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It has become customary to use a smoothing algorithm called “gradient flow” to fix the lattice spacing in
a simulation, through a parameter called t0. It is shown that, in order to keep the length t0 fixed with respect
to mesonic or gluonic observables as the number of colors Nc is varied, the fiducial point for the flow
parameter must be scaled nearly linearly in Nc. In simulations with dynamical fermions, the dependence of
t0 on the pseudoscalar meson mass flattens as the number of colors rises, in a way which is consistent with
large Nc expectations.
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I. INTRODUCTION

The predictions of lattice studies of systems like QCD
are of dimensionless quantities, such as the ratio of two
masses. One often wants to present these results as
dimensionful numbers (such as masses in GeV). This is
done by picking one observable as a fiducial, fixing its
value somehow to experiment, and expressing all one’s
results in terms of it. In lattice QCD simulations, many
choices for a scale-setting parameter have been used [1]:
masses of various stable particles, decay constants, or
quantities derived from the heavy quark potential, such
as the string tension or of inflection points in the potential
(Sommer parameters [2]). As long as one is studying some
system in isolation, there is no deep reason (though there
might be practical ones) to favor one choice for a parameter
over another. Indeed, the most used quantities for scale
setting are arbitrary choices with no direct connection to
observation.
There are situations when one might want to compare

different theories to each other. The particular comparison,
which is the subject of this paper, is for systems with
different numbers of colors Nc. I am concerned with the Nc
dependence of a new fiducial quantity, a squared distance
conventionally labeled t0, which is derived from the
diffusive smoothing of the gauge field [3,4], through a
process called “gradient flow” or “Wilson flow.” The use of
t0 to set the scale has become standard due to its high
accuracy and ease of use. There is a high probability that it
will be adopted as a scale-setting fiducial for other con-
fining and chirally broken systems. This short paper
addresses two questions related to the use of t0 in such
studies.
First, t0 is a derived quantity; a certain gauge observable,

to be defined below, is set to some value which determines
t0. How should that value be set, so that the scale t0 remains
constant with respect to other scales set by gluonic or

mesonic observables, as Nc is varied? A simple expectation
will be given and tested.
Next, there is a prediction due to Bär and Golterman [5],

for the fermionmass dependence of t0. It comes from a chiral
Lagrangian analysis, and the small mass limit of their
formula involves the pseudoscalar mass mPS, the pseudo-
scalar decay constant fPS, and an undetermined constant k1,

t0ðmPSÞ ¼ t0ð0Þ
�
1þ k1

m2
PS

f2PS
þ � � �

�
ð1Þ

[the full formula is given in Eq. (15), below]. Essentially, all
large scale simulations which measure t0 observe the linear
dependence of t0 on m2

PS, but with only one value of Nc,
there is not much one can say about the k1=f2PS part of the
expression. Data at several values of Nc reveal that k1=f2PS
decreases asNc rises, in awaywhich is consistent with large
Nc expectations.
In ‘t Hooft’s [6] analysis of QCD in the limit of a large

number of colors, observables have a characteristic
scaling with the number of colors Nc. As in a lattice
calculation, the most correct way to express these relations
is to talk about dimensionless ratios, though usually this is
expressed through statements like “meson masses mM are
independent of Nc, while decay constants scale as
fPS ∼

ffiffiffiffiffiffi
Nc

p
.” I will use this language in the text. Large

Nc expectations, which are satisfied well by lattice data
(compare results from pure gauge simulations, summa-
rized in Ref. [7] as well as ones involving fermions from
Refs. [8–10]), are that when simulations are performed at
the same values of the bare ’t Hooft coupling λ ¼ g2Nc
mesonic observables and ones derived from the static
potential are approximately independent of Nc, while
other observables scale appropriately.
Gradient flow or Wilson flow is a smoothing method for

gauge fields achieved by diffusion in a fictitious (fifth-
dimensional) time t. In continuum language, a smooth
gauge field Bt;μ is defined in terms of the original gauge
field Aμ through an iterative process,*thomas.degrand@colorado.edu
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∂tBt;μ ¼ Dt;μBt;μν

Bt;μν ¼ ∂μBt;ν − ∂νBt;μ þ ½Bt;μ; Bt;ν�; ð2Þ

where the smoothed field begins as the original one,

B0;μðxÞ ¼ AμðxÞ: ð3Þ

Lüscher [3] proposed measuring a distance from flow,
using the field strength tensor built using the B0s, Gt;μν, via
the observable

hEðtÞi ¼ 1

4
hGt;μνGt;μνi: ð4Þ

The definition of a squared length t0 comes from fixing the
value of the observable to some value CðNcÞ,

t20hEðt0Þi ¼ CðNcÞ; ð5Þ

and treating t0 as the dependent variable.
Empirically, it is known that at very small t, t2hEðtÞi

rises quickly from zero and then flattens into a linear
function of t. The value of CðNcÞ which fixes t0 is chosen
to be some value in the linear region.
How does CðNcÞ vary with the number of colors,

compared to other observables which are expected to be
independent of Nc? Lüscher reports that, perturbatively,

t2hEi ¼ 3

32π
ðN2

c − 1ÞαðqÞ½1þ k1αþ � � ��; ð6Þ

where αðqÞ is the strong coupling constant at momentum
scale q ∝ 1=

ffiffi
t

p
. Using the one-loop formula for the

coupling constant,

1

αðqÞ ¼ Nc
BðNc; NfÞ

2π
log

q
Λ
; ð7Þ

where BðNc; NfÞ ¼ 11=3 − ð2=3ÞNf=Nc, we invert Eq. (6)
to find

log
q
Λ
¼ 3

16

1

BðNc; NfÞCðNcÞ

×

�
Nc þOð1Þ þO

�
1

Nc

�
þ � � �

�
: ð8Þ

The scale q is an inverse distance. This expression says that
in order to match distances across Nc, in units of Λ, it must
be that CðNcÞ ¼ A1Nc þ A0 þ � � �. This formula is what
I wish to test.
Our scale-setting observable is r1, the shorter version of

the Sommer parameter [11]. For ordinary QCD, r1 ¼
0.31 fm [12]. Its value for the data sets which will be
displayed has been previously published in Refs. [8,10].

II. SIMULATION DETAILS

The data sets are the ones presented in Refs. [10,8] plus
some additional ones to be described below. The simu-
lations used the Wilson gauge action and clover fermions
with normalized hypercubic links [13,14]. The dynamical
fermion simulations hadNf ¼ 2 flavors of degenerate mass
fermions. All lattice volumes are 163 × 32. The data sets
were approximately matched in lattice spacing, so not
much can be said about the size of discretization artifacts.
(Note, however, that large Nc comparisons do not neces-
sarily have to be made in the continuum limit.) The
spectroscopic data sets were based on about 100 lattices
per bare parameter value. (The precise numbers were given
in Refs. [8,10].) Table I records the number of lattices on

TABLE I. Nf ¼ 2 dynamical fermion data plotted in the
figures. The column labeled by N gives the number of lattice
analyzed for t0. The data are those of Ref. [10]. Pseudoscalar
masses are reproduced for convenience.

κ ðamPSÞ2 t0=a2 N

SUð2Þ β ¼ 1.9 C ¼ 0.26
0.1280 0.339(2) 1.295(7) 40
0.1285 0.279(3) 1.384(9) 40
0.1290 0.215(3) 1.508(10) 40
0.1295 0.154(3) 1.608(13) 40
0.1297 0.129(2) 1.718(17) 40
0.1300 0.091(3) 1.833(16) 40
0.1302 0.071(3) 2.010(23) 40

SUð2Þ β ¼ 1.95 C ¼ 0.26
0.1270 0.331(3) 1.590(15) 40
0.1280 0.208(2) 1.845(17) 40
0.1290 0.097(2) 2.263(23) 40
0.1292 0.082(2) 2.478(39) 40

SUð3Þ β ¼ 5.4 C ¼ 0.3
0.1250 0.312(2) 1.657(3) 500
0.1260 0.209(1) 1.860(10) 100
0.1265 0.163(2) 2.019(6) 500
0.1270 0.116(2) 2.165(6) 500
0.1272 0.094(2) 2.238(17) 100
0.1274 0.070(2) 2.333(7) 500
0.1276 0.057(1) 2.413(8) 500
0.1278 0.042(1) 2.500(9) 500

SUð4Þ β ¼ 10.2 C ¼ 0.38
0.1252 0.238(2) 1.826(7) 90
0.1262 0.142(1) 1.990(7) 90
0.1265 0.114(1) 2.094(8) 100
0.1270 0.074(1) 2.149(4) 500
0.1275 0.035(1) 2.286(6) 500

SUð5Þ β ¼ 16.4 C ¼ 0.47
0.1240 0.338(1) 1.733(5) 90
0.1252 0.223(1) 1.830(5) 90
0.1258 0.161(2) 1.913(6) 90
0.1260 0.148(1) 1.920(6) 90
0.1265 0.104(1) 2.003(7) 90
0.1270 0.061(1) 2.074(9) 90
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which flow variables were measured. The lattices from
dynamical fermion data sets were typically separated by ten
molecular dynamics time steps; the quenched lattices were
separated by 100 Monte Carlo updates using a mixture of
over-relaxation and heat bath.
The extraction of t0 from lattice data is standard. The

gradient flow differential equation is integrated numerically
using the Runge-Kutta algorithm generalized to SUðNcÞ
matrices, as originally proposed by Lüscher [3]. The
routine discretizes the flow time with a step size ϵ.
Calculations used the usual “clover” definition of EðtÞ [3].
Three aspects of the data need to be described, all of

which could influence the results. The first is the choice of
integration step size ϵ. To check this, I took one data set
(one κ or bare quark mass value) per SUðNcÞ and generated
an additional data set at a larger step size. Specifically, the
data in the tables use ϵ ¼ 0.03 for Nc ¼ 2–4 and 0.05 for
Nc ¼ 5–7. I augmented this with an ϵ ¼ 0.05 data set for
Nc ¼ 2–4 and ϵ ¼ 0.07 at Nc ¼ 5–7. Identical analysis on
the two data sets revealed no differences between the results
with the two values of ϵ (or more precisely, the differences
were about an order of magnitude smaller that the quoted
uncertainties).
Next, the dynamical fermion data sets are presumably

correlated in molecular dynamics simulation time.
I attempted to estimate the autocorrelation time through
the autocorrelation function (for a generic observable A)
defined as

ρAðτÞ ¼
ΓAðτÞ
ΓAð0Þ

; ð9Þ

where

ΓAðτÞ ¼
XN
i¼1

hðAðτ − ĀÞðAð0Þ − ĀÞi: ð10Þ

The integrated autocorrelation time (up to a window size
W) is

τintðWÞ ¼ 1

2
þ
XW
τ¼1

ρðτÞ: ð11Þ

An issue with these observables is that, unless the total
length in time of the data set is much larger than the
autocorrelation time, it is difficult to estimate an error for
them. That is a problem with most of the data sets used;
there are typically Oð100Þ measurements. However, it
happens that I have additional data for several of the
SUð3Þ and SUð4Þ sets with about 5000 equilibrated
trajectories and 500 saved lattices. I analyzed these sets
by breaking them into five parts, computing τA on each part
and taking an error from the part-to-part fluctuations.
All of these data sets produce similar results. I show

pictures from one data set, an SUð4Þ gauge group with
β ¼ 10.2, κ ¼ 0.127. Panel (a) of Fig. 1 shows the
integrated autocorrelation time for t2EðtÞ as a function
ofW, measured in molecular dynamics time units (rescaled
from data sets spaced ten molecular dynamics units apart).
Panel (b) shows τintðW ¼ 200Þ for a scan of flow time
values. With a spacing of 10 molecular dynamics units
between saved lattices, if an autocorrelation time were less
than 10 molecular dynamics units, it would be hard to
observe.
Finally, there is the determination of t0 [or of CðNcÞ

itself]. Here, the issue is that on each lattice, data at all
values of flow times t are correlated simply because later
flow time data are constructed by processing earlier flow
time data. I dealt with this by doing a jackknife analysis,
basically along the lines of the ones done by Ref. [15]. The
analysis displayed in Fig. 1 suggests doing the jackknife
eliminating sets of lattices for which the length is longer
than the integrated autocorrelation time. This is two
successive lattices for τint ¼ 20 molecular dynamics time
units. I varied the size of the cut; even eliminating ten
successive lattices from the jackknife (100 molecular
dynamics time units) generally resulted in only a 20% rise
in the quoted uncertainty.

(a) (b)

FIG. 1. Integrated autocorrelation times for an SUð4Þ data set, β ¼ 10.2, κ ¼ 0.127. (a) τintðWÞ vs W in molecular dynamics time
units, at flow time t ¼ 2.0. (b) τintðWÞ for W ¼ 20 lattices (or W ¼ 200 molecular dynamics time units) for a set of flow values t.
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Two sets of numbers are needed, values of CðNcÞ at a
fixed ratio of t0=r21 and values of t0 at an input CðNcÞ.
These values are determined by a fit to a small set of points
roughly centered around the fit value to a linear dependence
(t2hEðtÞi ¼ c0 þ c1t) followed by a linear interpolation to
the desired value. These results were collected, and the
jackknife produced the numbers quoted in the table.
I varied the range of the fit and the number of points kept;
as long as the central values lie within the range of points
kept, their values are insensitive to the fit range.

III. RESULTS

A. CðNcÞ vs Nc

Lüscher suggested taking CðNcÞ ¼ 0.3 for Nc ¼ 3
QCD. The resulting t0 has been evaluated by many groups
[15–20], ffiffiffiffi

t0
p ¼ 0.14 fm in Nf ¼ 3 QCD. (The quantity is

actually known to four digits.) Let us keep the ratio
ffiffiffiffi
t0

p
=r1

fixed,
ffiffiffiffi
t0

p
=r1 ¼ 0.46, while varying Nc, and ask how

CðNcÞ is changed. Figure 2 shows data from quenched
SUðNcÞ simulations with Nc ¼ 3, 5, 7 [8] and data from
Nf ¼ 2 dynamical fermion simulations with Nc¼2, 3, 4, 5
[10]. (Error bars in the figure are dominantly from the
uncertainty in r1.) The data are tabulated in Table II. The
dynamical fermion data are at roughly constant pseudo-
scalar to the vector mass ratio, so they are matched in
fermion mass. The gauge couplings and fermion hopping
parameters are ðβ; κÞ ¼ ð1.9; 0.1295Þ, (5.4, 0.127), (10.2,
0.1265), and (16.4,0.1265), for Nc ¼ 2, 3, 4, and 5,
from the data sets of Ref. [10]. CðNcÞ clearly varies
linearly with Nc. It is not a pure linear dependence;

CðNcÞ ¼ A1Nc þ A0 þ � � � and the A0 and higher-order
contributions are due to 1=Nc corrections canceling the
leading Nc dependence in Eq. (8). Presumably, the higher-
order corrections are also Nf dependent.
I have not found a fit with a chi-squared per degree of

freedom which is near unity. The figure shows one attempt:
I fit all the data (quenched and Nf ¼ 2) to

CðNc; NfÞ ¼ c1Nc þ c2Nf þ
c3
Nc

þ c4: ð12Þ

The fit has a χ2 of 11.6 for 3 degrees of freedom;
c1 ¼ 0.096ð3Þ, c2 ¼ 0.014ð2Þ, c3 ¼ 0.0267ð46Þ, and c4 ¼
−0.093ð26Þ.
Finally, the authors of Ref. [21] use

CðNcÞ ¼ 0.3

�
3

8

N2
c − 1

Nc

�
ð13Þ

to match scales in their quenched calculation of the
topological susceptibility. This absorbs all the leading
factors of Nc in the quenched versions of Eqs. (6) and
(7) (or, said alternatively, makes an all-orders ansatz for its
Nc counting), while fixing the Nc ¼ 3 value to Cð3Þ ¼ 0.3.
This seems to overestimate the slope of CðNcÞ vs Nc,
when compared to r1, for the Nf ¼ 2 data sets. It would
give CðNc ¼ 7Þ ¼ 0.77.
I conclude this section by remarking that matching

CðNcÞ by taking one value of t=r21 to be an Nc-independent
constant produces a match of lattice data at different Nc’s
across a wide range of t. This is displayed in Fig. 3.

B. t0 vs m2
PS

I next fix the value of CðNcÞ and collect data at many
values of the quark mass, using the data sets of Ref. [10].
I evaluate t0 using the values of t2hEðtÞi which match
length scales, as shown in Fig. 2. They are CðNcÞ ¼ 0.26,
0.3, 0.38, and 0.47 for Nc ¼ 2, 3, 4, and 5. The data are
tabulated in Table I. With this data, I ask, can we observe
the fermion mass dependence of t0 predicted by the chiral
Lagrangian analysis of Bär and Golterman [5]? They write
an expansion for EðtÞ in terms of the characteristic length
scale for a chiral Lagrangian,

FIG. 2. Tuning factor CðNcÞ from (5), matching
ffiffiffiffi
t0

p
=r1¼0.46.

Octagons are dynamical fermion data, while squares are
quenched. The fancy diamonds are a fit to both data sets
described in the text.

TABLE II. Data in Fig. 2, CðNcÞ at
ffiffi
t

p
=r1 ¼ 0.46. “Q” labels

quenched data.

Nc β κ CðNcÞ
3(Q) 6.0175 0.288(4)
5(Q) 17.5 0.435(6)
7(Q) 34.9 0.612(5)
2 1.9 0.1295 0.261(6)
3 5.4 0.127 0.305(5)
4 10.2 0.1265 0.380(3)
5 16.4 0.1265 0.474(3)
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EðtÞ ¼ c1f4PS þ � � � þ c3f2PSTrðχ†U þ U†χÞ þ � � � ; ð14Þ

where fPS is the pseudoscalar decay constant, U is the
usual exponential of the Goldstone boson field, χ is
proportional to the fermion mass or to the squared
pseudoscalar massm2

PS, and the ci’s are a set of dimension-
less coefficients. They then predict

t0ðmPSÞ ¼ t0ð0Þ
�
1þ k1

m2
PS

f2PS
þ k2

m4
PS

f4PS
log

�
m2

PS

μ2

�

þ k3

�
m2

PS

f2PS

�
2

þ � � �
�
; ð15Þ

where t0ð0Þ is the value of the flow parameter at zero mass,
The ki’s are also dimensionless constants, ratios of the ci’s.
Judging from the quality of the data in Ref. [10], it should
be possible to observe the leading (proportional to k1) mass
dependence in this expression. The result is shown in
Fig. 4. There is a definite, more or less linear, dependence
of t0 on the squared mass, for all Nc’s. The slope flattens as
Nc rises.
The flattening of the slope follows the naive expectation

that fermions affect gauge observables less and less as Nc
rises. It also tells us a bit more. In Eqs. (14) and (15), the
constants ci and ki are dimensionless, but of course this
does not say anything about how the higher-order terms c3
or k1 scale with Nc.
Data from several Nc’s allow us to say something about

k1. The pseudoscalar decay constant scales as
ffiffiffiffiffiffi
Nc

p
. How

does k1 depend on Nc? We can look at that behavior by
rescaling the data. Equation (15) can be rewritten as

t0ðmPSÞ
t0ð0Þ

− 1 ¼ k1
f2PS

m2
PS þ � � � : ð16Þ

I observe that k1=f2PS scales like 1=Nc. To see if that
expectation holds, plot the scaled quantity Ncðt0ðmPSÞ=
t0ð0Þ − 1Þ vs m2

PS and look for a common slope.
Figure 5 shows this. Bär and Golterman say that their

formula is applicable for flow times much smaller than the
square of the pion wavelength. With t0 ∼ 2 − 2.5a2, it
seems appropriate to concentrate on ðamPSÞ2 < 0.2 or so,
and that is what is shown in the figure. The intercept
t0 is determined by doing a quadratic fit of t0ðmPSÞ,
t0ðmPSÞ ¼ t0ð0Þ þ AðamPSÞ2 þ BðamPSÞ4. The plot uses
t0ð0Þ ¼ 2.27, 2.71, 2.62, 2.36, and 2.17 for SUð2Þ β ¼ 1, 9,
SUð2Þ β ¼ 1.95, SUð3Þ, SUð4Þ, and SUð5Þ. Data for
different Nc ≥ 3 seems to behave similarly—a linear
dependence on m2

PS with an Nc-independent slope. This
says that k1 is a constant, independent of Nc. [Linear fits to
the points shown in the figure give slopes Nck1=f2PS ¼
−3.7ð2Þ and −3.1ð2Þ for the β ¼ 1.9 and 1.95 SUð2Þ
points, −4.3ð1Þ for SUð3Þ, −4.4ð2Þ for SUð4Þ, and −3.9ð2Þ
for SUð5Þ.]
This result has a more mundane large Nc origin. EðtÞ is

dominantly a gluonic observable, hEðtÞi ∝ hg2G2Þi [rein-
serting a factor of g2 as compared to Eq. (4)]. hG2i is also a
gluonic observable, which scales as N2

c. (Think of it as a
closed gluon loop.) The coupling scales as g2 ¼ λ=Nc for
‘t Hooft coupling λ. Thus, hEðtÞi ∝ Nc at fixed λ. This is
the scaling for CðNcÞ seen in Fig. 2. Because fPS scales asffiffiffiffiffiffi
Nc

p
, c1 in Eq. (14) must scale as 1=Nc, and then

c1f4PS ∝ Nc. The second term in Eq. (14) is a fermionic

FIG. 3. Plots of t2hEðtÞi scaled byNc-dependent constants, as a
function of t=r21. The data sets and constants are (SU(2): β ¼ 1.9,
κ ¼ 0.1295, C0 ¼ 0.26); (SU(3): β ¼ 5.4, κ ¼ 0.127, C0 ¼ 0.3);
(SU(4): β ¼ 10.2, κ ¼ 0.1265, C0 ¼ 0.38); (SU(5): β ¼ 16.4,
κ ¼ 0.1265, C0 ¼ 0.47). The SUð2Þ curve is the slightly dis-
crepant one at small t.

FIG. 4. The quantity t0=a2 vs squared pseudoscalar mass in
lattice units, ðamPSÞ2, for Nc ¼ 2 (crosses for β ¼ 1.9, fancy
crosses for β¼1.95), 3 (squares), 4 (octagons), and 5 (diamonds).
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contribution to a gluonic observable, which is a 1=Nc

effect: that is, ðc3f2PSÞ=ðc1f4PSÞ∝1=Nc, or k1¼c3=c1∝N0
c.

(Think of breaking the gluon loop into a qq̄ pair: this costs a
factor of g2 while leaving the double-line color countingN2

c

unchanged. Replacing g2 by λ=Nc gives a 1=Nc suppres-
sion.) This is what Fig. 5 shows.
Note that the only parts of Eq. (15), which are unam-

biguously “fermionic” rather than “gluonic” and which are
accessible to simulation, are the terms with explicit quark
mass (or mPS) dependence.
We would expect Nc ¼ 2 to be an outlier. The pattern of

chiral symmetry breaking is different for SUð2Þ than for
Nc ≥ 3 since the fermions live in pseudoreal representa-
tions. Generally, that means that the coefficients in a chiral
expansion are different from the usual factors appropriate to
complex representations. Nevertheless, the plots of t0 vs
mass show empirically that the value of k1 does not seem to
be very different.

IV. CONCLUSIONS

In this paper, I discussed the Nc dependence of the flow
scale t0 and compared it to simple theoretical expectations.
I observed that in order to match the t0 scale to that of other
gluonic observables, it was necessary to scale t2hEðtÞi in a

particular way with Nc. (I used the Sommer parameter r1,
derived from the heavy quark potential.) I also observed the
decoupling of t0, a gluonic observable, from fermionic
degrees of freedom, asNc grows. Measurements of t0ðm2

PSÞ
at several values of Nc are the closest one can come to
observing the 1=f2PS in the Bär-Golterman formula.
In QCD, the flow time t0 is presently the quantity of

choice for scale setting, and one would expect that it would
find use in simulations of other confining and chirally
broken systems. Researchers who use it will discover that
the dependence of t2hEðtÞi on t will be different for their
system than for Nc ¼ 3 QCD. An analysis similar to the
one described here might allow them to justify some
particular choice for C. A useful part of the analysis of
any new model is to ask “how is it different from real world
QCD?” Part of the answer to this question involves the
analysis of Monte Carlo data, and a scale choice is a
necessary part of this analysis. A comparison of a new
system with QCD might involve matching the scale choice
used for the new system with the one used for QCD,
which would require an analysis similar to the one done
here.
In addition, there is more to the analysis of a new system

than Monte Carlo data. It is often useful to have a model,
which can hint at results which have not yet been computed
on the lattice or which may not be accessible to the lattice.
(Large Nc counting is an example of such a model.)
However, models typically are incomplete. Some observed
behavior might have a simple and unexpected source (given
by large Nc counting, for example), but it may not be
something which can be completely justified from first
principles. It is always useful to verify and confirm
assumptions and common lore, in a sound and reliable way.
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FIG. 5. The shifted quantity Ncðt0ðmPSÞ=t0 − 1Þ vs squared
pseudoscalar mass in lattice units, ðamPSÞ2, for Nc ¼ 2 (crosses
for β ¼ 1.9, fancy crosses for β ¼ 1.95), 3 (squares), 4
(octagons), and 5 (diamonds).
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