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We present results on the light, strange and charm nucleon scalar and tensor charges from lattice QCD,
using simulations with Nf ¼ 2 flavors of twisted mass clover-improved fermions with a physical value of
the pion mass. Both connected and disconnected contributions are included, enabling us to extract the
isoscalar, strange and charm charges for the first time directly at the physical point. Furthermore, the
renormalization is computed nonperturbatively for both isovector and isoscalar quantities. We investigate
excited state effects by analyzing several sink-source time separations and by employing a set of methods to
probe ground state dominance. Our final results for the scalar charges are guS ¼ 5.20ð42Þð15Þð12Þ,
gdS ¼ 4.27ð26Þð15Þð12Þ, gsS ¼ 0.33ð7Þð1Þð4Þ, and gcS ¼ 0.062ð13Þð3Þð5Þ and for the tensor charges
guT ¼ 0.794ð16Þð2Þð13Þ, gdT ¼ −0.210ð10Þð2Þð13Þ, gsT ¼ 0.00032ð24Þð0Þ, and gcT ¼ 0.00062ð85Þð0Þ in
the MS scheme at 2 GeV. The first error is statistical, the second is the systematic error due to the
renormalization and the third the systematic arising from estimating the contamination due to the excited
states, when our data are precise enough to probe the first excited state.

DOI: 10.1103/PhysRevD.95.114514

I. INTRODUCTION

The nucleon scalar and tensor charges are fundamental
properties of hadron structure but most importantly they are
related to the ongoing search for new physics beyond the
Standard Model (BSM). The nucleon isovector scalar and
tensor charges probe novel scalar and tensor interactions at
the TeV scale. Planned neutron β-decay experiments with
higher accuracy would require input on the scalar and
tensor charges. Furthermore, the nucleon matrix element of
the light, strange and charm scalar quark operator, from
which the scalar charge is extracted, is directly related to
the nucleon scalar contents or σ-terms. These quantities are
a crucial input in experimental dark matter searches [1] that
are seeking to directly detect dark matter by measuring the
recoil energy of scattering between nuclei and dark matter
candidates. These candidates are weakly interacting mas-
sive particles (WIMPs) and according to a number of BSM
theories [2–5] they interact with normal matter via elastic
scattering. During the scattering process, a WIMP produces

a Higgs boson, which then interacts with a nucleon through
scalar density operators. For spin-independent elastic
scattering, the theoretical expression of the cross section
depends quadratically on the nucleon scalar matrix
element. This contribution, in fact, brings the largest
uncertainty on the nucleon dark matter cross section [6].
The nucleon tensor charge plays an important role in

BSM physics connected to novelCP-violating interactions.
Such interactions will lead to a nonzero neutron electric
dipole moment (nEDM) and planned experiments to reduce
the current bound by two orders of magnitude will con-
strain many BSM theories. An accurate measurement of the
flavor-diagonal tensor charges will be needed in order to
translate the new bounds on the nEDM into CP-violating
terms in BSM theories and set bounds on new sources of
CP violation [7]. Accurate values of both scalar and tensor
charges are needed also in evaluating the contribution of the
CP-odd electron-nucleon interaction contributing to the
atomic EDM [8].
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Unlike the axial charge, gA, the scalar and tensor charges
are not well known experimentally. The 0þ → 0þ nuclear
decays and the radiative pion decay π → eνγ, respectively,
provide limits on their values. Experiments using ultracold
neutrons are expected to improve these values [9]. In
addition, there is a rich experimental program to study
the transverse spin structure of the nucleon at Jefferson Lab.
A coincidence experiment in Hall A will employ a newly
proposed solenoid spectrometer (SoLID) to perform pre-
cision measurements from semi-inclusive electroproduc-
tion of charged pions from transversely polarized 3He
target in deep-inelastic-scattering kinematics using 11 and
8.8 GeVelectron beams [10]. SoLID is expected to increase
the experimental accuracy of the tensor coupling by an
order of magnitude [11,12]. Ongoing experiments at LHC
are also probing scalar and tensor interactions for BSM
physics at the TeV scale, and they are expected to increase
the limits to contributions arising from such interactions by
an order of magnitude. This experimental activity makes a
precise lattice QCD calculation of the scalar and tensor
couplings well timed: It provides valuable input in the
ongoing searches for BSM physics, and sheds light on our
understanding of nucleon structure.
Lattice QCD has progressed noticeably in the last few

years, due to new algorithmic improvements and the
increase in the available computational power. These
ongoing advancements allow for lattice QCD simulations
at physical values of the pion mass and at increasingly
larger volumes. Such simulations eliminate the need for
chiral extrapolations, thus reducing a significant source of
systematic uncertainties. However, calculations of baryon
observables close to or at the physical point have a worse
signal-to-noise ratio and larger effects due to excited-state
contaminations, rendering such calculations more chal-
lenging. Typically one needs one order of magnitude
larger statistics as compared to using simulations with
heavier pion masses for the same setup. To eliminate
excited states one needs larger Euclidean time propagation
with exponentially increasing statistical noise and thus
large statistics.
In this work we study the light, strange and charm scalar

and tensor nucleon charges using a gauge ensemble with
two degenerate light flavors (Nf ¼ 2) of twisted mass
clover-improved fermions with pion mass fixed to its

physical value [13]. Since we are analyzing a single gauge
ensemble, cutoff and finite volume effects cannot be
evaluated directly using our lattice results.
The isovector scalar and tensor charges, gu−dS and gu−dT ,

are straightforward to calculate since they receive only
connected contributions arising from the coupling of the
operator to valence quarks, as depicted in Fig. 1. Several
lattice QCD results have been obtained recently including
direct evaluation at the physical point [7,14]. The isoscalar
charges guþd

S and guþd
T receive additional contributions

coming from the coupling of the operator to vacuum
quarks, forming disconnected quark loops. The strange
and charm charges gs;cS and gs;cT receive purely disconnected
contributions which are notoriously difficult to evaluate,
being computationally very demanding. It is only recently
that disconnected diagrams were included in lattice QCD
calculations of the scalar and tensor matrix elements [15–
21], eliminating an uncontrolled systematic uncertainty. In
this work we employ improved stochastic methods to
include all the disconnected diagrams with satisfactory
accuracy and by applying nonperturbative renormalization
to obtain results on the strange and charm scalar and tensor
charges with all contributions taken into account directly at
the physical point mass.
The paper is organized as follows: In Sec. II we

summarize the characteristics of the gauge configurations
used and in Sec. III we describe the extraction of the
appropriate matrix elements, which for zero momentum
transfer yield the charges. In Sec. IV we discuss in detail the
lattice QCD computation of both connected and discon-
nected contributions and their renormalization, and in
Sec. V we present our results. In Sec. VI we compare
our results with those obtained recently by other lattice
QCD groups and in Sec. VII we conclude.

II. SIMULATION DETAILS

We analyze an Nf ¼ 2 gauge ensemble produced by the
European Twisted Mass Collaboration (ETMC) [13,14] at
the physical pion mass. The “Iwasaki” improved gauge
action [22,23] is employed. The lattice volume is 483 × 96
and the lattice spacing determined from the nucleon mass is
a ¼ 0.0938ð2Þ fm. The rest of the parameters regarding
this ensemble are listed in Table I. We shall refer to this

FIG. 1. Diagrams of a connected (left) and disconnected (right) three-point function.
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ensemble as the “physical ensemble” from now on. In the
fermion sector, the twisted mass fermion (TMF) action
at maximal twist is employed [24,25], including a clover
term [26],

SF½χ; χ̄; U� ¼ a4
X

x

χ̄ðxÞ
�
DW ½U� þmcr þ iμlγ5τ3

−
1

4
cSWσμνF μν½U�

�
χðxÞ; ð1Þ

where DW ½U� denotes the massless Wilson-Dirac operator,
τ3 is the third Pauli matrix acting in flavor space, mcr is the
bare untwisted mass tuned to its critical value and μl is the
bare twisted light quark mass. The last term in Eq. (1) is
the clover term, with cSW the so-called Sheikoleslami-
Wohlert improvement coefficient, which is fixed to
cSW ¼ 1.57551 [27]; F μν½U� the field strength tensor;
and σμν ¼ ð1=2Þ½γμ; γν�. With χðxÞ we denote the light
quark doublet in the twisted basis, χ ¼ ðu; dÞ.
The TMF action is particularly attractive for hadron

structure calculations as it provides an automatic OðaÞ
improvement without requiring further operator improve-
ment. Additional advantages are the infrared regularization
of small eigenvalues that makes dynamical simulations
faster and the simplified renormalization of operators
[25,28–30]. However, due to Oða2Þ lattice artifacts that
lead to instabilities in the numerical simulations, particu-
larly at quark masses close to their physical values, the
addition of a clover term was required. The latter reduces
isospin symmetry breaking effects, while preserving the
automaticOðaÞ improvement. Another advantage of TMFs
is that scalar matrix elements are multiplicatively renorma-
lizable [31]; hence a mixing between the bare light and
strange scalar matrix elements, seen in other Wilson-type
fermion actions, does not occur. TMFs also obey a power-
ful property, which allows an effective increase of the
signal-to-noise ratio of the disconnected quark loops,
known as the one-end trick [32–34]. In Sec. IV we give
more details on the techniques used for the computation of
the disconnected contributions. The reader interested in
more technical details regarding the twisted mass action

and the simulations of the gauge ensemble used in this
work is referred to Refs. [13,35–38].

III. MATRIX ELEMENT DECOMPOSITION

The quantity of interest is the forward nucleon matrix
element hNðpÞjOΓjNðpÞi, where jNðpÞi is a nucleon state
with momentum p andOΓ is either the local scalar or tensor
operator. In the physical basis, these operators read

OSa ¼ q̄
τa

2
q; Oμν

Ta ¼ q̄σμν
τa

2
q; ð2Þ

respectively, where q ¼ u, d and σμν ¼ ð1=2Þ½γμ; γν�. The
τa matrix acts in flavor space. We consider both isovector
and isoscalar quantities, for which we take τa ¼ τ3 and
τa ¼ 1, respectively. The individual contributions for gu;dS

and gu;dT can then be extracted from the isovector and
isoscalar combinations. This is equivalent to calculating
directly these contributions by substituting τa with the
corresponding projectors onto the up and down quarks in
Eq. (2). Unless otherwise specified, all expressions are
given in Euclidean space. For the strange and charm quarks
we use Osterwalder-Seiler fermions; that is, they are
introduced as heavy doublets similar to the light quark
doublet, χðfÞ ¼ ðfþ; f−Þ, where f ¼ s, c. The action for
these doublets is the same as Eq. (1), but with the light
twisted mass μl replaced by the corresponding mass of the
given heavy quark, μf, and f� refers to choosing �μf. We
have tuned the bare twisted mass of the strange and charm
quarks to reproduce the physical Ω− and Λþ

c mass,
respectively. The values we obtain are aμs ¼ 0.0259ð3Þ
and aμc ¼ 0.3319ð15Þ [39]. At our fixed lattice spacing we
get for the renormalized quark masses at 2 GeV in the MS
scheme

mR
s ¼ 108.6ð2.2Þ MeV; mR

c ¼ 1392.6ð23.5Þ MeV;

ð3Þ

where only statistical errors are quoted. A more complete
analysis, including systematic errors, will follow in the
future. The nucleon scalar and tensor charges can be
extracted from the corresponding matrix elements of the
operators of Eq. (2) at zero momentum transfer, which are
decomposed as

hNðp; s0ÞjOSa jNðp; sÞi ¼ ūNðp; s0Þ
�
1

2
Ga

Sð0Þ
�
uNðp; sÞ;

ð4Þ

hNðp; s0ÞjOTajNðp; sÞi ¼ ūNðp; s0Þ
�
1

2
Aa
T10ð0Þσμν

�
uNðp; sÞ:

ð5Þ

TABLE I. Input parameters ðβ; L; aμÞ of our lattice simulation
with the corresponding lattice spacing and pion mass. The
systematic error on the lattice spacing given in the second
parenthesis is due to the interpolation to the 135 MeV pion
mass. The value of the lattice spacing is determined from the
nucleon mass using 140 times the statistics as compared to what
was used in Refs. [13,14], namely using Oð215; 000Þ statistics.

β ¼ 2.10, a ¼ 0.0938ð3Þð2Þ fm, r0=a ¼ 5.32ð5Þ
483 × 96, L ¼ 4.5 fm aμ 0.0009

mπ (GeV) 0.1305(4)
mπL 2.98
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From the above matrix elements, the scalar and tensor
charges can be obtained fromGSð0Þ≡gS and AT10ð0Þ≡gT .
Depending on whether the operators are either the indi-
vidual up- or down-quark contributions or the isovector
or isoscalar combinations, the corresponding charge is
obtained. We note here that for nonzero momentum trans-
fer, the form factors BT10ðQ2Þ and ~AT10ðQ2Þ appear in
Eq. (5), where Q2 is the momentum transfer in Euclidean
space. We do not consider these form factors in this work.

IV. LATTICE EVALUATION

A. Correlation functions

In lattice QCD, the matrix elements of Eqs. (4) and (5)
are computed by constructing appropriate three-point
correlation functions. Since we are interested in extracting
the charges we need the matrix elements with zero
momentum transfer. We thus give here the corresponding
expression for the three-point function for the case q⃗ ¼ 0⃗
as well as the nucleon two-point function needed for
canceling the Euclidean time evolution and unknown
overlaps of the interpolating field with the nucleon state:

G3pt
Γ ðP; p⃗; q⃗ ¼ 0⃗; ts; tinsÞ ¼

X

x⃗s;x⃗ins

e−iðx⃗s−x⃗0Þ·p⃗PβαhJαðx⃗s; tsÞ

×OΓðxins; tinsÞJ̄βðx⃗0; t0Þi; ð6Þ

G2ptðp⃗; tsÞ ¼
X

x⃗s

P4
βαhJαðx⃗s; tsÞJ̄βðx⃗0; t0Þi

× e−ix⃗s·p⃗; ð7Þ

where t0, tins and ts are the time coordinates of the source,
insertion and sink, respectively. The projector matrix P4 is
given by

P4 ¼ 1

4
ð1� γ0Þ: ð8Þ

For the scalar charge, the unpolarized projector P ¼ P4 is
used in the three-point function, whereas for the tensor
charge, the polarized projector

P ¼ Pk ≡ iP4γ5γk; k ¼ 1; 2; 3 ð9Þ

is required. We work in the rest frame, i.e., the source and
sink carry zero momentum; therefore we also set p⃗ ¼ 0. We
use the proton interpolating operator given by

JαðxÞ ¼ ϵabcuaα½ubβðxÞðCγ5ÞβγdcγðxÞ�: ð10Þ

In order to increase the overlap with the proton ground state
we apply Gaussian smearing [40,41] at the source and sink.
The smeared quark fields read

qasmearðx⃗; tÞ ¼
X

y

Fabðx⃗; y⃗;UðtÞÞqbðy⃗; tÞ;

Fðx⃗; y⃗;UðtÞÞ ¼ ð1þ αGHÞnGðx⃗; y⃗;UðtÞÞ ð11Þ

andH is the hopping term realized as a matrix in coordinate
and color space,

Hðx⃗; y⃗;UðtÞÞ ¼
X3

j¼1

ðUjðx⃗; tÞδx⃗þaĵ;y⃗

þ U†
jðx⃗ − aĵ; tÞδx⃗−aĵ;y⃗Þ: ð12Þ

We also apply APE smearing to the gauge fields that
enter the hopping matrix. For the parameters αG and nG of
the Gaussian smearing we use the values αG ¼ 4.0 and
nG ¼ 50, optimized so as to yield a proton root mean
square radius of about 0.5 fm. The APE-smearing param-
eters areNAPE ¼ 50 and αAPE ¼ 0.5. In our calculations we
choose the source positions ðx⃗0; t0Þ randomly in order to
decrease correlations among measurements.
As already mentioned, for isovector quantities the

disconnected contributions cancel in the isospin limit up
to lattice artifacts, which we expect to be small for the
twisted mass clover-improved action used here. In order to
evaluate the connected three-point function, shown dia-
grammatically in the left panel of Fig. 1, we use the
sequential inversion approach through the sink [42]. Within
this method, the sum over the sink spatial coordinates, x⃗s, in
Eq. (6) is carried out through an inversion of the Dirac
operator with an appropriately constructed source that
combines the two forward propagators with the projector
and the quantum numbers of the interpolating field at the
sink. This so-called sequential propagator is thus required
per choice of the sink-time coordinate ts and sink projector,
whereas all insertion times as well as any insertion operator
can be obtained practically without additional computa-
tional cost. We perform inversions for five sink-time slices,
namely ts=a ¼ 10, 12, 14, 16 and 18, which correspond to
t ≈ 0.9–1.7 fm in physical units, for the scalar operator
where excited states’ contributions were found to be
significantly large and for three sink times for the tensor
operator, namely ts=a ¼ 10, 12 and 14. We use four
separate projectors, namely P4 and Pk, k ¼ 1, 2, 3 as
given in Eqs. (8) and (9).
For the isoscalar as well as the purely disconnected

strange and charm quantities one needs to compute the
disconnected quark loop and appropriately combine it
with the two-point function in order to construct the
disconnected three-point function, depicted in the right
panel of Fig. 1. The disconnected quark loop for a general
γ-structure Γ is of the form

LðfÞðΓ; tÞ ¼
X

xins

Tr½Gfðxins; xinsÞΓ�; ð13Þ
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where Gfðx; yÞ is the propagator of the quark flavor f. The
sum over all the spatial coordinates xins implies that one
needs to evaluate the so-called all-to-all propagator. It is
apparent that it is prohibitively expensive to calculate
all-to-all propagators in an exact manner, as this would
require L3 inversions of the Dirac matrix per quark flavor,
compared to two inversions per quark flavor required for
the connected three-point function. A feasible alternative is
to use stochastic techniques [43] in order to obtain an
unbiased estimate of Gfðxins; xinsÞ, at the cost of introduc-
ing stochastic error in the calculation. Briefly, this is usually
done by generating a set of Nr stochastic sources jξri
randomly filled with Z4 noise. Then one solves Mjsri ¼
jξri for jsri and calculates

G≡M−1
E ¼ 1

Nr

XNr

r¼1

jsrihξrj ≈M−1: ð14Þ

For Nr → ∞, Eq. (14) provides an unbiased estimate of the
all-to-all propagator. The number Nr required in order to
sufficiently suppress the stochastic noise depends on the
observable, but in general Nr ∼Oð103Þ, which is much
smaller than L3; hence this calculation is computationally
attainable.
As already mentioned, TMFs have a property that allows

us to reduce the gauge noise of disconnected quark loops.
At first we remark that the isoscalar combination of a flavor
doublet of the scalar operator transforms into an isovector
of the pseudoscalar operator in the twisted basis, i.e.,
ūuþ d̄d ¼ iðϕ̄uγ5ϕu − ϕ̄dγ5ϕdÞ, where u, d are the quark
fields in the physical basis and ϕu, ϕd are the quark fields in
the twisted basis. The disconnected quark loop for the
scalar operator in the twisted basis is then given by

LðuþdÞð1; tÞ ¼
X

xins

Tr½Guðxins; xinsÞ þ Gdðxins; xinsÞ�

→
X

xins

Tr½iγ5ðGϕu
ðxins; xinsÞ −Gϕd

ðxins; xinsÞÞ�;

ð15Þ

which, when utilizing the TMF properties, becomes

LðuþdÞð1; tÞ ¼ 2μl
X

xins;y

Tr½Gϕd
ðxins; yÞG†

ϕd
ðy; xinsÞ�: ð16Þ

From this transformation, known as the one-end trick
[32–34], two main advantages emerge. The first is that
the gauge fluctuations are significantly reduced due to the
μl factor, which isOð10−3Þ. The second one is that the sum
of V terms [sum over y in Eq. (16)] that appears in
transforming the subtraction of propagators into a multi-
plication increases the signal-to-noise ratio from 1=

ffiffiffiffi
V

p
to

V=
ffiffiffiffiffiffi
V2

p
. The two benefits emerging from the one-end trick

yield a large reduction in the errors for the same computa-
tional cost.
The final expression for the disconnected quark loop of

the isoscalar combination of the scalar operator is obtained
by using the property

1

Nr

X

r

jξrihξrj ¼ 1þO
�

1ffiffiffiffiffiffi
Nr

p
�

ð17Þ

of the noise sources. Inserting this into Eq. (16), and noting
that jsri ¼ Gjξri we get

LðuþdÞð1; tÞ ¼ 2μl
1

Nr

XNr

r¼1

hsrjsri þO
�

1ffiffiffiffiffiffi
Nr

p
�
; ð18Þ

where with the bra-ket notation, a trace over spatial volume,
spin and color indices must be realized. Similarly, the
isoscalar tensor operator in the twisted basis transforms as
σμν1 → iγ5σμντ3, where 1 and τ3 act in flavor space.
Following the same procedure for the tensor operator we
obtain the expression

LðuþdÞðσμν; tÞ ¼ 2μl
1

Nr

XNr

r¼1

hsrjσμνjsri þO
�

1ffiffiffiffiffiffi
Nr

p
�

ð19Þ

with the same noise reduction benefits.
Regarding the scalar matrix element of the strange and

charm quarks, we use the heavy doublets in the twisted
basis to construct the pseudoscalar current i

2
ðϕ̄fþγ5ϕfþ−

ϕ̄f−γ5ϕf−Þ, where as already mentioned f ¼ s, c and f�

refers to taking �μf. Considering both fþ and f− to
construct these isovectorlike combinations in the twisted
basis allows us to take full advantage of the one-end trick
and increase the signal-to-noise ratio of the disconnected
quark loops in order to obtain the loops LðsÞ and LðcÞ. A
similar procedure is followed for the tensor matrix element,
as in the light quark loops. Namely, apart from a factor of
1=2 the same expressions as in Eqs. (18) and (19) are
derived for the heavy quarks, where jsri are obtained by
inverting the twisted-mass Wilson-clover operator with the
corresponding heavy quark mass.
In addition, for the strange and charm loops we use the

truncated solver method (TSM), which provides a way to
increase Nr at a reduced computational cost. Within this
method, a large number of stochastic sources inverted to
low precision and a small number inverted to high precision
are combined to estimate the all-to-all propagator [44,45]
according to

M−1
ETSM

¼ 1

NLP

XNHPþNLP

j¼NHPþ1

jsjiLPhξjj

þ 1

NHP

XNHP

r¼1

½jsriHP − jsriLP� < ξrj; ð20Þ
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where the first term is similar to Eq. (14) and the second
term corrects for the bias introduced by using low-precision
stochastic propagators. The parameters that need to be
tuned are the exact number of low- and high-precision
sources as well as the low-precision criterion, such that the
all-to-all propagator remains unbiased. The latter can be set
either by a relaxed stop condition for the residual of the
conjugate gradient (CG) algorithm, for instance jr̂j < 10−2,
or equivalently, by fixing the number of iterations. The goal
is to choose the ratio NLP=NHP as large as possible, while
still ensuring that the final result is unbiased and that
rc ≃ 1, where rc is the correlation between the NHP
propagators in low and high precision. It is customary to
set NLP as the number of sources that would be used if the
standard stochastic method was to be employed instead of
TSM, and then increase the number of NHP until the bias is
corrected; see e.g., Refs. [18,45,46]. We set the low-
precision criterion such that rc ≃ 0.99, which is sufficiently
large for the purposes of our calculation. We show the
dependence of rc as a function of the CG iterations on the
left panel of Fig. 2 for various values of the twisted mass
parameter μ. To determine the exact number of iterations for
each μ-value, we interpolate our data as demonstrated in the
right panel of Fig. 2 for the case of the strange quark. From
this procedure we find nLPiter ¼ 126 for the strange quark.
Following a similar procedure for the charm quark we find

nLPiter ¼ 9. However, by fixing the number of iterations the
exact residual might differ amongst the stochastic sources
inverted. In order to avoid that, we equivalently opt to set
jr̂LPj ¼ 10−3 as the low-precision criterion in both cases,
which still satisfies the condition rc ≃ 0.99 and yields
iteration numbers very close to the values obtained from the
TSM tuning procedure. The values of NHP and NLP for the
strange and charm quarks are listed in Table II. We remark
here that applying the TSM method for the light quarks is
not as beneficial since, as one can see from the left plot of
Fig. 2, the number of iterations required to achieve a high
correlation is much larger than for the heavy quarks. In fact,
in an attempt to tune the TSM parameters following the
discussion of Ref. [44] we found that the resulting optimal
values reported minimal benefits.
After calculating the two- and three-point functions, we

then form the ratio

RΓðP; ts; tinsÞ ¼
G3pt

Γ ðP; 0⃗; 0⃗; ts; tinsÞ
G2ptð0⃗; tsÞ

: ð21Þ

In the large time limit, the unknown overlaps of the nucleon
interpolating field with the nucleon ground state cancel and
the ratio becomes time independent; thus the desired matrix
element can be extracted from a fit to a constant. This can
be realized by writing Eq. (21) on the hadron level

FIG. 2. Left: The correlation rc between the high-precision and low-precision propagators for several values of the twisted mass
parameter. Right: Interpolation of our data for determining the optimal value of nLPiter for the strange quark at rc ≃ 0.99. A similar
procedure was followed for the charm quark.

TABLE II. The statistics of our calculation. Nconf is the number of gauge configurations analyzed and Nsrc is the number of source
positions per configuration. With Ntot we denote the total number of statistics, i.e., Ntot ¼ Nconf × Nsrc. In the case of the disconnected
contributions, Nsrc refers to the number of two-point functions. Also given here is the number of high-precision stochastic vectors, NHP,
produced for the loops as well as the number of low-precision vectors produced, NLP, in the cases where the TSM is employed.

Connected: Three-point Disconnected

tf=a Nconf Nsrc Ntot Flavor Nsrc Nconf Ntot NHP NLP

10,12,14 579 16 9264 Light 100 2137 213700 2250 Not applicable
16 542 88 47696 Strange 100 2153 215300 63 1024
18 793 88 69784 Charm 100 2153 215300 5 1250
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RΓðP; ts; tinsÞ

∝
P

n;n0 hJjn0ihnjJ̄ihn0jOΓjnie−En0 ðts−tinsÞe−Enðtins−t0Þ
P

njhJjnij2e−Enðts−t0Þ ; ð22Þ

where jni is the nth eigenstate of the QCD Hamiltonian
with the quantum numbers of the nucleon, and En is the rest
frame energy of that state. We note that when jni ¼ jNi and
jn0i ¼ jNi, where jNi is the nucleon ground state, the
desired matrix element hNjOΓjNi appears in Eq. (22). The
exponential terms containing energies of excited states
become small compared to the matrix element and com-
pared to unity when tins − t0 ≫ 1 and ts − t0 ≫ 1, in which
case the ratio reduces to the desired ground state matrix
element.

B. Excited states investigation

In order to assure that the extracted matrix element
corresponds to the nucleon ground state, we employ three
methods to assess whether contributions due to excited
states to the ratio of Eq. (22) are sufficiently suppressed.
The first method, known as the “plateau method,” is

commonly used in extracting matrix elements. One com-
putes the three-point function for several sink-source time
separations and examines the time dependence of the ratio
given by Eq. (22). If Δðtins − t0Þ ≫ 1 and Δðts − t0Þ ≫ 1,
where Δ ¼ E1 − E0 then contributions from excited states
are expected to be small and ground dominance leads to a
time-independent region (plateau). However, due to the fact
that the approach to the plateau value is not monotonic,
identifying the plateau region can become a difficult task.
For this reason, several ts need to be computed for each
matrix element, which should demonstrate a convergence
towards a single constant plateau value as ts is increased.
As already mentioned, within the sequential inversion
through the sink, the sink-time slice is fixed, thus a new
set of inversions is required for each new value of ts. An
additional issue arising as the sink-source time separation
increases is that the error to signal increases exponentially,
as shown in Fig. 3. Therefore, the statistics required for
constant error increase exponentially, making the calcu-
lation computationally very demanding.
In the plateau region one fits the ratio

RΓðP; ts; tinsÞ⟶
Δðtins−t0Þ≫1

Δðts−t0Þ≫1
ΠΓðPÞ ð23Þ

over tins to a constant to obtain the desired matrix
element. The procedure is repeated for several increasing
values of ts until the plateau value does not change, in
order to ensure that the contaminations from excited
states are suppressed. The scalar and tensor charges of
the nucleon ground state, at zero momentum transfer in
the large Euclidean time, are then extracted from the
corresponding ratios

ΠSðP4Þ ¼ gS
2

Πij
T ðPkÞ ¼ ϵijk

gT
2
: ð24Þ

The second technique we employ is the “summation
method” [47], which has been applied in a number of recent
calculations concerning nucleon charges [14,21,48]. In this
approach, a sum of the ratio over the insertion time tins is
performed:

Rsum
Γ ðP; tsÞ ¼

Xts−a

tins¼t0þa

RΓðP; ts; tinsÞ: ð25Þ

From Eq. (22) and keeping terms up to E1 one can see that
the sum over the exponentials is a geometric series; thus it
can be easily carried out and reads

Rsum
Γ ðP; tsÞ ¼ Cþ ðts − t0ÞMþOðe−Δðts−t0ÞÞ þ � � � ;

ð26Þ

where C is a constant independent of ts and M≡
hNjOΓjNi is the desired matrix element. The matrix
element M is then the slope of a straight line fit of
Rsum
Γ ðP; tsÞ with respect to (ts − t0). In general, since we

now fit over two parameters C and M, the summation
method has larger errors on the matrix element.
The third approach to extract the desired matrix element

is the so-called “two- or three-state fit.”Within this method
the contributions due to the first or second excited state are
taken into account. In this analysis we consider terms
involving the first excited state; i.e., we perform a two-state
fit. We take into account several values of the sink-source
separation and perform a simultaneous combined fit with
respect to tins and ts, taking into account all terms that
involve the ground state and the first excited state. From

FIG. 3. The variance as a function of the sink-source time
separation for the isovector scalar and the tensor charges.
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Eq. (22), one can see that considering all terms up to the
first excited state gives the following expression for the
three-point function:

G3pt
Γ ¼ A00e−E0ðts−t0Þ þ A01e−E0ðts−tinsÞe−E1ðtins−t0Þ

þA10e−E1ðts−tinsÞe−E0ðtins−t0Þ þ A11e−E1ðts−t0Þ; ð27Þ

where E0 ¼ mN , the mass of the nucleon, Anm ¼
hJjnihmjJ̄ihnjOΓjmi, Anm∈R, and we note that A01¼A10.
Similarly, the expression for the two-point function is
given by

G2pt ¼ c0e−E0ðts−t0Þ þ c1e−E1ðts−t0Þ; ð28Þ

where cn ¼ jhJjnij2. In the above expressions, j0i denotes
the ground state of the nucleon and j1i the first excited
state. We perform a simultaneous fit to the three- and two-
point functions given in Eqs. (27) and (28) that includes
seven fit parameters, namely A00, A01, A11, c0, c1, E0 and
E1. The desired matrix element M is then obtained from

M≡ h0jOΓj0i ¼
A00

c0
: ð29Þ

These fits are very robust and enable us to extract the
excited state contribution accurately. We note that for
consistency we also perform a direct fit to the ratio of
Eq. (22), which includes five fit parameters instead of
seven. We find consistent results of the matrix element
between the two fits, albeit the errors from the latter fit
are larger. We thus use the results extracted from the
seven-parameter fit.
We consider that excited states are sufficiently sup-

pressed when the three methods mentioned above yield
consistent values forM, and take the plateau fit at the ts for
which this agreement holds as our final value. We give as a
systematic error due to excited state effects the difference
between the mean values extracted from the plateau and
two-state fit.

C. Finite lattice spacing and volume effects

Since we are using a single ensemble we cannot directly
evaluate lattice artifacts due to the finite lattice spacing
and volume. However, we have computed similar matrix
elements using Nf ¼ 2 [49–51] and Nf ¼ 2þ 1þ 1 [52]
ensembles for higher than physical pion masses, where we
compared results using three different lattice spacings and
different volumes. Within our statistical errors, results on
for example the axial charge were found to be consistent for
lattice spacings between a ∼ 0.9 fm and a ∼ 0.6 fm. A
continuum extrapolation yielded a value consistent with
that determined with the ensemble at a ∼ 0.9 fm [49]. We
thus expect cutoff effects to be small for our improved
action. Similarly, comparing the axial charge extracted for

Lmπ ¼ 3.3 and Lmπ ¼ 4.3 we observed no detectable
volume effects. A further indication that volume effects
are under control is based on a study of the nucleon σ-terms
[21] extracted from the same scalar matrix element using
the same ensemble employed here. Our value for the σπN is
in agreement with the result of Ref. [53] obtained from an
extensive analysis using the Feynman-Hellmann theorem
which was corrected for finite volume effects. This leads us
to expect that finite volume effects are reasonably small,
although an investigation of volume effects at high accu-
racy is called for at the physical point. We are currently
investigating volume effects on these quantities using a
spatial lattice size of Ls ¼ 64 at the same pion mass as the
one of this work.

V. RESULTS

In this section we present our results for the light, strange
and charm scalar and tensor charges. Connected contribu-
tions are computed for five source-sink separations for the
unpolarized projector [Eq. (8)] used for the scalar charges,
namely ts=a ¼ 10, 12, 14, 16 and 18, which correspond to
about 0.9,1.1,1.3,1.5 and 1.7 fm. For the polarized projec-
tor [Eq. (9)] applied for the tensor charges we use
ts=a ¼ 10, 12 and 14, which as becomes clear in the
following, prove sufficient for our analysis. The discon-
nected quark loops are calculated for all time slices. In
Table II we summarize the statistics of our calculation for
both the connected and disconnected contributions. Also
listed is the number of high- and low-precision stochastic
sources used in the TSM for the strange and charm charges.
The statistics for ts=a ¼ 10, 12 and 14 analyzed in this
study are about six times more than those in Ref. [14]. The
two larger time separations, namely ts=a ¼ 16 and 18 that
we have introduced in this work, serve as a further check
for excited state effects.
In order to renormalize the scalar and tensor matrix

elements it is sufficient to evaluate the renormalization
functions of the nonsinglet and singlet scalar and tensor
quark bilinears, which for maximally twisted fermions are
given by ZP and ZT , for the gauge ensemble we use in this
work. We determine them nonperturbatively in the MS
scheme at a scale of 2 GeV. Details on the computation of
the nonsinglet renormalization functions are given in
Ref. [54]. For flavor singlet operators, disconnected fer-
mion lines lead to a significant increase in the computa-
tional effort. In order to calculate the renormalization
coefficients nonperturbatively, we consider the bare vertex
functions [55]

GnsðpÞ ¼ a12

V

X

x;y;z

huðxÞūðzÞΓdðzÞd̄ðyÞi;

GsðpÞ ¼ a12

V

X

x;y;z

huðxÞūðzÞΓuðzÞūðyÞi ð30Þ
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where Gns and Gs are the nonsinglet and singlet cases,
respectively, and V is the lattice volume. The amputated
vertex function can be derived from the vertex function as

ΛΓðpÞ ¼ ðSðpÞÞ−1GΓðpÞðSðpÞÞ−1 ð31Þ

where SðpÞ is the propagator in momentum space. For the
singlet vertex function the disconnected contribution is
amputated using one inverse propagator because the closed
quark loop does not have an open leg. More details will be
given in a forthcoming publication [56]. The values used to
renormalize the lattice scalar and tensor matrix elements are
given in Table III for both isovector and isoscalar quan-
tities. Perturbatively, the difference between the singlet and
nonsinglet renormalization functions for both ZP and ZT is
zero up to two loops, as presented in Ref. [57]. A nonzero
difference is present only for the scalar and axial operators.
In particular, for the scalar operator which breaks chirality
similarly to the pseudoscalar and tensor ones, the difference
is extremely small for the Iwasaki gauge action combined
with the value of cSW used in our simulations. This
behavior partly explains the small difference we find
nonperturbatively [56] as presented in Table III.
We illustrate our results in what follows using a

common format; namely we show two plots per observable:
In the first plot we display for each ts the ratio of Eq. (21)
as a function of tins − ts=2, such that the midpoint time
of the ratio coincides for all source-sink separations at
tins − ts=2 ¼ 0. We also include in the same plot the
horizontal bands resulting from fitting the ratio, the
summation method and the two-state fit. In the second
plot we summarize the three methods we employ in the
calculations, by demonstrating the convergence of our
results extracted from fitting the ratio in the plateau region
as a function of ts, as well as by including the results of the
summation method and the two-state fit as we vary the
lowest value of ts considered in the fits, denoted by tlows .
Throughout, all errors including the error bands in the fits
are calculated using jackknife resampling.

A. Nucleon scalar charge

In this section we discuss our results on the scalar charge
of the nucleon. In Fig. 4 we show the two plots as discussed
above for both the isovector scalar charge, gu−dS , and the

connected contributions to the isoscalar scalar charge, guþd
S .

We note that the isovector scalar charge is noisy since it
results from subtracting two large values. This explains the
fact that at ts ¼ 1.31 fm the plateau is consistently higher
than all the rest. The statistics for this sink-source separation
is the same as for the two smaller, whereas for ts ¼ 1.50 fm
and ts ¼ 1.69 fm the statistics is about five and seven times
more. Thus, we interpret the higher value from the plateau as
a statistical effect. The rest of the time separations yield
consistent values in the plateau region. We take the value of
the plateau at ts ¼ 1.50 fm, which is in agreement with the
results from the summation method and two-state fit, as our
final value for gu−dS . The difference between the value
extracted from the plateau and the two-state fit is taken as
a systematic error due to excited state contamination.
Our previous studies of the isoscalar scalar charge, guþd

S ,
have shown large contamination due to excited states
[14,18]. As can be seen from the results shown in
Fig. 4, the apparent curvature and the increasing trend in
the plateau regions of the ratio as ts becomes larger confirm
this observation. Both values at ts ¼ 1.50 fm and ts ¼
1.69 fm are consistent. The accuracy obtained for guþd

S
allows an accurate determination at ts ¼ 1.69 fm ensuring
ground state dominance and it is the value we adopt. The
results regarding the isovector and isoscalar scalar charges
in this study corroborate the findings from Refs. [14,21]
that large source-sink separations and high statistics are
required for a reasonable agreement of all three methods.
We take the difference between the plateau value at ts ¼
1.69 fm and the one extracted from the two-state fit starting
at tlows ¼ 1.13 fm as the systematic error due to residual
excited states for both gu−dS and the connected guþd

S .
We show the ratio for the disconnected contributions to

guþd
S in Fig. 5. As with the connected contribution to guþd

S ,
we need to go to a large time separation ts in order to
suppress sufficiently the excited states, with the ts depend-
ence being more pronounced. We note that for the
disconnected quantities one can produce the ratio for all
source-sink separations because the two-point function
and the quark loop are produced for all time slices. We
plot the dependence on ts in the right panel of Fig. 5 where
we show the plateau fits for all ts between about 1.0 and
2.2 fm. We select the plateau fit value at ts ¼ 1.69 fm as
our final result for guþd

S , which is in agreement with the
values obtained for larger values of ts. This yields a
contribution, which is about 15% of the connected con-
tribution to guþd

S and is approximately the same as the
percentage found for a twisted mass ensemble with a pion
mass of mπ ¼ 373 MeV [18].
The results on the strange and charm scalar charges

are purely disconnected and the ratios from which gsS
and gcS are extracted are shown in Fig. 6. A first observation
is that both gsS and gcS are nonzero and smaller than the
disconnected contributions coming from the light quark

TABLE III. Renormalization functions ZP and ZT for the gauge
ensemble analyzed in this work, given in the twisted basis. ZP
renormalizes the scalar operator in the physical basis, whereas ZT
is the same in both bases. The first error is statistical and the
second error is systematic due to continuum extrapolation.

ZM̄S
P ZM̄S

T

Singlet 0.4997(38)(177) 0.8515(3)(51)
Nonsinglet 0.5012(75)(258) 0.8551(2)(15)
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loops, as expected. We find that the strange scalar charge is
about 5% of the isoscalar connected scalar charge, whereas
the charm contribution is two orders of magnitude smaller.
The source-sink separation ts ¼ 1.69 fm at which the ratio
for gsS converges is comparable to the light charges. For gcS
the relative errors are larger and the plateau values overlap
at smaller sink-source time separations. We choose the
plateau value ts ¼ 0.94 fm as our final estimate for gcS with

the systematic error due to excited state effects as the
difference between this and the value from the two-state fit
shown in Fig. 6.
In Table IV we collect the values for the light, strange

and charm scalar charges from the plateau fits for all ts.
Also listed are the results from the summation method and
the two-state fit that are shown in Figs. 4, 5 and 6 with the
brown and gray bands, respectively. The final values for the

FIG. 4. Top left: Ratio yielding gu−dS as a function of tins − ts=2 for source-sink separations ts ¼ 0.94 fm (green circles), ts ¼ 1.13 fm
(red squares), ts ¼ 1.31 fm (black diamonds), ts ¼ 1.50 fm (purple triangles) and ts ¼ 1.69 fm (blue pentagons). The plateau value
selected is shown by the short band with the color of the corresponding ts selected, with its starting and ending points indicating the fit
range used. The other two bands spanning the whole range of the plot show the results we select for the summation method (light brown)
and the two-state fit (gray). Top right: Summary of our results for gu−dS from the plateau fits (left column) and the summation method and
two-state fit (right column). With tlows we denote the smallest ts in the latter two fits. The open red and blue symbols denote the selected
final results from the plateau and two-state fits. The red band is the statistical error of the plateau fit. Bottom left and bottom right:
Corresponding plots for the connected contributions to guþd

S .

FIG. 5. Disconnected contributions to guþd
S . The notation is as in Fig. 4. The various values for ts shown for the plateau method are

listed in the legend of the plots.
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scalar charge that we select from the plateau fits are listed in
Table VII, where apart from the statistical error shown in
the first parentheses, we show in the second parentheses the
systematic error estimated from the error in the determi-

nation of the renormalization functions ZMS
P , as well as a

systematic error due to excited state effects in the third
parentheses, taken as the difference in the mean values
between the plateau and two-state fit methods.

B. Nucleon tensor charge

The results for the tensor charge are illustrated in this
section in a similar manner to the discussion of the scalar

charge. In Fig. 7 we show the isovector and connected
isoscalar tensor charges. From our previous study [21]
we know that excited state effects are less severe for gT.
Indeed, a milder dependence on ts is confirmed also for this
twisted mass ensemble and the ratio appears to converge
at ts ¼ 1.31 fm for both the isovector and isoscalar
quantities. This can be inferred also from the two-state
fit and the summation method results where consistent
values are extracted already for the lowest tlows ¼ 0.94 fm.
Therefore, for the tensor charge the analysis is carried out
only for three sink-source time separations.
The disconnected contributions to guþd

T are shown in
Fig. 8. As can be seen, we obtain a small nonzero value

FIG. 6. The strange (top) and charm (bottom) scalar charges. The notation is as in Fig. 4. The various values of ts shown for the plateau
method for each observable are listed in the corresponding legend of the plots.

TABLE IV. Results for the nucleon scalar charges with their jackknife errors. In columns 2 to 6 we give the results using the plateau
method at ts ¼ 0.94, 1.13, 1.31, 1.50 and 1.69 fm for the light and strange charges, whereas for gcS the separations ts ¼ 0.56, 0.75, 0.94
and 1.13 fm are given. In the last two columns we list the results from the two-state fit and the summation method that are shown in
Figs. 4, 5 and 6 with the bands (brown and gray respectively). The final value we select for each observable is shown in Table VII.

Observable Plateau at each ts Two-state Summation
0.94 1.13 1.31 1.50 1.69 fit method

gu−dS 0.732(81) 1.180(144) 1.656(271) 0.930(252) 0.927(380) 1.134(217) 0.584(691)
guþd
S (conn.) 6.129(118) 7.158(215) 7.495(416) 8.014(349) 8.221(520) 8.353(404) 8.937(1.045)

guþd
S (disc.) 0.033(58) 0.399(71) 0.697(103) 1.013(159) 1.249(257) 1.303(245) 2.009(468)
gsS 0.220(17) 0.271(22) 0.328(29) 0.356(44) 0.329(68) 0.365(45) 0.456(77)

gcS Plateau at each ts Two-state Summation
0.56 0.75 0.94 1.13 fit method
0.058(14) 0.059(13) 0.062(13) 0.063(14) 0.067(25) 0.062(56)
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extracted from fitting the plateau. The two-state fit yields
very large errors since the signal is too noisy to detect an
excited state. Given that the value at ts ¼ 0.75 fm is con-
sistent as we increase further ts we take this as an upper
bound for the small disconnected contribution. Any
residual excited state effects cannot be detected for these
data and our conclusion is that any disconnected contri-
butions to the isoscalar tensor charge are less than 0.2%
of the connected. The same picture holds for the strange
and charm tensor charges, as demonstrated in Fig. 9. These
disconnected contributions have an upper bound of
about 0.1%.
We tabulate the results of the connected tensor charge in

Table V and of the disconnected contributions in Table VI.

As can be seen, there are large uncertainties on the values
from the summation method and the two-state fit for the
disconnected contributions, not allowing a reliable deter-
mination of the systematic error, which we omit for these.
In Table VII we show the final values for the tensor charges
selected from the plateau fits.

VI. COMPARISON WITH OTHER
CALCULATIONS

In this section we compare the values of the nucleon scalar
and tensor charges that we extract from the analysis
presented here with a set of other recent lattice calculations
as well as with results from phenomenology, when available.

FIG. 7. The isovector (top) and connected isoscalar (bottom) nucleon tensor charge, following the notation of Fig. 4. The various
values of tS shown for the plateau method are listed in the legend of the plots.

FIG. 8. Disconnected contributions to guþd
T . The notation is as in Fig. 4. The various values of ts shown for the plateau method are

listed in the legend of the plots. The error bands of the summation method and two-state fit are not included in the plot on the left panel as
their very large uncertainties preclude a sensible comparison.
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As already mentioned, the scalar and tensor charges have
received particular attention recently due to their implica-
tion in BSM physics. The isovector charges are the most
studied in lattice QCD due to the absence of disconnected
contributions. Whereas not all calculations are carried out
using simulations directly at the physical pion mass, a
number of these results are extrapolated to the physical

point, providing a comparison with our results that are
computed directly at the physical point. The PNDME
Collaboration has recently presented results on the iso-
vector scalar and tensor charges from nine Nf ¼ 2þ 1þ 1
ensembles using the highly improved staggered quarks
(HISQ) action produced by the MILC Collaboration, at
three values of the lattice spacing and a pion mass range of

FIG. 9. The purely disconnected strange (top) and charm (bottom) tensor charges. The notation is as in Fig. 4. The various sink times
shown for the plateau method for each observable are listed in the corresponding legend of the plots. As in Fig. 8, we do not include the
error bands of the summation method and the two-state fit in the plots in the left panel.

TABLE V. Results for the nucleon gu−dT and connected guþd
T with their jackknife errors. The results using the plateau method are shown

at ts ¼ 0.94, 1.13 and 1.31 fm. In the last two columns we list the results from the summation method and the two-state fit that are shown
in Fig. 7 with the brown and gray bands respectively. The final value we select for each observable is shown in Table VII.

Observable Plateau value Two-state Summation
ts (fm) 0.94 1.13 1.31 fit method

gu−dT 1.036(6) 1.011(11) 1.004(21) 0.985(27) 0.925(40)
guþd
T (conn.) 0.611(5) 0.593(10) 0.582(16) 0.565(21) 0.540(37)

TABLE VI. Results for the disconnected contributions to the nucleon tensor charge from the plateau method, the summation method
and the two-state fit. The results using the plateau method are shown from ts ¼ 0.56 fm to ts ¼ 0.94 fm. The final value we select for
each observable is shown in Table VII.

Observable Plateau value Two-state Summation
ts (fm) 0.56 0.66 0.75 0.84 0.94 fit method

guþd
T (disc.) 0.00039(47) 0.00065(58) 0.00109(70) 0.00129(89) 0.00066(112) −0.00120ð329Þ −0.00570ð816Þ
gsT 0.00011(18) 0.00016(20) 0.00032(24) 0.00030(32) 0.00028(40) 0.00140(174) 0.00121(284)
gcT 0.00070(57) 0.00049(69) 0.00062(85) 0.00100(100) 0.00048(111) −0.00166ð394Þ −0.00798ð951Þ
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about mπ ¼ 140–315 MeV [7]. Chiral extrapolations were
performed and systematic uncertainties were studied. We
also compare with the RQCD Collaboration that obtained
results from clover-improved fermions on 11 Nf ¼ 2

ensembles at three lattice spacings and several volumes,
with a lowest pion mass of mπ ¼ 150 MeV [58]. The
LHPC [59] has analyzed a number of Nf ¼ 2þ 1 ensem-
bles of clover-improved fermions produced by the BMW
Collaboration and domain-wall fermions (DWF) by the
RBC and UKQCD Collaborations, as well as a mixed
action scheme which uses DWF valence quarks on Asqtad
staggered sea quarks generated by the MILC Collaboration
spanning a pion mass in the range of mπ ¼ 149–356 MeV.
Both RQCD and LHPC performed chiral extrapolations
and examined lattice artifacts.
In Fig. 10 we compare our results on the isovector scalar

charge with the values extrapolated at the physical point
from the aforementioned collaborations, as well as with
their value at their smallest pion mass if this is at or below
150 MeV. In the same plot two results from phenomeno-
logical analyses are included. One is obtained by employ-
ing a quark model with spherically symmetric quark wave

functions [60] to obtain an estimate for gu−dS . The second
used a conserved vector current (CVC) relation gS=gV ¼
δMQCD

N =δmQCD
q , where δMQCD

N and δmQCD
q are the mass

differences of the proton and neutron and the up and down
quarks, respectively, in pure QCD [21,61]. As can be seen,
there is a very good agreement among all lattice calcu-
lations as well as with the phenomenology results.
In Fig. 10 we also compare the value we extract for the

isovector tensor charge with the lattice calculations from
PNDME, RQCD and LHPC, and additionally from the
RBC/UKQCD Collaboration using Nf ¼ 2þ 1 domain-
wall fermions at a pion mass range ofmπ ¼ 330–670 MeV
[62]. We furthermore include a number of phenomenology
results from Refs. [63–68]. The lattice QCD results are very
accurate and show an excellent agreement among them.
Their errors are noticeably smaller as compared to the
phenomenological results, illustrating the important input
that lattice QCD is currently providing.
In Fig. 11 we compare our results for the connected parts

of the isoscalar scalar and tensor charges with selected
results from the PNDME and the LHPC collaborations at
various pion masses, using the lattice ensembles described

TABLE VII. Final results of the nucleon’s scalar and tensor charges, selected from the plateau fits. The error in the first parentheses is
statistical. In the second parentheses it is a systematic error due to the error in the determination of the renormalization functions ZMS

P and

ZMS
T . In the third parentheses it is the systematic error taking into account excited state contamination, and it is taken as the difference in

the mean values from the plateau and two-state fit methods when the latter is determined precisely enough to allow such a comparison.

gu−dS guþd
S (conn.) guþd

S (disc.) gsS gcS

0.930(252)(48)(204) 8.221(520)(291)(132) 1.249(257)(44)(54) 0.329(68)(12)(36) 0.062(13)(3)(5)

gu−dT guþd
T (conn.) guþd

T (disc.) gsT gcT
1.004(21)(2)(19) 0.582(16)(3)(17) 0.00109(70)(1) 0.00032(24)(0) 0.00062(85)(0)

FIG. 10. Comparison of our results (red circles) for gu−dS (left) and gu−dT (right) with a number of other recent lattice QCD results (blue
squares) and with phenomenology (green triangles). With filled squares we denote extrapolated values at the physical pion mass,
whereas with the open squares we show the lattice results from the various collaborations at their lowest pion mass, for the cases with
mlow

π ≤ 150 MeV. The solid error bars denote statistical errors whereas the dashed error bars show the statistical and systematic
uncertainties added in quadrature. The red vertical band showing our value and its errors is to help guide the eye.
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previously, as well as with TMFs from a gauge ensemble at
mπ ¼ 373 MeV [18]. Regarding guþd

S , PNDME obtained
results at two pion masses, mπ ¼ 220 MeV and 310 MeV
using clover valence quarks on Nf ¼ 2þ 1þ 1 HISQ sea
fermions [69] and performed a linear extrapolation to the
physical point to obtain guþd

S ¼ 7.15ð65Þ, which agrees
with our value. The same group calculated guþd

T on the nine
gauge ensembles for which they obtained the isovector
charges [7] and after performing a chiral extrapolation they
obtain guþd

T ¼ 0.598ð33Þ, which is in good agreement with
the value extracted in this work. In general, there is
agreement among lattice QCD for guþd

S and guþd
T over a

range of pion masses. The tendency for lower values
regarding guþd

S and higher values regarding guþd
T at heavier

pion masses can be explained by the fact that older results
have typically used smaller sink-source time separations.
Since these quantities are affected by excited state con-
taminations that tend to decrease and increase their values,
respectively, contributions from excited states might
explain the higher and lower values, respectively, obtained
in more recent calculations.
Besides our computation, only the PNDME has

evaluated the disconnected contributions [19,70] at pion
masses around mπ ¼ 220 MeV and mπ ¼ 310 MeV.

FIG. 11. Comparison of our results using the physical ensemble (red circles) for the connected guþd
S (left) and guþd

T (right) with lattice
results from the ETMC using TMFs on Nf ¼ 2þ 1þ 1 gauge configurations [18] (blue square); the PNDME using Nf ¼ 2þ 1þ 1

staggered fermions (green triangles) from Ref. [69] for guþd
S and Ref. [7] for guþd

T ; and from the LHPC [59], using Nf ¼ 2þ 1 clover
fermions, domain-wall fermions and a mixed action approach (magenta, brown and light blue diamonds, respectively). The solid error
bars in our results denote statistical errors whereas the dashed error bars show the statistical and systematic uncertainties added in
quadrature.

FIG. 12. Comparison of our results for the disconnected contribution to guþd
S (left) and guþd

T (right) with lattice results from the
ETMC, employing TMFs on Nf ¼ 2þ 1þ 1 gauge configurations [18] (blue square) and the PNDME Collaboration, using clover
valence fermions on a Nf ¼ 2þ 1þ 1 HISQ quark sea (green triangles) from Ref. [70] for guþd

S and Ref. [19] for guþd
T . The solid

error bars in our results denote statistical errors whereas the dashed error bars show the statistical and systematic uncertainties added
in quadrature.

NUCLEON SCALAR AND TENSOR CHARGES USING … PHYSICAL REVIEW D 95, 114514 (2017)

114514-15



Disconnected contributions, besides the physical ensemble,
were also computed for a gauge ensemble of Nf ¼ 2þ
1þ 1 twisted mass fermions at mπ ¼ 373 MeV [18]. We
compare our results for the scalar and tensor charges
regarding the disconnected isoscalar as well as the strange
contributions in Figs. 12 and 13, respectively. As can be
seen, both ETMC and PNDME obtain results for the
disconnected part of guþd

T that are consistent with zero.
On the other hand, the disconnected contribution to guþd

S is
found by both to be nonzero and positive. The same is true
for gsS and gsT . PNDME finds larger values for gsS by about
two standard deviations at mπ ¼ 220 MeV. It would be
interesting for other collaborations to compute gsS directly at
the physical point in order to have a direct comparison. The
ETMC results concerning the disconnected guþd

S and gsS
using the Nf ¼ 2þ 1þ 1 ensemble at mπ ¼ 373 MeV
[18] are obtained at ts ¼ 1.65 fm which is compatible with
the separation taken at the physical ensemble from this
study; however, the lower values from the former work
corroborate the fact that the scalar matrix element is
severely contaminated from excited state effects, that tend
to decrease its value.

VII. CONCLUSIONS

The nucleon scalar and tensor charges are computed
within lattice QCD using simulations generated with two
dynamical degenerate light quarks with mass fixed to
reproduce approximately the physical pion mass. Both
isoscalar and isovector combinations are obtained includ-
ing the disconnected contributions. We also compute the
nucleon strange and charm scalar and tensor charges for the
first time. After a careful investigation of excited state
contributions we obtain in the MS at 2 GeV the following
values,

guS ¼ 5.200ð419Þð149Þð124Þ;
gdS ¼ 4.270ð256Þð149Þð124Þ;
gsS ¼ 0.329ð68Þð12Þð36Þ; gcS ¼ 0.062ð13Þð3Þð5Þ;

ð32Þ
guT ¼ 0.794ð16Þð2Þð13Þ; gdT ¼ −0.210ð10Þð2Þð13Þ;
gsT ¼ 0.00032ð24Þð0Þ; gcT ¼ 0.00062ð85Þð0Þ; ð33Þ
where the first error is the statistical error, the second is
the systematic error due to the determination of the
renormalization functions and the third error is the
systematic error due to the excited states, estimated by
taking the difference between the mean value obtained
from the plateau and two-state fit methods, when the
latter is precise enough for such a comparison to be
sensible. We stress that both isovector and isoscalar
charges are renormalized nonperturbatively with the
nonsinglet and singlet renormalization functions, respec-
tively. We find that the disconnected contributions to the
tensor charge are negligible whereas for the scalar they
make about 15% of the total value in the case of the
isoscalar combination. In addition, excited states are
found to be more severe in the case of the scalar as
compared to the tensor. We note that since these results
were produced using one ensemble of twisted mass
clover-improved fermions we cannot provide systematics
errors due to finite lattice spacing. Results from other
lattice QCD groups close to the physical point are only
reported for the isovector and the connected isoscalar
combinations. Overall lattice QCD results are in agree-
ment with a couple of exceptions and produce nonzero
values for the scalar strange and charm charges, whereas
the strange and charm tensor charge are consistent
with zero.

FIG. 13. Comparison of our results using the physical ensemble (red circles) for the strange charges gsS (left) and gsT (right) with the
results from the PNDME Collaboration, using Nf ¼ 2þ 1þ 1 staggered fermions (green triangles) from Ref. [70] for gsS and Ref. [19]
for gsT.
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