
predictions and/or lattice QCD results to constrain the fit,
increasing sensitivity to ρ̄2�. The fit propagates the uncer-
tainties on the subleading Isgur-Wise functions into the fit
result, and allows the data to further constrain the sub-
leading contributions.
Our fit relies on the HQET predictions and unitarity

constraints to determine the ratios and shapes of the form
factors. The form factors at zero recoil, Gð1Þ and F ð1Þ,
have been computed in LQCD, providing state-of-the-art
predictions for the normalizations of the B → Dð�Þlν̄ rates.
The most precise lattice QCD predictions at zero recoil are
[52,53]

Gð1ÞLQCD ¼ 1.054ð8Þ; F ð1ÞLQCD ¼ 0.906ð13Þ; ð35Þ

where we combined the quoted systematic and statistical
uncertainties. Although these normalizations may be
expected to drop out of the predictions for RðDð�ÞÞ, they
do influence the fit to the differential decay distributions
and hence the resulting form factor ratios. Making use of
these lattice constraints leads to our first fitting scenario:

(i) Rescale the B → D and B → D� form factors in the
fit by Gð1ÞLQCD=Gð1Þ and F ð1ÞLQCD=F ð1Þ, respec-
tively, such that the rates at w ¼ 1 agree with the
lattice predictions. We refer to this fit as “Lw¼1.”

Measurements of the rate normalizations are, however,
subject to relatively large systematic uncertainties. For
example, the calibration of the hadronic tagging efficiency
produces systematic uncertainties of the order of a few
percent [54]. To compare the best-fit shapes without lattice
constraints and such systematic effects, we consider a
second scenario:
(ii) Allow the normalizations of the B → Dlν̄ and B →

D�lν̄ rates to float independently. This approach
only uses B → Dð�Þlν̄ shape information to constrain
the form factors, but no theory input for the
normalizations at zero recoil, and is independent
of lattice information. We refer to this fit as “NoL.”

For each fit, we apply (relax) the QCDSR constraints,
exploring a “constrained” (“unconstrained”) fit. The
QCDSR constrained fits are denoted with a suffix
“þSR.” Both Lw¼1 and NoL fits alter the overall normal-
izations the B → Dlν̄ and B → D�lν̄ rates, but leave the
HQET expansions of the form factors unchanged. Thus,
they can be considered as introducing an extra source of
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heavy quark symmetry breaking in the normalizations (to
effectively account for higher-order effects), while still
preserving the form factor relations independently in
Eqs. (14) and (15).
Since lattice QCD predictions are also available for

w ≥ 1 for the B → Dlν̄ form factors fþðwÞ and f0ðwÞ, it is
possible to obtain a prediction for the slope parameter, ρ̄2�,
from them. This leads to a third fit approach, namely:
(iii) Extract ξðwÞ, including the slope parameter ρ̄2�, by

fitting to the w ≥ 1 lattice QCD data for B → D, and
apply it simultaneouslywith theLQCDnormalization
of B → D� at w ¼ 1. We refer to this fit as “Lw≥1.”

In a “theory only” version of this fit, denoted by
“th∶Lw≥1 þ SR,” one fully constrains the B → Dð�Þlν̄
differential rates without any experimental input; the
only fit is to lattice data and QCDSR constraints. For
the “Lw≥1 þ SR” fit, we combine the w ≥ 1 B → D and
w ¼ 1 B → D� lattice data with QCDSR constraints and
the experimental information, to include all available
information and explore possible tensions. We summarize
the inputs of the various fit scenarios pursued in this paper
in Table I.

All fits explored in this paper use the unitarity con-
straints. The consequences of relaxing the unitarity con-
straints between the slope and the curvature terms in
Eq. (30) will be explored in detail elsewhere [55].

D. Data and fit details

To determine the leading and subleading Isgur-Wise
functions and jVcbj, we carry out a simultaneous fit of the
available B → Dð�Þlν̄ spectra. There are only two measure-
ments [54,56] which provide kinematic distributions fully
corrected for detector effects. The measured recoil and
decay angle distributions are analyzed simultaneously by
constructing a standard χ2 function. Common uncertainties
(tagging efficiency, reconstruction efficiencies, number of
B-meson pairs) should be treated as fully correlated
between the two measurements and we construct a covari-
ance using Table IV in Ref. [56] and Table IV in Ref. [54].
While Ref. [56] provides a full breakdown of the total
uncertainty for each measured w bin, Ref. [54] only
provides a breakdown for the total branching fraction.
To construct the desired covariance between both mea-
surements, we thus assume that there is no shape depend-
ence on the tagging and reconstruction efficiency
uncertainty of Ref. [54]. Comparing this with the mild
dependence on these error sources in Ref. [56], this seems a
fair approximation of the actual covariance. To take into
account the uncertainties of m1S

b and δmbc, we introduce
both as nuisance parameters into the fit, assuming Gaussian
constraints with uncertainties given in Eq. (24). The χ2

function is numerically minimized and uncertainties are
evaluated using the usual asymptotic approximations by
scanning the Δχ2 ¼ χ2scan − χ2min contour to find the þ1

crossing point, which provides the 68% confidence level.
The constraints from lattice QCD predictions and/or QCD
sum rules are incorporated into the fit assuming (multi-
variate) Gaussian errors and are added to the χ2 function.

TABLE II. Summary of the results for the fit scenarios considered. The correlations are shown in Appendix B.

Lw¼1 Lw¼1 þ SR NoL NoLþ SR Lw≥1 Lw≥1 þ SR th∶Lw≥1 þ SR

χ2 40.2 44.0 38.7 43.1 49.0 53.8 7.4
dof 44 48 43 47 48 52 4
jVcbj × 103 38.8� 1.2 38.5� 1.1 � � � � � � 39.1� 1.1 39.3� 1.0 � � �
Gð1Þ 1.055� 0.008 1.056� 0.008 � � � � � � 1.060� 0.008 1.061� 0.007 1.052� 0.008
F ð1Þ 0.904� 0.012 0.901� 0.011 � � � � � � 0.898� 0.012 0.895� 0.011 0.906� 0.013
ρ̄2� 1.17� 0.12 1.19� 0.07 1.06� 0.15 1.19� 0.08 1.33� 0.11 1.24� 0.06 1.24� 0.08
χ̂2ð1Þ −0.26� 0.26 −0.07� 0.02 0.36� 0.62 −0.06� 0.02 0.13� 0.22 −0.06� 0.02 −0.06� 0.02
χ̂02ð1Þ 0.21� 0.38 −0.00� 0.02 0.14� 0.39 −0.00� 0.02 −0.36� 0.28 −0.00� 0.02 −0.00� 0.02
χ̂03ð1Þ 0.02� 0.07 0.05� 0.02 0.18� 0.19 0.04� 0.02 0.09� 0.07 0.05� 0.02 0.04� 0.02
ηð1Þ 0.30� 0.04 0.30� 0.03 −0.56� 0.80 0.35� 0.14 0.30� 0.04 0.30� 0.03 0.31� 0.04
η0ð1Þ 0 (fixed) −0.12� 0.16 0 (fixed) −0.11� 0.18 0 (fixed) −0.05� 0.09 0.05� 0.10
m1S

b [GeV] 4.70� 0.05 4.70� 0.05 4.71� 0.05 4.70� 0.05 4.71� 0.05 4.71� 0.05 4.71� 0.05
δmbc [GeV] 3.40� 0.02 3.40� 0.02 3.40� 0.02 3.40� 0.02 3.40� 0.02 3.40� 0.02 3.40� 0.02

TABLE I. Summary of theory and data inputs for each fit
scenario. All use the HQET predictions to order OðΛQCD=mc;bÞ
and OðαsÞ, as well as the unitarity constraints.

Lattice QCD

Fit QCDSR F ð1Þ fþ;0ð1Þ fþ;0ðw > 1Þ Belle Data

Lw¼1 � � � ✓ ✓ � � � ✓

Lw¼1 þ SR ✓ ✓ ✓ � � � ✓

NoL � � � � � � � � � � � � ✓

NoLþ SR ✓ � � � � � � � � � ✓

Lw≥1 � � � ✓ ✓ ✓ ✓

Lw≥1 þ SR ✓ ✓ ✓ ✓ ✓

th∶Lw≥1 þ SR ✓ ✓ ✓ ✓ � � �
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The full fit results are shown in Table II. The “Lw¼1”
unconstrained fit, i.e., using only the lattice normalizations
at w ¼ 1, yields

jVcbj ¼ ð38.8� 1.2Þ × 10−3; ð36Þ

to be compared with the current world average [29]
jVcbj¼ð42.2�0.8Þ×10−3 and jVcbj¼ð39.2�0.7Þ×10−3,
from inclusive and exclusive b → clν̄l decays, respectively.
The uncertainties of the subleading Isgur-Wise parameters
are sizable. There is no sensitivity to disentangle η0ð1Þ from
ρ̄2�, so we fix η0ð1Þ to be zero for all QCDSR unconstrained
fits. Including the QCDSR constraints in the “Lw¼1 þ SR”
fit yields

jVcbj ¼ ð38.5� 1.1Þ × 10−3; ð37Þ

resulting in almost the same jVcbj value. The normalization
of ηð1Þ is comparable between these two fits, at about half
the value of the QCDSR expectation. Both fits have
reasonable χ2 values, corresponding to fit probabilities
of 64% each.
Neglecting all subleading ΛQCD=mc;b contributions in

the “Lw¼1” fit results in a poorer overall χ2. The value of
jVcbj decreases slightly, jVcbj ¼ ð38.2� 1.1Þ × 10−3, with
χ2 ¼ 62.6 for 48 d.o.f., corresponding to a fit probability of
8%, which is still an acceptable fit. The slope parameter
becomes ρ̄2� ¼ 0.93� 0.05, below those obtained including
the ΛQCD=mc;b corrections. The uncertainty of ρ̄2� is notice-
ably smaller due to the smaller number of degrees of
freedom in this fit. The value of jVcbj is only weakly
affected by this shift in ρ̄2�.
In the “NoL” fits, using no LQCD inputs, we use only

shape information to disentangle ρ̄2� from the subleading
contributions, while allowing the B → Dlν̄ and B → D�lν̄
channels to each have arbitrary normalizations (these fits
cannot determine jVcbj). This results in large uncertainties
in the QCDSR unconstrained fit. Again, η0ð1Þ and ρ̄2� are
strongly correlated, so the former is fixed at zero. Including

the QCDSR constraints in the “NoLþ SR” fit yields results
close to those in the “Lw¼1 þ SR” fit.
In the “th∶Lw≥1 þ SR” scenario, which uses no exper-

imental data, fitting the parametrized ξðwÞ to the six lattice
points for fþ;0ðwÞ in Table III and F ð1Þ in Eq. (35), results
in a slope parameter

ρ̄2� ¼ 1.24� 0.08: ð38Þ

The fitted w spectra are shown in Fig. 1 (gray curves),
together with the lattice data points. The χ2 of the fit is 7.4,
corresponding to a fit probability of 11% with 7 − 3 ¼ 4
degrees of freedom. The value for the slope is in good
agreement with the slope obtained from the QCDSR
constrained and unconstrained “Lw¼1” and “NoL” fits.
In the “Lw≥1” fit, all six lattice points for fþ;0ðwÞ in

Table III and F ð1Þ in Eq. (35) are fitted together with the
available experimental information. Once again, η0ð1Þ is
fixed to zero, as it is strongly correlated with ρ̄2�. The fit has
χ2 ¼ 49, corresponding to a fit probability of 43%. For
jVcbj, this fit yields

jVcbj ¼ ð39.1� 1.1Þ × 10−3; ð39Þ

which is slightly higher than the “Lw¼1” result. The value of
ρ̄2� is also higher.
In the “Lw≥1 þ SR” fit, the QCDSR constraints are

included, so that all theory and experimental information
is incorporated. The resulting differential B → Dð�Þlν̄
distributions are shown in Fig. 2, overlaid with the
experimental data, as well as the predictions for the B →
Dð�Þτν̄ differential rates. The fit has χ2 ¼ 53.8, correspond-
ing to a fit probability of 44%. For jVcbj the fit gives

jVcbj ¼ ð39.3� 1.0Þ × 10−3: ð40Þ

This is higher than the “Lw¼1 þ SR” result, because the
value of ρ̄2� is also higher.
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FIG. 1. The “th∶Lw≥1 þ SR” fit of the form factors fþ;0 to the lattice points listed in Table III is shown (gray solid line). The dashed
gray lines correspond to the 68% errors. The dark blue line shows the fþ;0 best fit for “Lw≥1 þ SR”, using lattice points, experimental
information, and QCDSR constraints. The blue band displays the corresponding 68% C.L. of this fit.
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The correlation matrices for all fits are shown in
Appendix B. In the “Lw¼1” and “Lw≥1” type fits, moderate
correlations are seen between jVcbj, Gð1Þ, and F ð1Þ, as
expected. The correlations are sizable in these fits between
ρ̄2� and the subleading Isgur-Wise functions.

A more detailed study of these effects, in particular the
extraction of jVcbj, will be presented elsewhere [55]. A first
comparison with the Caprini-Lellouch-Neubert (CLN)
parametrization [48], as implemented by previous exper-
imental studies, can be done by considering the results for
the form factor ratios R1 and R2, defined in Eq. (20).
Figure 3 shows the extracted values of R1;2ð1Þ for all fit
scenarios. The results agree with each other and with the
world average of R1ð1Þ and R2ð1Þ [9] shown by black
ellipses, up to a mild 1σ tension. Firm conclusions are
difficult to reach, as it is impossible to assess how the
experimental results would change, had the uncertainties in
the quadratic polynomials used to fit R1;2ðwÞ been properly
included. When the QCDSR constraints are used, the

B � D l Ν l

B � D Τ Ν Τ

1.0 1.1 1.2 1.3 1.4 1.5

5

10

15

20

25

30

35

40

w

d
�
�B
�

D
l
Ν

l�
�

d
w
�1

0�
15

G
eV
�

B � D� l Ν l

B � D� Τ Ν Τ

1.0 1.1 1.2 1.3 1.4 1.5

10

20

30

40

50

60

70

80

w

d
�
�B
�

D
�

l
Ν

l�
�

d
w
�1

0�
15

G
eV
�

B � D� l Ν l

�1.0 �0.5 0.0 0.5 1.0

5

10

15

20

cosΘ l

d
�
�B
�

D
�

l
Ν

l�
�

d
co

sΘ
l
�1

0�
15

G
eV
�

B � D� l Ν l

�1.0 �0.5 0.0 0.5 1.0

5

10

15

20

cosΘv

d
�
�B
�

D
�

l
Ν

l�
�

d
co

sΘ
v
�1

0�
15

G
eV
�

B � D� l Ν l

0 1 2 3 4 5 6

1

2

3

4

5

6

Χ

d
�
�B
�

D
�

l
Ν

l�
�

d
Χ
�1

0�
15

G
eV
�

FIG. 2. The measured B̄ → Dð�Þlν̄ decay distributions [54,56] compared to the best-fit contours (dark blue curves) for the
“Lw≥1 þ SR” fit, using LQCD at all w and QCDSR constraints. The blue bands show the 68% C.L. regions. The orange curves and
bands show the central values and the 68% C.L. regions of the fit predictions for dΓðB̄ → Dð�Þτν̄Þ=dw.

TABLE III. The predictions for the form factors fþ;0 at
w ¼ 1.0, 1.08, 1.16 using the synthetic data results of Ref. [53].
The correlations can be found in Table VII in Ref. [53].

Form factor w ¼ 1.0 w ¼ 1.08 w ¼ 1.16

fþ 1.1994�0.0095 1.0941�0.0104 1.0047�0.0123
f0 0.9026�0.0072 0.8609�0.0077 0.8254�0.0094
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central values satisfy R1ð1Þ < 1.34, as required by the
HQET prediction in Eq. (26) and the constraint ηð1Þ > 0.

E. RðDð�ÞÞ and new physics

Using the fitted values for ρ̄2�, χ̂2ð1Þ, χ̂02ð1Þ, χ̂03ð1Þ, ηð1Þ,
and η0ð1Þ, one can predict RðDð�ÞÞ in the SM and for any
new physics four-fermion interaction. Figure 4 and
Table IV summarize the predicted values of RðDð�ÞÞ in
the SM for the seven fit scenarios considered. Our fit results
for RðDÞ are in good agreement with other predictions in
the literature [57,58]. All our fits using lattice QCD inputs
yield RðD�Þ above those in Ref. [34]. This slightly eases
the disagreement with the world average measurement [9].
The significance is calculated from χ2 statistics, taking into

account the full covariance of the theory prediction and the
world average measurement. The tension between our most
precise “Lw≥1 þ SR” fit and the data is 3.9σ, with a p-value
of 11.5 × 10−5, to be compared with 8.3 × 10−5 quoted by
HFAG [9]. The precision of this prediction is limited by that
of the input measurements and LQCD inputs, and can be
systematically improved with new data from Belle II
or LHCb.
To derive a SM prediction for RðD�Þ, the authors of

Ref. [34] used the measured R2ð1Þ form factor ratio [9] and
the QCDSR predictions to obtain R0ð1Þ ¼ 1.14� 0.11. In
comparison, our “Lw≥1 þ SR” fit results yield

R0ð1Þ ¼ 1.17� 0.02; R3ð1Þ ¼ 1.19� 0.03: ð41Þ

FIG. 3. The SM predictions for R1ð1Þ and R2ð1Þ for the fits imposing (left) or not imposing (right) the QCDSR constraints in Eq. (34).
The black ellipse shows the world average of the data [9]. The fit scenarios are described in the text and in Table I, and the fit results are
shown in Table II. All contours correspond to 68% C.L. in two dimensions (Δχ2 ¼ χ2scan − χ2min ¼ 2.3).

FIG. 4. The SM predictions for RðDÞ and RðD�Þ, imposing (left) or not imposing (right) the QCDSR constraints (see Table IV). Gray
ellipses show other SM predictions (last three rows of Table IV). The black ellipse shows the world average of the data [9]. The contours
are 68% C.L. (Δχ2 ¼ 2.3), hence the nearly 4σ tension.
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The precision on R0ð1Þ improves five-fold compared to
Ref. [34] and is in good agreement.
In Fig. 5 we illustrate the impacts NP might have on the

allowed RðDÞ − RðD�Þ regions, assuming the dominance
of one new physics operator in a standard four-Fermi basis.

NP couplings are permitted to have an arbitrary phase,
generating allowed regions rather than single contours. We
display the allowed regions generated for the “NoLþ SR”
best-fit values, the “Lw≥1 þ SR” best-fit values, and for
leading-order contributions only, i.e., αs, εc;b → 0, with
ρ̄2� ¼ 1.24. The small variation between the “NoLþ SR”
and “Lw≥1 þ SR” regions illustrates the good consistency
of the predictions obtained with and without LQCD. In
each plot, we also include for comparison the correspond-
ing contours (dashed lines) produced by a NP OV −OA
coupling. The latter rescales RðDÞ and RðD�Þ keeping their
ratio fixed. Solid dots indicate the SM point for each case.
For scalar currents, if NP only contributes to OS (OP) then
only RðDÞ [RðD�Þ] is affected in accordance with Eq. (10b)
[Eq. (11a)], respectively. We plot the allowed regions for
theOS �OP linear combinations, which are also motivated
by specific NP models.

IV. SUMMARY AND OUTLOOK

We performed a novel combined fit of the B → Dlν̄
and B → D�lν̄ differential rates and angular distribu-
tions, consistently including the HQET relations to
OðΛQCD=mc;b; αsÞ. Under various fit scenarios, that use

FIG. 5. The allowed ranges of RðDÞ − RðD�Þ, due to one of the new physics operators in addition to the SM: OS −OP (top left),
OS þOP (top right), OV þOA (bottom left), and OT (bottom right).

TABLE IV. The RðDÞ and RðD�Þ predictions for our fit
scenarios, the world average of the data, and other theory
predictions. The fit scenarios are described in the text and in
Table I. The bold numbers are our most precise predictions.

Scenario RðDÞ RðD�Þ Correlation

Lw¼1 0.292� 0.005 0.255� 0.005 41%
Lw¼1 þ SR 0.291� 0.005 0.255� 0.003 57%
NoL 0.273� 0.016 0.250� 0.006 49%
NoLþ SR 0.295� 0.007 0.255� 0.004 43%
Lw≥1 0.298� 0.003 0.261� 0.004 19%
Lw≥1 þ SR 0.299� 0.003 0.257� 0.003 44%
th∶Lw≥1 þ SR 0.306� 0.005 0.256� 0.004 33%

Data [9] 0.403� 0.047 0.310� 0.017 −23%

Refs. [53,57,59] 0.300� 0.008 � � � � � �
Ref. [58] 0.299� 0.003 � � � � � �
Ref. [34] � � � 0.252� 0.003 � � �
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or omit lattice QCD and QCD sum rule predictions, we
constrained the leading and subleading Isgur-Wise functions.
We thus obtained strong constraints on all form factors, and
predictions for the form factor ratios R1;2 as well as RðDð�ÞÞ,
both in the SM and in arbitrary NP scenarios, valid at OðαsÞ
and OðΛQCD=mc;bÞ. Our most precise prediction for
RðDð�ÞÞ, in the “Lw≥1 þ SR” fit, using the experimental
data and all lattice QCD and QCDSR inputs is

RðDÞ ¼ 0.299� 0.003;

RðD�Þ ¼ 0.257� 0.003; ð42Þ
with a correlation of 44%. The same fit also yields jVcbj ¼
ð39.3� 1.0Þ × 10−3, which is in good agreement with
existing exclusive determinations. All possible b → c cur-
rent form factors were derived atOðΛQCD=mc;bÞ andOðαsÞ,
including those for a tensor current, previously unavailable
in the literature at this order. A lattice QCD calculation of the
subleading Isgur-Wise functions, or even just those which
arise from the chromomagnetic term in the subleading
HQET Lagrangian (χ2;3), would be important to reduce
hadronic uncertainties in both SM and NP predictions, com-
plementary to a long-awaited lattice calculation of RðD�Þ.
At the current level of experimental precision, our pre-

dictions agree up tomild tensionswith previous results,which
neglected the HQET relations for the uncertainties of the
OðΛQCD=mc;bÞ terms. Our fit results are consistent with one
another, and at the current level of precision we find no
inconsistencies between the data, lattice QCD results, and
QCD sum rule predictions. Our fit using all available lattice
QCD and QCD sum rule inputs and HQET to order
Oðαs;ΛQCD=mc;bÞ yields the most precise combined predic-
tion forRðDÞ andRðD�Þ to date.However, in principle, our fit
need not require either lattice or sum rule input, and its
precision can be improved simply as the statistics of future
data increases.
The (moderate) tension between the measurements of

jVcbj from inclusive and exclusive semileptonic decays
probably cannot be resolved with current data. Under-
standing how the inclusive rate is made up from a sum of
exclusive channels has been unclear from the data for a long
time [60], and puzzles remain even in light of BABAR and
Belle measurements [61,62]. A more detailed examination of
the effects of the unitarity constraints and the precision
extraction of jVcbj is the subject of ongoing work [55]. We
are also implementing the full angular distributions of the
measurable particles [63,64] into a software package,
HAMMER [65,66], based on the state-of-the-art HQET
predictions for all six B → D;D�; D�� decay modes.
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APPENDIX A: THE OðαsÞ CORRECTIONS

In this appendix we summarize the explicit expressions
for the CΓðwÞ functions defined in Eq. (9), calculated in
Ref. [27]. The following results use the MS scheme and
correspond to matching from QCD onto HQET at
μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

mcmb
p

:

CS ¼
1

zðw − wzÞ
½2zðw − wzÞΩðwÞ − ððw − 1Þðzþ 1Þ2rðwÞ

− ðz2 − 1Þ ln zÞ�; ðA1aÞ

CP ¼ 1

2z2ðw − wzÞ2
½ðz − 1Þ½ðwðz3 − ð3þ 2wÞz2 þ z − 1Þ

þ ðz2 þ 3ÞzÞrðwÞ þ ðz2 − 1Þ ln z�
− 2zðwz − wÞðz − 1þ ðzþ 1Þz ln zÞ
þ 4z2ðw − wzÞ2ΩðwÞ�; ðA1bÞ

CV1
¼ 1

6zðw − wzÞ
½2ðwþ 1Þðð3w − 1Þz − z2 − 1ÞrðwÞ

þ ð12zðwz − wÞ − ðz2 − 1Þ ln zÞ
þ 4zðw − wzÞΩðwÞ�; ðA1cÞ

CV2
¼ −1

6z2ðw − wzÞ2
½ðð4w2 þ 2wÞz2 − ð2w2 þ 5w − 1Þz

− ðwþ 1Þz3 þ 2ÞrðwÞ þ zð2ðz − 1Þðwz − wÞ
þ ðz2 − ð4w − 2Þzþ ð3 − 2wÞÞ ln zÞ�; ðA1dÞ

CV3
¼ 1

6zðw − wzÞ2
½ðð2w2 þ 5w − 1Þz2 − ð4w2 þ 2wÞz

− 2z3 þ wþ 1ÞrðwÞ þ ð2zðz − 1Þðwz − wÞ
þ ðð3 − 2wÞz2 þ ð2 − 4wÞzþ 1Þ ln zÞ�; ðA1eÞ

CA1
¼ 1

6zðw − wzÞ
½2ðw − 1Þðð3wþ 1Þz − z2 − 1ÞrðwÞ

þ ð12zðwz − wÞ − ðz2 − 1Þ ln zÞ
þ 4zðw − wzÞΩðwÞ�; ðA1fÞ

CA2
¼ −1

6z2ðw − wzÞ2
½ðð4w2 − 2wÞz2 þ ð2w2 − 5w − 1Þz

þ ð1 − wÞz3 þ 2ÞrðwÞ þ zð2ðzþ 1Þðwz − wÞ
þ ðz2 − ð4wþ 2Þzþ ð2wþ 3ÞÞ ln zÞ�; ðA1gÞ
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CA3
¼ 1

6zðw − wzÞ2
½ð2z3 þ ð2w2 − 5w − 1Þz2

þ ð4w2 − 2wÞz − wþ 1ÞrðwÞ þ ð2zðzþ 1Þðwz − wÞ
− ðð2wþ 3Þz2 − ð4wþ 2Þzþ 1Þ ln zÞ�; ðA1hÞ

CT1
¼ 1

3zðw − wzÞ
½ðw − 1Þðð4wþ 2Þz − z2 − 1ÞrðwÞ

þ ð6zðwz − wÞ − ðz2 − 1Þ ln zÞ
þ 2zðw − wzÞΩðwÞ�; ðA1iÞ

CT2
¼ 2

3zðw − wzÞ
½ð1 − wzÞrðwÞ þ z ln z�; ðA1jÞ

CT3
¼ 2

3ðw − wzÞ
½ðw − zÞrðwÞ þ ln z�; ðA1kÞ

and CT4
¼ 0. Here z ¼ mc=mb, and the functions

ΩðwÞ≡ w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p ½2Li2ð1 − w−zÞ − 2Li2ð1 − wþzÞ

þ Li2ð1 − w2þÞ − Li2ð1 − w2
−Þ�

− wrðwÞ ln zþ 1; ðA2Þ

where Li2ðxÞ ¼
R
0
x lnð1 − tÞ=tdt is the dilogarithm, and

rðwÞ≡ lnwþffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p ; w� ≡ w�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
;

wz ≡ 1

2
ðzþ 1=zÞ: ðA3Þ

At the zero recoil point, w ¼ 1,

CSð1Þ ¼ −
2

3
; CPð1Þ ¼

2

3
;

CV1
ð1Þ ¼ −

4

3
−
1þ z
1− z

ln z; CV2
ð1Þ ¼ −

2ð1− zþ z ln zÞ
3ð1− zÞ2 ;

CV3
ð1Þ ¼ 2zð1− zþ ln zÞ

3ð1− zÞ2 ;

CA1
ð1Þ ¼ −

8

3
−
1þ z
1− z

ln z;

CA2
ð1Þ ¼ −

2½3− 2z− z2 þ ð5− zÞz ln z�
3ð1− zÞ3 ;

CA3
ð1Þ ¼ 2z½1þ 2z− 3z2 þ ð5z− 1Þ ln z�

3ð1− zÞ3 ;

CT1
ð1Þ ¼ −

8

3
−
4ð1þ zÞ
3ð1− zÞ ln z; CT2

ð1Þ ¼ 2CV2
ð1Þ;

CT3
ð1Þ ¼ −2CV3

ð1Þ: ðA4Þ

Finally, for arbitrary matching scale μ, one should add to
Eq. (A1) the terms

Cðμ2Þ
S;P ¼ CðmbmcÞ

S;P −
1

3
½2wrðwÞ þ 1� lnðmcmb=μ2Þ; ðA5aÞ

Cðμ2Þ
V1;A1

¼ CðmbmcÞ
V1;A1

−
2

3
½wrðwÞ − 1� lnðmcmb=μ2Þ; ðA5bÞ

Cðμ2Þ
T1

¼ CðmbmcÞ
T1

−
1

3
½2wrðwÞ − 3� lnðmcmb=μ2Þ; ðA5cÞ

and all other Cðμ2Þ
Γj

¼ CðmbmcÞ
Γj

, for j ≥ 2.

APPENDIX B: DULL CORRELATIONS

The correlation matrices for the fit scenarios are given in
Tables V–XI.

TABLE V. The correlations of the “Lw¼1” fit scenario.

jVcbj Gð1Þ F ð1Þ ρ̄2� χ̂2ð1Þ χ̂02ð1Þ χ̂03ð1Þ ηð1Þ m1S
b δmbc

jVcbj 1.00 −0.16 −0.18 0.30 −0.13 0.28 0.11 0.04 −0.01 0.00
Gð1Þ −0.16 1.00 0.06 −0.11 0.03 −0.04 −0.09 −0.23 0.00 −0.00
F ð1Þ −0.18 0.06 1.00 0.18 −0.00 0.08 0.21 −0.02 0.01 −0.00
ρ̄2� 0.30 −0.11 0.18 1.00 0.67 −0.47 0.82 0.13 −0.16 0.01
χ̂2ð1Þ −0.13 0.03 −0.00 0.67 1.00 −0.87 0.82 −0.11 0.07 −0.01
χ̂02ð1Þ 0.28 −0.04 0.08 −0.47 −0.87 1.00 −0.47 0.01 0.01 −0.00
χ̂03ð1Þ 0.11 −0.09 0.21 0.82 0.82 −0.47 1.00 −0.12 0.12 −0.02
ηð1Þ 0.04 −0.23 −0.02 0.13 −0.11 0.01 −0.12 1.00 −0.52 0.05
m1S

b −0.01 0.00 0.01 −0.16 0.07 0.01 0.12 −0.52 1.00 0.00
δmbc 0.00 −0.00 −0.00 0.01 −0.01 −0.00 −0.02 0.05 0.00 1.00
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TABLE VI. The correlations of the “Lw¼1 þ SR” fit scenario.

jVcbj Gð1Þ F ð1Þ ρ̄2� χ̂2ð1Þ χ̂02ð1Þ χ̂03ð1Þ ηð1Þ η0ð1Þ m1S
b δmbc

jVcbj 1.00 −0.12 −0.32 0.48 −0.02 0.02 0.14 0.05 0.02 −0.02 0.00
Gð1Þ −0.12 1.00 0.14 −0.05 0.04 0.01 −0.14 −0.23 0.09 −0.00 −0.00
F ð1Þ −0.32 0.14 1.00 0.04 −0.07 −0.01 0.24 −0.02 −0.11 −0.03 0.01
ρ̄2� 0.48 −0.05 0.04 1.00 −0.09 −0.04 0.57 0.32 0.08 −0.45 0.04
χ̂2ð1Þ −0.02 0.04 −0.07 −0.09 1.00 −0.03 0.17 −0.06 −0.20 0.04 −0.00
χ̂02ð1Þ 0.02 0.01 −0.01 −0.04 −0.03 1.00 0.06 −0.02 −0.09 0.01 −0.00
χ̂03ð1Þ 0.14 −0.14 0.24 0.57 0.17 0.06 1.00 0.08 0.38 −0.03 0.00
ηð1Þ 0.05 −0.23 −0.02 0.32 −0.06 −0.02 0.08 1.00 −0.14 −0.48 0.05
η0ð1Þ 0.02 0.09 −0.11 0.08 −0.20 −0.09 0.38 −0.14 1.00 0.08 −0.01
m1S

b −0.02 −0.00 −0.03 −0.45 0.04 0.01 −0.03 −0.48 0.08 1.00 0.01
δmbc 0.00 −0.00 0.01 0.04 −0.00 −0.00 0.00 0.05 −0.01 0.01 1.00

TABLE VII. The correlations of the “NoL” fit scenario.

ρ̄2� χ̂2ð1Þ χ̂02ð1Þ χ̂03ð1Þ ηð1Þ m1S
b δmbc

ρ̄2� 1.00 −0.22 −0.18 −0.03 0.46 −0.22 0.01
χ̂2ð1Þ −0.22 1.00 −0.41 0.94 −0.92 0.33 −0.03
χ̂02ð1Þ −0.18 −0.41 1.00 −0.19 0.08 −0.02 −0.00
χ̂03ð1Þ −0.03 0.94 −0.19 1.00 −0.88 0.32 −0.03
ηð1Þ 0.46 −0.92 0.08 −0.88 1.00 −0.35 0.02
m1S

b −0.22 0.33 −0.02 0.32 −0.35 1.00 0.00
δmbc 0.01 −0.03 −0.00 −0.03 0.02 0.00 1.00

TABLE VIII. The correlations of the “NoLþ SR” fit scenario.

ρ̄2� χ̂2ð1Þ χ̂02ð1Þ χ̂03ð1Þ ηð1Þ η0ð1Þ m1S
b δmbc

ρ̄2� 1.00 −0.15 −0.07 0.57 0.44 −0.11 −0.31 0.03
χ̂2ð1Þ −0.15 1.00 −0.02 0.07 −0.15 −0.09 0.02 −0.00
χ̂02ð1Þ −0.07 −0.02 1.00 0.03 −0.07 −0.05 0.00 −0.00
χ̂03ð1Þ 0.57 0.07 0.03 1.00 0.17 0.16 0.00 −0.00
ηð1Þ 0.44 −0.15 −0.07 0.17 1.00 −0.40 0.09 −0.01
η0ð1Þ −0.11 −0.09 −0.05 0.16 −0.40 1.00 0.02 −0.00
m1S

b −0.31 0.02 0.00 0.00 0.09 0.02 1.00 0.01
δmbc 0.03 −0.00 −0.00 −0.00 −0.01 −0.00 0.01 1.00

TABLE IX. The correlations of the “Lw≥1” fit scenario.

jVcbj × 103 Gð1Þ F ð1Þ ρ̄2� χ2ð1Þ χ02 χ03 ηð1Þ m1S
b δmbc

jVcbj × 103 1.00 −0.30 −0.16 0.18 −0.13 0.28 0.07 0.01 0.00 0.00
Gð1Þ −0.30 1.00 0.08 −0.28 −0.04 −0.04 −0.16 −0.23 0.01 −0.00
F ð1Þ −0.16 0.08 1.00 0.38 0.18 −0.10 0.32 0.00 0.01 −0.00
ρ̄2� 0.18 −0.28 0.38 1.00 0.64 −0.44 0.80 0.18 −0.22 0.01
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m1S

b 0.00 0.01 0.01 −0.22 0.21 −0.13 0.18 −0.54 1.00 0.01
δmbc 0.00 −0.00 −0.00 0.01 −0.03 0.02 −0.03 0.05 0.01 1.00
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