
Lattice Dirac fermions on a simplicial Riemannian manifold

Richard C. Brower* and Evan S. Weinberg†

Boston University, Boston, Massachusetts 02215, USA

George T. Fleming‡ and Andrew D. Gasbarro§

Yale University, Sloane Laboratory, New Haven, Connecticut 06520, USA

Timothy G. Raben∥

Brown University, Providence, Rhode Island 02912, USA
and University of Kansas, Lawrence, Kansas 66047, USA

Chung-I Tan¶

Brown University, Providence, Rhode Island 02912, USA
(Received 18 January 2017; published 23 June 2017)

The lattice Dirac equation is formulated on a simplicial complex which approximates a smooth Riemann
manifold by introducing a lattice vierbein on each site and a lattice spin connection on each link. Care is
taken so the construction applies to any smooth D-dimensional Riemannian manifold that permits a spin
connection. It is tested numerically in 2D for the projective sphere S2 in the limit of an increasingly refined
sequence of triangles. The eigenspectrum and eigenvectors are shown to converge rapidly to the exact result
in the continuum limit. In addition comparison is made with the continuum Ising conformal field theory on
S2. Convergence is tested for the two point, hϵðx1Þϵðx2Þi, and the four point, hσðx1Þϵðx2Þϵðx3Þσðx4Þi,
correlators for the energy, ϵðxÞ ¼ iψ̄ðxÞψðxÞ, and twist operators, σðxÞ, respectively.
DOI: 10.1103/PhysRevD.95.114510

I. INTRODUCTION

Lattice gauge theory on hypercubic lattices [1] provides
a powerful ab initio approach to strongly coupled field
theories in flat Euclidean space, RD. However there is
important nonperturbative physics that would benefit from
the extension of lattice field theory methods to more
general curved Riemann manifolds. One example is a
recent proposal to implement radial quantization for con-
formal field theories [2–4]. This requires replacing the flat
Euclidean manifold, RD, by the cylinder, R × SD−1, which
represents the boundary of anti–de Sitter space AdSDþ1 in
global coordinates. Other examples include ab initio cal-
culations of the c and a terms, tests of AdS=CFT duality,
quantum criticality in condensed matter and perhaps
quantum physics near black holes.
The conventional lattice regulator in flat space is a

sequence of hypercubic lattices on a torus, TD, with a
uniform lattice spacing a, representing an increasingly
larger subgroup of translations as the cutoff, ΛUV ¼ π=a,
is removed. Curved manifolds lack such uniform sequences
of lattices. For example, on a sphere, the finest uniform

discretization of S2 and S3 are the 20-cell icosahedron and
the 600-cell tetraplex respectively. The lack of an infinite
sequence of regular lattices approaching the continuum
compounds the problem of renormalization and symmetry
restorations as the cutoff is removed. This paper is part of
research to develop a general strategy [5], referred to as
quantum finite elements (QFE), to formulate a lattice field
theory path integral for any renormalizable quantum field
theory on a smooth Riemann manifold (M, g) given the
target metric tensor, gμνðxÞ. Here we focus on the con-
struction of the free lattice Dirac fermion. The fermion is an
especially challenging and interesting example. The spinor
probes the underlying geometry of the manifold through its
vierbein and spin connection. From the perspective of
Regge calculus (RC) [6], the vierbein and spin connection
are sufficient to define a simplicial manifold in the Einstein-
Cartan formulation of lattice gravity [7]. Consequently the
fermion lattice field may also provide an alternative
approach to reconstructing the intrinsic geometry for the
Regge calculus approximation to the base Riemann
manifold.
The organization of the paper is as follows. In Sec. II, to

establish our notation and basic formalism, we review the
finite element approximation to scalar field theory on a
Riemann manifold. While we borrow heavily from the
conventional piecewise linear form for RC and finite
element method (FEM), it is important to note that these
approximations do not by themselves adequately address
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our problem. (Readers familiar with finite elements may
prefer to first skip this introduction and return for notation.)
In Sec. III, we begin the construction for the Dirac field,
emphasizing the new problem of defining the lattice
vierbein and spin connection and removing doublers on
the simplicial complex. In Sec. IV we formulate an
algorithm for fixing the lattice vierbein and spin connection
designed to converge to any target smooth Riemann
manifold ðM; gÞ. In Sec. V we test the method for the
Dirac fermion and its rate of convergence for the S2 sphere
compared to the exact continuum theory. In Sec. VI the
simplicial Majorana fermion on S2 is shown to converge to
the analytical result for 2-point and 4-point correlation
functions for the c ¼ 1=2 minimal model conformal field
theory. In Sec. VII we discuss extensions and future
directions in the study of quantum field theories with
gauge and scalar fields. Several technical details are
relegated to the appendices.

II. REVIEW OF SCALAR FIELDS ON A
SIMPLICIAL LATTICE

Lattice field theory on a Riemann manifold ðM; gÞ
requires a discrete definition for the metric field, gμνðxÞ,
and the quantum fields, scalars ϕðxÞ, fermions ψðxÞ, and
gauge fields AμðxÞ. Aspects of this problem have been
considered extensively in a number of related fields. One
example is RC, which introduces an ensemble of piecewise
flat simplicial lattices as a basis for nonperturbative
quantum gravity [6]. A second example is FEM, designed
to discretize partial differential equations and to solve them
numerically [8]. The third example involves a formal
geometrical framework [9] for a discrete exterior calculus
(DEC) on the Delaunay lattice S and its circumcenter
Voronoi dual S�. We should also emphasize the classic
study of field theory on random lattices by Christ,
Friedberg and Lee (CFL) [10–12] that in fact anticipated
much of the relevant FEM and DEC formalism for the
simplicial lattice field theory in flat space.
Each method provides some useful and closely related

tools, but they do not fully address the problems of a
rigorous simplicial lattice representation guaranteed to
converge to the continuum for renormalizable quantum
field theories—the ultimate goal of this research. Both the
RC and the CFL approaches introduce a random ensemble
of simplicial lattices in order to hopefully restore con-
tinuum symmetries (diffeomorphisms, chiral symmetry,
etc.) of the target quantum field theory. Here we do not
advocate this approach. Instead we impose regularity on a
single sequence of increasingly refined simplicial lattices
designed to approach the continuum limit on a fixed target
Riemann manifold. Our approach depends on combining
two elements. First the classical FEM method provides the
theoretical framework of convergence [8] in the IR for all
solutions to the equation of motion (EOM or PDEs) smooth

enough to be insensitive to the UV cutoff. Second, counter-
terms are added to the FEM Lagrangian to deal with the UV
divergences so that the lattice quantum path integral will
converge to the target renormalizable quantum field theory
on the Riemannian manifold. We refer to the combination
of these two steps as the QFE method. While the problem
of UV divergences is not addressed here, the reader is
referred to a companion article [13], where the one loop
QFE counterterm is successfully applied to the 2D ϕ4

theory on S2 at the Wilson-Fisher conformal fixed point.

A. Piecewise linear finite elements

Consider the action for a free scalar field in the
continuum on (M, g) given by

S ¼ 1

2

Z
M

dDx
ffiffiffi
g

p ½gμν∂μϕðxÞ∂νϕðxÞ þ ðm2 þ ξRÞϕ2ðxÞ�;

ð1Þ
with proper distances defined by the metric,

ds2 ¼ gμνðxÞdxμdxν; ð2Þ
and its determinant, g ¼ detðgμνÞ. Assume also that the
Riemann manifold is torsion free (Γλ

μν ¼ Γλ
νμ) and metric

compatible (∇ρgμν ¼ 0) so the Levi-Civita connection is
determined uniquely in terms of the metric,

Γλ
νμ ¼

1

2
gλρð∂μgνρ þ ∂νgμρ − ∂ρgμνÞ: ð3Þ

The classical action (1) is diffeomorphism invariant. The
coupling ξ ¼ ðD − 2Þ=ð4ðD − 1ÞÞ to the Ricci scalar cur-
vature is required for conformal invariance at zero mass but
henceforth we will set the Recci scalar term (1) to zero
since it is inessential for this FEM review.
The conventional FEM/Regge calculus approach to a

simplicial approximation can be broadly broken into three
steps.

(i) Topology: The D-dimensional target manifoldM is
replaced by a simplicial complex Mσ composed of
elementary D-simplices, which is homeomorphic to
the target manifold.

(ii) Geometry: The metric on the target manifold ðM; gÞ
is approximated on the simplicial complex to form a
“lattice Riemann manifold” ðMσ; gσÞ by assigning
lengths lij on links and extending the metric into the
interior of each simplex with piecewise flat volumes.

(iii) Hilbert space:TheHilbert space of continuum fields,
ϕðxÞ, is truncated by expanding in a finite element
basis on each simplex, ϕσðxÞ≃PD

i¼0 E
iðxÞϕi.

In principle one can construct a one-to-one map between
points on the target smooth Riemann manifold [M; gðxÞ]
and points on the piecewise flat simplicial manifold
[Mσ; gσðyÞ] introduced in Regge calculus [6] that preserves
distance to order Oða2Þ, where the lattice spacing, a, is a
bound on the simplicial diameters. There are two
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approaches to this map, employed in detail in Sec IV: The
first approach uses the intrinsic geometry of the
D-dimensional manifold, and the second a higher-
dimensional embedding in flat Euclidean space RN

for N > D.
The first approach is more fundamental. One chooses a

collection of points xi in M and constructs a simplicial
complex for this set. A discrete metric in the spirit of Regge
calculus is computed by an approximation lij to the
geodesic distances on each link hi; ji. Then each D-simplex
is interpolated by piecewise flat coordinates y. In general,
there are subtleties involved in achieving a good approxi-
mation. The geodesics are only unique if neighboring
points are sufficiently close. An optimal triangulation
should use the Voronoi construction which requires a
reasonable approximation to the distances. [Note that
Regge calculus avoids this problem by reversing the logic.
The simplicial manifold is assumed to be given a priori
with the target manifold as a consequence defined in the
continuum limit, lij ¼ OðaÞ → 0.]
The second and much easier approach, when it is

available, is to start with an isometric embedding of the
D-dimensional Riemann manifold (M, g) into a higher-
dimensional flat Euclidean space RN . An important exam-
ple is the SD sphere discussed in Sec. IV C. This is easily
embedded as r⃗ ∈ RDþ1 such that r⃗ · r⃗ ¼ R2

0 with R0 fixed.
Then one uses a Voronoi construction of simplices on a set
of discrete sites at x ¼ ri assigning the Euclidean distances,
lij ¼ jri − rjj, to the edges. This construction turns out to
be invariant under the projective transformation of the
sphere SD to the plane RD. In general, if we can find a
smooth isometric embedding, this will guarantee conver-
gence of the simplicial manifold (Mσ, gσ) to the target
manifold (M, g) as a → 0.
To approximate the Hilbert space, we can expand the

field ϕσ in a local FEM basis [8]. Properly constructed this
converges to the continuum field, jϕσðxÞ − ϕðxÞj → 0, as
the diameters a of all simplicial elements vanish. But more
importantly, FEM theorems also impose precise shape
regular condition [8] on the simplicial geometry to
guarantee that all solutions of discrete equations of motion
(EOM) converge to the classical solutions of the continuum
EOM. This is a subtle theoretical problem, which involves
the order of the differential equation, the nonlinearities of
the partial differential equations (PDEs), boundary con-
ditions, the choice of FEM basis, etc. For free fermions,
even in flat space, there are additional well-known diffi-
culties, not addressed in the FEM literature to our knowl-
edge, due to the notorious spectrum doubling problem and
the need to restore chiral symmetry.

1. Simplicial geometry and notation

It is helpful to understand a bit of the formal aspects of
each step listed above in order to establish notation. One

builds up the lattice field theory representation in layers:
start with the simplicial complex S, then add a metric to get
the Regge calculus, and lastly add matter fields to construct
the simplicial action for the quantum field theory. The
shared topological and algebraic properties mapped
between each abstract layer is the province of category
theory [14].
A pure simplicial complex S consists of a set of

D-dimensional simplices (designated by σD) “glued”
together at shared faces (boundaries) consisting of D − 1
dimensional simplices (σD−1Þ. The D-dimensional simplex
is built iteratively from lower dimensional simplices,

σ0 → σ1 → σ2 → � � � → σD; ð4Þ

beginning with Dþ 1 sites σ0ðiÞ with i ¼ 0; 1;…; D on
each simplex, connected together by ðDþ 1ÞD=2 directed
links σ1ði1i2Þ≡ hi1; i2i forming DðDþ 1ÞðDþ 2Þ=3!
oriented triangles σ1ði1i2i3Þ≡△i1i2i3 , etc. This hierarchy
is specified by the boundary operator,

∂σnði0i1 � � � inÞ ¼
Xn
k¼0

ð−1Þkσn−1ði0i1 � � � îk � � � inÞ; ð5Þ

where îk means to exclude this site. Each simplex
σnði0i1 � � � inÞ is an antisymmetric function of its argu-
ments. The signs in Eq. (5) keep track of the orientation of
each simplex. It is trivial to check that the boundary
operator is closed: ∂2σn ¼ 0. On a finite simplicial lattice
∂ is a matrix and its transpose, ∂T , is the coboundary
operator. This is a first modest step into discrete homology
and De Rham cohomology on a simplicial complex.
In the next layer, Regge calculus introduces a metric by

assigning lengths to the edges lij ¼ jσ1ðijÞj, which pro-
vides the discrete metric, g → gσ, assuming the interior of
each D-plex is a flat Euclidean space (e.g., piecewise linear
coordinates). This lifts the simplex into a metric space. For
example, oriented links, hi; ji ¼ σ1ðijÞ, are now associated
with vectors, l⃗ij and triangles, △ijk ¼ σ2ðijkÞ, with areas
Aijk and so on. Since the cells are flat, the curvature tensor
required for Einstein gravity in Regge calculus has singu-
larities on the boundary, i.e., at vertices in 2D and hinges
for D > 2. Matter fields (or forms) are nth-rank tensors,
naturally assigned to σn.
Next, it is important to add to our simplicial Delaunay

lattice, S, the circumcenter dual Voronoi lattice, S�,
composed of polytopes, σ�0 ← σ�1 ← � � � ← σ�D where σ�n
has dimension D − n as illustrated in Fig. 1. A crucial
property of this circumcenter duality is orthogonality. Each
simplicial element σn ∈ S is orthogonal to its dual polytope
σ�n ∈ S�. This orthogonality lies at the heart of defining the
Hodge star � (or alternating symbol ϵi0i1���iD). The circum-
centers for the dual lattice can be found iteratively. The
circumcenter of an edge hi; ji ¼ σ1ðijÞ is its midpoint, the

LATTICE DIRAC FERMIONS ON A SIMPLICIAL … PHYSICAL REVIEW D 95, 114510 (2017)

114510-3



circumcenter of a triangle △ijk ¼ σ2ðijkÞ lies at intersec-
tion of the perpendiculars from the midpoints of the
aforementioned boundary edges σ1 ∈ ∂σ2ðijkÞ, the cir-
cumcenter of a tetrahedron σ3 lies at the intersection of the
normals from the circumcenters of its boundary triangles,
etc., as we move into higher dimensions.
Hybrid cells, σn ∧ σ�n, constructed from simplices σn in

S and their orthogonal dual σ�n in S� give a proper tiling of
the discrete manifold. As a consequence of this orthogon-
ality, the volume Vnn� ¼ jσn ∧ σ�nj of the hybrid σn⊥σ�n is a
simple product,

Vnn� ¼ hσnjσ�ni ¼
Z

σn ∧ σ�n ¼
n!ðD − nÞ!

D!
jσnjjσ�nj: ð6Þ

For future reference, we introduce a simplified notation in
lower dimensions: the point, length of links, and area of
triangles will be given by

1 ¼ jσ0ðiÞj; lij ¼ jσ1ðijÞj; Aijk ¼ jσ2ðijkÞj ð7Þ
respectively and the D-dimensional hybrid volumes asso-
ciated with sites, links and triangles will be designated by

Vi ¼ jσ�0ðiÞj; Vij ¼ jσ1ðijÞ ∧ σ�1ðijÞÞj
Vijk ¼ jσ2ðijkÞ ∧ σ�2ðijkÞj; ð8Þ

respectively. Finally, when we add matter fields ω for scalar
(ϕi), Dirac (ψ i) and gauge fields (Uij), we can define a
discrete exterior derivative d (or finite difference for grad,
div and curl) through a discrete Stokes’ theorem on the
simplex,Z
σn

dωðyÞ ¼
Z
∂σn

ωðyÞ or hσnjdωi ¼ h∂σnjωi: ð9Þ

The Hodge star takes you to the dual simplex σ�n to define
the dual operator, δ ¼ �d�. The operators δ, d automati-
cally inherit from ∂; ∂T , respectively the closure property,

d2 ¼ δ2 ¼ 0. While we do not rely heavily on this
formalism, it is useful intuitively to guide our discussion.
This formal layered structure, we believe, is also important
for organizing software to implement lattice field theory
simulations on general simplicial lattices.

B. Simplicial Laplacian for scalar fields

The flat interior of each D-simplex in RC and FEM is
conveniently parametrized as

y⃗ ¼ ξ0r⃗0 þ ξ1r⃗1 þ � � � þ ξDr⃗D ¼
XD
i¼1

ξil⃗i0 þ r⃗0; ð10Þ

using barycentric coordinates, 0 ≤ ξi ≤ 1, with the con-
straint ξ0 þ ξ1 þ � � � þ ξD ¼ 1. The vectors on the edges
are l⃗i0 ¼ r⃗i − r⃗0. To pick a unique coordinate system on
Mσ , we can arbitrarily eliminate ξ0, introducing the
differentials,

dy⃗ ¼ ∂y⃗
∂ξi dξ

i ¼ l⃗i0dξi; ð11Þ

where l⃗i0 are the components of this one form in the basis
dξi with i ¼ 1;…; D and dual tangent vectors,

∇⃗ ¼ ∇⃗ξi∂i ¼ n⃗i∂i; ð12Þ

with components, n⃗i ¼ ∇ξi in the basis ∂i. Both l⃗i0 and n⃗i

are illustrated for D ¼ 3 in Fig. 2. The flat metric on each
simplex is

ds2 ¼ dy⃗ · dy⃗ ¼ gijdξidξj;

gij ¼ l⃗i0 · l⃗j0 ¼
1

2
ðl2i0 þ l2j0 − l2ijÞ: ð13Þ

The standard relations for raising and lowering indices by
the metric tensor (gij) and its inverse,

gij ¼ n⃗i · n⃗j or n⃗i · l⃗j0 ¼ δij; ð14Þ

applies within each simplex. Note since the interior of the
simplex is flat we choose the notation l⃗i0 and n⃗i,

l⃗i0 → lai0 ¼
∂ya
∂ξi and n⃗i → nia ¼

∂ξi
∂ya ; ð15Þ

for both upper and lower indices. It is tempting to use the
notation, l⃗0i → e⃗i and n⃗i → e⃗i ¼ gije⃗j, but we reserve this
identification with lattice vierbeins for the simplicial Dirac
equation in Secs. III and IV.
The new action on the simplicial manifold (Mσ, gσ) is

again determined by Eq. (1) using the simplicial metric
(13). It is given by a sum over all the D-simplices,

FIG. 1. A 2D simplicial complex with points (σ0), edges (σ1)
and triangles (σ2). At each vertex σ0 there is a dual polytope in σ�0
(illustrated in red), and at each link, σ1, there is a dual link σ�1 and
its associated hybrid cell σ1 ∧ σ�1 (illustrated in blue). The arrows
at each site represent a random basis for the local tangent plane.
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Sσ ¼
1

2

X
σD

Z
σD

dDy½∇⃗ϕσðyÞ · ∇⃗ϕσðyÞ þm2ϕ2
σðyÞ�

¼ 1

2

X
σD

Z
σD

dDξ
ffiffiffiffiffi
gσ

p ½gijσ ∂iϕσðξÞ∂jϕσðξÞ þm2ϕ2
σðξÞ�;

ð16Þ

where
ffiffiffiffiffi
gσ

p
=D! ¼ jσDj is the volume in each D-simplex, or

in 2D the area Aijk of the triangle △ijk. Finally, we expand
ϕσðyÞ in a finite element basis on each simplex,

ϕσðyÞ≃ E0ðyÞϕ0 þ E1ðyÞϕ1 þ � � � þ EDðyÞϕD; ð17Þ

where EiðrjÞ ¼ δij so that ϕi ¼ ϕðy ¼ riÞ. We also impose
the sum rule,

P
iE

iðyÞ ¼ 1, so that the constant field is
preserved. For simplicity, our subscript on ϕσ , Sσ, etc.,
implies a restriction to a single simplex, σDði0i1…iDÞ. The
expansion of the field over the entire piecewise flat
manifold, ðMσ; gσÞ, is given by a sum over all sites,
ϕðxÞ≃PiW

iðyÞϕi, where the WiðyÞ’s, referred to as tent
functions, are sums over all adjacent elements, EiðyÞ’s, that
have nonzero (unit) support at the site i. Once these
elements EiðyÞ are chosen, explicit integration for the
simplicial action, Eq. (17), can be carried out, leading to
a quadratic form for the free field action on the values ϕi.
This construction also carries over for interaction terms,
ϕnðxÞ, giving higher order polynomials in ϕi within each
simplex.
The simplest choice is the linear FEM,

EiðξÞ ¼ ξi; i ¼ 0;…D: ð18Þ

Since all the derivatives are constants, the massless action
on each simplex,

Iσ ¼
1

2

Z
σD

dDy∇⃗ϕðyÞ · ∇⃗ϕðyÞ

¼ 1

2

Z
σD

dDξ
ffiffiffi
g

p
gij∂iϕðξÞ∂jϕðξÞ; ð19Þ

is trivially evaluated, giving

Iσ ¼
1

2D!

XD
i;j¼1

ffiffiffi
g

p
gijðϕi − ϕ0Þðϕj − ϕ0Þ: ð20Þ

While this result (20) is correct, one inconvenience is that
our arbitrary choice of eliminating ξ0 appears to break the
symmetry between the Dþ 1 sites. To fix this we may
average over the Dþ 1 vertices to yield the correct
symmetrized expression, which will be referred to as the
vertex form (illustrated for D ¼ 2 in Fig. 3) of the
simplicial action.

However, a more appealing geometric form can be
found. A convenient way to derive this is to relax the
constraint ξ0 þ � � � þ ξD ¼ 1 and introduce an over com-

plete set of Dþ 1 dual vectors, n⃗k ¼ ∇⃗ξk, that are

FIG. 2. The D-simplex, illustrated forD ¼ 3, can be defined by

D edge vectors l⃗i0 ¼ r⃗i − r⃗0, picking arbitrarily the 0th vertex.
The remaining DðD − 1Þ=2 edges are l⃗ij ¼ l⃗i0 − l⃗j0. One dual
vector n⃗2 normal to σ2ð013Þ is depicted.

FIG. 3. The geometric contribution of linear finite elements to a
scalar field in the vertex form in the top figure and in the link form
in the bottom figure. For both forms, the triangle △123 is
subdivided into regions meeting at the circumcenter 0, with
areas Ai ¼ jσ�ðiÞ∩△123j and A0ij ¼ jσ1ðijÞ ∧ σ�1ðijÞ∩△123j,
respectively.

LATTICE DIRAC FERMIONS ON A SIMPLICIAL … PHYSICAL REVIEW D 95, 114510 (2017)

114510-5



perpendicular to the face opposite the vertex k and
normalized relative to the edge vectors by

n⃗k · l⃗ij ¼ δki − δkj : ð21Þ

In this over-complete basis, the gradient is ∇⃗ϕðyÞ ¼
n⃗0ϕ0 þ n⃗1ϕ1 þ � � � þ n⃗DϕD. Evaluating the action gives
two equivalent symmetric forms,

Iσ ¼
1

2

XD
i;j¼0

jσDjn⃗i · n⃗jϕiϕj

¼ 1

2

X
hi;ji

jσDjð−n⃗i · n⃗jÞðϕi − ϕjÞ2; ð22Þ

due to the constraint,

∇⃗ðξ0 þ ξ1 þ � � � þ ξDÞ ¼ n⃗0 þ n⃗1 þ � � � þ n⃗D ¼ 0: ð23Þ

Recall that jσDj ¼ ffiffiffiffiffi
gσ

p j=D! is the volume of D-simplex.
We refer to this as the link form (illustrated for D ¼ 2 in
Fig. 3). In two dimensions summing over all the triangles,
the contribution to the lattice action takes an appealing
geometric form

Sσ ¼
1

2

X
hi;ji

Aij
ðϕi − ϕjÞ2

l2ij
; ð24Þ

where in 2D we use the notation Aij ¼ jσ1ðijÞ ∧ σ�1ðijÞj,
instead of Vij, for the dual area Eq. (6) adjacent to the
link hi; ji.

1. Discrete exterior calculus

An alternative formalism for constructing the simplicial
Laplacian relies on an elegant DEC [9]. For any dimension,
the DEC action for the kinetic term is given by

Sσ½ϕ� ¼
1

2

X
hi;ji

Vij
ðϕi − ϕjÞ2

l2ij
þ 1

2
m2Viϕ

2
i ; ð25Þ

where, as illustrated in Fig. 4 in 2D, Vij¼jσ1ðijÞ∧σ�1ðijÞj¼
lijSij=D is the product of the length of the link (lij) times
the volume of the surface, Sij ¼ jσ�1ðijÞj, of the dual
polytope normal to the link hi; ji. A local mass term has
been added for future reference even though it does not
contribute to the Laplacian. Only in 2D is the linear FEM
form (22) equivalent to the DEC form (25). In 2D the
equivalence follows from the identity, A123n⃗1 · n⃗2 ¼
Aij=l212, often referred to as the cotangent rule. But for
D > 2, it is easy show how this fails by constructing a
counterexample: Pick a simplex forD > 2 with n⃗1 · n⃗2 ¼ 0

and Vij > 0 that vanish for the linear FEM construction but
in nonzero for the DEC construction.
The DEC construction for the discrete Beltrami-Laplace

operator,

1

Vi

∂Sσ½ϕ�
∂ϕi

¼ 1

Vi

X
j∈hi;ji

Vij

lij

ϕi − ϕj

lij
; ð26Þ

follows the same basic steps leading to the continuum
operator − 1ffiffi

g
p ∂μ

ffiffiffi
g

p
gμν∂νϕðxÞ. First, we apply the simpli-

cial Stokes’ theorem, Eq. (9), to get the discrete gradient
(exterior derivative),

dϕ ¼ 1

jσ1ðijÞj
Z
σ1

dϕðxÞ ¼
Z
∂σ1

ϕðxÞ
lij

¼ ϕi − ϕj

lij
; ð27Þ

where the scalar (or zero form) ϕi and the finite difference
(or one form), dϕi ¼ ðϕi − ϕjÞ=lij, are assigned to sites
σ0ðiÞ and links σ1ðijÞ respectively. Next, apply Stokes’
theorem again on the dual lattice polytope σ�0 to compute
the divergence, dð�dϕiÞ, illustrated in yellow in Fig. 4 for
2D and return to the simplicial lattice,

�d � dϕi ¼ � 1

jσ�0ðiÞj
Z
σ�
0

d½�ðϕi − ϕjÞ=lij�

¼ 1

Vi

X
j∈hi;ji

Vij

lij

ϕi − ϕj

lij
; ð28Þ

in agreement with Eq. (26), expressed as the sum of
fluxes through the boundaries ∂σ�0ðiÞ with surface area,
Sij=ðD − 1Þ! ¼ Vij=lij ¼ jσ1ðijÞ ∧ σ�1ðijÞj=lij. For the

FIG. 4. The discrete Laplacian at a site i is given by the sum on
all links hi; ji (in red) weighed by gradients ðϕi − ϕjÞ=lij
multiplied by the surface Sij ¼ 2Vij=lij (in black) and normal-
ized by the dual volume jσ�oðiÞj ¼ Vi (in yellow).
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local mass term one would addm
R
σ�
0
ϕi=jσ�0j ¼ m2ϕi to the

operator (28).

III. DIRAC FIELDS ON A RIEMANN MANIFOLD

The action of the free Dirac fermion on a Riemann
manifold,

S ¼
Z

dDx
ffiffiffi
g

p
ψ̄ðxÞ½eμðxÞð∂μ − iωμðxÞÞ þm�ψðxÞ; ð29Þ

introduces two new structures involving spin: (i) The
orientation of the spinor in the tangent plane,
eμðxÞ ¼ eμaðxÞγa, where eνa is the inverse (or dual) of the
vierbein, eaμ, entering into the metric. (ii) The spin con-
nection ωμðxÞ≡ ωab

μ ðxÞσab=4, where σab=2 ¼ i½γa; γb�=4
are the Lorentz generators for the Dirac spinor. The reason
for this is because there are no finite-dimensional spinor
representations of the general covariance group, so spinor
indices are introduced in the tangent space. At each point
xμ, the flat tangent space can be spanned by a set of
orthonormal coordinates, y⃗ ¼ ðy1ðxÞ; y2ðxÞ;…; yDðxÞÞ, by
expanding the cotangent differential,

dya ¼ eaμðxÞdxμ ¼
∂ya
∂xμ dx

μ: ð30Þ

The positive definite metric,

ds2 ¼ dy⃗ · dy⃗ ¼ eaμðxÞeaνðxÞdxμdxν ¼ gμνdxμdxν; ð31Þ

can be Cholesky factorized in terms of eaμðxÞ. Now in
addition to invariance under diffeomorphism, there is a
local “gauge” invariance allowing an arbitrary rotation (or
Euclidean Lorentz transformation), SOðDÞ, in the tangent
plane: ya → Oa

by
b. This then acts on the spinors as a gauge

invariance in the Spin(D) covering group.
The spin connection and the vierbeins are not indepen-

dent. For torsion-free and metric compatible Riemann
manifolds, they are related through the tetrad hypothesis,

∂μeνðxÞ þ Γν
μλe

λ ¼ i½ωμ; eν�; ð32Þ

or ½Dμ;eν�þΓν
μλe

λ¼0, whereDμ¼∂μ−iωμ is the “covariant
spinor derivative” operator. Expanding in components we
have

ωab
μ ¼ eaν∂μeνb þ eaλΓλ

μνeνb

¼ 1

2
eνa½∂μebν − ∂νebμ þ eρbe

c
μ∂νecρ� − ða ↔ bÞ: ð33Þ

A crucial consequence of the tetrad hypothesis (32) is the
anti-Hermitian property of Dirac operator,

ð ffiffiffi
g

p
eμDμÞ† ¼ −Dμ

ffiffiffi
g

p
eμ

¼ −
ffiffiffi
g

p �
eμDμ þ ½Dμ; eμ� þ

1ffiffiffi
g

p ð∂μ
ffiffiffi
g

p Þeμ
�

¼ −
ffiffiffi
g

p
eμDμ: ð34Þ

Consequently the Dirac spectrum on a general manifold is
pure imaginary plus the real mass shift: iλþm with
−∞ < λ < ∞. It is essential when placing the Dirac
equation on a simplicial manifold to provide a lattice
realization for this identity.

A. The Dirac finite element

The application of classical FEM methods to fermions
leads to a series of difficulties. First, even in 2D, linear
finite elements in flat space do not give a natural gener-
alization of the scalar FEM expression. Second, the well-
known problem of species doubling and chiral symmetry
breaking is not solved by a straightforward application of
FEM. Third, and most troubling, in the Regge calculus
representation of a linear simplicial manifold, the curvature
has singularities concentrated at the vertices and hinges. It
is difficult, if not impossible, to place Dirac fields at such
singular vertices as there is no well-defined tangent plane.
We proceed to address the solution to these difficulties one
by one.
A reasonable ansatz for a simplicial fermion in flat space

is a generalization of the DEC scalar form in Eq. (25),

Snaive≃ 1

2

Vij

l2ij
½ψ̄ il⃗ij · γ⃗ψ j− ψ̄ jl⃗ij · γ⃗ψ i� þ

1

2
mViψ̄ iψ i; ð35Þ

also recommend by Friedberg, T. D. Lee, and Ren in
Ref. [15]. We shall refer to this as the canonical Dirac
form. However, this form is not given by the application of
linear FEM to the Dirac field.
Following closely the scalar example (22), the linear

FEM evaluation of the Dirac action on each simplex is

Z
σ
dDy½ψðyÞγ⃗ · ∇⃗ψðyÞ ¼

ffiffiffi
g

p
2ðDþ 1Þ!

X
i

ψ in⃗j · γ⃗ψ j: ð36Þ

For anti-Hermiticity to be enforced, one must explicitly
sum over the oriented and antioriented simplex, resulting in

Iσ ¼
1

2

Z
σ
dDy½ψðyÞγ⃗ · ∇⃗ψðyÞ − ð∇⃗ψðyÞÞ · γ⃗ψðyÞ� ð37Þ

¼
ffiffiffi
g

p
4ðDþ 1Þ!

X
hi;ji

ψ̄ iðn⃗j − n⃗iÞ · γ⃗ψ j: ð38Þ

However, even for D ¼ 2, the linear FEM formula,
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Sσ ¼
A123

6

X
hi;ji

ψ̄ iðn⃗j − n⃗iÞ · σ⃗ψ j; ð39Þ

fails to give the canonical Dirac form. Most peculiarly, the
spin projections l⃗ij · σ⃗ are not aligned with the propagation
on the links. Namely the condition n⃗k · ðn⃗i − n⃗jÞ ¼ 0,
required by alignment, l⃗ij ∼ n⃗i − n⃗j, fails except for an
equilateral triangle where the dual vectors are normal to the
opposite sides. However, we have found a new Dirac finite
element prescription that does lead to the canonical lattice
form in 2D by summing over the piecewise linear elements
for each of 3 subtriangles meeting at the circumcenter of a
general triangle as illustrated in Fig. 5.
The new construction begins by expanding△123 in a new

finite element basis,

ψσðyÞ ¼ E1ðyÞψ1 þ E2ðyÞψ2 þ E3ðyÞψ3;

ψ̄σðyÞ ¼ E1ðyÞψ̄1 þ E2ðyÞψ̄2 þ E3ðyÞψ̄3; ð40Þ

imposing basic properties for field interpolates,

EiðrjÞ ¼ δij; E
1ðyÞ þ E2ðyÞ þ E3ðyÞ ¼ 1; ð41Þ

so that ψðriÞ ¼ ψ i and a constant field is preserved. We
then make the ansatz that the element can be decomposed
into three elements meeting at the circumcenter. We
introduce ghost fields, ψ0 and ψ̄0, at the circumcenter of
each triangle and expand the fields ψðxÞ; ψ̄ðxÞ as the sum of
3 piecewise linear elements, one on each subtriangle. The
ghost fields are expressed as a linear combination of the
original lattice values,

ψ0 ¼ c1ψ1 þ c2ψ2 þ c3ψ3;

ψ̄0 ¼ c1ψ̄1 þ c2ψ̄2 þ c3ψ̄3: ð42Þ

The constraint
P

ici ¼ 1 is required so that the constant
field is preserved. This implicitly defines the new Dirac
elements (40) EiðyÞ on the full triangleΔ123. By a judicious
choice of the coefficients,

ck ¼
4A0ij

l2ij

4A0ik

l2ik
¼ cotðθik=2Þ cotðθjk=2Þ; ð43Þ

this new Dirac FEM construct leads to the canonical Dirac
form (35), with all couplings along the edges properly
aligned. (See Appendix A for a detailed proof.)
One benefit of this construction is that this should allow

standard FEM convergence theorems to be applied to our
Dirac FEM. However, we have not yet sought a generali-
zation of this FEM construction to D > 2. Moreover, in
spite of the intuitive appeal of our ansatz, there is no known
generalization of the formalism of exterior calculus to a
single Dirac fermion, analogous to the use of the Hodge star
operator for the Laplace-Beltrami operator. The closest
example is the application to Kähler-Dirac fermion [16].
This is an interesting area for future investigation [17].

B. The simplicial spin connection

In preparation for curved space, we will first consider the
simplicial complex for a flat manifold after, applying at
each site i, an arbitrary rotation by a Lorentz transforma-
tion, OðDÞ, on the tangent vectors. The result is to
transform each spinor: ψ i → Λiψ i, with Λi ∈ SpinðDÞ.
The action in this general gauge becomes

Snaive ¼
1

2

X
hi;ji

Vij

lij
½ψ̄ ie⃗ ðiÞj · γ⃗Ωijψ j − ψ̄ jΩjie⃗ ðiÞj · γ⃗ψ i�

þ 1

2
mViψ̄ iψ i; ð44Þ

where Ωij ¼ Λ†
iΛj ¼ Ω†

ji serves as the lattice spin con-

nection and e⃗ ðiÞj serves as the lattice vierbein. The link
variable,

Ωij ¼ eil
μ
ijωμðxÞ; ð45Þ

is entirely analogous to the compact Wilson gauge varia-
bles, UμðxÞ¼ exp½iAμðxÞ�, for color spinors in lattice gauge
theories: Aab

μ ðxÞ ¼ λabc Ac
μðxÞ and ωμðxÞ ¼ ωab

μ ðxÞσab=4 are
in the Lie algebra of the color SUðNÞ and SpinðDÞ groups
respectively. The lattice vierbein is

eðiÞj ¼ eðiÞja γa ≡ e⃗ ðiÞj · γ⃗ ¼ Λ†
i l̂ij · γ⃗Λi; ð46Þ

where l̂ij is the outgoing unit vector from i to j. With
m ¼ 0, the naive Dirac action is anti-Hermitian by the
virtue of the identity, ΩjieðiÞj ¼ −eðjÞiΩji. Note that mov-
ing the vierbein to the opposite end of the link gives

FIG. 5. A new Dirac finite element on the simplex splits the
each triangle, △123, with edge vectors ðl⃗12; l⃗23; l⃗31Þ into three
isosceles subtriangles that meet at the dual vertex 0. An interior
angle at 0 opposite a link l⃗ij is designated as θij.
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eðjÞia γa ¼ −Ωjie
ðiÞj
a γaΩij; ð47Þ

which is the lattice realization of the tetrad hypothesis. In
Sec. IV, we demonstrate that Eq. (47) is equivalent to the
continuum tetrad hypothesis Eq. (32) as lij → 0. Although
in flat space, this spin connection is gauge equivalent to
Ωij ¼ 1, we will show shortly that the parametric form of
the action given by Eq. (44) now applies to any manifold
with a spin connection by requiring the product of the link
matrices, Ω, around a closed path to be a measure of the
curvature on the triangle. Before describing the algorithm
for determining a nontrivial lattice spin connection in
Sec. IV, we will address the problem of species doubling.

C. The Wilson term

At this point we have replaced the first derivative
continuum operator, ∇ ¼ eμDμ ¼ eμð∂μ − iωμÞ, with the
naive or central difference form on the simplex, gauged by
the compact spin connections in Eq. (44). This simplicial
discretization preserves the anti-Hermiticity condition of
the continuum, ∇† ffiffiffi

g
p ¼ − ffiffiffi

g
p ∇, and therefore it preserves

the spectral property, ð∇þmÞψλ ¼ ðiλþmÞψλ, with
−∞ < λ < ∞ as well. However, this spectrum includes
spurious, or so-called doubler, states familiar to the naive
fermion on the hypercubic lattice. The FEM methods do
not solve this problem.
To remove these doublers, we introduce a spinor gauged

Wilson term in close analogy with conventional non-
Abelian flat space lattice gauge field theory. The 4D lattice
field theory doublers are removed by adding an irrelevant
dimension 5 Wilson term to the fermions action. This
discrete approximation to the continuum operator is con-
tained in the square of the covariant Dirac operator,

½γμð∂μ − iAμÞ�2 ¼ ð∂μ − iAμÞ2 þ σμνFμν: ð48Þ
When placed on a regular lattice, the first term is referred to
as the Wilson (or gauge Laplacian) term, while the second
is referred to as the clover term. On a flat manifold, the
doublers can be removed by adding the Wilson term. The
free spectrum in momentum space of the Wilson term is
proportional to

P
μð1 − cosðapμÞÞ=a which is irrelevant at

p → 0 but divergent as a → 0 for doublers on the edge of
the Brillouin zone.
A similar approach can be applied to curved space.

Consider adding to the action a second order derivative term,Z
dDx

ffiffiffi
g

p j∇ψ j2 ¼
Z

dDx
ffiffiffi
g

p ðψ̄∇⃖†Þð∇ψÞ

¼ −
Z

dDx
ffiffiffi
g

p
ψ̄∇2ψ ; ð49Þ

using ∇† ffiffiffi
g

p ¼ − ffiffiffi
g

p ∇. The square of the spinorial Dirac
operator,∇¼eμDμ¼eμaγaDμ, is given by the Lichnerowicz
formula,

−∇2 ¼ −gμνðDμDν − Γσ
μνDσÞ þ

1

2
σabeμaeνbRμν

¼ −
1ffiffiffi
g

p Dμ
ffiffiffi
g

p
gμνDν þ

1

2
σabeμaeνbRμν: ð50Þ

The first term on the second line is nothing but the covariant
spinor Laplacian, while the second term is related to the
curvature,

Rμν ¼ i½Dμ;Dν� ¼ i½∂μ − iωμ; ∂ν − iων�: ð51Þ

We introduce a lattice version of the covariant spinor
Laplacian as a Wilson term to remove doublers on the
simplicial lattice. This is just our lattice Laplace-Beltrami
operator for the scalar in Eq. (26) in a general gauge,

SWilsonTerm ¼ r
2

X
hi;ji

Vij

l2ij
ðψ̄ i − ψ̄ jΩjiÞðψ i −Ωijψ jÞ: ð52Þ

Again, this canonical form generalizes to simplicial Dirac
fermions on a general Riemann manifold. Further gener-
alizations to include color gauge fields and to construct
domain wall actions are straightforward as briefly men-
tioned in the conclusion.

IV. LATTICE SPIN STRUCTURE

We now present a procedure for fixing the vierbein e⃗ ðiÞj
and connection matrix, Ωij, on each link hi; ji of the
simplicial lattice. Once this has been accomplished, the
parametric form for a general Riemann manifold,

S ¼ 1

2

X
hi;ji

Vij

lij
½ψ̄ ieðiÞjΩijψ j − ψ̄ jΩjieðiÞjψ i� þ

m
2
ψ̄ iψ i;

ð53Þ

is unchanged from the flat space formula (44). The spin
connection matrices, Ωij ¼ Ω†

ij, are no longer equivalent to
a pure gauge transformation. A successful construction
must respect the exact lattice tetrad hypothesis (47),

eðiÞjΩij þ ΩijeðjÞi ¼ 0; ð54Þ

in order to ensure that the naive lattice Dirac operator,
Eq. (53), is anti-Hermitian in the massless limit, or equiv-
alently the full operator including the mass term in Eq. (53)
and the Wilson term in Eq. (52) is γ5-Hermitian. This gauge
covariant identity in Eq. (54), arising from parallel trans-
ports of the vierbein along the link, is crucial to the
construction. If we expand in the lattice spacing, a, we
can immediately see how it is a discrete version of the
continuum Eq. (32). In Fig. 6 let i and j be located at xμ ¼
xμð0Þ and xμð1Þ ¼ xμð0Þ þ al̂μ, respectively, on the geo-
desic, xμðsÞ, between them. Introduce a smooth bispinor
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field, eðxÞ¼tνðxÞeνðxÞ. Expanding eðjÞiþΩ†
ije

ðiÞjΩij term
by term, we get

0 ¼ t̂νðxþ al̂Þeνðxþ al̂Þ
− eial

μωμðxÞ t̂νðxÞeνðxÞe−ialμωμðxÞ

≃ at̂νl̂
μ∂μeνðxÞ þ at̂ν l̂

μΓν
μλðxÞeλðxÞ

− iat̂νl̂
μ½ωμðxÞ; eνðxÞ� þOða2Þ; ð55Þ

which is equivalent to the continuum expression,
ð∂μ þ Γν

μλðxÞÞeλðxÞ − i½ωμðxÞ; eνðxÞ� ¼ 0, to leading order.
In expanding Eq. (55), we have made use of the approxi-
mation t̂νðxþ al̂Þ − t̂νðxÞ≃ at̂ν l̂

μΓν
μλðxÞ which follows

from the geodesic Eq. (59).
In computing the spin connection for our target mani-

fold, there are two crucial issues we need to address:
(i) First defining the tangent plane for the Dirac field at each
site. (ii) Second resolving the sign ambiguity in the map
from the Lorentz group, OðDÞ, to the spinor covering
group, SpinðDÞ.
The first issue is the difficulty of defining tangent plane

at the sites in the conventional piecewise flat Regge
calculus manifold. The RC defines the interior of each
simplex to be flat so that all curvature is given by
singularities on D − 2 simplices at the boundary of the
cells referred to as hinges, or vertices in 2D [18]. Since it is
impossible to define tangent planes at the lattice sites of a
piecewise linear manifold, previous attempts to introduce
fermions in RC have generally placed the Dirac fields at the
circumcenters of the dual lattice [7,19–23]. However, this is
troublesome for lattice gauge theory. With gauge fields on
links, matter fields (scalar and Dirac) should be on sites to
maintain local gauge covariance as described briefly in
Sec. VII.
Our solution is to reinterpret the RC manifold as smooth,

with well-defined tangent planes at the vertices. For
example, on the sphere, we can remove the singular
curvature at the sites by replacing each link hi; ji by
geodesics (great circles in 2D). This allows us to define
tangent planes at the vertices. More generally, as pointed
out by Brewin [24], it is possible to provide a reinterpre-
tation of the RC geometry. Given the RC data of a
simplicial complex and the set of edges lengths lij, it is

possible to construct a smooth interpolation of the curva-
ture field, e.g., accurate to Oða2Þ in the continuum limit, in
much the same spirit of higher splines in 1D or higher order
FEM for matter fields in a general dimension. This
redefinition of the Regge manifold will be implemented
to fix the lattice vierbein and spin connection, however, to
Oða2Þ we can still use the piecewise linear manifold to
compute the prefactors.
The second issue is determining the spin connection

between the tangent planes on opposite ends of a link.
Under parallel transport, one can compute the rotation Oij,
an element in the Euclidean Lorentz groupOðDÞ. However
we must also resolve the sign ambiguity to lift this to the
spinor matrix connection, Ωij, in the Spin(D) group,
which is the double covering of OðDÞ. The mapping,

Oij ⇒ �Ωij; ð56Þ

has a sign ambiguity—rotating a Dirac field by 2π changes
its sign. The parallel transport of the tangent planes on a
link hi; ji fixes the OðDÞ rotation matrix Oij but not the
sign in the map as can be illustrated for the tetrad
hypothesis, Eq. (47),

eðiÞja γa ¼ −Ωije
ðjÞi
a γaΩji ⇒ e⃗ðiÞj ¼ −Oije⃗ðjÞi: ð57Þ

The sign of the mapping in Eq. (56) onto SpinðDÞmust be
fixed so that as the simplices are refined the integrated
curvature on every triangle△123 vanishes in the continuum
limit,

Ω12Ω23Ω31 ≃ 1 −OðA123Þ → 1; ð58Þ

and we approach the continuum Dirac equation on the
Riemann manifold. This global constraint can be satisfied
on a simplicial complex only if the topology of the target
manifold admits a spin structure. We present here two
approaches to constructing the lattice spin connection.

A. Construction by parallel transport

The first approach assumes that, given the continuum
metric gμνðxÞ, we have computed the geodesics between
sites connected by links. The construction follows 3 steps:
(1) Choose a random tangent frame at i and determine

the tangent vectors e⃗ðiÞj on geodesics to all the
neighbors at j.

(2) Parallel transport the tangent frame at i to j and
compute the Lorentz Oab

ij rotation in OðDÞ to the
frame of j.

(3) Map each Lorentz rotation in OðDÞ to a pair in

SpinðDÞ, Oij → sijΩ
ðþÞ
ij , and choose sij ¼ �1,

leading to the minimal curvature on each funda-
mental triangle.

FIG. 6. The tangent vectors e⃗ ðiÞj and e⃗ ðjÞi on opposite sides of
the geodesics on the link hi; ji are related by a parallel transport,
eðjÞi ≡ e⃗ ðjÞi · γ⃗ ¼ −Ωjie⃗ ðiÞj · γ⃗Ωij.
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Let us next expand on each of these steps. Consider a
given link hi; ji illustrated in Fig. 6. Each site has its own
tangent plane. We choose an orthonormal set of tangent
vectors t̂aðiÞ in the tangent plane given by y⃗ ¼ yat̂aðiÞ. We
assume that the simplicial lattice is refined to the point that
there is a unique geodesic connecting i with j. At each site

i, determine the outgoing unit tangent vector e⃗ðiÞj ≡ eðiÞja t̂a

aligned with the geodesic from i to j. Constructing the
geodesic and the tangent vector to the geodesic requires in
general numerical integration of the geodesic equation,

d2xλ

ds2
þ Γλ

μνðxÞ
dxμ

ds
dxν

ds
¼ 0: ð59Þ

This gives the geodesic curve xðsÞ from xð0Þ ¼ xi to
xðsjÞ ¼ xj with tangent vectors e⃗ðiÞj ¼ dx⃗ð0Þ=ds and
e⃗ðjÞi ¼ −dx⃗ðsjÞ=ds at each end.
The next step is to perform a parallel transport from the

frame i to the frame j and determine the rotation between
these two tangent frames: t̂aðiÞ ¼ Oab

ij t̂
bðjÞ. The rotation

for the gauge link is given by ordered product on the
geodesics from i to j,

Oij ¼ P½e−
R

sj
0

ds_xμðsÞΓμðxðsÞÞ�; ð60Þ

where ½ΓμðxðsÞÞ�ab ¼ Γab
μ ðxÞ is the matrix in the Lie

algebra for OðDÞ as given in Eq. (3) of [19]. This
guarantees the discrete tetrad constraint (57). For simple
manifolds, such as those of particular interest of conformal
field theory, the exact solution to all geodesics can be
determined by symmetries, avoiding numerical integration
altogether. For example, on a sphere Sn, all geodesics are
defined by great circles.
Finally, for each link hiji, given Oij ¼ eiθμνJ

μν
,

−π<θμν<π, the last step involves fixing the sign ambiguity
of the corresponding element Ωij in the spinor group,

Ωij ¼ sijΩ
ðþÞ
ij ; ð61Þ

where sij ¼ �1 and ΩðþÞ
ij ¼ eiθμνσ

μν=2 ∈ SpinðDÞ. To pro-
vide an algorithm to fix the signs on each link, we start by
considering a 2D manifold. We begin by picking a random
triangle and fix all sij to minimize the curvature. Then
select an adjacent triangle that shares a site σ0ðiÞ and one
edge hi; ji with the first triangle. There are now two new
links whose signs we again fix to minimize its curvature.
We continue with all the triangles sharing this site i. This
completes all triangles whose circumcenters make up the
dual cell σ�ðiÞ. Now pick a new site on the boundary of this
cluster and continue. This algorithm gradually expands the
closed contour around the polytopes of the dual 2D
complex S�. As we will show explicitly for S2 in

Sec. IV C, this continues until the last triangle which has
no signs undetermined.
A failure at the last step means that the manifold does not

admit a spin connection, for example, nonorientable
surfaces in 2D without boundaries. The existence of a
spin structure only depends on the topology of the mani-
fold. For example, a sphere has a trivial first homotopy
group, π1ðS2Þ ¼ 0, and it admits a unique spin connection.
The torus has π1ðT2Þ ¼ Z2

2, with 4 possible spin connec-
tions, familiar to string theorists, as Neveu-Schwarz/
Neveu-Schwarz, Neveu-Schwarz/Ramond, Ramond/Neveu-
Schwarz and Ramond/Ramond sectors respectively. Assume
that one of the allowed multiple spin connections on the
manifold is achieved. For each noncontractible loop in
the dual lattice, one can introduce appropriate signs on
links to exchange periodic and antiperiodic boundary
conditions. This then allows one to introduce other inequi-
valent spin connections. More generally, a compact 2D
Riemann surface of genus g admits 22g inequivalent spin
structures.
This procedure can be generalized to higher dimensions

along similar lines. For example, in 3D, we have an
expanding closed surface. Start with a single tetrahedron
and fix the signs for all edges. Then proceed to pick an edge
σ1ðijÞ and visit cyclically all the tetrahedrons with circum-
centers for σ�1ðijÞ that share this edge. Now there is surface
σ�ij dual to this edge σ1ðijÞ. Again proceed to select a new
edge on a tetrahedron on the boundary and continue as
before. The 3D classification concerns the second homo-
topy group and 4D the third homotopy group, etc.,
Nontrivial homotopy groups give noncontractible surfaces
with codimensions D − 1 allowing one to introduce anti-
periodic boundaries for multiple spin connections.
Determining the Z2 phases, sij, only depends on the

topology. For an orientable manifold in the continuum the
topological condition for the existence of a spin structure is
equivalent to the a vanishing of second Stiefel-Whitney
class index [25]. On our lattice it is equivalent to finding the
ground state in a frustrated Z2 gauge theory. The map for
OðDÞ curvature on each triangle to SpinðDÞ results in
discrete Z2 gauge theory. We must find a solution to

Kijksijsjkski ¼ 1; ð62Þ

where Kijk¼Sign½TrðΩðþÞ
ij ΩðþÞ

jk ΩðþÞ
ki Þ�¼�1. This is equiv-

alent to the existence of an E ¼ 0 ground state for

E½s� ¼
X
△ijk

ð1 − KijksijsjkskiÞ; ð63Þ

on the simplicial complex. The number of distinct ground
states, mod a Z2 local gauge invariance, enumerate inequi-
valent spinor representations.
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B. Construction by relaxation

Although the algorithm above is straightforward, it is
computationally difficult, requiring the determination of the
geodesic between neighboring lattice points and perform-
ing parallel transports of the frames to compute the
rotations Oij. What is needed in general is an alternative
algorithm that converges to Oða2Þ. One approach is to
compare the lattice and continuum spin connections at each
site of the simplicial lattice and minimize a functional to
make them match up to Oða2Þ.
The idea is to consider the lattice spin connections,

Ωαβ
ij ¼ ½ei

2
ωabσ

ab �αβ with σab ¼ i
2
½γa; γb�; ð64Þ

as independent variables, choosing them to approximate as
well as possible the curvature on the target manifold
defined by the metric gμνðxÞ. As is well known in lattice
gauge theory, the product of gauge links around a
“plaquette” (a triangle in this case) is an approximation
to the integrated curvature over the surface. On the
simplicial Regge manifold, we match the discrete curvature
and the continuum curvature,

Ωαβ
△ijk

ðiÞ¼ ½ΩijΩjkΩki�αβ↔SαβðiÞ¼ ½eiRμνðiÞAμν
△ijk �αβ; ð65Þ

respectively for each triangle with a vertex at a site i. The
lattice estimate is just the open Wilson product on △ijkðiÞ
beginning and ending at a site i and the continuum estimate
is the exponentiation of the local spinor curvature tensor,
RμνðiÞ in Eq. (51), projected onto the triangle. To do this,
we need an estimate for the oriented area of the adjacent
triangle which in the case of an isometric embedding in
higher dimensions is given by

Aμν
△ijk

¼ 1

2
½ðrμi − rμj Þðrνk − rνi Þ − ðrνi − rνjÞðrμk − rμi Þ�; ð66Þ

to Oða2Þ. Consequently we can in principle determine the
lattice spin connection by a typical relaxation algorithm,
minimizing a quadratic form such as

GðΩijÞ¼
X
△;i

Tr½ðS△ðiÞ−Ω△ðiÞÞ†ðS△ðiÞ−Ω△ðiÞÞ�; ð67Þ

with respect to the unitary matrices, Ωij, in SpinðDÞ on
each link hi; ji. The sum is over all triangles incident on
each vertex i. While this prescription is not unique, any
choice that is gauge invariant and converges toOða2Þ in the
continuum limit is acceptable. Again multiple spin con-
nections can be generated by studying the homotopy of the
simplicial complex.
Lastly, given the gauge matrices, Ωij, we also need to

construct the tangent vectors e⃗ðiÞj from site i to j, consistent

with the discrete tetrad hypothesis constraint, Eq. (57). It is
important to focus on the fact that e⃗ðiÞj and e⃗ðjÞi are now
evaluated in two different frames,

eðiÞja γa ¼ −Ωije
ðjÞi
a γaΩji; ð68Þ

or e⃗ðiÞj ¼ −Oije⃗ðjÞi. Let us first consider tangent vectors
e⃗ðiÞj at i on the geodesics, xðsÞ, from i to all neighboring
sites j, i.e., xð0Þ ¼ xi and xj ¼ xðsjÞ at ends of the hi; ji
link with sj the geodesic length. The geodesic equation,
Eq. (59), in the same local coordinate system used to
compute the curvature RμνðiÞ at site i, determines the
geodesic to xjðsÞ from i to each of the neighbors, j.
The velocities at i are proportional to the vierbein:
_xjð0Þ ¼ dxj=dsjs¼0 ∼ eðiÞj.
To approximate these velocities, _xjð0Þ, we consider a

Taylor expansion [26] about s ¼ 0,

xjðsÞ ¼ xjð0Þ þ s_xjð0Þ þ
X∞
n¼2

sn

n!

dnxj
dsn

����
s¼0

; ð69Þ

for the geodesic. Then using the geodesic Eq. (59), the nth
derivative in the sum may be reexpressed as an nth order
polynomial in s_xð0Þ. After substituting the rescaled veloc-
ity vλ ¼ sj _xλjð0Þ, the series expansion takes the form,

vλ ≃ Δxλij þ
X∞
n¼2

1

n!
~Γλ
μ1;μ2;::;μn ½xð0Þ�vμ1vμ2 � � � vμn ; ð70Þ

where have brought the linear term, vλ, and the difference,
Δxij ¼ xjðsjÞ − xjð0Þ, to the left- and right-hand side
of Eq. (70), respectively. The nth tensor coefficients
~Γλ
μ1;μ2;::;μn ½xð0Þ� are defined [26] recursively in terms of

derivatives of Γλ
μν and products of lower rank tensors

starting with ~Γλ
μν½xð0Þ� ¼ Γλ

μν½xð0Þ�.
This simple maneuver allows us to approximate the

tangent vector as a series in Δxij ¼ OðaÞ in the continuum
limit. In leading order, we see that vð0Þ≃ Δxij, corre-
sponding to the fact that, on a smooth manifold, the straight
line is the first approximation. The next step is to use this
linear approximation in the second order equation to get a
quadratic approximation. In general the nth approximation
takes the form of an nth order polynomial in Δxij as
described in Ref. [26], leading to

vλ ¼ sj _xλð0Þ≃ Δxλij þ
1

2
Γλ
μν½xð0Þ�ΔxμijΔxνij

þ Cλ
μ1μ2μ3Δx

μ1
ijΔx

μ2
ijΔx

μ3
ij þ � � � : ð71Þ

The quadratic approximation in Δxij gives Oða2Þ errors for
the normalized tangent vector, which is sufficient for our
construction.
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After normalizing the velocities, we have an approxi-
mation to the lattice vierbein EðiÞj ≃ _xð0Þ=_xð0Þj≃ eðiÞj. If
we repeat this construction at all sites, adopting coordinate
systems at i and j sites, related by Ωij, we have an
approximate solution to the lattice tetrad hypothesis:
E⃗ðiÞj þOijE⃗

ðjÞi ¼ Oða2Þ on each link. Remarkably from
this approximation we can construct an exact solution to the
tetrad hypothesis simply by averaging the estimate for E⃗ðiÞj

at i with the pullback (−OijE⃗
ðjÞi) from j,

e⃗ðiÞj ¼ E⃗ðiÞj −OijE⃗
ðjÞi

jE⃗ðiÞj −OijE⃗
ðjÞij

e⃗ðjÞi ¼ E⃗ðjÞi −OjiE⃗
ðiÞj

jE⃗ðjÞi −OjiE⃗
ðiÞjj

; ð72Þ

normalized to unit length. The denominators in Eq. (72) are
equal, so dropping them we can verify the tetrad hypothesis
identity on each link hi; ji by

e⃗ðiÞjþOije⃗ðjÞi∼ E⃗ðiÞj−OijE⃗
ðjÞiþOijðE⃗ðjÞi −OjiE⃗

ðiÞjÞ ¼ 0:

ð73Þ

With this construction, we may also replace the area
estimate by

Aμν
△ijk

ðiÞ ¼ lijlik
2

½eðiÞjμ eðiÞkν − eðiÞjν eðiÞkμ �; ð74Þ

to order Oða2Þ. The entire approximation procedure
depends only on a consistent choice of a coordinate system
at each site i. However, the accuracy of this approximation
can depend on this choice. An attractive convention which
is worth investigating further is to introduce Riemann
normal coordinates [24] at each site i, with the metric,
gμνðxÞ ¼ gμνðxiÞ − ð1=3ÞΔxλΔxσRμλνσ þOða3Þ to help in
approximating the tangent vectors.

C. Spin Structure on the simplicial S2

In preparation of our numerical tests and as a simple
example, we present the construction of our 2D simplicial
Dirac action on S2. The above procedures can be tested and
used on a sphere, but a far simpler approach is to realize
that all geodesics are just given by great circles. Given
two points on the D dimension sphere denoted by unit
vectors r⃗i and r⃗j, the geodesic is parametrized simply by
x⃗ðtÞ ¼ ðtr⃗i þ ð1 − tÞr⃗jÞ=jtr⃗i þ ð1 − tÞr⃗jj with tangent vec-
tors eðiÞj ¼ _xð0Þ=j_xð0Þj. The entire construction is reduced
to simple vector algebra in the embedded space. Other
symmetric manifolds have similar embedding methods.
For the S2 manifold, our triangulation [3,4] starts with an

icosahedron in Fig. 7, which provides the largest subgroup
of the spherical symmetry. Each one of the 20 faces is then

subdivided into L2 equilateral triangles resulting in a total
of F ¼ 20L2 triangles. Next, we project each triangle onto
the unit sphere and take as edge lengths the secant distances
between vertices on the sphere, as illustrated in Fig. 7 for
L ¼ 3. This projection introduces a small deformation of
the equilateral triangles, so to accurately approximate
the Lagrangian, we need to compute the finite element
weights. The topology of the manifold is determined by the
Euler characteristic, χ ¼ V − Eþ F ¼ 2 − 2H ¼ 2 and the
geometry by the table of lengths lij.
The lattice Dirac action on S2 is

S ¼ 1

2

X
hi;ji

Vij

lij
½ψ̄ ie

ðiÞj
a σaΩijψ j − ψ̄ jΩjie

ðiÞj
a σaψ i�

þ 1

2
mViψ̄ iψ i þ SWilsonTerm; ð75Þ

where the vierbein eðiÞja σa ¼ eðiÞj1 σ1 þ eðiÞj2 σ2 are 2-vectors
in the tangent plane at site i. For each link hi; ji, there is a
lattice spin connection, ΩijðθijÞ ¼ sijeiθijσ3=2, associated
with an Abelian Oð2Þ rotation OðθijÞ, −π < θij < π.
Because we know the exact geodesics on the sphere are
great circles, the geometry for the triangle σ2ðijkÞ is fixed
by the set of three angles, θi, as shown in Fig. 8. Once
OðθijÞ is specified, this lattice spin connection, ΩijðθijÞ,
can then be constructed following the method in Sec. IVA.
After parametrizing the tangent plane y⃗ ¼ yan⃗a at each

site relative to two randomly chosen orthonormal tangent
vectors n⃗a, we can determine θij by a procedure illustrated
Fig. 8. For each triangle we rotate the 1 axis at site i into a
tangent vector on the arc from i to j by αi, parallel transport

FIG. 7. The L ¼ 3 refinement of the icosahedron with V ¼
2þ 10L2 ¼ 92 vertices or sites. The icosahedron on the top left is
refined in the top right with L2 ¼ 9 equilateral triangles on each
face, and then on the bottom the new vertices are projected onto
the unit sphere. The resulting simplicial complex preserves the
icosahedral symmetries.
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this tangent vector on the geodesic to site j and rotate it
back to the 1 axis at j by βj. This gives θij ¼ αi − βj. It
follows trivially that θ12þθ23þθ31¼ðθ1þθ2þθ3Þmod2π,
where the deficit angle is defined by

δ123 ¼ A123 ¼ 2π − ðθ1 þ θ2 þ θ3Þ
¼ 2π − ðθ12 þ θ23 þ θ31Þmod2π: ð76Þ

Now the problem is to determine sij for all links self-
consistently for the entire sphere following the procedure
described in Sec. IVA. As before, choose an arbitrary
triangle and fix the signs, sij, to satisfy constraint to
minimize the integrated curvature (58), then move to
adjacent triangles fixing the signs sij on new edges until
you encounter the last triangle. Now all the edges have
fixed signs so there could be an obstruction. However,
since the deficit angle is additive (or, for the sphere, the
areas are additive), for any closed loop we know that this
last triangle on a unit sphere, when viewed from the
outside, has a deficit angle δ≃ 4π − A△ in steradians.
But since e4πiσ

3=2 ¼ 1, the 4π factor can be dropped and
there is no obstruction.
It is a simple algebraic exercise to show this exact

consistency condition on the sphere holds generally for any
triangulation of a surface with the topology of a sphere. The
more general argument is as follows. Assume the interior

angle for the ith vertex in triangle △ijk is given by ~θi ¼
π − θi and that all the interior angles on the tangent plane at
each vertex add up exactly to 2π. Then the deficit angle is
δðijkÞ ¼ ~θi þ ~θj þ ~θk − π and the sum over all angles must
give X

F

½~θi þ ~θj þ ~θk� ¼ 2πV: ð77Þ

Any 2D simplicial triangulation of a closed surface implies
3F ¼ 2E, so we have the sum rule,X

δðijkÞ ¼ 2πV − πF ¼ 2πðV − Eþ FÞ ¼ 4πð1 −HÞ;
ð78Þ

which for the sphere by Euler’s identity gives 4π. In fact,
this argument applies to any closed orientable 2D triangu-
lation, or any surface with an even number of boundaries B,
such as the cylinder. Even with an approximate determi-
nation of the angles, as for example in our relaxation
algorithm in Sec. IV B, the constraint remains exact.
Finally, we should note a simple interpretation for a 2D

complex Riemann manifold. In the complex plane, all
Riemann manifolds can be represented by adding pairs of
square root branch points. For example, a square root
branch point at the origin with a cut out to infinity
represents a cylinder with two open boundaries. When
you add an even number of pairs, these create handles—4
twists for the torus, etc., As we discuss in Sec. VI for the
simplicial Dirac equation, a pair of branch points is
equivalent to allowing a pair of −1 “frustrated” triangles.
In the context of Ising conformal field theory (CFT), this
corresponds to the insertion of twist operators. Just as
square root branches come in pairs when you flip edges
(sij → −sij), on the simplicial complex it creates a pair of
frustrated triangles. This is a nice illustration of the fact that
the existence of a spin structure on a Riemann manifold is a
purely topological property that is naturally encoded in the
simplicial complex without the need to introduce a metric.

V. NUMERICAL TESTS FOR 2D
DIRAC FERMIONS

For simplicity, we restrict our tests to the Dirac fermion
(29) on S2, which can be easily solved analytically [27].
For future tests, higher-dimensional spherical solutions are
also available, for example the 4D sphere in Ref. [27]. On
S2, the metric is

ds2S2 ¼ dθ2 þ sin2 θdϕ2: ð79Þ

With e⃗θ ¼ ð1; 0Þ, e⃗ϕ ¼ ð0; sin θÞ and ffiffiffi
g

p ¼ sin θ, the only
nonzero components of the spin connection, (33), are
ω12
ϕ ¼ −ω21

ϕ ¼ − cos θ. The action on S2 is

FIG. 8. On the top, vectors in the tangent planes, and on the
bottom, the lattice spin connection, Ω12 and the outgoing and

reflected vierbeins, eðiÞj ¼ eðiÞja γa and ~eðiÞj ≡ −eðiÞj, respectively.
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Ssphere ¼
Z

dϕdθ sinθψ̄

�
σ1
�
∂θ þ

cotθ
2

�
þ σ2

∂ϕ

sinθ
þm

�
ψ :

ð80Þ

The massless Dirac operator, D ¼ ffiffiffi
g

p ∇ ¼ sin θ½σ1ð∂θþ
cot θ=2Þ þ σ2ð∂ϕ= sin θÞ�, is anti-Hermitian and therefore
has pure imaginary eigenvalues iλ. It also follows from
the σ3-Hermiticity property, σ3Dσ3¼D†¼−D, that eigen-
values come in complex conjugate pairs,

λ ¼ �ðjþ 1=2Þ; ð81Þ
where j ¼ 1=2; 3=2; � � � are the allowed angular momenta.
Furthermore, for each j, the spectrum is (2jþ 1)-fold
degenerate [27], with the degeneracy labeled by
−j ≤ m ≤ j. The explicit eigenfunctions in terms of
spherical harmonics are given in Appendix B. The action
is also invariant under σ1 conjugation, σ1D�σ1 ¼ D, or
equivalently, together with σ3 conjugation, σ2D�σ2 ¼ D†.
These discrete symmetries are exactly preserved on our
simplicial complex.
For comparison, on the simplicial lattice, our action is

SWilson
Dirac ¼ 1

2

X
hi;ji

Vij

lij
ðψ̄ ie

ðiÞj
a σaΩijψ j − ψ̄ jΩjie

ðiÞj
a σaψ iÞ

þ
X
i

mViψ̄ iψ i

þ a
2

X
hi;ji

Vij

l2ij
ðψ̄ i − ψ̄ jΩjiÞðψ i −Ωijψ jÞ; ð82Þ

with the Wilson term to remove doublers. We have set
the coefficient, r, of the Wilson term to the mean lattice
spacing on the sphere: r ¼ a. The Wilson term acts
like a mass operator, so now the eigenvalues have both
real and imaginary parts. Defining the lattice matrix
Dij by SWilson-Dirac ¼ ψ̄ iDijψ j, σ3 Hermiticity is still valid.
Therefore, eigenvalues still come in complex conjugate
pairs,

E ¼ λR � iλI: ð83Þ
With rotational invariance broken, λI no longer takes on
exactly integral values and the (2jþ 1)-fold degeneracy is
broken. In the limit of zero lattice spacing, a → 0, one
nevertheless anticipates the spectrum approaching λI →
ðjþ 1=2Þ and λR → 0, with doublers becoming increas-
ingly massive and decoupling from the spectrum.
Before introducing the Wilson term, it is interesting to

see its effect on a flat L × L regular triangular lattice with
Ωij ¼ 1. In the absence of the Wilson term, as depicted by
the top figure in Fig. 9, the hexagonal Brillouin zone
actually has 6 copies of the 2-component spinor zero modes
[28]. These zero modes are labeled as A;B;…; F. The
doublers spoil the continuum limit and even fail to restore

Lorentz invariance [29]. When the Wilson term is added,
the doublers are removed and the spectrum comes close to
the circular complex spectrum of a lattice overlap operator
[30], converging rapidly to the continuum. This is depicted
in the bottom figure in Fig. 9, with the L → ∞ spectrum in
solid blue compared to small lattices for L ¼ 4, 6, 10, 16.
On S2, a global view of the Wilson-Dirac spectrum is

illustrated in Fig. 10. Not surprisingly, the qualitative
effects of the Wilson term on S2 are very similar to that
for the flat lattice shown in Fig. 9. The apparent difference
between the two figures as a function of the refinement L is
due to our convention. On the flat plane, we treat the
eigenvalues as discrete dimensionless momenta (apμ),
which scale to a continuum dispersion relation as
a ∼ 1=L → 0, whereas on the sphere we have fixed the
radius of S2 to one, so the eigenvalues remain discrete
approaching fixed values in the continuum limit. Figure 10
plots the real vs imaginary parts of eigenspectrum for
increasing refinement of L ¼ 2, 8, 16, 24, 48. In the limit
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E
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FIG. 9. On the top, the Brillouin zone for the naive Dirac
operator on a regular flat triangular lattice. The zero modes are
labeled A–F. On the bottom, the infinite triangular lattice
spectrum with the Wilson term (solid blue) compared to small
lattices with 16 (red), 36 (gold), 100 (green) and 256 (purple)
sites.
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L → ∞, the imaginary parts of the low-lying eigenvalues,
λI, approach �ðjþ 1=2Þ, while their corresponding real
parts, λR, vanish as Oð1=LÞ.

A. Spectrum of the lattice Dirac operator

There are two approaches to determining the spectrum of
the Wilson-Dirac operator. The first is to directly evaluate
the eigenvalues of the discrete Wilson-Dirac operator Dij,
which is limited by the efficiency of eigenvalue routines for
sparse matrices. The second approach is to assume the
eigenvectors are well approximated by their continuum

wave functions evaluated on the lattice sites, ψ ðnÞ
i , and to

compute the matrix elements of the lattice Wilson-Dirac
operator, hψ̄ ðnÞjDjψ ðnÞi≃ λR;n þ iλI;n. It is important to be
precise in defining the spectral problem on the simplicial
manifold. In the continuum the spectral problem is the
stationary value of the quadratic form,

I ¼
Z

dDx
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
ψ̄ðxÞð∇þm − EÞψðxÞ; ð84Þ

leading either to the conventional eigenvalue problem,
ð∇þmÞψðxÞ ¼ EψðxÞ, where ∇ ¼ eμDμ, or to the gen-

eralized eigenvalue problem DψðxÞ ¼ E
ffiffiffiffiffiffiffiffiffi
gðxÞp

ψðxÞ where
D ¼ ffiffiffi

g
p ðeμDμ þmÞ. On the simplicial lattice, based on the

discrete simplicial quadratic form, I ¼ ψ̄ iðDij−EViδijÞψ j,
is more conveniently given as the generalized eigenvalue
problem,

Dijψ
ðnÞ
j ¼ EnViψ

ðnÞ
i ;

X̄
i
Viψ̄

ðn0Þ
i ψ ðnÞ

i ¼ δn0;n: ð85Þ

Here the continuum measure,
ffiffiffiffiffiffiffiffiffi
gðxÞp

, is replaced by the
Vorioni dual volume Vi ≡ jσ�1ðiÞj. Alternatively one may
rescale by the square root of the measure, redefining the

matrix as ~Dij ¼ V−1=2
i DijV

−1=2
j and eigenvectors as ~ψ ðnÞ

i ¼
V1=2
i ψ ðnÞ

i to convert it to a conventional eigenvalue problem.
Either way, properly treating the measure Vi is critical to a
faithful correspondence with the continuum.

1. Lattice eigenvalues

The low-lying eigenvalues are plotted in Fig. 11 for a
range of refinements L. The black stars on the left side of
the plot correspond to the continuum results for the low-
lying eigenvalues of the continuum Dirac operator, which
have integer spacing along the imaginary axis. The nth
level has 2n degenerate eigenvalues corresponding to the
2jþ 1 values for the magnetic quantum number,m. On the
right side of the plot, we show the numerically computed
spectrum for a range of refinements, L ¼ 2, 8, 16, 24, 48,
with λR < 10. The degeneracy in m is (partially) broken,
but too small to be seen.
In Fig. 12, we provide a more detailed picture of the

breaking of degeneracy in m. The top figure shows the
imaginary part of all low-lying eigenvalues, with
1 ≤ λI ≤ 6, and λR < 10, as L increases. As the lattice is
refined, these levels quickly fall into clusters which can be
associated with our continuum pattern, labeled by j values,
with an approximate degeneracy of 2jþ 1. The first three
levels are exactly degenerate due to the symmetry of the
icosahedron under the subgroup of rotations. In the bottom
figure, we see that the imaginary part of the spectrum is
linear for small j and degenerate. However, for larger j, the
degeneracy in m breaks down, as indicated by a spread in
the eigenvalues for fixed j, and various levels overlap.
The dispersion relation including contributions from

both the Dirac and the Wilson term, which should
converge to

λI → jþ 1=2; λR → ððjþ 1=2Þ2 − 1=2Þ=L; ð86Þ
as we approach the continuum. Here the eigenvalues
are averaged over the 2jþ 1 values for the azimuthal
angular momentum, m. In Fig. 13, for L ¼ 48, we plot the
real and imaginary parts of the eigenspectrum as a function
of j for 0 < j < 20. For j ≤ 15=2, we performed
unweighted least-squares regression to the imaginary and
real parts of the eigenvalues. For the imaginary and real

FIG. 10. The Wilson-Dirac spectra on the discrete sphere for
various refinement values of the refinement L.

FIG. 11. As we increase the refinement level L, we expect the
low-lying eigenvalues to converge to their continuum imaginary
integer values. We see that as L increases the real part (due to the
Wilson term) approaches zero and the imaginary part approaches
an integer.
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parts, we find λIðjÞ ¼ 1.011ðjþ 0.480Þ − 0.00197j2 and
λRðjÞ ¼ ð0.9836jðjþ 1Þ − 0.27þ 0.00097j3Þ=L respec-
tively. Both are consistent with the theoretical expectation
given in Eq. (86) derived in Appendix B.

2. Lattice eigenvectors

Given the continuum eigenfunctions restricted to the
lattice ψ ðnÞ lattice, we can in principle approximate the
eigenvalue from matrix elements hψ ðnÞjDjψ ðnÞi≃ λR;nþ
iλI;n. This also checks the accuracy of matching lattice
eigenvectors to the continuum (B7). However, before
proceeding, one must transform them from the continuum
coordinate gauge into the gauge defined by our lattice
action.
To fix the gauge, we can take advantage of the exact

degeneracy in the magnetic quantum number for the first
three levels. For simplicity, we choose the two lowest
continuum wave functions, that is, m ¼ �1=2 for j ¼ 1=2,
discretized on to the lattice sites, ψ i ¼ ðψ ð1ÞðriÞ;ψ ð2ÞðriÞÞT
compared to the corresponding lattice eigenvectors of Ψi ¼
ðΨð1Þ

i ;Ψð2Þ
i ÞT for Dij. The desired gauge transformation at

each site can be specified by a local spinor rotation, eiθiσ3=2,
and a global 2 by 2 unitary matrix, U, which mixes the

degenerate pair. These are determined by minimizing the
functional

Gðθi;UÞ ¼
X
i

jψ i − ei
θi
2
σ3UΨij2

¼ −
X
i

ψ̄ iei
θi
2
σ3UΨi −

X
i

Ψ̄ðnÞ
i U†e−i

θi
2
σ3ψ i ð87Þ

with respect to U and eiθiσ3=2 on each site i. This enables us
to take the matrix element hψ̄ ðnÞjDjψ ðnÞi using the dis-
cretize continuum eigenvector rotated to our lattice frame to
estimate the eigenvalues. In Fig. 14 we compare the lattice
operator eigenvalues to the matrix elements. The two
results are in remarkable agreement, suggesting that the
discrete Wilson term has eigenvectors consistent with the
Dirac term. We found that the minimum of the function G
given in Eq. (87) approaches zero as 1=L2. This suggests
that the lattice eigenvectors become an increasingly good
approximation of the continuum eigenvectors as L
increases. This is also consistent with our previous obser-
vation that the Wilson term, while crucial to removing
spurious doublers, has a negligible effect on the physical
states as L → ∞.

FIG. 12. On the top, we show the imaginary part of the low-
lying eigenvalues, with degenerate states repeated, for various
refinements. On the bottom, we show how the imaginary part of
the eigenvalues for L ¼ 24, in green, and L ¼ 48, in grey,
approach the continuum as a function of j.
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FIG. 13. On the top, we show the real part of the eigenvalues for
j ≤ 20, averaged over m, at L ¼ 48. On the bottom, we show a
similar plot for the imaginary part of the eigenvalues. The
overlaid curves reflect the asymptotic continuum behavior given
in Eq. (86).
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B. Rate of convergence to the continuum

There are two ways to test the convergence of the
spectrum to the continuum limit. (i) The restoration of
degeneracy in the magnetic quantum number, m, as L
increases. (ii) The behavior of the spectrum, averaged over
m, as L increases. The exact σ1 symmetry results in a
pairing of degenerate eigenvalues for each j. Since our
discretization exactly preserves icosahedral symmetry, the
first level which exhibits breaking of the degeneracy inm is
the fourth level. For λ ¼ 4, there are two irreducible
representations of the icosahedral group, resulting in a
splitting into two groups with two and six members as
illustrated on the top in Fig. 12. At higher levels, the
eigenvalues can split into a larger set of irreducible
representations.
Restricting our attention to λ ¼ 4, we define the splitting

in the eigenvalues, independently for the real and imaginary
parts, as the difference between the maximum and mini-
mum eigenvalues. In Fig. 15, we consider this splitting as L
increases. We perform an unweighted linear regression to
the splitting as a function of L. For the imaginary and real
parts, we find the splitting behaves as −6 × 10−5 þ
0.0034=Lþ 0.230=L2 and 0.0009 − 0.035=Lþ 0.44=L2,

respectively, consistent with restoration of full spherical
symmetry in the continuum.
Next we consider how the eigenvalues, averaged over m,

approach the continuum for λ ¼ 4. In Fig. 16, on top, we fit
the eigenvalue to λI;4 ¼ 3.99932þ 0.034=L − 11.67=L2

consistent with the continuum value, λI;4 ¼ 4. On the
bottom, we see the real part also approaches the correct
continuum value, λR;4 ¼ 0. The convergence of this term is
governed by the Wilson term, which scales with an extra
factor of lattice spacing compared to the naive Dirac term.
We therefore expect it to converge more slowly, asOð1=LÞ.
Our fit gives λR;4 ¼ 0.0025þ 9.19=L, again consistent
with our expectations.

VI. THE ISING CONFORMAL FIELD
THEORY ON S2

The exact solution to the 2D Ising model provides a
rigorous test of our simplicial construction of the free
fermions on S2. To begin let us review this continuum
c ¼ 1=2 minimal model. There are only three Virasoro
primaries 1; σ; ϵ, with an operator product expansion (OPE),

σ × σ ¼ 1þ ϵ; ϵ × σ ¼ ϵ; ϵ × ϵ ¼ 1: ð88Þ

It is equivalent to a free Majorana holomorphic, ψðzÞ, and
antiholomorphic, ψ̄ðz̄Þ, field on all 2D Riemann surfaces

FIG. 14. A comparison of the spectrum computed via a
numerical eigensolver with the spectrum computed via matrix
elements for L ¼ 4, 8, and 16.
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FIG. 15. The splitting of the eigenvalues for λ ¼ 4 as a function
of L. We note that with increased refinement, the eigenvalues
become more degenerate.

FIG. 16. On the top, we show the approach of the imaginary
part of the λ ¼ 4 eigenvalues, averaged over m, to the continuum
as a function of the refinement L. On the bottom, we show the
analogous plot for the real part of the eigenvalues.
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[31]. In the complex plane, the Riemann surface can be
represented by inserting pairs of square root branch points
whose locations correspond to the σðzÞ operators. When
projected onto our simplicial lattice on S2, these represent
pairs of branch points given by simplicies with curvature
defects of−1. Clearly, these defects must be inserted in pairs
by flipping bonds on an invisible string between these
flipped plaquettes. Herewe compute the 2-point and 4-point
functions,

hϵðx1Þϵðx2Þi; and hσðx4Þϵðx3Þϵðx2Þσðx1Þi; ð89Þ

where ϵðxÞ ¼ iψ̄ðxÞψðxÞ and σðxÞ is the twist operator
that introduces the square root branch points. Of course,
correlators with only fermion operators, such as
hϵðx1Þϵðx2Þϵðx3Þϵðx4Þi, are trivially given by the Wick
contractions as products of 2-point functions
hϵðx1Þϵðx2Þi. The hσðx4Þσðx3Þσðx2Þσðx1Þi correlation func-
tion is the partition function on the torus. This is computed in
Ref. [5] as a test of QFE methods for the ϕ4 CFT theory
on S2.

A. Dirac vs Majorana propagators

In the continuum, the 2D Dirac fermion,

S ¼
Z

d2xΨ̄½σμ∂μ þm�Ψ

¼ 2

Z
dzdz̄ Ψ̄½σ−∂ z̄ þ σþ∂z þm�Ψ; ð90Þ

at zero mass can be decomposed into two single component
Majorana fermions,

S ¼ 2

Z
dzdz̄½ψ∂ z̄ψ þ ψ̄∂zψ̄ �

¼ 2

Z
dzdz̄½ψ ∂̄ψ þ ψ̄∂ψ̄ �; ð91Þ

where Ψ¼ðΨ1;Ψ2ÞT≡ðψ ;ψ̄Þ and Ψ̄¼ΨTσ1¼ðΨ2;Ψ1ÞT≡
ðψ̄ ;ψÞ are split into a holomorphic and antiholomorphic
parts, ψðzÞ and ψ̄ðz̄Þ, respectively. The holomorphic
propagator is

hψðz1Þψðz2Þi ¼ hz1; z̄1j∂̄−1jz2; z̄2i
¼ ∂hz1; z̄1jð∂̄∂Þ−1jz2; z̄2i
¼ 1

2π

1

z1 − z2
; ð92Þ

and the antiholomorphic propagator is hψ̄ðz̄1Þψ̄ðz̄2Þi ¼
hψðz1Þψðz2Þi�. Note that these solutions are regular at 0
and ∞, and periodic in θ → θ þ 2π for z ¼ jzjeiθ. By
inserting twist operators at 0 and ∞, the propagators,

hσð∞Þψðz1Þψðz2Þσð0Þi ¼
ffiffiffi
z1
z2

q
þ

ffiffiffi
z2
z1

q
4π

1

z1 − z2
; ð93Þ

and hσð∞Þψ̄ðz̄1Þψ̄ðz̄2Þσð0Þi¼hσð∞Þψðz1Þψðz2Þσð0Þi� are
now antiperiodic in θ. To make contact with our simplicial
Dirac fermion requires two steps: first projecting the flat
space correlators to the Riemann S2 sphere and second
identifying a single Majorana component within our
2-component simplicial Dirac fermion.

B. Stereographic projection for conformal fields

Under a Weyl rescaling of the flat metric,

gμνðxÞ ¼
∂ξα
∂xμ

∂ξα
∂xν ¼ Ω2ðxÞδμν; ð94Þ

the conformal correlation functions for primaries Oi of
dimension Δi obey the general identity [32],

hO1ðx1ÞO2ðx2Þ � � �igμν
¼
�

1

Ωðx1ÞΔ1

1

Ωðx2ÞΔ2
� � �
�
hO1ðξ1ÞO2ðξ2Þ � � �iflat: ð95Þ

In particular the map, R2 → S2, to the projective sphere,

ds2S2 ¼ 2

ð1þ zz̄Þ2 dzdz̄ ¼ cos2ðθ=2Þds2R2 ; ð96Þ

introduces the Weyl factor, Ω2ðθÞ ¼ cos2ðθ=2Þ, and leads
to the identity for the 2-point function

hO1ðx1ÞO2ðx2ÞiS2 ¼ 1

½Ωðx1Þjz1 − z2j2Ωðx2Þ�Δ

¼ 1

ð2 − 2 cos θ12ÞΔ
; ð97Þ

where Ωðθ1Þjz1 − z2j2Ωðθ2Þ ¼ jr⃗1 − r⃗2j2 ¼ 2ð1 − cos θ12Þ
with radial vectors, r ¼ ðrx þ iry; rzÞ ¼ ðsin θeiϕ; cos θÞ
restricted to the unit sphere embedded in R3. Just as
Poincaré invariance on the plane implies that correlators
are a function of the length (or Euclidean distance on the
plane, jz1 − z2j), rotational invariance on the sphere fixes
the correlator to be a function of the geodesic distance, θ12.
In addition scale invariance fixes the full functional form.
It is often useful to make use of conformal cross ratios u

and v, which are also invariant under Weyl transformations,

u ¼ x212x
2
34

x213x
2
24

¼ r212r
2
34

r213r
2
24

; v ¼ x214x
2
32

x213x
2
24

¼ r214r
2
32

r213r
2
24

; ð98Þ

where r2ij ¼ ðr⃗i − r⃗jÞ2 ¼ 2ð1 − cos θijÞ. In moving from
R2 to S2, all conformal factors cancel. In 2D one also can
combine the two cross ratios into a single complex number,
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ζ ¼ ðz1 − z2Þðz3 − z4Þ
ðz1 − z3Þðz2 − z4Þ

; ð99Þ

where zi ¼ cotðθi=2Þeiϕi and u ¼ jζj2; v ¼ j1 − ζj2.
For future reference, we point out that this construction

can be generalized to SD by the replacement r̂ ¼ ðrz; r⃗⊥Þ ¼
ðcos θ; sin θr̂⊥Þ, or if you prefer use rotational symmetry to
bring rz and jr⃗⊥j to the x-y plane. One may see this in two
steps. First, one maps RD → R × SD−1 via radial quanti-
zation with coordinates ðlog r; r⃗⊥Þ, then one maps to the
projective sphere R × SD−1 → SD with coordinates
ðcos θ; sin θr̂⊥Þ.

C. Numerical tests for 2- and 4-Point correlators

To numerically compute conformal correlators, we need
to identify the Majorana components in our simplicial
Wilson-Dirac fermions. This is accomplished by including
a Majorana mass, and comparing the continuum with the
lattice form of the Dirac operators,

Mz1;z2 ¼
�
m ∂
∂̄ m

�
z1;z2

→

�
W ∇
−∇† W

�
z1;z2

: ð100Þ

On the right, ∇ is the naive central difference operator for a
massless lattice fermion andW is theWilson term including
the mass. This identification recognizes that the Wilson
term W plays the role of the mass term in the continuum
limit, in addition to removing the unphysical doublers. We
compute the inverse for both representations using the
Schur decomposition. In the continuum, onR2, we have the
expression,

Gðz1; z2;mÞ

¼
�
m−1ð1þ ∂ðm2 − ∂̄∂Þ−1∂̄Þ −∂ðm2 − ∂̄∂Þ−1

−ðm2 − ∂̄∂Þ−1∂̄ mðm2 − ∂̄∂Þ−1
�
;

ð101Þ

for Gðz1; z2;mÞ ¼ M−1
z1;z2, which can be compared with the

Wilson-Dirac lattice propagator,

Gðz1; z2Þ

¼
�
W−1ð1þ∇Δ−1

s ∇†W−1Þ −W−1∇Δ−1
s

Δ−1
s ∇†W−1 Δ−1

s

�
zw

; ð102Þ

where Δs ¼ W þ∇†W−1∇ is the Schur complement.
Taking the zero mass limit of Eq. (102), we can identify
the Majorana propagator as the off-diagonal terms in
Eq. (103), so it follows that on the lattice, we should also
identify these off-diagonal terms for the lattice conformal
propagators. Consequently, in the zero mass limit, the
correspondence,

G12ðz1; z2ÞG21ðz1; z2Þ ¼ jG12ðz1; z2Þj2
→ hψðz1Þψ̄ðz̄1Þψ̄ðz̄2Þψðz2Þi;

ð103Þ

is established.

1. Lattice ϵϵ correlator

We will now show numerically that not only is Eq. (103)
correct, but the simplicial correlator converges rapidly to
the continuum on S2,

hϵðr⃗1Þϵðr⃗2Þi ¼
1

4π2
1

2ð1 − cos θ12Þ
: ð104Þ

A comparison of the numerical result vs the analytic result
is given in Fig. 17. At very small distances, cutoff effects
give a visible disagreement with the continuum result,
but otherwise the fit is remarkably good even at relatively
small L ¼ 16. It is important to note that this is a zero
parameter fit, including the normalization. Fitting the
data to the expected functional form, we find ða=8π2Þ×
ð1 − cos θÞ−γ ≃ ð1.0035=8π2Þ × ð1 − cos θÞ−0.996. At L ¼
16 the finite lattice errors are less than 1 percent.

2. Lattice σϵϵσ correlator

To examine the four-point correlator, we need to intro-
duce twist operators on the lattice. It is convenient to
introduce the branch points at the north and south poles of
our decorated icosahedron and to maintain a discrete 5-fold
axial symmetry in θ. To accomplish this, first, the pole
points are removed. This takes our lattice from the topology
of a sphere to the cylinder. Next, the spin connection on one
link around the poles is flipped in sign. This introduces a
topological defect at the north and south poles which
corresponds to the insertion of our lattice twist operators.
Finally, a path is constructed between the flipped links at
the north and south poles, flipping the sign of the spin
connection along the path, so that the only defects are at the
north and south poles.

FIG. 17. Log-Log plot of the two point correlator for L ¼ 16.
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For a numerical comparison we normalize the lattice
four-point function by the simplicial lattice two-point
function and compare with the analytical form on the
sphere,

hσð∞Þϵðz2Þϵðz3Þσð0Þi
hϵðz2Þϵðz3Þi

¼ 1

4
ðrþ 1=rþ 2 cos θ23Þ; ð105Þ

as a function of the conformally invariant coordinate:
z2=z3 ≡ reiθ. Unlike the 2-point function, this depends
on both the angular separation θ23 and the magnitude
jz2=z3j. When either one of the ϵ operators is near the poles,
the ratio function in Eq. (105) diverges and the lattice
results have strong cutoff effects, which we suppress by
restricting the ϵ fields to the range between polar angles
½π=4; 3π=4�. The results can be seen in Figs. 18 and 19.
First, in Fig. 18, we see the r dependence of the ratio
function by subtracting off the cosðθÞ=2 data, and next in
Fig. 19 we see the θ dependence by subtracting off the
ðrþ 1=rÞ=4 data. In both cases, the numerical results
converge to the continuum result shown in red. The total
data set can be fit to the functional form aðrþ 1=rÞ=4þ
b cosðθÞ=2 with 1=L corrections giving a ¼ 1.0008þ
0.264=L and b ¼ 1.00033 − 0.00566=L. In view of the

neglecting Oð1=L2Þ terms in the fit, this is consistent with
the exact continuum limit (a ¼ b ¼ 1).

VII. DISCUSSION AND FUTURE DIRECTIONS

We have presented a solution to lattice Dirac fermions on
a simplicial complex approximating a general smooth
Riemann manifold. To achieve this we borrowed methods
from FEM, RC and the language of the DEC. However, our
solution required substantial new features to accommodate
the curved manifold going beyond the linear piecewise
implementations prevalent in the literature. To remove the
doublers, we have used the construction of Wilson fer-
mions. As in flat space, the operator for this simplicial
Wilson fermion can be used as a kernel for Shamir [33] and
Möbius [34] domain wall fermions by introducing a flat
extra dimension of length Ls. Just as in flat space, this
should converge as Ls → ∞ to an exact simplicial lattice
chiral overlap fermion representation [30].
This appears to us to be the first general solution for

simplicial lattice Dirac fermions on any smooth Euclidean
Riemann manifold that is capable of convergence to the
exact continuum limit. To support this conjecture, tests were
made for the simplicial lattice on a 2D Riemann sphere
compared with the exact continuum solutions. While this is
obviously far from a proof, additional tests on higher
dimension manifolds will be performed. The proof of
convergence theorems have not yet been attempted.
Convergence proofs for classical FEM and Regge calculus
are far from trivial or complete [8], let alone their extension
to the simplicial fermions presented here. However, we feel
that the geometrical underpinning of our approach makes
our convergence conjecture plausible.
To address the central problem of QFE, interacting

quantum field theory on curved manifolds, we need to
introduce interactions with scalar and gauge fields. Yukawa
terms interacting with scalars are not difficult to formulate
using linear FEM truncated to local terms to represent a
minimal set of relevant operators. The inclusion of gauge
fields interacting with our simplicial lattice fermions is also
straightforward for vector like theories by replacing the
spin connection Ωij on each link by the product ΩijUij in
the action for the Dirac field,

SWilson ¼
a
2

X
hi;ji

Vij

l2ij
ðψ̄ iê

jðiÞ
a γaΩijUijψ j

− ψ̄ jΩjiUjiê
iðjÞ
a γaψ iÞ þ � � � ; ð106Þ

where Uij is the Wilson compact gauge link matrix,

Uij ¼ eil
μ
ijA

μ
ij ; ð107Þ

and Aij ¼ λaAa
ij is the non-Abelian gauge potential. The

kinetic term in the action has been considered in Ref. [10]

FIG. 18. Functional dependence in r of the four point correlator
for L ¼ 4, 8, 12, isolated by subtracting the θ term. The dotted red
line is the expected continuum behavior.

FIG. 19. Functional dependence in θ of the four point correlator
for L ¼ 4, 8, 12 isolated by subtracting the r terms. The dotted
red line is the expected continuum behavior.
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in flat space, but can be easily introduced on our simplicial
manifold as well. The continuum action

S ¼ 1

2

Z
dDx

ffiffiffi
g

p
gμν

0
gμ

0νFa
μνðxÞFa

μ0ν0 ðxÞ; ð108Þ

is replaced by a finite element action as sum over all
triangles,

Sσ ¼
1

2g2Nc

X
△ijk

Vijk

A2
ijk

Tr½2 −U△ijk
−U†

△ijk
� ð109Þ

where Aijk ¼ jσ2ðijkÞj is the area of the triangle for the
plaquette, Vijk ¼ jσ2ðijkÞ ∧ σ�2ðijkÞj is the dual volume
element, and the gauge matrix on each plaquette is the
product U△ijk

¼ UijUjkUki. The reader is referred to
Ref. [10] for the demonstration that this has the correct
continuum limit.
The quantum field path integral on a simplicial lattice

requires confronting UV divergences with additional coun-
terterms as we will report in Ref. [13]. Progress has been
made for the Wilson-Fisher conformal fixed point in ϕ4

theory by explicitly computing a finite number of UV
divergent diagrams on the simplicial lattice. The extension
of this approach to other super-renormalizable theories
appears promising, opening up a new approach to lattice
field theory with a view towards implementing 3D lattice
radial quantization. There are also many other interesting
CFTs to explore by developing code and algorithms similar
to those in common use. Our plan is to identify the
geometrical properties of counterterms and, if possible,
develop the full QFE path integral in 4D, but we recognize
that this is a difficult problem. We are optimistic that we
will be able to achieve this within our current QFE
methodology via a single sequence of refined simplicial
lattices approaching the continuum Riemann manifold for
UV complete field theories. The guiding principle is to
formulate nonperturbative renormalization schemes similar
to methods developed for lattice field theory in flat space
with the geometrical classification of the counterterms
required in perturbative renormalization on Riemann mani-
fold [35,36]. Other approaches such as a quenched ensem-
ble of simplicial lattices constrained to the target manifold
as advocated in the random lattice program [11] for flat
space may warrant further investigation in spite of their
increased computational complexity.
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APPENDIX A: DIRAC FINITE ELEMENT

The construction of our new piecewise flat Dirac finite
element described in Sec. III A proceeds in the following
steps. We seek a new finite expansion on each triangle△123

ψðxÞ ¼ E1ðxÞψ1 þ E2ðxÞψ2 þ E3ðxÞψ3;

ψ̄ðxÞ ¼ E1ðxÞψ̄1 þ E2ðxÞψ̄2 þ E3ðxÞψ̄3 ðA1Þ

in terms of the new Elements, EiðxÞ, which satisfy 3
conditions: (i) The faithful interpolation of the Dirac field
requires Eiðx ¼ rjÞ ¼ δij, at each vertex x ¼ rj, (ii) the
preservation of constant fields E1ðxÞþE2ðxÞþE3ðxÞ¼1,
and (iii) the lattice Dirac equation propagates on each link
hi; ji with the spin matrix l⃗ij · σ⃗. Surprisingly, all three
constraints have a simple solution in terms of three
subtriangles with linear elements meeting at the circum-
center with a ghost field

ψ0 ¼ c1ψ1 þ c2ψ2 þ c3ψ3;

ψ̄0 ¼ c1ψ̄1 þ c2ψ̄2 þ c3ψ̄3; ðA2Þ

given as a linear function of the values at the vertices. The
calculation requires computing the action and applying
these constraints to determine the values of the coeffi-
cients ci.
The basic algebra relies on the geometry illustrated in

Fig. 20 by vectors/dual-vectors, ðl⃗ij; n⃗kÞ. The simplex for
△123 has normal vectors ðn⃗1; n⃗2; n⃗3Þ. In addition, each of

FIG. 20. Each triangle on the simplicial lattice given by the
△123 with vertices r⃗1; r⃗2; r⃗3 is divided into 3 isosceles subtrian-
gles meeting at the circumcenter at 0.
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the subtriangle have the normals ðN⃗i
þ; N⃗

i
0; N⃗

iþ1
− Þ, where the

normal on the exterior links, N⃗i
0, are just rescaled from n⃗i

by N⃗i
0 ¼ ðA123=A0i;iþ1Þn⃗i. As a consequence we have the

sum rules

N⃗i
þ þ N⃗i

0 þ N⃗iþ1
− ¼ 0;

A023N⃗
1
0 þ A031N⃗

2
0 þ A012N⃗

3
0 ¼ 0: ðA3Þ

In addition, normals to a shared link for two adjacent
subtriangles are related by A0;i−1;iN⃗

i
− þ A0;i;iþ1N⃗

i
þ ¼ 0. All

of these relations hold for an arbitrary location for the
center vertex 0.
Restricting vertex 0 to the circumcenter leads to three

isosceles subtriangles and there are now additional geo-
metrical constraints. Within each subtriangle, the sum and
difference of N⃗i

þ and N⃗iþ1
− are perpendicular and parallel to

the opposite link vector, l⃗i;iþ1, respectively, i.e.,

l⃗i;iþ1 · ðN⃗i
þ þ N⃗iþ1

− Þ ¼ 0; N⃗i
þ − N⃗iþ1

− ¼ 2l⃗i;iþ1

l2i;iþ1

: ðA4Þ

Applying the linear FEM interpolation formula, Eq. (39), to
each subtriangle Δ0;i;iþ1 we have,

S0i;iþ1 ¼
A0;i;iþ1

6
½ψ̄ iðN⃗þ

i − N⃗−
iþ1Þ · σ⃗ψ iþ1

þ ψ̄ iþ1ðN⃗0
iþ2 − N⃗þ

i Þ · σ⃗ψ0

þ ψ̄0ðN⃗−
iþ1 − N⃗0

iþ2Þ · σ⃗ψ i� − c:c: ðA5Þ

and the sum S123 ¼ S0;12 þ S0;23 þ S0;31, with the help of

the identity, ðA0;i;iþ1N⃗
þ
i þ A0;iþ1;iþ2N⃗

−
iþ2Þ ¼ A0;i;iþ2N⃗

0
iþ1,

gives

S123 ¼
1

3

X
i

A0;i;iþ1½ψ̄ iðN⃗þ
i − N⃗iþ1

− Þ · σ⃗ψ iþ1

− ψ̄ iþ1ðN⃗i
þ − N⃗iþ1

− Þ · σ⃗ψ i�

þ 1

3

X
i

A0;i−1;iþ1½ψ̄ iσ⃗ · N⃗i
0ψ0 − ψ̄0σ⃗ · N⃗i

0ψ i�: ðA6Þ

Introducing the expansion for the ghost field ψ0 and ψ̄0,
the link ψ̄1σ⃗ψ2 receives contributions from both the ψ̄1σ⃗ψ0

and ψ̄0σ⃗ψ2 terms. We now require that each edge is
properly aligned,

A012

3l212
l⃗12 −

A031

3
N⃗2

0c1 þ
A023

3
N⃗1

0c2 ∼ l⃗12 ðA7Þ

plus permutations for the ψ̄2σ⃗ψ3 and ψ̄3σ⃗ψ1 links. The first
term in each equation is already in the form we are seeking.
Now we havewhat appears to be an overconstrained system

for three coefficients ci satisfying the normalization con-
straint c1 þ c2 þ c3 ¼ 1.
An efficient approach to solving for these coefficients is

to project these equations in the perpendicular direction by
taking the scalar product with N⃗3

0; N⃗
1
0; N⃗

2
0, respectively.

After some algebra, using the identity l⃗ik · l⃗kj¼4A2
123n⃗

i · n⃗j,
this reduces to a homogeneous matrix equation,2
664

l⃗31 · l⃗12 −l⃗23 · l⃗12 0

0 l⃗12 · l⃗23 −l⃗31 · l⃗23
−l⃗12 · l⃗31 0 l⃗23 · l⃗31

3
775
2
64
c1
c2
c3

3
75 ¼ 0: ðA8Þ

As the determinant is zero, a nontrivial null vector exists,
given by

ck ¼ c0
A123

l⃗ik · l⃗kj
ðA9Þ

for ikj ¼ ð123Þ and cyclic, where we have expressed the
solution up to a undetermined dimensionless constant c0,
which can be chosen to satisfy the normalization
c1 þ c2 þ c3 ¼ 1. After considerable algebraic manipula-
tion the final solution becomes

ck ¼
4A0ik

l2ik

4A0jk

l2jk
¼ cotðθik=2Þ cotðθjk=2Þ; ðA10Þ

where the vertex angle for each isosceles triangle is given
by cotðθij=2Þ ¼ 2hij=lij ¼ 4A0ij=l2ij.
The consistency between Eq. (A9) and Eq. (A10) prior to

this normalization requires only that the ratios ci=cj are
unchanged which may be verified using the following set
of identities. Let R be the circumradius such that one has
lij ¼ 2R sinðθij=2Þ. The total area can be expressed symmet-
rically as A123 ¼ l12l23l31=4R¼ 2R2 sinðθ12=2Þ sinðθ23=2Þ×
sinðθ31=2Þ. The equation for the scalar product leads to

l⃗ik · l⃗kj ¼ 4R2 cosðθik=2þ θkj=2Þ sinðθik=2Þ sinðθkj=2ÞÞ
¼ 2A123 cotðθij=2Þ: ðA11Þ

The normalization condition, c1 þ c2 þ c3 ¼ 1, follows from
the elegant identity,

tanðθ12=2Þ þ tanðθ23=2Þ þ tanðθ31=2Þ
¼ tanðθ12=2Þ tanðθ23=2Þ tanðθ31=2Þ; ðA12Þ

for θ12 þ θ23 þ θ31 ¼ 2π. Geometrically, this identity reflects
the fact that the area of the triangle equals the sum of areas of
three subtriangles, A123 ¼ A012 þ A023 þ A031. Remarkably,
with ci appropriately chosen, the additional two terms in
Eq. (A7) are not only aligned with the first one but the sum of
all three provides precisely the FEM weight for our conjec-
turedDirac ansatz above. It is appealing that the use of the dual
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vertex is necessary to the construction analogous to our
discrete exterior calculus formulation of the scalar.
Generalizations of this construction for D > 2 using the dual
lattice are being sought.
Let us end with two additional comments. First, if we

choose ci ¼ ξ�i ¼ A0jk=A123, we get back to the naive linear
FEM result for the entire triangle Δ123, which, as stated
earlier, does not lead to Eq. (35). Second, if one chooses an
arbitrary point 0 inside the triangle, instead of the circum-
center, it is still possible to adjust the coefficient ci so that
propagator on the links is aligned with l⃗ij. However, the
magnitude does not agree with our ansatz in (35), and it
does not admit a simple geometrical interpretation.

APPENDIX B: SPECTRUM OF THE DIRAC
FERMION ON S2

Here we rederive the Dirac operator on S2 by
starting from the Dirac fermion in 4D projected to the
2-sphere. In 4D, consider the change of variables from
Cartesian to spherical coordinates, xμ ¼ ðt; r⃗Þ, where r⃗ ¼
ðr sin θ cosϕ; r sin θ sinϕ; r cos θÞ. The fermion action,
ψ̄γμ∂μψ , can be reexpressed as

γμ∂μ ¼ γ0∂t þ
1

r

�
γr∂ logðrÞ þ γθ∂θ þ

1

sin θ
γϕ∂ϕ

�
; ðB1Þ

where γr ¼ êr · γ⃗ ¼ sin θðcosϕγ1 þ sinϕγ2Þ þ cos θγ3,
γθ ¼ êθ · γ⃗ ¼ cos θðcosϕγ1 þ sinϕγ2Þ − sin θγ3 and γϕ ¼
êϕ · γ⃗ ¼ − sinϕγ1 þ cosϕγ2. The freedom to rotate tangent
vectors allows one to rotate êr to ê3. This can be done
by first rotating êϕ to ê2 and then rotating êθ to ê1.
Equivalently, one rotates the fermion spinors, ψ → Λψ
and ψ̄ → ψ̄Λ† which then rotates γμ → Λ†γμΛ ¼ Oμ

νγν,
where Λ ¼ Λ12ðϕÞΛ13ðθÞ ¼ e

i
2
ϕσ12e

i
2
θσ13 . The gauge trans-

formation picks up an additional term, ψ̄γμ∂μψ →
ψ̄Oμ

νγν∂μψ þ ψ̄ðΛ†γμΛÞðΛ†∂μΛÞψ , or spin connection so
the Dirac operator in this frame is

eμcγc
�
∂μþ

1

4
ωμ
abγ

aγb
	
¼ γ0∂tþ

1

r

�
γ3∂ logðrÞ þ γ1∂θ

þ γ2

sinθ
∂ϕþ γ3þ γ1 cotθ

2

�
: ðB2Þ

The static approximation removes the γ0 reducing it to 3D.
The radial quantization on R × S2 rescales the fields
(ψ → r−1ψ , ψ̄ → r−1ψ̄), placing the 2D Dirac action on
the unit S2 given by

S¼
Z

sinθdθdϕψ̄

�
γ1
�
∂θþ

cotθ
2

�
þ 1

sinθ
γ2∂ϕ

�
ψ : ðB3Þ

This is two copies of 2-component fermions with action,

S ¼
Z

sin θdθdϕψ̄ðσμDμ þmÞψ

¼
Z

sin θdθdϕψ̄

�
σ1
�
∂θ þ

cot θ
2

�
þ 1

sin θ
σ2∂ϕ

�
ψ ;

ðB4Þ
in agreement with Eq. (80), as promised. The term 1

2
cot θ

corresponds to a spin connection on S2. Defining

∇ ¼ σ1ð∂θ þ cot θ=2Þ þ 1

sin θ
σ2∂ϕ; ðB5Þ

we turn next to the spectrum, ∇ψ ¼ iλψ , of the massless
Dirac operator [27,37,38] on S2.
For the positive spectrum, λþ > 0, the eigenfunctions are

designated by ξþðθ;ϕÞ. The analysis can be done by
the usual procedure, by separation of variables and
Fourier expansion of the spinor ξþðθ;ϕÞ in ϕ, ξþðθ;ϕÞ ¼P

me
−imϕfþðθÞ, leading to a first order ordinary differ-

ential equation in θ for a two-component spinor fþðθÞ. It
can be shown that spinors in this gauge are antiperiodic in ϕ
and m ¼ nþ 1=2 takes on half-integral values. This leads
to a coupled first order ODE between its upper and lower
components, which after one iteration gives an ordinary
second order ODE separately for the upper and the lower
component.
By imposing a normalizability condition on fþðθÞ, the

discrete spectrum can be found, with eigenvalues,

λþ ¼ jþ 1=2; ðB6Þ
where j ¼ 1=2; 3=2;… and −j ≤ m ≤ j. That is, for each
λþ, there is a (2jþ 1)-fold degeneracy due to rotational
invariance. The corresponding wave functions can be

expressed in terms of Jacobi polynomials, Pðα;βÞ
n ,

ξþ;ðj;mÞðθ;ϕÞ

¼Cþ
jme

imϕ

 
sinmðθ=2Þcosmþ1ðθ=2ÞPðm−1

2
;mþ1

2
Þ

j−m ðcosθÞ
isinmþ1ðθ=2Þcosmðθ=2ÞPðmþ1

2
;m−1

2
Þ

j−m ðcosθÞ

!
:

ðB7Þ

The eigenfunctions corresponding to the negative eigen-
values, λ−, can be obtained via ξ−;ðj;mÞðθ;ϕÞ ¼ iσ3ϕþ;ðj;mÞ.
For the record, we note that these wave functions are
normalized so thatZ

S2
sin θdθdϕξ†ϵ;ðj;mÞξϵ0;ðj0;m0Þ ¼ δϵ;ϵ0δj;j0δm;m0 ; ðB8Þ

with Cþ
jm given in Ref. [27].

By performing a local rotation, it is also possible to
express these wave functions in terms of the usual spherical
harmonics, Ylm [27]. IntroducingΦ�ðj; mÞ ¼ V†ξ�, where
V† ¼ eiθσ2=2e−iϕσ3=2, one finds that
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Φ�ðj;mÞ

¼ð1�iÞ
2

0
B@

ffiffiffiffiffiffiffiffiffi
ðlþmÞ
4l

q
Yj−;m−ðθ;ϕÞ∓ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj−mþ1Þ
4ðjþ1Þ

q
Yjþ;m−ðθ;ϕÞffiffiffiffiffiffiffiffiffi

ðj−mÞ
4j

q
Yj−;mþðθ;ϕÞ�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmþ1Þ
4ðjþ1Þ

q
Yjþ;mþðθ;ϕÞ

1
CA

ðB9Þ

where j� ¼ j� 1
2
and m� ¼ m� 1

2
.

Finally let us give a direct evaluation of the Lichnerowicz
formula,

−∇2 ¼ −
1ffiffiffi
g

p Dμ
ffiffiffi
g

p
gμνDν þ

1

2
σabeμaeνbRμν; ðB10Þ

in Eq. (50).

On S2 the operator,

−∇2 ¼ −
�
∂2
θ þ cot θ∂θ þ

1

sin2θ
∂2
ϕ − iσ3

cos θ
sin2θ

∂ϕ

−
1

4 sin 2θ
−
1

4

�
; ðB11Þ

has spectrum ðjþ 1=2Þ2, which is naturally the absolute
value square of the Dirac operator spectrum�iðjþ 1=2Þ. It
follows that in 2D the covariant spinor Laplacian alone,
which is the first term in the Lichnerowicz formula (B10),
has eigenvalues, ðjþ 1=2Þ2 − 1=2 ¼ jðjþ 1Þ − 1=4 in
accord with our numerical evaluation of the Wilson term
(86) in Sec. VA.
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