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We present a calculation of the strange and charm quark contributions to the nucleon spin from the
anomalous Ward identity (AWI). This is performed with overlap valence quarks on 2þ 1-flavor domain-
wall fermion gauge configurations on a 243 × 64 lattice with lattice spacing a−1 ¼ 1.73 GeV and the light
sea mass at mπ ¼ 330 MeV. To satisfy the AWI, the overlap fermion for the pseudoscalar density and the
overlap Dirac operator for the topological density, which do not have multiplicative renormalization, are
used to normalize the form factor of the local axial-vector current at finite q2. For the charm quark, we find
that the negative pseudoscalar term almost cancels the positive topological term. For the strange quark, the
pseudoscalar term is less negative than that of the charm. By imposing the AWI, the strange gAðq2Þ at
q2 ¼ 0 is obtained by a global fit of the pseudoscalar and the topological form factors, together with gAðq2Þ
and the induced pseudoscalar form factor hAðq2Þ at finite q2. The chiral extrapolation to the physical pion
mass gives Δsþ Δs̄ ¼ −0.0403ð44Þð78Þ.
DOI: 10.1103/PhysRevD.95.114509

I. INTRODUCTION

The quark spin content of the nucleon was found to be
much smaller than that expected from the quarkmodel by the
polarized deep inelastic lepton-nucleon scattering experi-
ments and the recent global analysis reveals that the total
quark spin contributes only ∼25% to the proton spin [1].
In an attempt to understand the smallness of the quark

spin contribution from first principles, several lattice QCD
calculations [2,3] have been carried out since 1995 with the
quenched approximation or with heavy dynamical fermions
[4]. The most challenging part of the lattice calculation is
that of the disconnected insertion of the nucleon three-point
functions due to the quark loops. Recently, the strange
quark spin Δsþ Δs̄ has been calculated with the axial-
vector current on light dynamical fermion configurations
[5–9] and it is found to be in the range from −0.02 to
−0.03. This is about 4 to 5 times smaller in magnitude than
that from a global fit of deep inelastic scattering (DIS)
which gives Δsþ Δs̄ ≈ −0.11 [1] and a most recent
analysis [10] including the JLab CLAS high precision
data which finds it to be −0.106ð23Þ [11].
Such a discrepancy between the global fit of experiments

and the lattice calculation of the quark spin from the axial-
vector current is unsettling. It was emphasized some time
ago that it is essential that a lattice calculation of the flavor-
singlet axial-vector current be able to accommodate the
triangle anomaly [12,13]. It was specifically suggested [12]
to calculate the triangle anomaly from the vector-vector-
axial (VVA) vertex and take it as the normalization

condition for the axial-vector current in order to determine
the normalization factor κA on the lattice. To address the
discrepancy of the strange quark spin, we shall use the
anomalous Ward identity (AWI) to provide the normali-
zation and renormalization conditions to calculate the
strange and charm quark spins in this work.
The structure of the rest of this paper is organized as

follows. In Sec. II we introduce the theoretical framework
of the quark spin calculation from AWI. In Sec. III the
simulation details and results are provided. Conclusions are
given in Sec. IV together with some outlooks.

II. FORMALISM

The anomalous Ward identity (AWI) usually refers to the
flavor-singlet axial current A0

μ ¼ Au
μ þ Ad

μ þ As
μ in the

flavor SUð3Þ basis where there is a Uð1Þ anomaly term
in the divergence of A0

μ. However, the flavor SUð3Þ is a
global symmetry, AWI is satisfied for each flavor in the
flavor basis through linear combinations of the flavor-octet
axial current A8

μ ¼ Au
μ þ Ad

μ − 2As
μ and isovector axial

current A0
μ ¼ Au

μ − Ad
μ. For the case of the strange quark,

its AWI can be obtained from the AWI for the A0
μ and the

WI for A8
μ (N. B. there is no anomaly term in the WI for A8

μ)
through the combination As

μ ≡ 1
3
ðA0

μ − A8
μÞ. Alternatively,

the AWI can be derived for the strange by considering the
infinitesimal local chiral transformation ψ → ψ þ δAψ ,
where δAψ ¼ iϵðxÞγ5Tψ with the 3 × 3 matrix in flavor
space
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T ¼
 
0 0 0

0 0 0

0 0 1

!
¼ 1

3
ð1 −

ffiffiffi
3

p
λ8Þ;

where λ8 is the eighth SUð3Þ generator, gives a chiral
transformation only for the strange.
For overlap fermions [14] which have chiral symmetry

on the lattice via the Ginsparg-Wilson relation, the con-
served flavor-singlet axial current is derived in [15].
Following the derivation with the above definition for
the matrix T for the chiral transformation, it is straightfor-
ward to show that the following identity is satisfied for the
strange axial-vector current:

�
i
δsAO
δϵðxÞ

�
− hO∂�

μAs
μ;consðxÞi

þ 2mshOPsðxÞi − 2ihOqðxÞi ¼ 0; ð1Þ

where ∂�
μ is the forward lattice derivative. The expression of

the conserved current for the strange quark As
μ;con is given in

Ref. [15] which involves a nonlocal kernel which is more
involved to implement numerically than the local current.
In this work we shall replace it with the local current
As
μ ¼ s̄iγμγ5ð1 − 1

2
DovÞs, where Dov is the massless over-

lap operator which is exponentially local with a falloff rate
of about one lattice spacing [16]. The topological charge
qðxÞ ¼ Trγ5ð12Dovðx; xÞ − 1Þ is derived in the Jacobian
factor from the fermion determinant under the chiral
transformation which is equal to 1

16π2
trcGμν

~GμνðxÞ in the
continuum [17], i.e.,

qðxÞ¼Trγ5

�
1

2
Dovðx;xÞ−1

�
a→0
⟶

1

16π2
trcGμν

~GμνðxÞ; ð2Þ

where Tr is the trace over both spin and color, while trc is
the trace over color. For the strange quark spin, we shall
consider the O in Eq. (1) to be the nucleon propagator, i.e.,

O ¼ Tr

�
Γm

X
z⃗

e−ip⃗
0·z⃗χðz; tÞ

X
y⃗

e−ip⃗·y⃗χ̄ðy; 0Þ
�
; ð3Þ

where Γm ¼ ð−iÞγmγ5ð1þ γ4Þ=2 is the spin polarized
projection operator, and χ is the commonly used proton
interpolation operator which involves two u and one d fields

χγðxÞ ¼ ϵabcψ
TðuÞa
α ðxÞðCγ5Þαβψ ðdÞb

β ðxÞψ ðuÞc
γ ðxÞ; ð4Þ

where the Latin letters denote the color index and the Greek
letters denote the Dirac index and C ¼ γ2γ4 is the charge
conjugation matrix for the Pauli-Sakurai γ-matrix represen-
tation. In this case, the first term in Eq. (1) vanishes, sinceO
does not involve strange quarks and hence no ϵðxÞ
dependence.

Following the standard calculation of off-forward
nucleon matrix element [18,19], one considers the appro-
priate combination of the three-point function with the
momentum projection of the current q⃗ ¼ p⃗0 − p⃗ and the
two-point functions to remove the kinematic dependence.
The time separation between the nucleon source and the
current insertion, and between the nucleon sink and the
current insertion, is increased to the asymptotic region
where the correlator is dominated by the nucleon. One
arrives at the following unrenormalized AWI in nucleon
matrix element for the strange quark

hp0sj∂μκAAs
μðqÞjpsi

¼ hp0sj2msPsðqÞjpsi − hp0sj2iqðqÞjpsi; ð5Þ

where jpsi is the nucleon statewithmomentum p⃗ and spin s.
As we mentioned above, we shall replace the conserved
axial-vector current As

μ;cons with the local one As
μ ¼

s̄iγμγ5ð1 − 1
2
DovÞs. To compensate for the replacement, a

normalization factor κA is introduced to make the AWI
satisfied at finite cutoff. This is the only normalization factor
needed since the pseudoscalar densityPs and the topological
charge are the same as those in Eq. (1) [N. B. In the case of
the disconnected insertion for the strange quark, the pseu-
doscalar density contributes through the quark loop. In this
case, the Ps takes the form Ps ¼ s̄iγ5ð1 − 1

2
DovÞs]. This

lattice normalization factor is analogous to that introduced to
make the chiral Ward identity satisfied for the local non-
singlet axial-vector current. In the literature, it is usually
denoted asZA which is actually a finite renormalizationwith
no logarithmic scale μ dependence. Following Ref. [20], we
shall call it lattice normalization. Unlike the vector current
and nonsinglet axial current, the flavor-singlet axial current
has, in addition, a renormalization with anomalous dimen-
sion. We thus consider the renormalization on top of
normalization as is done for the energy-momentum tensor
in Ref. [19]. We will discuss the renormalization after we
define the strange quark spin first.
The normalized strange quark spin in the nucleon

gsðNÞ
A ≡ κAgsA ¼ Δsþ Δs̄, where gsA is the bare forward
matrix element from the local axial-vector current

gsAsμ ¼
hpsjAs

μjpsi
hpsjpsi ; ð6Þ

can be obtained by evaluating the right-hand (rhs) side of
the AWI in Eq. (5) between the nucleon states in the
forward limit, i.e.,

gsðNÞ
A ¼ lim

jq⃗j→0

ijs⃗j
q⃗ · s⃗

hp0sj2msPs − 2iqjpsi
hp0sjpsi

¼ ms

mN
gsPð0Þ þ gGð0Þ; ð7Þ
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where gPð0Þ and gGð0Þ are form factors at q2 ¼ 0 as

defined in Eq. (7). The normalized charm spin gcðNÞ
A ¼

Δcþ Δc̄ is similarly defined. In this case, one can, in
principle, calculate gPðq2Þ and gGðq2Þ at finite q2 and
extrapolate them to the q2 → 0 limit and this approach has
been studied before [21,22]; however, the pseudoscalar
density term was not included. Despite the fact that there is
no massless pseudoscalar pole in the flavor-singlet case, it
is shown that the contribution of the pseudoscalar density
does not vanish at the massless limit [23,24]. Furthermore,
there is a pion pole in the disconnected insertion of gPðq2Þ
to cancel that in the connected insertion to lead to η and η0

poles [23,24]. Thus, the gPðq2Þ and gGðq2Þ form factors at
small q2 of the order of m2

π are essential for a reliable
q2 → 0 extrapolation. Since the smallest −q2 ¼ 0.21 GeV2

is larger than m2
π ¼ 0.11 GeV2 on the lattice we work on, a

naive extrapolation of q2 → 0 in Eq. (7) may lead to a
wrong result. To alleviate this concern, we shall consider
instead, in this work, matching the gAðq2Þ and the induced
pseudoscalar form factor hAðq2Þ from the left side of
Eq. (5) and gPðq2Þ and gGðq2Þ from the right side at finite
q2 to determine the normalization constant κA as will be
discussed later.
As far as renormalization is concerned, we note that in

the continuum calculation [25], the renormalization con-
stants of the quark mass and the pseudoscalar density
cancel, i.e., ZmZP ¼ 1, and the renormalized topological
charge term −2iq has a mixing with the divergence of the
axial current at one-loop in the form λ∂μA0

μ where A0
μ is the

flavor-singlet axial current and λ ¼ −ð g2
0

4π2
Þ2 3

8
C2ðRÞ 1ϵ with

one of the g20 coming from the definition of the topological
charge. On the other hand, the renormalization of the
divergence of axial-vector current occurs at the two-loop
level involving a quark loop in the disconnected insertion
which gives [25] the divergence of the renormalized strange
axial-vector

∂μA
sðRÞ
μ ¼ ∂μAs

μ þ λ∂μA0
μ: ð8Þ

In the present work, we adopt the overlap fermion for the
lattice calculation where ZmZP ¼ 1 and there is no multi-
plicative renormalization of the topological charge defined
by the overlap operator in Eq. (2). After two-loop matching
from the lattice to the MS scheme, the renormalized and
normalized AWI equation at the scale μ is therefore

hp0sj∂μκAAs
μ þ γðlnðμ2a2Þ þ fÞ∂μA0

μjpsi
¼ hp0sj2msPs − 2iqþ γðlnðμ2a2Þ þ f0Þ∂μA0

μjpsi; ð9Þ

where γ ¼ −ð g2
0

4π2
Þ2 3

8
C2ðRÞ is the anomalous dimension. We

see that, modulo the possible different finite terms f and f0

in the renormalization of A0
μ and the topological charge q

[26], the anomalous dimension term on the left-hand side is
the same as that on the rhs [25]. Thus, the two-loop
renormalized AWI is the same as the unrenormalized AWI
in Eq. (5).
Two loop renormalization on the lattice is quite involved,

we plan to carry out the calculation of the lattice matching
to the MS scheme nonperturbatively as is recently done in
Ref. [9]. For the present work, we shall give an estimate of
the renormalization correction. From the left side of Eq. (9),

one finds the renormalized gsðRÞA ,

gsðRÞA ¼ gsðNÞ
A þ δgsA; ð10Þ

where gsðNÞ
A ¼ κAgsA is the normalized gsA and

δgsA ¼ γðlnðμ2a2Þ þ fÞg0A; ð11Þ

where g0A is the flavor-singlet gA.

To estimate the size of δgsðRÞA for renormalization and
matching to the MS scheme at μ ¼ 2 GeV, we note that
g20 ¼ 2.82 for the Iwasaki gauge action for domain-wall
fermion (DWF) configurations, the lattice spacing
a−1 ¼ 1.73 GeV, and we assume f to be 10. In this case,
γðlnðμ2a2Þ þ fÞ ∼ 0.079. Taking the experimental value of
g0A ¼ 0.25 [1], we obtain jδgsAj ∼ 0.0066. We shall take this
as a part of the systematic error.

III. DETAILS

We use overlap fermions for the valence quarks in the
nucleon propagator as well as for the quark loops on 2þ 1

DWF 243 × 64 configurations with the light sea quark mass
corresponding to a pion mass at 330 MeV [27]. Both DWF
and overlap fermions have good chiral symmetry and it is
shown that Δmix, which is a measure of mismatch in mixed
action, is very small [28] and its effects on the nucleon
properties have not been found to be discernible [29]. Since
the Oðm2a2Þ discretization errors are found to be small in
the study of the charmonium spectrum and fDs

[30], this
allows us to compute the spin for the charm quark on this
lattice. Moreover, the zero mode contributions to 2mP in
the disconnected insertion (DI) and q in Eq. (7), which are
finite volume artifacts, cancel when the overlap operator is
used to define both of them.
The matrix element of the spin content can be obtained

by calculating the ratio between the 3pt and the 2pt
correlation functions:

hCðti; tfÞðOðtÞ − hOðtÞiÞi
hCðti; tfÞi

: ð12Þ

We adopt the sum method [31,32] where the insertion time
of the 2mP quark loop and the topological charge q is
summed between ti þ 1 and tf − 1 where ti=tf is the
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nucleon source/sink time. As a result, the summed ratio R
(Δt; q2), where Δt ¼ tf − ti, is linearly dependent on Δt
and the slope is the matrix element of the spin content from
2mP or q,

RðΔt; q2Þ⟶
Δt≫1

constþ Δthp0sjOjpsi ijs⃗j
q⃗ · s⃗

; ð13Þ

from which we can obtain m=mNgPðq2Þ and gGðq2Þ as
functions of the momentum transfer squared q2.
As explained in detail in [29,33], we adopt the Z3-noise

grid smeared source for the quark propagators of the
nucleon, with support on some uniformly spaced smeared
grid points on a time slice, and low-mode substitution
which improves the signal-to-noise ratio substantially. For
the 243 × 64 lattice, we place two smeared sources in each
spatial direction, eight in total, each with a Gaussian
smearing radius of about four lattice spacings, and have
seen a gain of roughly 6 times of statistics in the effective
nucleon mass as compared to that of one smeared source. In
view of the fact that the useful time window for the nucleon
correlator CðtÞ is less than 14 and we have T ¼ 64 slices in
time,we put two grid sources at t ¼ 0 and 32 simultaneously
to gainmore statistics from one inversion. Thus, our grid has
the pattern of (2,2,2,2)with two smeared grid sources in each
of the space and time directions. We shift the original grid
along the temporal direction to cover all time slices, and it
requires 32 inversions for each configuration.
Since both the strange and charm contributions result from

the disconnected insertions (DI), the calculation involves the
product of the nucleon propagator and the quark loop. For the
quark loop, we employ the low mode average algorithm
which entails an exact loop calculation for the low eigenm-
odes of the overlap operator over all space time points on the
lattice. On the other hand, the high modes of the quark loops
are estimated with 4D Zð4Þ noise grid sources. The spatial
interval of the grid is four lattice spacings and the temporal
interval is two lattice spacings.We also construct another grid
generated by shifting the original grid by one lattice spacing
along the temporal direction, so that all time slices are
covered. The twogrids are further diluted according to the4D
even-odd sites on the grids. This scheme requires four
inversions for each Zð4Þ noise set and we have eight noise
sets for one configuration, thereforewe have 32 inversions in
total for each configuration.
The AWI splits the divergence of the axial current into

two parts, i.e., 2mP and q, and the two parts reveal different
aspects of the physics contribution. The pseudoscalar part
is low-mode dominated for light quarks, where the lowest
200 pairs of overlap eigenvectors contribute more than 90%
of the vacuum value for the very light quarks and ∼70% for
the strange [29]. The overlap Dirac operator Dovðx; yÞ in
the definition of the topological term in Eq. (2) is
exponentially local with an exponential falloff rate of
about one lattice spacing [16]. Thus, the anomaly part,

being local, captures the high-mode contribution of the
divergence of the axial-vector current.
We first show the summed ratio in Eq. (13) for the charm

quark as a function of Δt for the case with lowest
momentum transfer, i.e., jq⃗j ¼ 2π=La ¼ 0.469 GeV (cor-
responding to q2 ¼ −0.207 GeV2) in the upper panel of
Fig. 1. The contributions from the low modes and high
modes for mc

mN
gcPðq2Þ at this jq⃗j, which are coded in the

slopes, are shown separately. They are from the case where
the valence quark in the nucleon and that of the light sea
have the same mass which correspond to mπ ¼ 330 MeV
(the so-called unitary point). It is clear from the upper panel
of Fig. 1 that low modes dominate the contributions. Even
though the low modes contribute only ∼20% in the charm
quark loop itself [29], they become dominant when
correlated with the nucleon. On the other hand, the
gGðq2Þ from the slope at this jq⃗j is large and positive.
The errors for mc

mN
gcP and gG are 6% and 4%, respectively.

In the lower panel of Fig. 1, we give the results for the
charm quark (mR

c a ¼ 0.73) which is determined from a
global analysis of the charm mass [30]. The pseudoscalar

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10  12
Δ t

mc/mN gP
c {Low}
{High}

{High+Low}
gG

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  0.2  0.4  0.6  0.8  1

-q2 (GeV2)

mc/mN gP
c (q2)

gG(q2)
sum

FIG. 1. (Upper panel) The summed ratio of three-point and
two-point correlators as a function of Δt where the slopes are the
contributions from 2mP and q at jq⃗j ¼ 2π=La in the DI for the
charm quark in Eq. (13). The red squares and the black points
are the low- and high-mode contributions respectively. The blue
triangles with error band are the total. The valence quark in the
nucleon is the same as that of the light sea atmπ ¼ 330 MeV. The
similar summed ratio for the contribution from the topological
charge q is plotted as blue points whose slope gives gGðq2Þ.
(Lower panel) The 2mP contribution m=mNgcPðq2Þ and the
anomaly contribution gGðq2Þ are plotted as a function of −q2.
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density term (red points) and the topological charge density
term (black squares) are plotted as a function of−q2. We see
that the pseudoscalar contribution is large, due to the large
charm mass, and negative while the anomaly is large and
positive. The lines are fits with a dipole form just to guide the
eye. When they are added together (blue triangles in the
figure), they are very close to zero, with small statistical
errors, over the whole range of −q2. Thus, when extrapo-
lated to q2 ¼ 0 with a constant, we obtain Δcþ Δc̄ ¼
−9.5ð2.8Þ × 10−4 at the unitary point. When extrapolated to
the physical pion mass, Δcþ Δc̄ ¼ −2.7ð2.8Þ × 10−4,
which shows that the charm hardly contributes anything,
if at all, to the proton spin due to the cancellation between the
pseudoscalar term and the topological term. It is known [34]
that the leading term in the heavy quark expansion of the
quark loop of the pseudoscalar density, i.e., mP, is the
topological charge i

16π2
trcGμν

~Gμν which cancels the con-
tribution from the topological term in the AWI. To the extent
that the charm is heavy enough such that the Oð1=m2Þ
correction is small, the present results of cancellation can be
taken as a cross-check of the validity of our numerical
estimate of the DI calculation of the quark loop as well as the
anomaly contribution. Themixing for the heavy quark loops
from the other favors are also highly suppressed and
negligible at the present stage.
Next, we consider the case with the strange quark

(msa ¼ 0.063) for this lattice, which is again determined
from the global fit for the strange quark mass based on
fitting ofDs andD�

s [30]. Similarly to Fig. 1, ms
mN

gsPðq2Þ and
gGðq2Þ are plotted in Fig. 2 for the unitary case where the

valence quarks in the nucleon and the light sea quarks have
the same mass at mπ ¼ 330 MeV. We see in the upper
panel that the low modes completely dominate the 2msPs

contribution as in the case of charm. The anomaly is the
same for all flavors. In the lower panel, it is shown that the
contribution from 2msPs is only slightly smaller than that
of the charm. This is due to the fact that even though the
strange quark mass is about 12.5 times smaller than that of
the charm [30], its pseudoscalar matrix element is much
larger than that of the charm. Since the anomaly is the same
for the strange and the charm, the sum of ms

mN
gsPðq2Þ and

gGðq2Þ, shown in the lower panel, is slightly positive in the
range of −q2 as plotted.
Since our smallest q2 ¼ −0.207 GeV2 is larger than m2

π

which should be present as the pion pole on the right-hand
side of the DI of AWI form factors to cancel that in the
connected insertion (CI) [23,24], taking the q2 → 0 limit in
Eq. (7) can lead to large systematic error. In view of this, we
calculated the unnormalized gLAðq2Þ ¼ gAðq2Þ=κA and the
induced pseudoscalar form factor hLAðq2Þ ¼ hAðq2Þ=κA
with the 3-point to 2-point correlator summed ratio
Rðqi; qjÞ [19]

Rðqi; qj;ΔtÞ →
Δt≫1

constþ Δt
�
Eq þmN

2Eq

gAðq2Þ
κA

δij

−
qiqj
2Eq

hAðq2Þ
κA

�
; ð14Þ

where i and j denote the directions of the axial current and
the nucleon polarization. Here gA and hA are normalized
form factors. Sandwiching the AWI between the nucleon
states with finite momentum transfer, one obtains

2mNg
sðNÞ
A ðq2Þ þ q2hsðNÞ

A ðq2Þ ¼ 2mgsPðq2Þ þ 2mNgGðq2Þ:
ð15Þ

With 18 data points for Rðqi; qjÞ for different qi and six
data points for 2mgsPðq2Þ and gGðq2Þ for six different −q2,
we fit Eqs. (14) and (15) to obtain gsðNÞ

A ðq2Þ [including

gsðNÞ
A ð0Þ], hsðNÞ

A ðq2Þ, and κA. Since it is a global fit with all
the q2 data included, this method does not require modeling
the q2 behavior with any assumed functional form.
The results for normalized gsAðq2Þ, hsAðq2Þ are plotted in

Fig. 3 as a function of −q2. Also plotted is gsðNÞ
A ðq2Þ þ

q2

2mN
hsðNÞ
A ðq2Þ which is compared to m

mN
gsPðq2Þ þ gGðq2Þ

from the AWI in Eq. (15). We see that the agreement is
good for the range of −q2 except for the last point at −q2 ¼
0.207 GeV2 where there is a two-sigma difference.
From the fit, we obtain gsA ¼ Δsþ Δs̄ ¼ −0.0372ð36Þ

and κA¼1.36ð4Þ at the unitary point wheremπ ¼ 330MeV.
Δsþ Δs̄ and κA have been calculated this way for several
valence quark masses in the nucleon while keeping the
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FIG. 2. The same as in Fig. 1 but for the strange quark.
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quark loop at the strange quark point. The valence mass
dependence of κA is plotted in Fig. 4. We see that κA is
larger than 1, and becomes larger as the valence quark mass
decreases.
The chiral behavior of Δsþ Δs̄ is plotted in Fig. 5 as a

function ofm2
π according to the valence quark mass. We see

that the results are fairly linear inm2
π . Thuswe fit it linearly in

m2
π with the form Aþ Bðm2

π −m2
π;physÞ where mπ;phys is the

physical pion mass and obtain Δsþ Δs̄ ¼ −0.0403ð44Þ at

the physical pion mass. This is shown in Fig. 5. The
uncertainty estimated through the variance from several
different fits by adding am2

π logðm2
π=Λ2Þ term, am3

π term, or
a m4

π term to the chiral extrapolation formula gives a
systematic error of 0.0013.
In this work, we adopted the sum method to extract the

matrix elements. To assess the excited state contamination,
we use the combined two-state fit with the sum method
used in the calculation of the πN and strange sigma terms
[35], strange magnetic moment [36], and glue spin [37] for
comparison for a few cases. We first plot in Fig. 6 the
unsummed ratios in Eq. (13) for ms

mN
gsPðq2Þ þ 1

2mN
gGðq2Þ at

the smallest q2 ¼ −0.207 GeV2 as a function of t − tf=2

 1
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 1.8

 2

 0  0.05  0.1  0.15

κ As

mπ
2 (GeV2)

FIG. 4. The normalization factor κA as a function of valencem2
π

while keeping the quark loop at the strange quark point.
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FIG. 5. Chiral extrapolation for the strange quark spin Δsþ Δs̄
as a function of m2

π .
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-q2

gA

(q2/2mN)hA

gA+(q2/2mN)hA
(m/mN)gP+(1/2mN)gG

FIG. 3. The −q2 dependence of the fitted normalized

gsAðq2Þ, q2

2mN
hsAðq2Þ and their sum in comparison with

m
mN

gsPðq2Þ þ 1
2mN

gGðq2Þ. The latter is directly calculated. This
is the case for the strange quark.

FIG. 6. The 3-pt-to-2-pt ratio for ms
mN

gsPðq2Þ þ 1
2mN

gGðq2Þ at the
smallest q2 ¼ −0.207 GeV2 as a function of t − tf=2. The
separations Δt ¼ tf − ti ¼ 6, 8, 10 are shown with the data
series. The lines on them are from two-state fit for the separateΔt.
The grey band indicates the combined two-state and sum
method fit.

FIG. 7. The summed ratio as a function of Δt for the calculation
of gLAð0Þ which is extracted from the slope as in Eq. (13).
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for time separations Δt ¼ 6, 8, 10 between the source and
the sink. A combined two-state and sum method fit with
these data produces a value of 0.035(3) which is consistent
with the slope extracted using the sum method which is
0.033(4).
Similarly, we have done the comparison for gLAð0Þ. Plotted

in Fig. 7 is the summed ratio of 3-pt-to-2-pt correlators as a
function ofΔt for the calculation of gLAð0Þwhich is extracted
from the slope as is from Eq. (13). At the unitary point, we
obtain gLAð0Þ ¼ −0.027ð3Þ. Also plotted in Fig. 8 are the
unsummed ratios for gAð0Þ as a function of t − tf=2 for time
separationsΔt ¼ 6, 8, 10 between the source and the sink. A
combined two-state and sum method fit with these data
yields a value of −0.030ð5Þ. While their errors bands
overlap, this is about 10% larger than the results of the
sum method fit. We shall take this 10% difference as a
systematic error of the present work.
The total systematic error contains the renormalization

uncertainty jδgsAj ∼ 0.0066, the uncertainty of the chiral
extrapolation of 0.0013, and uncertainty due to the excited
state contamination of the sum method of 0.0040. We sum
them up quadratically and obtain an overall systematic
error of 0.0078.
We list our result in Fig. 9 together with other recent

lattice results in comparison with the global fit value
extracted from the DIS data [10,11]. The blue triangles
are lattice calculations of the axial vector current matrix
element and the red circle is from the present work based on
the anomalous Ward identity.
We see that our result, although still more than two

sigmas smaller than the recent analysis of the DIS data
which finds the strange spin to be −0.106ð23Þ [11], is
somewhat larger in magnitude than the other direct calcu-
lations of the axial-vector current [5–9]. This is mainly due
to the fact that the normalization factor κA ∼ 1.36, which is
required to have the AWI satisfied in our calculation, is
larger than that for the isovector axial-vector current which

is 1.10 in our case. Presumably, a similarly larger κA exists
for the other calculations using axial-vector currents which
do not satisfy the AWI, but has not been taken into account.

IV. CONCLUSION

In summary, we have carried out a calculation of the
strange and charm quark spin contributions to the spin of
the nucleon with the help of the anomalous axial Ward
identity. This is done using overlap fermions for the
nucleon and the quark loop on 2þ 1 flavor DWF,
243 × 64 configurations with light sea quarks corresponding
to mπ ¼ 330 MeV. Since the overlap fermion is used
for the pseudoscalar term 2mP and the overlap Dirac
operator is used for the local topological term, the normalized
AWI also holds for the renormalized AWI to two-loop order.
For the charm quark, we find that the 2mP term and the
anomaly contributions almost cancel. For the strange
quark, the 2mP term is somewhat smaller than that of the
charm. Fitting theAWI at finite q2 and the gAðq2Þ and hAðq2Þ
form factors, we obtain the normalized gsAð0Þ. The normali-
zation factor κA ∼ 1.36 for the local axial-vector current is
found to be larger than that for the isovector axial-vector
current, which implies that it is affected by a large cutoff
effect presumably due to the triangle anomaly. This will
be clarified by future work using the conserved axial-
vector current [38] for overlap fermions. After chiral
extrapolation to the physical pion mass, we obtain
Δcþ Δc̄ ¼ −2.7ð2.8Þ × 10−4 which is consistent with zero,
and Δsþ Δs̄ ¼ −0.0403ð44Þð78Þ which is smaller in mag-
nitude than that from the latest analysis ofDISdata [10,11] by
more than two sigmas. We plan to rerun the analysis on
configurations with lighter sea quark masses to gauge the
effect of this parameter on the results reported in this paper. In
this work, we have identified the source for the negative spin
contribution in the disconnected insertion of the light quarks

FIG. 8. The same as in Fig. 6 for the bare gLAð0Þ.
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Babich et al 10

QCDSF 11
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Δs+Δs-

FIG. 9. A summary of the recent lattice QCD calculations of
the strange quark spin Δsþ Δs̄ compared with the global fit of
experiments. The blue triangles are lattice calculations from the
axial vector current and the red circle is from the present work
which uses the anomalous Ward identity.
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as due to the large and negative 2mP contribution which
overcomes the positive anomaly contribution to give an
overall negative gsAð0Þ. This is likely the cause for the
smallness of the net quark spin in the nucleon. We will
confirm this laterwith results on theu andd quarks fromboth
the disconnected and connected insertions.
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