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We propose that the flavor structure of the standard model is based on a horizontal SUð2Þ symmetry. It
generically predicts (i) a parametrically small mass for the lightest charged fermions, (ii) small mixings in
the quark sector, and (iii) suppression of flavor-changing neutral currents. Supplemented with the
assumption of a strong hierarchy between the second- and third-generation masses, it also predicts (iv) a
large CP-violating phase in the quark sector. Only Majorana neutrinos allow for large mixings in the lepton
sector. In this case, this framework further predicts (v) near-maximal θl23, (vi) a normal hierarchy of
neutrino masses, and (vii) large CP violation in the lepton sector.
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I. INTRODUCTION

The standard model (SM) matter fields organize into
three generations of quarks and leptons. The spectrum of
these generations, with the possible exception of the
neutrinos, is distinctly hierarchical. Moreover, generations
mix with large angles in the lepton sector, while relatively
small angles are observed for the quarks. In the SM, the
information about these physical parameters is encoded in
the Yukawa couplings. Unobservable in themselves, an
explanation for the structure in the Yukawas that gives rise
to the seemingly whimsical masses and mixings has
remained elusive. This is the so-called flavor puzzle.
Ever since the SMwas proposed, several ideas have been

put forward to resolve the flavor puzzle. Of note is the
proposal of Froggatt and Nielsen that the origin of the
fermionic mass hierarchies is dynamical [1]. This was
achieved by positing the existence of a Uð1Þ symmetry
under which fermions and a new scalar field were charged.
Upon symmetry breaking, masses appeared proportional to
powers of the vacuum expectation value of the Uð1Þ scalar.
However, typical Froggatt-Nielsen models struggle to

explain the suppression of flavor-changing neutral currents
(FCNCs) that the SM elegantly accounts for, a cappella,
via the GIM mechanism [2]. In the past few decades,
experimental measurements have been pushing the limits of
FCNC measurement. Generic arguments now indicate that
for nonstandard FCNCs to exist, new physics related to
flavor should appear at least at the PeV scale. In view of
this, a different approach to flavor, the minimal flavor
violation (MFV) ansatz, has been formulated [3–11].
Within MFV, a prominent role is played by the flavor

symmetry the SM would have if the Yukawa couplings
were removed. MFV hypothesizes that this flavor sym-
metry is only broken by the Yukawa matrices at low
energies. The SM can then be rephrased as a flavor-
invariant theory if one introduces a formal transformation
rule for the Yukawas under this flavor group. MFV goes on

to posit that any nonrenormalizable operator made of SM
fields should be flavor invariant as well. In particular, the
coefficients of flavorful operators, possibly contributing to
exotic processes, must be functions of the Yukawa matrices
such that the flavor charges of the fields composing the
operator are canceled.
In this way, MFV has two main consequences: First and

foremost, it provides a way out of the ever-looming FCNC
problem. The structure forced by the SMYukawa couplings
onto the coefficients of the nonrenormalizable operators is
enough to lower the smallest possible scale of new flavor
physics down to a few TeV. Second, it provides predict-
ability, to some extent, since the same Yukawa couplings
link the SM masses and mixings with the rates for exotic
flavor processes.
In contrast, MFV does not explain, nor is it designed to

explain, how the SM Yukawa structure comes about. In this
regard, an old idea of Cabibbo [12] has been resurrected
recently. The proposal is to take the MFV hypothesis
seriously and promote the Yukawa couplings to flavor-
charged scalar fields. It is now possible to try to reproduce
the SM observables by extremizing a flavor-invariant
Yukawa potential. This approach has achieved partial
success. In particular, it naturally produces no mixing in
the quark sector; while in the lepton sector, by invoking the
Majorana character of neutrinos, it can explain at least one
large angle. On the other hand, other features pertaining to
the flavor puzzle are harder to account for, such as the
hierarchy of masses and the observed values of the mixing
angles, both in the quark sector and in the lepton sector
[10,11,13–15].
In this paper, we put forward an alternative hypothesis to

MFV. We keep the assumption that the SM is formally
invariant under some flavor symmetry, but we abandon the
requirement that the Yukawas be fundamental fields under
it. We focus on a scenario in which the flavor symmetry of
the SM is a single SUð2Þ group, which we dub Flavorspin,
that is the same for all fermions. Continuous flavor
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symmetries have been previously discussed in, for instance,
Refs. [16–26]. Under Flavorspin, quarks and leptons trans-
form as triplets, and Yukawa matrices are upgraded to
composite spurions, formed by linear combinations of
fundamental ones that transform as symmetric or antisym-
metric real matrices under flavor SUð2Þ. The ansatz
proposed in this paper shares with MFV the capacity to
suppress FCNCs. At the same time, it can account for
several features that a solution to the flavor puzzle should
target. Moreover, as we shall discuss in detail below, this
simple case provides a way to link the flavor features of the
quark and lepton sectors, by using the same fundamental
spurions everywhere.
The paper is organized as follows: In the first three

sections, our framework is presented in detail, and theo-
retical and analytical results are described. In the later
sections, we perform a complete numerical exploration of
the framework and delve into phenomenological features
such as the absence of FCNCs. In the final section, we
discuss the results and comment on several ways this work
could be extended.

II. FLAVORSPIN

We consider a theory L that can generically be written as

L ¼ LSM þ Lν þ LNR; ð2:1Þ

where LSM is the SM Lagrangian, Lν are renormalizable
terms that account for neutrino masses, and LNR are
possible nonrenormalizable operators composed of SM
fields. The SM piece LSM can be split into flavorful and
flavorless terms as

LSM ¼ L0 þ LYuk; ð2:2Þ

where L0 contains the standard kinetic terms, Higgs
potential, and gauge interactions. Here, we are mostly
interested in the flavorful Yukawa terms, contained in LYuk.
These have the form

−LYuk ¼ QLYuUR · ~H þQLYdDR ·H

þ LLYlER ·H þ H:c: ð2:3Þ

It is well known that in order to account for neutrino
masses, the SM has to be extended. There are many
possibilities for doing so consistently; in this work, we
will focus on three of them—namely, Dirac neutrinos and
the type-I and type-II seesaw Majorana neutrinos.

1. Dirac neutrinos: This possibility involves the in-
troduction of a set of right-handed neutrinosNR. The
SM neutrinos acquire a mass in a way analogous to
the rest of the fermions:

Lν ¼ −LLYνNR · ~H þ H:c: ð2:4Þ

As is well known, in the purely Dirac neutrino
scenario, the SM preserves lepton-number (LN)
symmetry, the Uð1Þ global symmetry under which
both LL and NR have charge þ1.

2. Type-I Seesaw: Right-handed neutrinos are intro-
duced, in this case with a heavy Majorana mass,
profiting from the fact that they are SM singlets:

Lν ¼ −LLYνNR · ~H þMNRNc
R þ H:c: ð2:5Þ

This Lagrangian violates LN. With the charge
assignment above, the Yukawa term preserves
LN; only the Majorana mass breaks it. In this work,
it will be assumed for simplicity that M is propor-
tional to the identity,

M ∝ I; ð2:6Þ

though the results of this work do not depend
strongly on this assumption. In addition, the type-
I seesaw is able to explain the low scale of the
neutrino masses. Below the electroweak symmetry-
breaking (EWSB) scale and after integrating out NR,
the light neutrinos acquire a Majorana mass,

v2YνYT
ν

M
νLν

c
L; ð2:7Þ

which yields the right order of magnitude for the
neutrino masses if M=Y2

ν ∼ 1015 GeV.
3. Type-II Seesaw: The SM is augmented with an

SUð2ÞW triplet Δ that couples to the leptons and
the Higgs boson as

Lν ¼ −μΔHHΔ − YΔLLLc
LΔþ H:c:þ � � � ; ð2:8Þ

where μΔ has energy dimensions and YΔ is flavor
charged. In this case, after integrating out the triplet
and EWSB, the Majorana mass term for active
neutrinos appears again, given by

μΔv2YΔ

M2
Δ

νLν
c
L: ð2:9Þ

In all of the above, summation over flavor indices is
implicit.
The nonrenormalizable term in Eq. (2.1), LNR, consists

of all the gauge-invariant operators of dimension higher
than 4 that can be constructed out of SM fields [27–29],

LNR ¼
X
d;α

cðdÞα

Λd−4 O
ðdÞ
α ; d ∈ 4þ Nþ; α ∈ Nþ; ð2:10Þ

where d is the energy dimension of the operator and α runs
over all operators of a given dimension. We will consider
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here the phenomenologically relevant d ¼ 5, 6 flavorful
operators that include one or more fermionic bilinear so that
we can write

cðdÞα OðdÞ
α ¼ cðdÞα; FiFj ·Q

ðdÞ
α : ð2:11Þ

where F stands for any fermion or antifermion and i, j are
flavor indices. The Lorentz structure of such operators is
not relevant here.
Todefine our scenario, theYukawacouplings are upgraded

to spurions—i.e., couplings that formally transform under a
flavor symmetry Gfl. The Lagrangian L in Eq. (2.1) must be
Gfl invariant under simultaneous transformations of the
spurions and the SM fields. The departure fromMFV comes
in the choice of the flavor group. In standardMFV, one factor
of SUð3Þ is introduced for each type of fermion. We
hypothesize instead that the flavor group is

Gfl ¼ SUð2Þ; ð2:12Þ

under which fermions transform as triplets,

F → OF; F ¼ QL; LL;DR;UR; ER; NR: ð2:13Þ

Here,O is an orthogonal3 × 3matrix, and it is the same for all
fermionic fields. This group is the only flavor symmetry we
impose. Inparticular, theSMglobalSUð3Þ5 flavor symmetry,
apparent when the Yukawa couplings are set to zero, is
understood to be mostly accidental. We refer to this flavor
SUð2Þ as Flavorspin.1
Demanding that the Yukawa terms be Flavorspin invari-

ant restricts the possible transformation laws for the
Yukawa couplings. In this case, they must formally belong
in the

3 × 3 ¼ 5 ⊕ 3 ⊕ 1 ð2:14Þ

representations of Gfl. Out of the above, the singlet term is
flavorless, corresponding to a Yukawa matrix proportional
to the identity. The possible fundamental Yukawa spurions
with nontrivial flavor structure can therefore be represented
by a 3 × 3, traceless, symmetric, real Yukawa tensor,
corresponding to the 5, and a 3 × 3 antisymmetric real
one, corresponding to the 3.
The main hypothesis of this work is that all of the SM

flavor can be understood from a minimalistic set of SUð2Þ
spurions. Specifically, we assume flavor is determined by
two unique spurions in the 3 and 5 representations of

SUð2Þ.2 These are denoted by Y3 and Y5, respectively.
Under Gfl, Y3 and Y5 transform as

Y3 → OY3OT; Y5 → OY5OT; ð2:15Þ

whereO is an orthogonal 3 × 3matrix. This rule guarantees
that the LagrangianL is Gfl invariant as long as YX, YΔ, and

the cðdÞα are polynomial functions of Y3, Y5. Thus, a first
approximation to the SM flavor structure is given by

YX ≡ fXðY3; Y5Þ þ δXI;

YΔ ≡ fΔðY3; Y5Þ þ δΔI;

cðdÞα;ij ≡ fðdÞα;ijðY3; Y5Þ þ δðdÞα I; ð2:16Þ

with X ¼ u, d, l, ν, where the f’s are polynomial functions
of Y3 and Y5, and the δ coefficients are arbitrary complex
numbers.
However, as it stands, Eq. (2.16) does not include an

evident parameter on which to perform a perturbative
expansion. Indeed, one can explicitly check that masses
and mixing angles derived from it can be arbitrarily large.
On the other hand, several SM observables pertaining to
flavor are parametrically small. These include the mixing
angles in the quark sector and the masses of the first and
second generations relative to the third. The idea, then, is to
restrict the parameter space allowed by Eq. (2.16) by
making some of the couplings above perturbative. In
particular, we will assume a hierarchy between the con-
tributions from the symmetric and antisymmetric spurions
to flavor. More specifically, we demand that

YX ≡ fXðY3; εXY5Þ þ δXI;

cð6Þα;ij ≡ fð6Þα;ijðY3; ε
ð6Þ
α Y5Þ þ δð6Þα I; ð2:17Þ

where jεXj, jδXj, jεð6Þα j, jδð6Þα j ≪ 1. Note that no such
assumptions are made for YΔ, nor for the coefficient of
the d ¼ 5 Weinberg operator. We will provide a possible
argument to justify this apparently arbitrary distinction in a
later section based on the fact that these operators vio-
late B − L.
In the remainder of this section, we analyze the features

of flavor to be expected at zeroth order from Eq. (2.17).
Consider the LN-conserving Yukawa coefficients YX.
Explicitly, Eq. (2.17) amounts to the Yukawa matrices
taking the form

YX ¼ μXðY0
X þ YεXÞ; ð2:18Þ

1We will use the name “Flavorspin” to refer to the SUð2Þ of
flavor proposed here and, more generally, to the framework
constructed using this group; its meaning will be clear from
context.

2One could equally well formulate Flavorspin as an SOð3Þ
theory of flavor; the 3 and 5 are the vector and tensor
representations of SOð3Þ, respectively. The local isomorphism
between SUð2Þ and SOð3Þ renders the distinction between these
two groups irrelevant for our purposes here.
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with

Y0
X ¼ iY3 þ AXeiαX · Y2

3; YεX ¼ εXY5 þ δX · Iþ � � � :
ð2:19Þ

The normalization factor μX sets the overall mass scale of
each fermion type, and it is fixed so that

1

2
Tr½Y3YT

3 � ¼ 1: ð2:20Þ

The real antisymmetric flavor spurion Y3 is assumed to be
Oð1Þ, and it is universal. That is, the zeroth-order terms in
Y0
X are formed by linear combinations of the same Y3 and

Y2
3 for all fermion types. The real constants AX and αX

specify the relative phase and weight of the two terms
composing Y0

X. Notice the relative factor of i in Eq. (2.19);
this amounts to a phase redefinition of the quark fields and
is a useful convention, as we will make clear.
By means of Gfl transformations, it is always possible to

choose a basis in which the Y3 spurion takes the form

Y3 ¼

0
B@

0 0 0

0 0 1

0 −1 0

1
CA: ð2:21Þ

In this basis, it is evident why the truncation of the series at
the quadratic order in Y3 in Eq. (2.19) is justified. Higher
powers of Y3 need not be introduced, since Y3

3 ¼ −Y3, as
can be readily verified. For the remainder of this work, we
work in this basis.
The term YεX represents the perturbation term, and it is

formed by a linear combination of the universal, real,
symmetric, and traceless spurion Y5,

Y5 ¼

0
B@

y11 y12 y13
y12 y22 y23
y13 y23 −ðy11 þ y22Þ

1
CA; ð2:22Þ

and the singlet term, see Eq. (2.19). It is assumed that
jεXj, jδXj ≪ 1.
Any Y0

X of the form in Eq. (2.19) has one null eigenvalue.
Setting aside the neutrinos for the time being—the pos-
sibility of Majorana masses changes this picture—it is clear
that, in the unperturbed setup, the lightest charged fermions
have vanishing masses. Hence, our scenario automatically
leads to a spectrum in which the first generation is much
lighter than the other two.
Let us introduce the parameter

ξX ≡ 1 − AXeiαX : ð2:23Þ

It can be easily shown that the two remaining eigenvalues
are generically nonzero, their values given by

m2
1 ¼ 0; m2

2 ¼ μ2Xv
2jξXj2; ð2:24Þ

m2
3 ¼ μ2Xv

2j2 − ξXj2: ð2:25Þ

From Eq. (2.24), it is possible for m2 to vanish as well, if
the relation

ξX ¼ 0 ð2:26Þ
is satisfied. It follows that a large hierarchy between the
second- and third-generation masses is obtained for
jξXj ≪ 1. Since such a hierarchy is observed for both
quarks and charged leptons, we adopt the final assumption

jξXj ≪ 1: ð2:27Þ
In this context, this assumption is equivalent to assuming that
there is a stronghierarchy betweenm2

2 andm
2
3. In otherwords,

in order to explain the SM spectrum in Flavorspin, aside from
fεX; δXg, another set of perturbative parameters—the ξX—
must exist.
The zeroth-order quark mixing can be quickly computed

as well. The Yukawa matrices are generically diagonalized
by biunitary transformations,

~YX ¼ VXLYXV
†
XR; ~YX ¼ diagfyX1; yX2; yX3g; ð2:28Þ

and it is apparent that at zeroth order in fεX; δXg, the
equality

VuL ¼ VdL ¼ VlL ¼ VνL ¼ VuR ¼ VdR ¼ VlR ¼ VνR

ð2:29Þ

holds. This is because Y3, being fully antisymmetric, is
diagonalized by a similarity transformation V0. Thus, we
have

~Y0
X ¼ V0Y0

XV
0†; ð2:30Þ

where ~Y0
X is diagonal. V0 is found to be

V0 ≡ VXLðεX ¼ 0Þ

¼ VXRðεX ¼ 0Þ ¼

0
BB@

1 0 0

0 1ffiffi
2

p 1ffiffi
2

p

0 − 1ffiffi
2

p 1ffiffi
2

p

1
CCA ·

0
B@

1

−i
1

1
CA:

ð2:31Þ

The quark mixing matrix VCKM is defined as

VCKM ¼ V†
uLVdL: ð2:32Þ

Hence, from Eq. (2.31), it follows that there is no mixing in
the quark sector at zeroth order in fεX; δXg,

JEFFREY M. BERRYMAN and DANIEL HERNÁNDEZ PHYSICAL REVIEW D 95, 115007 (2017)

115007-4



VCKM ¼ IþOðεÞ: ð2:33Þ

In the spirit of the ansatz proposed above, the coefficients

cðdÞα accompanying LN-conserving operators are also
assumed to be linear combinations of Y3, Y5, and I.
With respect to perturbativity, however, the LN-violating

couplings YΔ of the type-II seesaw and cð5ÞW are treated
differently. In particular, no hierarchy is assumed between
the coefficients of the linear combination of fundamental
spurions from which YΔ is formed. We have, for instance,

YΔ ¼ η33Y3YT
3 þ η5Y5 þ η1Iþ � � � ; ð2:34Þ

with all the coefficients being, in principle, of Oð1Þ.
Summarizing, we have introduced a framework that

posits an SUð2Þ horizontal flavor group, Flavorspin, under
which SM fermions transform as triplets. Based on phe-
nomenological considerations, in this paper we will focus
on a specific scenario in which the following hypothe-
ses hold:

1. The Lagrangian L, including the SM and possible
flavor-charged higher-dimensional operators, is
invariant under Gfl.

2. Only two spurions, Y3 and Y5, in the 3 and 5
representations of Gfl, respectively, are introduced.

3. The symmetric contribution to the Yukawa cou-
plings, represented by Y5 and the singlet term, is
small compared to that of Y3 for (B − L)-conserving,
flavor-charged operators. That is, εX, δX in
Eq. (2.17) satisfy jεXj; jδXj ≪ 1.

4. The parameters ξX parametrizing the hierarchy
between the second and third generations satisfy
jξXj ≪ 1.

No hierarchy is assumed between the perturbative param-
eters εX and ξX.
Although the large mass difference between the second

and third generations of fermions is imposed by hand,
jξXj ≪ 1, note that it can only appear intrinsically con-
nected to the large relative phase between the Y3 and Y2

3

contributions to YX. In particular, the CP-invariant pos-
sibility αX ¼ π=2 would have led to phenomenologically
unrealistic degeneracy of the masses of the second- and
third-generation states.3 Looking forward, in general, this
will lead to large CP violation once nonvanishing mixings
emerge due to the Y5 perturbations.

III. PERTURBATIONS IN THE QUARK SECTOR

There are two main effects of introducing the perturba-
tion YεX in Eq. (2.18): (i) To lift the lightest quark masses
from zero, and (ii) to give rise to small mixing angles.
Using Y5 from Eq. (2.22), we find

YεX ¼ εX

0
BB@

y11 þ yX y12 y13
y12 y22 þ yX y23
y13 y23 −ðy11 þ y22Þ þ yX

1
CCA;

δX ¼ εXyX: ð3:1Þ

The perturbations induced by YεX to Eq. (2.24) can be
computed up to the most relevant order. We obtain the
following expressions for the perturbed eigenvalues:

m2
1X ¼ μ2Xv

2ðFX −GXÞ;
m2

2X ¼ μ2Xv
2ðFX þ GXÞ;

m2
3X ¼ 2μ2Xv

2ð2þ y11εX − 2δX þ 2ξXÞ; ð3:2Þ

where

FX ¼ 1

8
½ð5y311 þ 4y212 þ 4y213Þε2X þ 8δ2X þ 4ξ2X

þ 4y11ðεXδX þ εXξXÞ þ 8δXξX�;

GX ¼ 1

8
ð4δX þ 2ξX − y11εXÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9y211 þ 8y212 þ 8y213Þε2X − 12y11εXξX þ 4ξ2X

q
:

ð3:3Þ

In Eq. (3.2), terms have been kept up to the lowest relevant
order for the first two eigenvalues, m2

1;2. The mass of the
third eigenvalue is corrected to orderOðjεXj; jδXj; jξXjÞ, and
its order of magnitude is determined by the EWSB scale
and by the dimensionless coupling μX. It is straightforward
to check that for jεXj, jδXj → 0, the perturbed spectrum
reduces to Eq. (2.24). Thus, the simplest way to implement
the hierarchy between the first- and second-generation
masses without imposing any artificial tuning is to assume
a hierarchy between the perturbative parameters,

jεXj; jδXj≲ jξXj ≪ 1: ð3:4Þ

In this case, the second-to-third-generation mass ratio can
be approximated by

m2
2X

m2
3X

∼ jξXj2: ð3:5Þ

Replacing X → u, d in all of what follows, we obtain
ξu;d ≲ xu;d × 10−2, where xu;d are Oð1Þ.

3Technically, there is no CP violation at this stage. All the
phases in the Lagrangian can be reabsorbed by unitary redefi-
nitions of the quark and lepton fields. However, once perturba-
tions are introduced, the large phase difference between the two
terms in Y0

X will indeed lead to large values for CP violation.
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A crude, yet useful estimation for the first-to-second-
generation mass ratio can also be obtained by keeping only
the highest-order terms in ξu;d in the ratio

m2
1X

m2
2X

∼
3εX
ξX

· y11 ∼ εXy11 × 102: ð3:6Þ

For the quarks, we have m2
u=m2

c ∼ 10−6, m2
d=m

2
s ∼ 10−4.

Thus, generically we obtain

εu
ξu

<
εd
ξd

: ð3:7Þ

This result will be validated by our numerical analysis in
Sec. V. The latter also shows that the mass ratios and the
relatively large size of the Cabibbo angle cannot both be
accounted for simply by setting jεX=ξXj to be small. Thus, it
is necessary that

y11; jδXj ≪ 1: ð3:8Þ
Finally, note that the ratio between the μX’s determines the
scales of the up and down sectors:

mb

mt
∼
μu
μd

: ð3:9Þ

The small ε parameters also give rise to small mixing
angles. The sines of these mixing angles, to leading order in
εX, are given by

sin θq12 ≃ 1ffiffiffi
2

p
����ðy12 − iy13Þ

�
εd
ξd

−
εu
ξu

�����; ð3:10Þ

sin θq13 ≃ 1ffiffiffi
2

p jðy12 þ iy13Þðεd − εuÞj; ð3:11Þ

sin θq23 ≃ 1

4
jðy11 þ 2y22 þ 2iy23Þðεd − εuÞj

∼
1

2
jðy22 þ iy23Þðεd − εuÞj: ð3:12Þ

Hence, approximately,

sin θq13
sin θq23

∼
���� y12 þ iy13
y22 þ iy23

���� ∼ 10−1: ð3:13Þ

Thus, a mild hierarchy between the values of fy12; y13g and
those of fy22; y23g is expected. Also, from Eq. (3.7), we can
roughly approximate

sin θq12 ¼
1ffiffiffi
2

p
����ðy12 − iy13Þ

εd
ξd

���� ∼ mdffiffiffi
2

p
ms

jðy12 − iy13Þj:

ð3:14Þ
Eqs. (3.10)–(3.12) illustrate an important consequence of

Flavorspin. That is, an enhancement of sin θq12 with respect
to sin θq13 and sin θ

q
23. A rough order-of-magnitude estimate

of this enhancement is

sin θ12
sin θ13

≃ 1

jξdj
∼
m3

m2

∼ 102: ð3:15Þ

We stress that this enhancement is a prediction that
emerges, in this context, as a consequence of the SUð2Þ
structure coupled to the intergenerational mass hierarchy.
The CP-violating phase δqCP in the quark sector can be

computed via the Jarlskog invariant J:

J ¼
�X

m;n

ϵikmϵjln

�
ℑ½VijVklV�

ilV
�
kj�

¼ c12c213c23s12s13s23 sin δ
q
CP; ð3:16Þ

defining sij ≡ sin θqij and cij ≡ cos θqij. The leading-order
contribution to J is OðjεXj3Þ. In order to compute it, it is
enough to consider the CKM matrix to OðjεXjÞ, use
fi; j; k; lg ¼ f1; 2; 2; 3g in Eq. (3.16), and replace the
values for the mixing angles found in Eqs. (3.10)–(3.12).

IV. LEPTONS

The formalism established in the last two sections for the
quarks generalizes straightforwardly to the charged leptons.
Neutrinos, however, are a different story, since the character
of the neutrino masses is not known. We consider both the
Dirac and Majorana options.

A. Pure Dirac masses

For purely Dirac neutrinos, the zeroth-order neutrino
masses are given by Eq. (2.24), and the effects resulting
from the perturbations are given by Eq. (3.2). The leptonic
mixing angles are given by the same expressions as in
Eqs. (3.10)–(3.12) with the replacements d → l, u → ν:

sin θl12 ¼
1ffiffiffi
2

p
����ðy12 − iy13Þ

�
εl
ξl

−
εν
ξν

�����; ð4:1Þ

sin θl13 ¼
1ffiffiffi
2

p jðy12 þ iy13Þðεl − ενÞj; ð4:2Þ

sin θl23 ¼
1

4
jðy11 þ 2y22 þ 2iy23Þðεl − ενÞj: ð4:3Þ

Following the analysis performed in the previous section, it
is clear that these formulas cannot reproduce the observed
mixing properties of the leptons. In particular, in the lepton
sector, all three observable angles are sizable. Hence, while
the enhancement of θl12 shown in Eq. (4.1) is still relevant
and desirable, θl23 is still predicted to be perturbatively
small in Eq. (4.3). This angle is known to be close to
maximal and cannot be explained in the perturbative
framework we have introduced.

B. Majorana masses

For the case of Majorana neutrinos, several possibilities
can be investigated for the structure of the Yukawa
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matrices. Let us consider, then, a general Majorana mass
term for the light neutrino states. It can be written as

vμνν̄Mνν
c; ð4:4Þ

where Mν is a flavor-charged, symmetric matrix;
Mν ≡MνðY3; Y5Þ; and μ is a possibly small, dimension-
less parameter. This mass term is not invariant under the
gauge symmetry of the SM, and extra fields should be
added in order to compensate the SUð2ÞW and hypercharge
charges of the neutrino states. This leads to nonrenorma-
lizable neutrino mass operators. The simplest such pos-
sibility is to add two Higgs fields to form the dimension-5
Weinberg operator,

cð5ÞW

ΛLN
L̄LcHH;

vcð5ÞW

ΛLN
¼ μνMν: ð4:5Þ

As is well known, there are three ways to generate the
Weinberg operator at tree level, the so-called type-I, -II, and
-III seesaw mechanisms.
In the Flavorspin context, Mν should be considered a

polynomial function of the spurions Y3 and Y5 with
complex coefficients. In what follows, we are interested
in truncations of this polynomial inspired by the seesaw
mechanisms. They can all be parametrized by anMν of the
form

Mν ¼ η33Y3YT
3 þ η5Y5 þ η1Iþ η35ðY3YT

5 þ Y5YT
3 Þ

þ η55Y5YT
5 þ η335ðY3YT

3Y
T
5 þ Y5Y3YT

3 Þ
þ η353Y3Y5YT

3 ; ð4:6Þ

where for simplicity we have kept terms of at most third
order in Y3, Y5, and terms that are at most second order
in Y5.
A naive consideration and a driving idea of this work is

the fact that in the limit

fη5; η1; η35; η55; η335; η353g → 0; ð4:7Þ

one obtains

Mν → M0
ν ≡ η33Y3YT

3 ¼

0
B@

0 0 0

0 η33 0

0 0 η33

1
CA: ð4:8Þ

That is, it appears that themassmatrix forMajorana neutrinos
is already diagonal in the basis employed here. Equation (4.8)
suggests an inverted hierarchy of neutrino masses with two
nonzero eigenvalues andanother onevanishingly small. Since
the flavor and themass bases for the neutrinos are the same in
this limit, the leptonic mixing matrix, analogous to VCKM in
Eq. (2.32), would then be given by

VPMNS ¼ VlL ¼ V0 ¼

0
BB@

1 0 0

0 1ffiffi
2

p 1ffiffi
2

p

0 − 1ffiffi
2

p 1ffiffi
2

p

1
CCA ·

0
B@

1

−i
1

1
CA:

ð4:9Þ
In particular, as opposed to the quark case, Flavorspin appears
to automatically predict one largemixing angle—maximal, at
zeroth order—in the lepton sector with Majorana neutrinos.
On the other hand, it is wrong to associate the angle in

Eq. (4.9) with θl23. Since the favored pattern in this case is
an inverted hierarchy and Eq. (4.9) mixes the two eigen-
values different than zero, this mixing angle is more
naturally identified with θl12. Therefore, presumably large
deviations from the zeroth-order structure are required to
generate close-to-maximal θl23.
Nonetheless, the fact that, as opposed to the quark case,

one mixing angle automatically comes out large is encour-
aging. Coming back to the general form in Eq. (4.6), we
explore the following cases in detail:

1. Type-I seesaw: Mν is assumed to be given by

Mν ¼ YνYT
ν ; ð4:10Þ

with Yν defined in Eqs. (2.18) and (2.19). More
explicitly, the coefficients in Eq. (4.6) are given by

η33 ¼ 1þ 2δν − ð1 − ξνÞ2;
η5 ¼ ενδν; η1 ¼ δ2ν; ð4:11Þ

η35 ¼ εν; η55 ¼ ε2ν;

η335 ¼ ð1 − ξνÞεν; η353 ¼ 0; ð4:12Þ
where we have used that ðY3YT

3 Þ2 ¼ −Y3YT
3 . Im-

portantly, in this case, the coefficients in Mν are
correlated and depend only on the complex numbers
ξν, εν, and δν, where jξνj, jενj, jδνj ≪ 1.

2. Type-II seesaw: In this scenario, Mν is identified
with Yν þ YT

ν . There is no term proportional to Y3

because Mν is symmetric, and moreover, we set

η35 ¼ η55 ¼ η335 ¼ η353 ¼ 0: ð4:13Þ

For the other parameters, only jη33j, jη5j, jη1j≲ 1 is
assumed.

Although we are referring to these two scenarios as type-I
and type-II seesaws, these naming conventions should not
be taken too literally. In particular, there is no strong
argument for the conditions imposed in Eq. (4.13) other
than simplicity. We will briefly comment on the most
general case, as defined in Eq. (4.6), in Sec. V.

1. Type-I seesaw

The explicit form of the type-I seesaw mass matrix in
Eq. (4.10) is
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Mν ¼
μ2νv2

ΛLN

0
B@

0 ενðiy13 − y12Þ −ενðiy12 þ y13Þ
ενðiy13 − y12Þ −2ðy22εν − iy23εν þ δν þ ξνÞ −ενðiy11 þ 2iy22 þ 2y23Þ
−ενðiy12 þ y13Þ −ενðiy11 þ 2iy22 þ 2y23Þ 2ðy11εν þ y22εν − iy23εν − δν − ξνÞ

1
CA

þOðfjξνj; jενj; jδνjg2Þ; ð4:14Þ

where ΛLN is the scale of LN-violating physics. We
consider the masses in the limit y11, y12, y13, jξνj, jενj,
jδνj ≪ 1; we will justify these limits of y11, y22, and y23.
The neutrino masses become

m2
1 ¼ Oðfy12; y13g2Þ; ð4:15Þ

m2
2¼

μ4νv4

Λ2
LN

ðFν−GνÞþOðfy11;y12;y13g2;fjξνj; jενj; jδνjg3Þ;

ð4:16Þ

m2
3¼

μ4νv4

Λ2
LN

ðFνþGνÞþOðfy11;y12;y13g2;fjξνj;jενj; jδνjg3Þ;

ð4:17Þ
where we have introduced the quantities

Fν ¼ 8jενj2ðy222 þ y223Þ þ 4jξν þ δ�νj2; ð4:18Þ

Gν ¼ 8jενj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy222 þ y223Þ½jενj2ðy222 þ y223Þ þ jξν þ δ�νj2�

q
:

ð4:19Þ
The ordering of the neutrino mass eigenstates here differs
slightly from that used in analyses of neutrino oscillations.4

Here, the masses are strictly ordered from least to greatest:
m2

1 < m2
2 < m2

3. For the latter, however, the ordering
depends on the hierarchy; for the normal hierarchy
(NH), the ordering is the same as the one used here, but
for the inverted hierarchy (IH), the masses are ordered
m2

3 < m2
1 < m2

2. It will be important to establish, for the rest
of this work, the conditions for the NH and IH in the
ordering scheme we employ:

m2
3 −m2

2 > m2
2 −m2

1 ⇒ NH;

m2
3 −m2

2 < m2
2 −m2

1 ⇒ IH: ð4:20Þ

For the masses in Eq. (4.15) to constitute a NH, the
condition 3Gν > Fν must be satisfied; otherwise, neutrinos
are organized in an IH. It is instructive to consider the
neutrino mass spectrum in various limits. When
jξν þ δ�νj ≪ jενj, then Gν ∼ Fν, and the masses may con-
stitute a NH. In the opposite limit,

Gν=Fν → 2jενj · ðy222 þ y223Þ=jξν þ δ�νj ≪ 1; ð4:21Þ

and the masses organize in an IH.

2. Type-II seesaw

The explicit form of the type-II seesaw mass matrix,
from Eqs. (4.6) and (4.13), is

Mν ¼

0
B@

η1 þ η5y11 η5y12 η5y13
η5y12 η1 þ η5y22 þ η33 η5y23
η5y13 η5y23 η1 − η5ðy11 þ y22Þ þ η33

1
CA: ð4:22Þ

For y11, y12, y13 ≪ 1, as well as jη33j, jη5j, jη1j≲ 1, the
neutrino masses become

m2
1 ¼

μ4νv4

Λ2
LN

× η21 þOðy11; y12; y13Þ; ð4:23Þ

m2
2 ¼

μ4νv4

Λ2
LN

ðHν −KνÞ þOðy11; y12; y13; fjη33j; jη5j; jη1jg3Þ;

ð4:24Þ

m2
3 ¼

μ4νv4

Λ2
LN

ðHν þKνÞ þOðy11; y12; y13; fjη33j; jη5j; jη1jg3Þ;

ð4:25Þ
where we have introduced the quantities

4We remind the reader that for neutrino oscillations, the two
closest values of m2 are defined to be m2

1 and m2
2, with m2

1 being
the lighter of the two. The third is then defined to be m2

3, which
may be heavier or lighter than the other two.
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Hν ¼ jη1 þ η�33j2 þ jη5j2ðy222 þ y223Þ; ð4:26Þ

Kν ¼ jðη5 þ η33Þη�1 þ η1ðη�5 þ η�33Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy222 þ y223Þ

q
: ð4:27Þ

These quantities must satisfy 3Kν > Hν − jη1j2 for neu-
trinos to form a NH; otherwise, neutrinos are organized in
an IH. Note the difference with the type-I seesaw: here, the
singlet term corresponding to the coefficient η1 is not
suppressed. An IH would follow if the singlet term, η1,
were subdominant to η33 and η5, since then Hν would
dominate Kν. If jη33j, jη5j, and jη1j are all comparable in
magnitude, then it is possible that Hν and Kν are likewise
comparable. In this case, a NH would be produced.

3. Leptonic mixing matrix

The matrix Vν that diagonalizes the neutrino mass matrix
is defined via

Vν · ðYνYT
ν Þ · ðY�

νY
†
νÞ · V†

ν ¼ PT · diagðm2
1; m

2
2; m

2
3Þ · P:

ð4:28Þ

Here, P is a permutation matrix that reorders the neutrino
masses according to the standard mass-ordering conven-
tions used in neutrino oscillations, following the discussion
surrounding Eq. (4.20):

m2
3 −m2

2 > m2
2 −m2

1∶ P ¼ I; ð4:29Þ

m2
3 −m2

2 < m2
2 −m2

1∶ P ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA: ð4:30Þ

For nontrivial Vν, the leptonic mixing matrix VPMNS is
given by

VPMNS ¼ VlLV
†
ν; ð4:31Þ

similar to Eq. (4.9). We can anticipate some of the
numerical results of Sec. V by inspecting Eqs. (4.14)
and (4.22). For the type-I seesaw, and assuming a NH,
sin θl12 is approximately given by

sin θl12 ∼
����M12

ν

M22
ν

���� ¼ 1

2

jενj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y212 þ y213

p
jðy22 þ iy23Þεν − δν − ξνj

: ð4:32Þ

In the limit y12, y13 ≪ y22, y23, this mixing angle is
predicted to be small.5 A similar estimate for the type-II
seesaw, again assuming a NH, gives

sin θl12∼
����M12

ν

M22
ν

���� ¼
���� η5y12
η1 þ η5y22 þ η33

����: ð4:33Þ

From this equation, assuming jη33j, jη5j, and jη1j are
comparable in magnitude, if jy22j were approximately 1,
the terms in the denominator could give a sizable cancel-
lation. In the next section, we will show that, indeed, jy22j
must be approximately 1. In this case, even with y12 ≪ 1,
a sizable neutrino contribution to sin θl12 is possible.

V. RESULTS

In this section, we numerically explore the parameter
space of Flavorspin and show that it provides a plausible
description of all the SM flavor. We stress that the goal is
not to show that there is a set of precise values for the
Flavorspin parameters that exactly reproduces the low-
energy observables of interest to us. Setting aside that the
low-energy observables are known with finite precision,
attempting to find such a solution is computationally
expensive and ultimately unenlightening. We demonstrate
instead that general agreement between the predictions of
Flavorspin and the experimentally determined values of
low-energy observables can be obtained by looking at
specific regions of parameter space that satisfy the con-
straints enumerated in Sec. II.
The method used is as follows: First, random values are

generated over specified ranges of the Flavorspin param-
eters, assuming a flat prior in these ranges, and the values
for the relevant observables are calculated for all these
points. These pseudodata are binned together in two-
dimensional subspaces of the space of observables, and
a likelihood L is assigned to each bin, proportional to its
population, N. A Δχ2 is calculated for each bin, via [30]

Δχ2 ¼ 2 lnL0=L ≈ 2 lnN0=N; ð5:1Þ

where N0 and L0 are the population and likelihood,
respectively, of the bin with the highest population;
Δχ2 ¼ 0 corresponds to the center of this bin. A smooth
interpolation of the Δχ2 function is calculated, and the
contours along which Δχ2 ¼ 2.30, 5.99, and 9.21 are
drawn, corresponding approximately to the 68.3%, 95%,
and 99% confidence intervals (CIs)6; in the figures that
follow, these will be represented by dark, medium, and light
shadings of the color assigned to each scenario, respec-
tively. The goal of this section is to show that there are
ranges of the Flavorspin parameters such that these con-
fidence intervals contain the experimentally determined

5Recall that the charged-lepton contribution to this mixing
angle is given by Eq. (4.1) with εν → 0. The charged-lepton and
neutrino contributions to this angle are roughly comparable, as
we will see in the next section, so this conclusion is robust.

6This correspondence is only exact in the limit of vanishing bin
size and a large number of pseudodata points, but this yields a
sufficiently precise approximation of the true confidence intervals
for our purposes here.
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values of the observables of interest with a high degree of
confidence.

A. Charged fermions

The starting point is the determination of the approxi-
mate ranges in which the Flavorspin parameters must lie in
order to reproduce the quark masses and mixing param-
eters. Table I shows the MS values of charged-fermion
masses and quark mixing observables at the scale
μ ¼ 1 TeV, which we have taken from Ref. [31]. The
ranges of the parameters that we consider are as follows:

jξuj ∈ ½6 × 10−3; 8 × 10−3�;
jεuj ∈ ½1 × 10−3; 2 × 10−3�;
jδuj ∈ ½1 × 10−5; 2 × 10−5�; ð5:2Þ

jξdj ∈ ½0.035; 0.037�;
jεdj ∈ ½0.06; 0.07�;
jδdj ∈ ½6 × 10−4; 7 × 10−4�; ð5:3Þ

y11 ∈ ½−0.01; 0.01�;
y22 ¼ 1;

y23 ∈ �½0.88; 0.92�;
Φ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y212 þ y213

q
∈ ½0.15; 0.16�;

φ≡ arctan

�
y13
y12

�
∈ ½−π; π�: ð5:4Þ

We arrive at these ranges guided by the following
considerations:

1. The ratios of the masses determine jξXj. For in-
stance, jξXj is, to a good approximation, equal to the
ratio of the second- and third-generation quark
masses, as per Eq. (3.5).

2. The largest of the yij parameters can be defined to be
equal to unity, using the freedom to rescale all the
εX’s and yij’s to ensure this. From Eqs. (3.6) and
(3.13), we estimate that y22, y23 ∼Oð1Þ; y12,
y13 ∼Oð0.1Þ; and y11 ≲Oð0.01Þ.

3. The required sizes of the jεXj’s are estimated via
their contribution to the mixing angles and to the
first-generation masses. For instance, since
m2

d=m
2
b ≫ m2

u=m2
t , we must have jεdj ≫ jεuj. There-

fore, jεdj dominates over jεuj in Eqs. (3.11) and
(3.12). This allows for an estimate of jεdj by
comparing these expressions with their best-fit
values in Table I.

4. In the leading approximation, the first-generation
masses are given by jy11εX þ δXj. Therefore, y11 ≲
Oð0.01Þ must hold in order to suppress the down-
quark mass, given the value of jεdj in Eq. (5.2).

Furthermore, we require that jδdj be at least a factor
of 10−2 smaller than jεdj; otherwise, a tuned can-
cellation would be required to get a small down-
quark mass.

5. Given the range of y11 and the value of the up-quark
mass, ranges for jεuj and jδuj are determined.

6. The phases on ξu, ξd, εu, εd, δu, and δd are allowed to
vary uniformly on ½−π; π�.

The take-home message is that it is possible to find regions
of parameter space such that the quark observables are
reproduced. The ranges for the parameters are later refined
by comparing calculations of the observables against the
values of Table I until general agreement between the two is
attained.
Figure 1 shows the regions of y21=y

2
3–y

2
2=y

2
3 space

covered by the ranges for the parameters in Eqs. (5.2)
and (5.4) for the up-type (red) and down-type (blue) quark
masses. Fig. 2(a) shows the regions of sin θq12 − sin θq13
space covered by the same choices of parameter regions as
in Eqs. (5.2) and (5.4), and Fig. 2(b) is the same in sin θq23 −
sin δqCP space. The red regions with dashed outlines take ξu,
ξd, εu, εd, δu, and δd to be real, while the green regions with
solid outlines allow these parameters to be complex with a
phase on ½−π; π�. Note that the red region almost com-
pletely covers the green region in Fig. 2(b). The six-pointed
star in each panel represents the best-fit point from Table I.
The phase parameters in the quark sector cannot be

constrained by this analysis. Part of the reason for this is
that jεdj (jεd=ξdj) numerically dominates jεuj (jεu=ξuj) in
Eqs. (3.11) and (3.12) [Eq. (3.10)], so the magnitude of
their difference is largely insensitive to their relative phase.

TABLE I. The values for the low-energy observables used in
our analysis. We use the MS values at μ ¼ 1 TeV calculated in
Ref. [31]; see text for details.

Observable MS Value, μ ¼ 1 TeV

yu 6.3 × 10−6

yc 3.104 × 10−3

yt 0.8685

yd 1.364 × 10−5

ys 2.74 × 10−4

yb 1.388 × 10−2

ye 2.8482 × 10−6

yμ 6.0127 × 10−4

yτ 1.02213 × 10−2

sin θq12 0.2254

sin θq13 3.770 × 10−3

sin θq23 4.363 × 10−2

sin δqCP 0.9349
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Moreover, the phase of ξX is irrelevant in determining
m2

2=m
2
3, and the phases on εX and δX do not dramatically

alter the range of possible values for y21=y
2
3. This insensi-

tivity to the phases is demonstrated in Fig. 2(b). Although
there is a small preference for maximal CP violation, all
possible values of sin δqCP are contained in the 95% CI for
real-valued ξX, εX, and δX. Letting these parameters be
complex produces no appreciable changes. The CP viola-
tion that arises when these parameters are real stems from
the imaginary coefficient of Y3 that appears in Eq. (2.19).
This factor of i, coupled with the finite spread and sign
indeterminacy of the ranges in Eq. (5.4), is enough to
populate the entire allowable range for sin δqCP. Regarding
the elements of Y5, at this order, separate ranges for y12 and
y13 are not specified in Eq. (5.4). These parameters only
appear in the particular combination ðy212 þ y213Þ in
Eqs. (3.3), (3.10), and (3.11). Therefore, we reparametrize
these as

y12 ¼ Φ cosφ; y13 ¼ Φ sinφ: ð5:5Þ
The quark masses and mixing observables inform the range
of Φ, but the angle φ is completely undetermined.
Next, we use the parameter ranges for the yij’s found for

the quarks to compute the charged lepton masses. This
system of equations still has enough freedom due to the
new parameters ξl, εl, and δl that determine the lepton
spectrum. We obtain the following ranges for the latter:

FIG. 1. The predicted ratio of Yukawa couplings for the up-type
quarks (red), down-type quarks (blue), and charged leptons
(green), calculated from the ranges in Eqs. (5.2), (5.4), and
(5.6). The phases on ξu, ξd, εu, εd, δu, and δd are allowed to vary
uniformly on ½−π; π�. The 68.3% (dark), 95% (medium), and 99%
(light) confidence intervals for each sector are shown. The circle,
square, and triangle indicate the values of the Yukawa ratios for
the up-type quarks, down-type quarks, and charged leptons,
respectively, as given in Table I.

FIG. 2. Quark mixing parameters, calculated from the ranges in Eqs. (5.2) and (5.4). The six-pointed star in each panel represents the
measured values of these observables from Table I. The red regions with dashed outlines are calculated assuming ξX , εX, and δX, (X ¼ u,
d) are real, while the green regions with solid outlines are calculated allowing these quantities to be complex. Note that the former almost
completely covers the latter in panel (b).
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jξlj ∈ ½0.11; 0.12�;
jεlj ∈ ½0.05; 0.06�;
jδlj ∈ ½5 × 10−4; 6 × 10−4�: ð5:6Þ

The region of y21=y
2
3–y

2
2=y

2
3 space covered by these param-

eter ranges and those in Eq. (5.4) are shown in green in
Fig. 1. The phases on ξl, εl, and δl are varied between
½−π; π�. The triangle represents the observed ratios of
charged-lepton masses in Table I.

B. Neutrinos

The parameter ranges obtained in Eqs. (5.4) and (5.6) for
Y5 are now used to determine the neutrino masses and

leptonic mixing observables. Table II lists the current best-
fit values for the neutrino mass-squared differences and
leptonic mixing angles determined by the NuFIT
Collaboration [32], both for a NH and for an IH of neutrino
masses. While the calculation of the renormalization group
evolution of these observables has been calculated in, for
instance, Refs. [33–38], we use the low-energy values in
order to keep pace with current experimental observations
and to avoid making model-dependent assumptions about
the renormalization group flow.
We studied numerically the seesaw scenarios described

in Sec. IV using the same method we used for the charged
fermions. As before, the values of the neutrino-specific
parameters, as well as the parameters of Eqs. (5.4) and
(5.6), are scanned over specified ranges. The parameters
fξX; εX; δX; ηXg are all allowed to be complex with their
phases on ½−π; π�. For each set of parameters, the low-
energy observables are calculated. These observables are
the three leptonic mixing angles (via sin2 θl12, tan

2 θl13, and
sin2 θl23), the lone leptonic CP-violating phase (sin δlCP),
and the ratio Rν of the neutrino mass-squared splittings,

Rν ¼
8<
:

m2
3
−m2

1

m2
2
−m2

1

; m2
3 −m2

2 > m2
2 −m2

1

m2
1
−m2

2

m2
3
−m2

2

; m2
3 −m2

2 < m2
2 −m2

1

: ð5:7Þ

In this convention, Rν is positive (negative) for the NH (IH),
and its magnitude is strictly greater than 2.
The pseudodata then are binned in Rν and, using

Eq. (5.1), Δχ2 is calculated for each bin (with the most

TABLE II. The values for the neutrino observables used in our
analysis, from the NuFIT Collaboration [32]. Shown are the NH
and IH fits to oscillation data. We do not consider the renorma-
lizaton-group-evolved values of these observables as we did with
the quark and charged-lepton observables.

Observable
Normal hierarchy

(Δχ2 ¼ 0)
Inverted hierarchy
(Δχ2 ¼ 0.83)

Δm2
12 7.50 × 10−5 eV2 7.50 × 10−5 eV2

Δm2
13 þ2.524 × 10−3 eV2 −2.444 × 10−3 eV2

sin2 θl12 0.306 0.306

sin2 θl13 0.02166 0.02179

sin2 θl23 0.441 0.587

sin δlCP −0.988 −0.993

FIG. 3. (a) The one-dimensional Δχ2 as a function of Rν for a scan over the type-I seesaw parameter ranges in Eqs. (5.4), (5.6), and
(5.8). The dark gray band covers values of Rν that cannot be generated. (b) The one-dimensionalΔχ2 as a function of sin δlCP for a similar
scan. The orange line corresponds to a 30 < Rν < 35, while the green line corresponds to −35 < Rν < −30. In both panels, the black
lines represent the 68.3% (solid), 95% (dashed), and 99% (dot-dashed) confidence levels.
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populous bin having Δχ2 ¼ 0). A smooth interpolation of
the Δχ2 is calculated, and the 68.3%, 95%, and 99% con-
fidence levels (C.L.’s) are set atΔχ2 ¼ 1.00, 3.84, and 6.63,
respectively; in figures, these are respectively drawn as
solid, dashed, and dot-dashed black lines. A flat posterior is
imposed on Rν, so that only pseudodata for which 30 <
jRνj < 35 are kept, consistent with the measurements in
Table II. Separate pseudodata are generated for the NH and
the IH. The pseudodata are binned in two-dimensional
subspaces of the space of observables, and Δχ2 is calcu-
lated over each subspace, once again using Eq. (5.1). The

68.3%, 95%, and 99% CIs are drawn as the contours along
which Δχ2 ¼ 2.30, 5.99, and 9.21; as before, these con-
tours are depicted as dark, medium, and light shadings of
the appropriate color, respectively, in the figures that
follow. Finally, a one-dimensional Δχ2 function is pro-
duced for sin δlCP—precisely as was done for Rν, above—
both for the NH and for the IH.

1. Type-I neutrino seesaw

We consider first the type-I seesaw formalism of Sec. IV,
and scan over the neutrino parameters ξν, εν, and δν, in

FIG. 4. The 68.3% (dark), 95% (medium), and 99% (light) confidence intervals for Rν and the leptonic mixing angles produced by a
scan over the type-I seesaw parameter space given by Eqs. (5.4), (5.6), and (5.8). The NH (IH) is shown in orange (green). The dark gray
bands in (a) and (c) cover values of Rν that cannot be generated, while light gray bands mask values of Rν excluded by our analysis. The
circle and square represent the NH and IH solutions in Table II, respectively.
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addition to the parameters in Eqs. (5.4) and (5.6). These
parameters are separately varied over the perturbative ranges

jξνj; jενj; jδνj ∈ ½0; 0.1�: ð5:8Þ
The results of this scan are illustrated in Figs. 3 and 4.
Figure 3(a) shows Δχ2 as a function of Rν, while in
Fig. 3(b), Δχ2 is plotted as a function of sin δlCP for 30 <
Rν < 35 (orange) and for −35 < Rν < −30 (green).
Figure 4 shows confidence intervals in two-dimensional
slices of the space of observables, where the orange regions
are for the NH, while the green regions are for the IH. The
circle and square in Fig. 4 represent the NH and IH solutions
in Table II, respectively.
From these plots, we infer that the type-I seesaw in

Flavorspin is unlikely to simultaneously accommodate for
the observed values for the mass differences and leptonic
mixing angles. TheNH is a somewhat better fit than the IH in
the Flavorspin framework for a type-I seesaw scenario. In
particular, the range 30 < Rν < 35 is contained in the
95% CI, while the range −35 < Rν < −30 is excluded at
the > 99% C.L. Moreover, the NH prefers small values
(≲5°) of θl13, while the IHprefers largevalues (∼85°) thereof.
On the other hand, neither case can easily accommodate

the observed value of sin2 θl12 at the 99% C.L. The NH
predicts a small θl12, sin

2 θl12 ≲ 0.05 at > 99% C.L., while
the IH implies 0.4≲ sin2 θl12 ≲ 0.6 at the 99%C.L. The third
angle, sin2 θl23, is similarly poorly fit; the NH prefers
sin2 θl23 ∈ ½0.1; 0.25� at the 95% C.L., while the IH prefers
sin2 θl23 ≳ 0.95 at the 99% C.L. Finally, Fig. 3(b) indicates

that, while the NH prefers minimal CP violation
(j sin δlCPj≲ 0.3) at the 95% C.L., the IH prefers strictly
near-maximal CP violation (j sin δlCPj≳ 0.9) at the
95%C.L., with every possible value allowed at the 99%C.L.

2. Type-II neutrino seesaw

We scan over the parameters η33, η5, and η1 of Eq. (4.12)
in addition to the parameters in Eqs. (5.4) and (5.6). These
parameters are separately varied over the ranges

jη33j; jη5j; jη1j ∈ ½0; 1�: ð5:9Þ

Note that these ranges are not perturbative.
The results are shown in Figs. 5 and 6. Figure 5(a) shows

Δχ2 as a function of Rν. The conclusion of this exploration
is that it is hard to reproduce the hierarchy of mass
differences in the type-II seesaw. More specifically, the
observed region 30 < jRνj < 35 does not occur at the
99% C.L. away from the most likely value for this
parameter, irrespective of the hierarchy.
Figure 6 shows confidence intervals in two-dimensional

slices of the space of observables. In these figures, the
orange regions contain NH points, while the green regions
contain IH points. From the figures, things are more
promising regarding the mixing angles. More specifically,
the NH contains all possible values of sin2 θl12 in the
95% CI. The IH prefers θl12 ∼ 45°, though it can also
accommodate any value at the 99% C.L. Both hierarchies
allow for θl13 to be either small (≲10°) or large (≳80°), but

FIG. 5. (a) The one-dimensional Δχ2 as a function of Rν for a scan over the type-II seesaw parameter ranges in Eqs. (5.4), (5.6), and
(5.9). The dark gray band covers values of Rν that cannot be generated. (b) The one-dimensionalΔχ2 as a function of sin δlCP for a similar
scan. The orange line corresponds to 30 < Rν < 35, while the green line corresponds to −35 < Rν < −30. See text for details. In both
panels, the black lines represent the 68.3% (solid), 95% (dashed), and 99% (dot-dashed) confidence levels.
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have exceedingly low probability to produce an intermedi-
ate value; the NH prefers small values and the IH prefers
large values, both at >95% C.L. This framework struggles
only to simultaneously accommodate the large value of θl12
and the relatively large θl13, though the tension is not as
severe here as it is for the type-I seesaw.
Regarding θl23, the 95% CI for the IH contains

sin2 θl23 ≳ 0.3, and the 99% CI covers the entire allowable
range. In the NH, the situation is more predictive, as the
95% CI covers the regions 0.45≲ sin2θl12 ≲ 0.55 and
sin2 θl12 ≳ 0.98. While the NH solution (circle) in Fig. 6(a)
lies inside the 95% CI, this framework generically has no

preference for either octant of θl23. From Fig. 5(b), we see
that both hierarchies have a strong preference for near-
maximal CP violation (j sin δlCPj≳ 0.9) at the 95% C.L. In
fact, the IH prefers j sin δlCPj≳ 0.5 at the 99% C.L., though
every possible value is allowed at the 99% C.L. for the NH.

3. General neutrino mass matrix

For completeness, we also explore the general neutrino
mass matrix introduced in Eq. (4.6). We briefly describe the
results in this case following the methods previously
described. The neutrino-specific parameter ranges over
which we scan are

FIG. 6. The 68.3% (dark), 95% (medium), and 99% (light) confidence intervals for Rν and the leptonic mixing angles produced by a
scan over the type-II seesaw parameter space given by Eqs. (5.4), (5.6), and (5.9). The NH (IH) is shown in orange (green). The dark
gray bands in (a) and (c) cover values of Rν that cannot be generated, while light gray bands mask values of Rν excluded by our analysis.
The circle and square represent the NH and IH solutions in Table II, respectively.
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jη33j; jη5j; jη1j; jη35j; jη55j; jη335j; jη353j ∈ ½0; 1�; ð5:10Þ

while the other relevant parameters are scanned over the
ranges in Eqs. (5.4) and (5.6). The results are presented in
Figs. 7 and 8; the interpretation of those figures being the
same as before. As with the type-II seesaw, neither 30 <
Rν < 35 nor −35 < Rν < −30 is included in the 99% CI
in Fig. 7(a), although the IH is significantly less likely than
the NH. Moreover, in this case, the NH prefers θl12 at the
extremes of the range: θl12 ≲ 20° or θl12 ≳ 70° at the
95% C.L. The IH, on the other hand, is not θl12-predictive;
it contains all possible values of sin θl12 within the
68.3% CI.
The NH prefers small values (≲10°) of θl13 at the

95% C.L., while the IH prefers large values (≳80°) at
the 95% C.L. While the NH (IH) may produce large (small)
values of θl13, these values lie outside the 99% CI, and thus
do not appear in Fig. 8. Both hierarchies contain every
possible value of sin2 θl23 within the 95% CI. Therefore,
there is nothing particularly special about the region around
θl23 ¼ 45°. This disagrees with our theoretical prejudice
that θl23 ∼ 45° indicates that something phenomenologi-
cally interesting is happening in the lepton sector, as we
saw for the type-II seesaw, above. Both hierarchies in this
scenario prefer near-maximal CP violation: the 95% CI
consists of j sin δlCPj≳ 0.8, though every possible value is
allowed at the 99% C.L.

VI. FLAVOR-CHANGING NEUTRAL CURRENTS

A full exploration of the phenomenology of the scenario
we are proposing is deferred to a later study. However, it is
relatively easy to show that the problem of FCNCs is
alleviated substantially in Flavorspin models if the coef-
ficients of higher-dimensional operators have a structure

cαðY3; εY5; δIÞ; ð6:1Þ
where jεj, jδj ≪ 1, mimicking the premise that was assumed
before for the Yukawa couplings. To see this, note that
higher-dimensional operators are comprised of gauge- and
Lorentz-invariant combinations of SM matter fields (QL,
UR, DR, LL, ER), Higgs bosons (H), field-strength tensors
(Ga

μν, Wa
μν, Bμν), and (covariant) derivatives (Dμ). After

electroweak symmetry is broken, these operators are decom-
posed in terms of the low-energy degrees of freedom of the
SM. Our analysis of nonrenormalizable operators specifi-
cally focuses on fermion bilinears of the form7

Qα ∼ cα;ijFiF0
j; cα;ijFiF̄0

j; cα;ijF̄iF̄0
j;

Fð0Þ ¼ UL;R; DL;R; EL;R; νL: ð6:2Þ
These bilinears are, by construction, singlets of Gfl, but are
not necessarily singlets of the Lorentz or SM gauge groups.
Operatorsmay contain any number of bilinears, eachwith its

FIG. 7. (a) The one-dimensional Δχ2 as a function of Rν for a scan over the general neutrino mass matrix parameter ranges in
Eqs. (5.4), (5.6), and (5.10). The dark gray band covers values of Rν that cannot be generated. (b) The one-dimensionalΔχ2 as a function
of sin δlCP for a similar scan. The orange line corresponds to a 30 < Rν, while the green line corresponds to −35 < Rν < −30. See text
for details. In both panels, the black lines represent the 68.3% (solid), 95% (dashed), and 99% (dot-dashed) confidence levels.

7In this section, we suppress the superscript on c that appeared
in, for instance, Eq. (2.16).
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own cα; operator substructures unrelated to flavor are not
relevant here.
We express the flavor-charged coefficients cα in terms of

the spurions Y3 and Y5. For definiteness, we have

cα ¼ iY3 þ ð1 − ξαÞY2
3 þ εαY5 þ δαIþ � � � ; ð6:3Þ

where jεαj, jδαj, jξαj ≪ 1. Fermion bilinears may be divided
into three classes based on their flavor structure:

1. Q1 ∼ ðF̄icα;ijF0
jÞ, Fð0Þ ¼ UL;R;DL;R; EL;R.

Operators containing bilinears of this class are
contributors to the most commonly searched-for
FCNC processes. In particular, they yield contribu-

tions to reactions such as b → sγ [39], μ → eγ [40],
and meson-antimeson oscillations [41].

2. Q2∼ðFicα;ijF0
jÞ;ðF̄icβ;ijF̄0

jÞ, Fð0Þ¼UL;R;DL;R;EL;R.
Bilinears in this class necessarily violate B − L,

even though the full operator need not.
3. Q3∼ðν̄icα;ijFjÞ;ðF̄icβ;ijνjÞ, F¼UL;R;DL;R;EL;R;νL.

These are bilinears, in any Lorentz or gauge
configuration, in which at least one fermion is a
neutrino.

All the bilinears above have been expressed in the flavor
basis. After EWSB, whether or not these operators lead to
FCNCs is determined upon rotation into the physical basis.

FIG. 8. The 68.3% (dark), 95% (medium), and 99% (light) confidence intervals for Rν and the leptonic mixing angles produced by a
scan over the general neutrino mass matrix parameter space given by Eqs. (5.4), (5.6), and (5.10). The NH (IH) is shown in orange
(green). The dark gray bands in (a) and (c) cover values of Rν that cannot be generated, while light gray bands mask values of Rν

excluded by our analysis. The circle and square represent the NH and IH solutions in Table II, respectively.
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The rotation matrices for the charged fermions were
discussed in Sec. II, and that of the neutrinos was discussed
in Sec. IV; we apply these matrices to each of these classes
of bilinears.
For class 1, after rotation into the mass basis, the matrix

cα transforms to

cα → VXcαV
†
X0 ; ð6:4Þ

where VX is the matrix that diagonalizes the Yukawa matrix
YX, as in Eq. (2.28). In the fεX; εαg → 0 limit, VX,
VX0 → V0, as in Eq. (2.31). The coefficient cα is diagon-
alized by this rotation, regardless of ξα. Therefore, this class
of bilinears yields no FCNCs at leading order in the small
parameters εα and δα. Any FCNCs that do arise—and that
contribute to the above flavor-changing processes—must
be correspondingly suppressed.
As an illustration, consider the bilinear DLcαDL. When

the down-type quarks are rotated into their mass basis, the
flavor matrix cα of the bilinear becomes

VdcαV
†
d ∼

0
B@

0 0 0

0 ξα ð1þ iÞðεd − εαÞ
0 ð1 − iÞðεd − εαÞ ξα − 2

1
CA

þOðfεX; ξXg2Þ; ð6:5Þ
where we have simplified this expression by assuming that
y22 ¼ y23 ¼ 1, y11 ¼ y12 ¼ y13 ¼ δd ¼ δα ¼ 0, and that
the remaining Flavorspin parameters are real valued. The
off-diagonal piece of this matrix is proportional to εX, so
the contributions of this bilinear to flavor-changing proc-
esses like bL → sL þ � � � are suppressed by the (assumed)
smallness of εX relative to the flavor-conserving contribu-
tions. While both quarks are left-handed in this example,
we emphasize that the same conclusion applies if one or
both were right-handed.
For class 2, the matrices cα, cβ become, after rotation

into the mass basis,

cα → V�
XcαV

†
X0 ; cβ → VXcβVT

X0 : ð6:6Þ
Even in the limit fεX; εαg → 0, cα and cβ are not diagonal
matrices. Bilinears of this class can then potentially induce
large FCNCs. As stressed above, however, these bilinears
are exotic, with the flavor coefficients connecting fermions
in a (B − L)-violating fashion, pointing to an effective
vertex that arises from an underlying (B − L)-violating
interaction. In Sec. VII, we will argue that these vertices
can be naturally suppressed by a Froggatt-Nielsen-like
mechanism.8

Finally, for bilinears in class 3, the matrices cα and cβ
become

cα → VνcαV
†
X; cβ → VXcβV

†
ν: ð6:7Þ

The key point here is that in the seesaw scenarios, Vν, at
leading order [Eq. (4.28)], is different from the matrices
that diagonalize the charged-lepton Yukawa matrices. In
the limit fεX; εαg → 0, cα and cβ can have large off-
diagonal components. Therefore, higher-dimensional oper-
ators containing neutrinos will produce relatively large
amplitudes for FCNC processes.
The kind of processes to be expected from this third

class of bilinears include rare τ, meson, Higgs, and W
decays, the flavor-violating structure of which cannot be
easily probed by experiments due to the final-state
neutrinos. Some of these operators, however, give rise
to potentially large nonstandard interactions (NSI) [42,43]
for neutrinos. Current measurements of NSI parameters
[44–48] are consistent with Flavorspin at the TeV scale.
While gauge invariance ensures that operators containing
bilinears of this class are accompanied by operators
containing charged leptons, bounds on neutrino NSI from
charged-lepton flavor change can be partially evaded, due
to the differences between the matrices that rotate the
charged leptons and the neutrinos into their respective
mass bases. Over the next decade or so, a host of
experiments [46,49–54] will attempt to measure nonzero
NSI; these will serve as a critical test of the framework we
have introduced.
Finally, since the most appealing Flavorspin scenarios

involve Majorana neutrino masses, lepton-number-violat-
ing processes generically occur [55–57]. However,
Flavorspin does not predict the absolute neutrino mass
scale, which implies in particular that Flavorspin is not
predictive regarding neutrinoless double beta decay. A
more promising probe may be looking for μ− → eþ
conversion, which may occur at an observable rate in
upcoming experiments designed to look for μ− → e−

conversion, including Mu2e [58] and COMET [59,60].
In particular, this process could also be mediated by
(B − L)-violating higher dimensional operators, which
we have shown may not be suppressed. A detailed study
of the lepton-number-violating phenomenology is beyond
the scope of the present work.

VII. DISCUSSION

In this paper, we proposed a framework to attack the
flavor puzzle based on the principle of the decomposition
of the SM Yukawas into fundamental spurions. Within this
framework, we fully implemented the simplest possible
case, in which the flavor structure of the SM is derived from
a single horizontal SUð2Þ flavor symmetry. With respect to
Flavorspin, all fermions transform as triplets of flavor
SUð2Þ. In addition, we imposed some restrictions on the

8The suppression of the contributions to FCNCs from bilinears
that violate B − L also applies to bilinears in class 1 of the form
Ēicα;ijUj or Ēicα;ijDj, even though these bilinears do not produce
large FCNCs.
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parameter space, in particular demanding the perturbativity
of the set of parameters fεX; δX; ξX; ηXg.
Phenomenologically desirable highlights that follow

from the perturbative Flavorspin scenario include
1. Naturally small masses for the first and second

generations of charged fermions.
2. Naturally small mixing angles in the quark sector,

with the Cabibbo angle predicted to be about 100
times larger than θq13; see Eq. (3.15).

3. Large CP violation likely in the quark sector; see
Fig. 2(b).

4. A milder predicted mass hierarchy for Majorana
neutrinos.

5. At least one large angle predicted in the lepton sector
for the case of Majorana neutrinos.

6. Large CP violation likely in the lepton sector; see
Figs. 3(b), 5(b), and 7(b).

7. When Flavorspin is extended to nonrenormalizable
operators, it naturally suppresses the most common
FCNCs involving only charged fermions, while
allowing for large FCNCs if neutrinos are involved;
see Sec. VI. These could potentially been seen at
long-baseline neutrino experiments.

Moreover, other features of our setup can be considered
aesthetically pleasing. In particular, the quark and leptonic
flavor structures both emerge from the same set of
fundamental spurions. Quark and lepton flavor are unified
in this sense.
Nonetheless, it should be stated that Flavorspin with

perturbativefεX; δX; ξX; ηXg appears to be somewhat restric-
tive. In particular, starting from a good quark fit, it does not
do an entirely good job in describing flavor in the leptonic
sector. The detailed results are found in Sec. V, where we
calculated confidence intervals for the fermion masses and
mixing parameters for given ranges of the Flavorspin
parameters for several parametrizations of the neutrinomass
matrix in terms of fundamental spurions. For the most
promising Majorana possibilities, we find that although
Flavorspin invariably predicts large mixing angles and CP
violation in the lepton sector, it struggles to reproduce the
neutrino mass hierarchy. Some tension is also observed
between the relatively largevalues of θl12 and θ

l
13. The type-II

scenario yields the best fit, all things considered.
Finally, we comment on the perturbativity of εX and δX.

In the previous sections, this was taken as an assumption.
However, a Froggatt-Nielsen-like principle could provide
partial justification for it. The Uð1Þ Froggatt-Nielsen
symmetry would be B − L, under which the spurions
may also be formally charged. Thus, the formal global
symmetry of our model would be enlarged:

Gg ¼ Gfl ×Uð1ÞB−L: ð7:1Þ

Specifically, suppose that in this setup a formal charge of 1
under B − L is assigned to Y5, while Y3 is taken to be

(B − L)-neutral. That is, introducing the notation rq, where
r is the Gfl representation and q the B − L charge, we
would have

Y3 ∼ 30; Y5 ∼ 5−1: ð7:2Þ

Now, the coefficients εX, εΔ for the corresponding oper-
ators are introduced with formal charges

εX; εΔ ∼ 0−1: ð7:3Þ

The final form of the Yukawas, analogous to Eq. (2.17),
necessary to render the Yukawa operator invariant under Gg,
now under Gfl × B − L, is given by

YX ≡ fXðY3; εXY5Þ þ δXI;

YΔ ≡ fΔððε�ΔÞ2Y3; ε�ΔY5Þ þ δΔI; ð7:4Þ

where jεXj, jεΔj ≪ 1. More generally, we take the follow-
ing rule to be valid for both renormalizable and non-
renormalizable operators:

cðdÞα;ij ≡
( ½fðdÞα;ijðY3; ε

ðdÞ
α Y5Þ þ δðdÞα I� for q¼ 0

ðεðdÞα Þq½fðdÞα;ijðY3; ðεðdÞα Þ−1Y5Þ þ δðdÞα I� for q ≥ 1
;

ð7:5Þ

where

q ¼ B − L charge of OðdÞ
α ; ð7:6Þ

and where the dimensionless εα parameter is assumed to be
parametrically small. The consequence is that the contri-
bution to flavor coming from the Y5 spurion is suppressed
with respect to Y3 for (B − L)-conserving operators, and
vice versa for (B − L)-violating ones, à la Froggatt-
Nielsen. If we assume a mild hierarchy between Y3 and
Y5, jY3j > jY5j, then their contributions can be strongly
hierarchical in the (B − L)-conserving case and roughly
equivalent in the latter, as we found in this study. Moreover,
this mechanism can also be used to suppress the flavor
singlet fermionic bilinears of class 2 mentioned in Sec. VI.
Irrespective of its Lorentz or gauge properties, to each
flavor singlet combination corresponds a cα that would
include at least two powers of εα if it were (B − L)-
violating. Thus, by using the familiar B − L as a Froggatt-
Nielsen symmetry, this extension would make explicit the
difference in flavor structure between (B − L)-conserving
and (B − L)-violating operators. One may also consider
gaugingUð1ÞLμ−Lτ

as part of the flavor group; this has been
studied in, for instance, Ref. [61].
Some other extensions are of potential interest. Although

Flavorspin provides a simple explanation for several
patterns observed in the spectrum and mixings in the
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SM, it clearly is not a complete theory of flavor. The
parameters must be fit to the data, and it would be interesting
to explorewhether promoting the Yukawas to true fields and
optimizing a scalar potential is beneficial in this case. On the
more phenomenological side, since the flavor structure of
higher-dimensional operators is determined, deviations
from SM branching ratios will be correlated. A full explo-
ration of these is beyond the scope of this paper. Finally, we
stress that we have only explored the simplest decomposi-
tion of the Yukawas into fundamental spurions—i.e., a sum

of two spurions charged under a vectorial SUð2Þ symmetry.
This is, of course, not the only possibility.
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