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The simulation of lattice gauge theories with tensor network (TN) methods is becoming increasingly
fruitful. The vision is that such methods will, eventually, be used to simulate theories in (3þ 1) dimensions
in regimes difficult for other methods. So far, however, TN methods have mostly simulated lattice gauge
theories in (1þ 1) dimensions. The aim of this paper is to explore the simulation of quantum
electrodynamics (QED) on infinite lattices with TNs, i.e., fermionic matter fields coupled to a Uð1Þ
gauge field, directly in the thermodynamic limit. With this idea in mind we first consider a gauge-invariant
infinite density matrix renormalization group simulation of the Schwinger model—i.e., QED in ð1þ 1Þ d.
After giving a precise description of the numerical method, we benchmark our simulations by computing
the subtracted chiral condensate in the continuum, in good agreement with other approaches. Our
simulations of the Schwinger model allow us to build intuition about how a simulation should proceed in
(2þ 1) dimensions. Based on this, we propose a variational ansatz using infinite projected entangled pair
states (PEPS) to describe the ground state of ð2þ 1Þ d QED. The ansatz includes Uð1Þ gauge symmetry at
the level of the tensors, as well as fermionic (matter) and bosonic (gauge) degrees of freedom both at the
physical and virtual levels. We argue that all the necessary ingredients for the simulation of ð2þ 1Þ d QED
are, a priori, already in place, paving the way for future upcoming results.
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I. INTRODUCTION

Gauge field theories [1] are currently our deepest level of
understanding of how fundamental interactions emerge
from local symmetry principles. The standard model is a
gauge theory, where different gauge symmetries orchestrate
all known interactions except for gravity, which can be seen
itself also as a gauge theory. The structure of gauge theories
is so complex that, sometimes, it is wise to discretize them
on a lattice in order to simulate their properties on a
computer. Even if bumpy at its historical origins, the
numerical simulation of lattice gauge theories [2] has
become one of the main tools to understand our universe.
This is particularly true for quantum chromodynamics
(QCD), the theory of strong interactions, where lattice
simulations allowed to, e.g., understand the spectrum of
hadrons observed in particle accelerators.
Still, many questions concerning gauge theories remain

open, and in particular for QCD. For instance, what is its
phase diagram at finite fermionic density? Or what are the
dynamical properties of the theory? Usual lattice gauge
theory calculations, based mostly on quantumMonte Carlo,
fail to answer such questions because of fundamental
algorithmic limitations. Moreover, finite-size scaling of
the results relies on accurate extrapolation laws to the
thermodynamic limit which need to be somehow known
beforehand.
In this setting, tensor network (TN) numerical methods

[3] have emerged as a promising alternative. In TN
methods, the wave function of the system is decomposed

into fundamental pieces, the tensors, glued together by
quantum entanglement according to some network pattern.
Such methods rely on correctly reproducing the amount
and structure of entanglement in the wave function being
simulated. The methods usually target low-energy proper-
ties, but can also be adapted to compute dynamics.
Moreover, one can simulate both bosons and fermions
with essentially the same computational cost [4]. On top,
gauge symmetries can be implemented naturally in this
framework [5,6]. So all in all, TNs look like the natural
option to describe the structure of quantum states present in
lattice gauge theories.
Our aim with this paper is to pave the way towards

higher-dimensional numerical simulations of lattice gauge
theories, in particular for ð2þ 1Þ d quantum electrodynam-
ics (QED), i.e., the gauge theory for electromagnetism. In
order to build intuition, we first do a detailed analysis of
simulations of lattice QED in ð1þ 1Þ d, the so-called
Schwinger model [7], using gauge-invariant matrix product
states (MPS) [6,8] and a gauge-invariant version of infinite
density matrix renormalization group (iDMRG) [9,10].
This allows us to foresee how a higher-dimensional
simulation should proceed. For the higher-dimensional
case we discuss briefly the lattice Hamiltonian, and give
a proposal for a 2d TN ansatz based on infinite projected
entangled pair states (iPEPS) [11,12]. As we shall see, such
an iPEPS implements naturally fermionic matter and Uð1Þ
gauge bosons. Thinking in perspective, we argue that all
the necessary ingredients for a TN simulation of QED in
ð2þ 1Þ d are a priori already there.
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Previous results on the TN simulation of lattice gauge
theories include a number of works. Z2 lattice gauge
theories in ð1þ 1Þ d have been considered with DMRG
[13]. For the Schwinger model, DMRG (without MPS
formulation) was considered in several works [14], whereas
MPS simulations have been done to compute the chiral
condensate [15] as well as thermal properties [16], the mass
spectrum [17], the Schwinger effect [18], the effect of
truncation in the gauge variable [19], and the case of several
fermionic flavors [20]. Gauge invariance in the MPS
of the Schwinger model was originally considered in
Ref. [6], where the ground state was computed using the
time-dependent variational principle (TDVP) [21]. Gauge-
invariant MPS were used to compute the confining
potential [22]. A similar approach was used to analyze
the scattering of two quasiparticles and the dynamical
generation of entanglement [23]. TN simulations have also
been implemented recently for non-Abelian lattice gauge
theories in ð1þ 1Þ d [24]. For higher-dimensional systems,
gauge-invariant TN ansatzs have also been proposed
analytically [5,25,26].
This paper is organized as follows: first, in Sec. II we

provide a detailed introduction to QED in (1þ 1) dimen-
sions (the Schwinger model) in the continuum as well as its
discretized version on the lattice. In this section we provide
also background on the so-called chiral condensate. Then,
in Sec. III we revise the infinite-DMRG algorithm. We
discuss the details of the variational optimization of MPS,
with one-site and two-site updates in the thermodynamic
limit. In Sec. IV we explain how to do a gauge-invariant
simulation of the Schwinger model using infinite DMRG.
Numerical benchmarks for the chiral condensate in
ð1þ 1Þ d are presented in Sec. V, paying attention to the
continuum limit extrapolation. Based on all this, in Sec. VI
we discuss the prospects for the simulation of QED in
ð2þ 1Þ d, where we consider the lattice formulation of the
Hamiltonian as well as a possible TN ansatz for its ground
state in terms of a 2d infinite PEPS. Finally, Sec. VII
contains our conclusions.

II. QED IN ð1 + 1ÞD: THE SCHWINGER MODEL

Let us now revise the basics of QED in (1þ 1)
dimensions, also called QED2, or the Schwinger model
[7]. We will refresh some of the properties of this theory
defined in the continuum, as well as a possible formulation
on the lattice, which will be the starting point of our study
with TN methods. Readers who are interested in a more
detailed discussion of the model and its properties are
referred to, e.g., Ref. [15].

A. Continuum formulation

The massive Schwinger model is quantum electrody-
namics in two space-time dimensions. Its Lagrangian
density in the continuum reads

L ¼ ψ̄ði∂μγ
μ −mÞψ −

1

4
FμνFμν − gψ̄Aμγ

μψ ; ð1Þ

where

Fμν ¼ ∂μAν − ∂νAμ: ð2Þ

The first term is the Dirac Lagrangian density for a free
fermion and the second term corresponds to the field
energy of the electric field [in ð1þ 1Þ d there is no “room”
for a magnetic field]. The third term is the interaction
between the matter field and the gauge field. It has the
important feature that it arises from the constraints imposed
by a local gauge transformation. That means its form is
determined by demanding the invariance of the Lagrangian
density under the transformation

ψ 0 ¼ eigχψ ; A0
μ ¼ Aμ þ ∂μχ; ð3Þ

where χ is an arbitrary real function of space and time [27],
i.e. χ ¼ χðx; tÞ. The Schwinger model describes the inter-
action of one flavor mass-m fermions ψ with a Uð1Þ gauge
field A, with coupling g. In ð1þ 1Þ d the Lorentz indices μ,
ν run from 0 to 1 (one direction for space, and one for time),
and the gamma matrices satisfy the Clifford algebra

fγμ; γνg ¼ 2gμν; ð4Þ

analogously to the ð3þ 1Þ d case. However, since there is
no spin degree of freedom in one spatial dimension, these
are 2 × 2 matrices. Substituting the Lagrangian of the
Schwinger model into Euler-Lagrange equations for the
fields ψ and A results in the equations of motion

γμðiDμ −mÞψ ¼ 0; ð5Þ

and

∂μFμν ¼ gjν; ð6Þ

where Dμ ≡ ∂μ þ igAμ is the gauge covariant derivative
and jν ≡ ψ̄γνψ the vector current. The theory is quantized
using canonical quantization by imposing anticommutation
relations on the fermion fields

fψ†ðx; tÞ;ψðx; tÞg ¼ δðx − yÞ
fψ†ðx; tÞ;ψ†ðx; tÞg ¼ fψðx; tÞ;ψðx; tÞg ¼ 0; ð7Þ

and by imposing commutation relations on the gauge fields

½Eðx; tÞ; A1ðy; tÞ� ¼ iδðx − yÞ; ð8Þ

where the electric field E is defined by

E ¼ −F01 ¼ F10: ð9Þ
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Using this definition of the electric field in Eq. (6), we get
analogues to Maxwell’s equations in ð1þ 1Þ d:

∂E
∂x ¼ gj0 ≡ gρ; ðGauss’ lawÞ

−
∂E
∂t ¼ gj1 ≡ gj: ð10Þ

Since there is “no space” for magnetic fields in one
spatial dimension, we only obtain the analogue of
Gauss’ law and an equation which describes the dynamics
of the electric field.

B. Lattice formulation

Starting from the Hamiltonian density H in temporal
gauge, A0 ¼ 0,

H ¼ −iψ̄γ1ð∂1 − igA1Þψ þmψ̄ψ þ 1

2
E2; ð11Þ

the model can be formulated on a spatial lattice using a
Kogut-Susskind staggered formulation [28]. The equivalent
lattice Hamiltonian is

H ¼ −
i
2a

X
n

ðϕ†
neiθnϕnþ1 − H:c:Þ þm

X
n

ð−1Þnϕ†
nϕn

þ ag2

2

X
n

L2
n: ð12Þ

where a denotes the lattice spacing. In this formulation the
correspondence between the fermionic lattice field ϕn on
site n and the continuum field ψ is

ϕn ↔

�
ψupper neven

ψ lower nodd
; ψ ¼

�
ψupper

ψ lower

�
: ð13Þ

The gauge variables θn live on the links between the sites n
and nþ 1, and are related to the vector potential via

θn ¼ −agA1
n: ð14Þ

Their conjugate variables Ln, with ½θn; Lm� ¼ iδnm, are
related to the electric field by

gLn ¼ En: ð15Þ

Since θn is an angular variable, Ln will have integer
charge eigenvalues pn ∈ Z. Therefore, the local Hilbert
space spanned by the corresponding eigenvectors jpni is
infinite, and e�iθn are the ladder operators

e�iθn jpni ¼ jpn � 1i: ð16Þ

The lattice equivalent of Gauss’ law then reads

Ln − Ln−1 ¼ ϕ†
nϕn −

1

2
ð1 − ð−1ÞnÞ; ð17Þ

which means that excitations on odd and even sites create
∓ 1 units of flux, corresponding to “electron” and “positron”
excitations, respectively. Using a Jordan-Wigner transfor-
mation, ϕn ¼ Πk<nðiσzkÞσ−n , where σ� ¼ 1

2
ðσx � σyÞ, the

fermionic degrees of freedom can be mapped to spin-1=2
degrees of freedomwhile keeping the Hamiltonian local, i.e.,

H ¼ g
2

ffiffiffi
x

p
�X

n

L2
n þ

μ

2

X
n

ð−1Þnðσzn þ ð−1ÞnÞ

þ x
X
n

ðσþn eiθnσ−nþ1Þ þ H:c:

�
: ð18Þ

In the above equation we introduced the parameters
x≡ 1=ðg2a2Þ and μ≡ 2

ffiffiffi
x

p
m=g. The spins live on the sites

of the lattice,with σznjsni ¼ snjsni, and represent “positrons”
on even sites and “electrons” on odd sites. An even site with
s2n ¼ −1 corresponds to an empty positron state, while
s2n ¼ 1 represents an occupied positron state, and vice versa
for the odd electron sites.
In ð1þ 1Þ d, Gauss’ law can therefore be rewritten as

Ln − Ln−1 ¼ 1=2ðσzn þ ð−1ÞnÞ; ð19Þ

and can in fact be used to remove the gauge degrees of
freedom [15]. The resulting lattice Hamiltonian is then

H ¼ x
X
n

ðσþn σ−nþ1 þ σ−nσ
þ
nþ1Þ þ

μ

2

X
n

ð1þ ð−1ÞnσznÞ

þ
X
n

�
lþ 1

2

Xn
k¼0

ðð−1Þk þ σzkÞ
�

2

; ð20Þ

where l is a possible external background charge. In this
new formulation there are no gauge variables but, however,
we pay the price of having a nonlocal, long-range inter-
action term in the Hamiltonian.

C. Chiral condensate in the continuum

Let us now revise the so-called chiral condensate.
Without attempting to go into detail, we discuss two
continuous symmetries of the Schwinger model of which
one is broken after quantization. In this context, the chiral
condensate arises as an order parameter.
The Lagrangian density of the Schwinger model is

invariant under global phase transformations of the Dirac
field, i.e.,

ψ 0 ¼ eiαψ → L0 ¼ L; ð21Þ

where α is a real constant. According to Noether’s theorem
(see, e.g., Ref. [1]), there is a conserved current jμ
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associated with every continuous symmetry. In this case the
vector current

jμ ¼ ψ̄γμψ ð22Þ

is conserved, i.e.,

∂μjμ ¼ 0: ð23Þ

This global Uð1Þ symmetry is known to hold in fermionic
field theory models although, in principle, the vacuum state
could spontaneously break it [30].
Let us now consider the case of massless (m ¼ 0)

fermions. Then the Lagrangian of the Schwinger
model has another continuous symmetry, namely the
so-called chiral symmetry. This symmetry implies that
the Lagrangian density is invariant if one transforms ψ
into ψ 0 as

ψ 0 ¼ eiαγ5ψ : ð24Þ

In the above equation γ5 ≡ γ0γ1 anticommutes with γμ for
μ ¼ 1, 2 and α is again a real constant. For example, in the
Dirac representation the gamma matrices are given by [29]

γ0¼
�
1 0

0 −1

�
; γ1 ¼

�
0 1

−1 0

�
; γ5≡ γ0γ1 ¼

�
0 1

1 0

�
:

ð25Þ

The associated Noether current for this symmetry is the
so-called axial-vector current jμ5 which is given by

jμ5 ¼ ψ̄γμγ5ψ : ð26Þ

While the vector current in Eq. (22) is conserved in the
quantized theory, the axial-vector current is not. This
nonconservation of the axial-vector current is called chiral
anomaly or axial anomaly. The divergence of the axial-
vector current reads

∂μj
μ
5 ¼

g
2π

ϵμνFμν; ð27Þ

where ϵμν is the Levi-Civita symbol in two dimensions,
see Refs. [30,31]. As a consequence of this chiral
symmetry breaking, the vacuum expectation value

Σ≡ hψ̄ψi ð28Þ

becomes nonzero. The quantity Σ is called chiral con-
densate [30]. In the case of the massless Schwinger
model, the chiral condensate can be computed exactly
(see, e.g., Ref. [32]), and is found to be

Σ0 ¼
eγ

2π
3
2

≈ 0.159929; ð29Þ

where γ is the Euler-Mascheroni constant. Therefore, the
chiral condensate can be regarded as an order parameter
signalling chiral symmetry breaking in the vacuum.

D. Chiral condensate on the lattice

In the lattice formulation of the massive Schwinger
model, it is possible to write the chiral condensate in terms
of Pauli spin operators. It is easy to see that this reads

ΣðxÞ ¼
ffiffiffi
x

p
N

X
n

ð−1Þn
�
1þ σzn

2

�
; ð30Þ

where the expectation value is computed in the ground state
and N is the number of lattice sites. The naively computed
chiral condensate is known to be UV divergent. In
particular, it diverges logarithmically in the continuum
limit, a → 0. It has been argued that this divergence comes
solely from the free theory at g ¼ 0. In the free case the
chiral condensate on the lattice ΣfreeðxÞ can be computed
exactly as

ΣfreeðxÞ ¼ −
m
πg

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

g2x

q K

�
1

1þ m2

g2x

�
; ð31Þ

where KðzÞ is the complete elliptic integral of the first kind.
This result can be used to subtract the divergence from the
computed chiral condensate in the interacting theory, and
therefore to renormalize it. In other words, we can define a
so-called subtracted chiral condensate Σsub, which allows
for a continuum extrapolation, by

Σsub ¼ ΣðxÞ − ΣfreeðxÞ; ð32Þ

where ΣðxÞ denotes the computed chiral condensate.
Details on the extrapolation procedure for numerical data
will be given in the next chapters.

III. INFINITE DMRG

Here we review the basics of the DMRG algorithm for
infinite systems. Several formulations of this algorithm
have been proposed in the literature. The approach taken
here is similar to that in the second paper of Ref. [10],
where we consider both the case of one-site and two-site
updates. For the sake of completeness, we also briefly
review some of the basics of variational optimization
algorithms over tensor networks [3].

A. MPS variational optimization

In general terms, we want to approximate the ground
state of a Hamiltonian expressed as a matrix product
operator (MPO) by minimizing
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EðjψiÞ ¼ hψ jHjψi
hψ jψi ð33Þ

over the family of matrix product states (MPS) with bond
dimension χ. This can be achieved by introducing a
Lagrange multiplier λ that enforces normalization, so that
the minimization reads

min
jψi∈MPS

ðhψ jHjψi − λhψ jψiÞ: ð34Þ

The above minimization is performed by adjusting all
tensors in the MPS for all sites in order to make the
expectation value of the energy the lowest possible. In
DMRG one follows a sequential approach, optimizing
tensor by tensor. In terms of the chosen tensor, which
we call A, the minimization problem defined by Eq. (34)
can be written as

min
A
ðhψ jHjψi−λhψ jψiÞ¼min

A
ðA⃗†HeffA⃗−λA⃗†N A⃗Þ: ð35Þ

In the above equation, all coefficients of A are arranged
as a vector A⃗ as shown in Fig. 1(a), Heff is an effective
Hamiltonian, and N is a normalization matrix. The
effective Hamiltonian and the normalization matrix can
be considered as the environment of tensors A and A� in the
two TNs for hψ jHjψi and hψ jψi respectively, but written in
matrix form [see e.g. Fig. 1(b)].
The minimization condition

∂
∂A⃗† ðA⃗

†HeffA⃗ − λA⃗†N A⃗Þ ¼ 0 ð36Þ

leads to the generalized eigenvalue problem

HeffA⃗ ¼ λN A⃗: ð37Þ

Once this optimization with respect to A is done, one
proceeds by repeating the minimization for another tensor
in the MPS. In this way, one continues sweeping through all

tensors several times, until the desired convergence in
expectation values is attained. Let us remark that if we start
from an MPS with open boundary conditions, this algo-
rithm is nothing else but the density matrix renormalization
group (DMRG) algorithm in the language of TNs [3,9]. In
the case of open boundary conditions it is also always
possible to choose an appropriate gauge for the tensors,
e.g., a mixed canonical form with A as the center site, such
that N ¼ I. Then Eq. (37) reduces to an ordinary eigen-
value problem. This is very useful for practical implemen-
tations since it avoids stability problems due to N being ill
conditioned, see Ref. [3]. In what follows, we always
consider MPS with open boundary conditions in mixed
canonical form.

B. One-site infinite DMRG

If we start from the very beginning with an infinite
system to study systems in the thermodynamic limit, we
need to modify the above procedure [10]. Let us assume
that we were given an infinitely large and translationally
invariant system in its ground state. Then, if we were to add
an additional site to the system and allow it to relax, one
would expect that the new site would change to match the
rest, while the other sites in the system remain essentially
unchanged. In MPS language, let us consider the case in
which we already have an infinite MPS with bond
dimension χ representing the ground state of our system.
Then adding a site to our system would correspond to
adding another tensor in the MPS. The relaxation process
could be simulated by minimizing the energy with respect
to the new tensor in the environment given by the original
MPS. We would then obtain a tensor which looks, mostly,
like all of the tensors in our infinite MPS. The idea of the
algorithm is to start with a representation of the infinite
system in terms of an approximative environment. This
environment is then progressively refined by embedding
new sites, allowing the sites to relax, and then absorbing
them into the environment. Eventually this procedure will
converge, thus simulating the environment experienced by
a single site in the infinite system in its ground state.
The infinite-system algorithm thus works as follows: one

starts from initial environments LH and RH (e.g., random)
representing the left and right halves of the (infinite) system
with respect to the added tensor A of the TN for hψ jHjψi
[see Fig. 2(a)]. Then, one iterates the following procedure:
(1) Relaxation: Compute the eigenvector A⃗ correspond-

ing to the minimal eigenvalue of the problem [33]
HeffA⃗ ¼ λA⃗, and reshape it back to a 3-index tensor.
The effective Hamiltonian is shown in Fig. 2(b).

(2) Absorption (odd step): At an odd iteration step, the
optimized tensor is absorbed into the left environ-
ment LH. In detail:
(a) Merge the first bond index and the physical

index of A to form a matrix, and compute the

FIG. 1. (a) Transformation of a 3-index tensor into a vector by
merging the indices. (b) Procedure to get the effective Hamil-
tonian for the third tensor in a five-site MPS.
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singular value decompositon A ¼ UΣV† [see
Fig. 3(a)].

(b) Undo the index fusion for the left index of U to
get back to a 3-index tensor [see Fig. 3(a)] and
compute EH as defined in Fig. 3(b).

(c) Refine the approximation for the left envi-
ronment LH by contracting EH into it, i.e.
LH ← LH · EH, as shown in Fig. 3(c).

(3) Absorption (even step): At an even iteration step, the
optimized tensor is analogously contracted into the
right environment RH (see Fig. 4). In detail:
(a) Merge the second bond index and the physical

index of A to form a matrix, and compute the
singular value decompositon A ¼ UΣV†.

(b) Undo the index fusion for the right index of V†

to get back to a 3-index tensor and compute the
analogue of the tensor EH.

(c) Refine the approximation for the right
environment RH by contracting EH into it,
i.e. RH ← EH · RH.

Since U and V are isometries, the mixed canonical form of
the MPS is preserved at every simulation step. To check for
convergence it is useful to calculate the desired expectation
value after, e.g., each first or second iteration step. For a

single-site operator acting on the added site this can be
done easily, thanks especially to the mixed canonical form
of the MPS. The main computational cost is given by the
eigenvalue problem and scales therefore as Oðχ3Þ.

C. Two-site infinite DMRG

If only a single site is added at every iteration step, then
the MPS bond dimension χ is fixed right from the start in
the algorithm. However, one may think of situations in
which it would be advantageous to increase the bond
dimension during the calculation. This can be done by a
slight modification of the algorithm, namely, by adding two
sites at each iteration, see Fig. 5. The two-site infinite
DMRG algorithm is then as follows:
(1) Relaxation: Compute the eigenvector Θ⃗ correspond-

ing to the minimal eigenvalue of the problem
HeffΘ⃗ ¼ λΘ⃗, where the effective Hamiltonian Heff

and the vector Θ⃗ are defined as shown in Figs. 5(c)
and 5(b), respectively.

(2) Absorption: The optimized tensor is simultaneously
contracted into the left environment LH and into the
right environment RH. In detail:
(a) Compute the singular value decomposition

Θ ¼ UΣV† [see Fig. 5(d)].
(b) Undo the index fusion for the left index ofU and

for the right index of V†.
(c) Compute the tensors EHL and EHR as defined in

Fig. 5(e).
(d) Refine the approximations for the left environ-

ment LH and for right environment RH by the
contractions LH ← LH · EHL and RH ← EHR ·
RH shown in Fig. 5(f).

The crucial point is that, if one adds two sites at a time,
then the central matrix becomes a square matrix of
increased dimension dχ × dχ as can be seen in Fig. 5(b).
This allows, in principle, for a truncation of the SVD in the
second iteration step, see also Fig. 5(d), which allows
the bond dimension to grow as the algorithm proceeds. This
is also particularly useful if one implements symmetries in

FIG. 2. (a) Definition of the approximate environments LH and
RH . (b) Definition of the effective Hamiltonian.

FIG. 3. Odd step: (a) SVD of the optimized tensor A;
(b) definition of EH; (c) refinement of the left environment.

FIG. 4. Even step: (a) SVD of the optimized tensor A;
(b) definition of EH; (c) refinement of the right environment.
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the algorithm, since the truncation allows to change the
symmetry sectors being kept at every step. In practice, this
means that the algorithm can readapt itself to more relevant
symmetry sectors, which have more weight in terms of the
singular values of Θ, leading to improved accuracy.

IV. GAUGE-INVARIANT INFINITE DMRG

Following the ansatz introduced in Ref. [6], we start one
step before integrating out the gauge field degrees of
freedom using the Gauss’ law constraint. This is, we
consider the Hamiltonian in Eq. (18), with spin variables
on the sites for the staggered fermionic matter field, and
angular variables on the links for the bosonic gauge (electric)
field. An obvious advantage is that this Hamiltonian is local
with at most nearest-neighbor actions, and translationally
invariant under shifts by two sites. Furthermore, it is
practical for possible generalizations to higher-dimensional
systems, since the gauge degrees of freedom can only be
integrated out in ð1þ 1Þ d.

A. MPO representation of H

In the following, we provide an MPO representation of
the Hamiltonian in Eq. (18) to be used in an iDMRG
simulation. For convenience, we block site n and link n into
a single MPS site, such that at every MPS site we have a
fermionic and a gauge field degree of freedom. Then, the

Hamiltonian can be regarded as the sum of one-site
operator and two-site operators, i.e,

H ¼
X
n

hn þ hn;nþ1; ð38Þ

where

hn ¼ I ⊗ L2
n þ

μ

2
ððIþ ð−1ÞnσznÞ ⊗ IÞ; ð39Þ

and

hn;nþ1 ¼ xððσþn ⊗ eiθnÞ · ðσ−nþ1 ⊗ IÞ
þ ðσ−n ⊗ e−iθnÞ · ðσþnþ1 ⊗ IÞÞ: ð40Þ

The first factor in the tensor product⊗ refers to the fermion
degree of freedom, and the second to the gauge field degree
of freedom at the MPS site. With · we denote here the tensor
product between operators acting on different MPS sites.
The Hamiltonian can be written as an MPO with bond
dimensionD ¼ 4 where nonzero coefficients of the tensors
are given as in Fig. 6.

FIG. 5. Modifications for the two-site iDMRG algorithm:
(a) two-site environment; (b) reshape of tensor Θ as a vector;
(c) reshape of the two-site effective Hamiltonian; (d) SVD of
tensor Θ; (e) tensors EHL and EHR; (f) left and right absorptions.

(a)

(b)

(c)

FIG. 6. MPO tensors for (a) the bulk, (b) the left boundary, and
(c) the right boundary. Notice that we have different tensors for
even and odd sites in the bulk due to the factor ð−1Þn in Eq. (39).
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B. Imposing gauge invariance

We now impose gauge invariance to enforce that our
algorithm works directly within the physical subspace of
the full Hilbert space. In particular, we are only interested in
states jψi that are gauge invariant, i.e.,

Gnjψi ¼ 0 ∀ n; ð41Þ

where

Gn ≡ Ln − Ln−1 −
1

2
ðσzn þ ð−1ÞnÞ: ð42Þ

Equation (41) is nothing but the (discretized) lattice version
of the Gauss’ law constraint for the system.
A possibility to impose gauge invariance would be to add

a penalty term to the Hamiltonian, so that the gauge-
invariant subspace is energetically preferred. For example,
one could consider the modified Hamiltonian

H0 ¼ H þ λ
X
n

G2
n; ð43Þ

instead of H, and then take the ground state sector in the
limit λ → ∞. However, by doing this gauge invariance
would only be approximately realized, and one would have
to extrapolate additionally in parameter λ.
A safer and more direct option is to implement gauge

invariance directly at the level of the tensors in the TN, i.e.,
consider a TN made of Uð1Þ gauge-symmetric tensors [6].
This implies that many tensor components in the MPS
ansatz must vanish, i.e., only components compatible with
gauge symmetry can be different from zero [34].
For the sake of concreteness, let us assume that we have a

finite lattice of N ∈ 2N sites. Then a general, i.e., not
necessarily gauge invariant, MPS ansatz for the system has
the form

jψi ¼
X

fsn;png
ðB1Þs1ðC1Þp1ðB2Þs2ðC2Þp2 � � � js1p1s2p2…i;

ð44Þ

where the matrices ðBsn
n Þαβ correspond to fermionic degrees

of freedom, and the matrices ðCpn
n Þαβ to gauge degrees of

freedom. We denote the bond dimension with χ, i.e., the
bond indices take the values α; β ¼ 1;…χ.
From Eqs. (41) and (42) we can see that Gauss’ law is

basically a prescription to update the electric field Ln at the
right link of site n, namely,

Ln ¼ Ln−1 þ
1

2
ðσzn þ ð−1ÞnÞ: ð45Þ

Therefore, if there is no charge at the site n, then Ln stays
with the value Ln−1 at the left. At the same time the electric

field Ln is increased/decreased by one unit if there is a
positron/electron [35] at site n. This “update rule” can be
implemented by giving the bond indices a multiple index
structure, α → ðq; αqÞ, and imposing the following form on
the tensors in the bulk:

ðBnÞsnðq;αqÞðr;βrÞ ¼ ðbn;qÞsnαq;βrδqþðsnþð−1ÞnÞ=2;r;

ðCnÞpn
ðq;αqÞðr;βrÞ ¼ ðcnÞpn

αq;βr
δq;pn

δr;pn
: ð46Þ

If one chooses a vanishing electric field to the left of the
first lattice site, i.e. L0 ¼ 0, then the tensors representing
the boundaries are gauge invariant if

ðB1Þs1ðq;αqÞðr;βrÞ ¼ ðb1;0Þs11;βrδðs−1ÞÞ=2;r;
ðC2NÞp2N

ðq;αqÞðr;βrÞ ¼ ðc2NÞp2N
αq;1

δq;p2N
: ð47Þ

In the above equations, the indices q and r label the electric
charge sector, and are sometimes referred to as structural
or charge indices. They label the representation of the
gauge symmetry group for the index, and run from 1 to a
structural bond dimension χc. The indices αq and βr label
the degeneracy subspace within each charge (symmetry)
sector, and run from 1 to a degeneracy bond dimension χd.
Every bulk or boundary tensor which is chosen according
to Eq. (46) or Eq. (47), respectively, preserves the gauge
symmetry exactly. The variational freedom lies now within
the matrices bsnn;q and cpn

n , and the total MPS bond
dimension is given by χ ¼ χc · χd. The rather lengthy
derivation of the result can be found in Ref. [6]. We also
refer the reader to Ref. [34] for details on the implementa-
tion of symmetries in TNs and its consequences.

C. Further details

The strategy presented above is very general. For an
iDMRG simulation, the MPO is itself gauge invariant by
construction. If the MPS ansatz is also gauge invariant, then
the whole algorithm preserves gauge symmetry at every
iteration step, of course provided that the initial conditions
for the left and right environments are also gauge invariant.
This initial condition for the environment tensors is very
easy to impose.
Since our main goal is to learn from the simulations in

ð1þ 1Þ d, we use a coarse-grained version of the one-site
iDMRG algorithm presented previously to find a ground
state approximation in the thermodynamic limit (let us
mention that we also tested a non-coarse-grained version of
the two-site iDMRG algorithm, leading to essentially
equivalent results). As in the construction of the
Hamiltonian, we again block a lattice site and a link into
one MPS site. This leads to an MPS ansatz with a two-site
unit cell due to alternating spin-gauge systems for positrons
and electrons. The initial tensors are defined according to
Eq. (46), but are otherwise chosen randomly (or according
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to some educated guess) within the variational gauge-
invariant subspace. In order to obtain a system that is
invariant under translations of one site, we also block
neighboring MPS sites corresponding to a positron and
electron spin-gauge systems together. This procedure is
shown in Fig. 7.
A list of all the relevant simulation parameters is shown

in Table I.

V. RESULTS

A. Numerical benchmarks

We computed the chiral condensate for four different
values of the fermion mass, m=g ¼ 0, 0.125, 0.25, 0.5
where in each of the cases we took many points in the
interval x ∈ ½10; 600�. Such a large interval allows us to
extrapolate to the continuum limit, as well as to see the
effect of the finite bond dimension as this limit is
approached. The parameter pmax ≥ jpnj truncates the infin-
ite local Hilbert space of the gauge bosons, and amounts to
a maximum bosonic occupation number. Physically it can

also be seen as truncation in the gauge Uð1Þ charge. In our
calculations we choose pmax ¼ 2, i.e., we truncate the
infinite dimensional Hilbert space to five dimensions [36].
In practice we have seen that this truncation is sufficient for
our purposes [37]. Furthermore, we set N ¼ 500 which
corresponds to adding 1000 sites in the physical system due
to the two-site coarse graining. At every simulation step we
check that the expectation value of the gauge operator Gn
defined in Eq. (42) is zero, as required by gauge invariance.
Importantly, in order to get an approximation of the

(subtracted) chiral condensate in the continuum, we have to
perform a sequence of extrapolations. First, for every x we
extrapolate to infinite MPS bond dimensions χc and χd.
Second, for the extrapolated curve as a function of x, we
extrapolate to the continuum limit so that 1=

ffiffiffi
x

p
→ 0.

Let us show an example of the extrapolation in the MPS
bond dimensions for m=g ¼ 0.25. In Fig. 8 we show the
subtracted chiral condensate as a function of 1=

ffiffiffi
x

p
for

different bond dimensions χc and χd. One can see that the
effect of the truncation becomes stronger as the lattice
parameter a becomes smaller, i.e., in the region tending
towards the continuum limit. This is an important obser-
vation: the closer we are to the continuum limit, the harder
the simulation becomes. It may be possible to simulate the
lattice system always in an “easy” regime far from the field
theory limit, but it is important to remember that in such a
case we would not be simulating a field theory, but rather
some (interesting but discrete) lattice spin model. In our
simulations, the results for the subtracted chiral condensate
seem to be well converged over the chosen spectrum of
bond dimensions.
In practice, for every xwe do an extrapolation in the total

MPS bond dimension, i.e., χ ≡ χc · χd → ∞. We find that

FIG. 7. (a) Infinite spatial lattice in ð1þ 1Þ d: the spins
(fermions) live on the sites and the gauge variables on the links.
(b) A lattice site and the link to the right are represented by one
MPS site where gauge invariance is ensured by choosing the
tensors as in Eq. (46). (c) Neighboring MPS sites corresponding
to positron and electron spin-gauge systems are blocked together
in a “supersite” to make the system fully translationally invariant.

TABLE I. Simulation parameters in the one-site iDMRG
algorithm.

Parameter Description

χc Bond dimension of charge index
χd Bond dimension of degeneracy index
pmax Gauge boson truncation
N Number of added sites
x Inverse coupling
m=g Dimensionless fermion mass

0 0.05 0.1 0.15 0.2 0.25 0.3

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17
(3,3)
(5,3)
(5,5)
(7,3)
(7,5)
(7,7)
(9,3)
(9,5)
(11,7)
(11,5)
(9,7)
(13,7)

FIG. 8. Subtracted chiral condensate for m=g ¼ 0.25 as a
function of 1=

ffiffiffi
x

p
for different bond dimensions ðχc; χdÞ, and

physical gauge-boson dimension 5. The insets show two consecu-
tive zooms in the region with small lattice constant a ∼ 1=

ffiffiffi
x

p
.
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the dependency of the chiral condensate is well described
by the fitting function

Σðx; χÞ ≈ ae−bχ þ c
χd

þ Σðx; χ ¼ ∞Þ; ð48Þ

where Σðx; χ ¼ ∞Þ is the value extrapolated to infinite
bond dimension for inverse coupling x. In Fig. 9 we show
some of these extrapolations for x ¼ 100, 250 and 500.
Finally, the extrapolation to the continuum limit a → 0 is

taken by considering the regime x → ∞. Following the
procedure in Ref. [15], we fit the subtracted chiral con-
densate using the following ansatz:

ΣsubðxÞ ¼ Σsub þ F
log xffiffiffi

x
p þ B

1ffiffiffi
x

p þ C
1

x
; ð49Þ

where Σsub is the extrapolated continuum value of the
subtracted chiral condensate. In Fig. 10 we can see that this
ansatz describes our data overall very well. This is
especially true in the case of larger lattice constants, where
the influence of the finite bond dimension is also smaller
and the results are therefore easier to converge. Using this
fit, we perform a continuum extrapolation for x ∈ ½10; 300�,
where the convergence of our algorithm is particularly
good. The obtained results for the four different fermion
masses can be found in Table II.

B. Discussion

As one can see in Table. II our results are in agreement
with the results in Refs. [6,15] for a fitting region
x ∈ ½0; 300�, which is very well converged. Notice, though,
that the approach in Ref. [15] is conceptually very different,
since it is based on finite-size DMRG calculations using the
nonlocalHamiltonian from Eq. (20). In our gauge-invariant
iDMRG approach, however, we start from the local
Hamiltonian in Eq. (18). We think that this approach is
more convenient in order to generalize the calculations to
higher-dimensional systems, since it preserves locality
explicitly and is therefore more amenable to, e.g.,
approaches based on infinite projected entangled pair states
(iPEPS) [12]. This is particularly true, also because in
higher dimensions the Gauss’ law cannot be integrated out,
and therefore the most natural option is to work with a
gauge-invariant 2d PEPS targeting a 2d local Hamiltonian
on the lattice, as we shall discuss in Sec. IV.
Let us also stress that in our ð1þ 1Þ d calculations with

iDMRG, the bond dimensions did not need to be too large
in order to get decent results. In particular, for m=g ¼ 0.25
we used χ ¼ 91 as the highest total bond dimension, while
in the other cases it was χ ¼ 63. The extrapolations in
Ref. [15] were attained from calculations up to bond
dimension χ ¼ 140, though via a different algorithm (as
mentioned above). Remarkably, relatively small bond
dimensions in iDMRG already allow us to provide results
which are in quite good agreement with the ones for large
bond dimension in Ref. [15], on top of not having to do any

0 0.02 0.04 0.06 0.08 0.1 0.12
0.45

0.5

0.55

0.6

0.65

1/

(x
,

)
x = 100
x = 250
x = 500

FIG. 9. Extrapolation of the computed chiral condensate in 1=χ,
for x ¼ 100, 250, 500, at m=g ¼ 0.25.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

m/g = 0.25

m/g = 0

m/g = 0.125

m/g = 0.5

FIG. 10. Continuum extrapolation of the subtracted chiral
condensate for m=g ¼ 0, 0.125, 0.25, 0.5 attained from
x ∈ ½10; 300�. Dashed lines correspond to the fit, and squares
at 1=

ffiffiffi
x

p ¼ 0 to the extrapolated value in the continuum.

TABLE II. Comparison: subtracted chiral condensate in the
continuum. The extrapolation is in the regime x ∈ ½10; 300�.
m=g One-site iDMRG Ref. [15] Ref. [6] Exact

0 0.15900 0.15993 0.15992 0.15992
0.125 0.09425 0.09202 0.09201 � � �
0.25 0.06838 0.06666 0.06664 � � �
0.5 0.04293 0.04238 0.04234 � � �
0.75 � � � � � � 0.03062 � � �
1 � � � � � � 0.02385 � � �
2 � � � � � � 0.01246 � � �
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finite-size extrapolation since we work directly in the
thermodynamic limit.
For further comparison, in Ref. [6], besides working with

gauge invariant MPS in the thermodynamic limit, the
authors also exploited Charge-Time symmetry, i.e., invari-
ance by a one-site translation and charge conjugation. The
ground state calculations were done via the so-called time-
dependent variational principle (TDVP) [21]. In this work
symmetries were treated in a more sophisticated way by
distributing variational freedoms to different charge sectors.
In contrast to that, our approach here is simpler, since we
just choose gauge invariant initial tensors and then let the
algorithm evolve, which naturally preserves gauge invari-
ance. As such, it is remarkable that our simple approach
produces results which are also in qualitative agreement
with those produced by more sophisticated methods.
Moreover, we remind that here we used the one-site

iDMRG algorithm. Despite being more efficient, we know
that a two-site iDMRG calculation would bring some extra
advantages, e.g., a dynamical increase of the bond dimen-
sion, and a dynamical truncation of the gauge-symmetry
sectors. Still, we run some checks with a two-site algorithm
but did not obtain much greater accuracy in the regimes
explored in this paper. However, it is good to keep in mind
that the two-site approach may still be very useful in the
more entangled regimes.

VI. PROSPECTS FOR QED IN ð2 + 1ÞD
Taking into account what we have learned in the

simulation of the ð1þ 1Þ d case, we would like now to
consider the possibility of simulating the lattice version of
QED in ð2þ 1Þ d, directly in the thermodynamic limit.
This gauge theory is interesting for a number of reasons: it
is “closer” to our ð3þ 1Þ d space-time and also has
confinement [38] which, unlike in the case of the
Schwinger model, appears through a mechanism much
more similar to the one in ð3þ 1Þ d QCD [1].
Simulating first the Schwinger model has allowed us to

learn a number of useful things about how the simulation in
ð2þ 1Þ d should proceed. In particular, for the ð2þ 1Þ d
case one needs to face the following facts:
(1) Gauss’ law cannot be explicitly integrated out.

Therefore, the safest choice is to work with a TN
of gauge-invariant tensors.

(2) The Jordan-Wigner transformation in ð2þ 1Þ d in-
troduces nonlocal strings when mapping some
fermionic terms into spins. Therefore, it is more
convenient to work directly in fermionic Fock space.

(3) Additionally to the electric field, in ð2þ 1Þ d there is
also a magnetic field term which, in the lattice
formulation, corresponds to a plaquette energy term
in the Hamiltonian.

(4) Moreover, and as in the Schwinger model, the
gauge-boson Hilbert space should be truncated in

a maximum occupation number in order to do the
simulation (quantum link model) [39].

Considering the above, and following the intuition built
from the simulation of the ð1þ 1Þ d case, we would
therefore need the following ingredients for the ð2þ 1Þ d
simulation:
(1) A TN in 2d as a variational ansatz in the thermo-

dynamic limit. The so-called infinite-PEPS is the
most natural option [12].

(2) The ability to simulate fermions in 2d. This has
already been achieved, with fermionic implementa-
tions of the iPEPS algorithm [4].

(3) The ability to implement Uð1Þ gauge symmetry in
the tensors. This has also been done already in 2d
PEPS [5,25].

(4) The ability to deal with plaquette interactions. This
has also been done in the past for iPEPS, e.g., when
simulating the Toric Code model in a field and its
generalizations [40].

(5) Efficient and accurate optimization strategies. Re-
garding this, important developments in 2d iPEPS
methods have been put forward recently [41].

We conclude, therefore, that a priori all the necessary
ingredients for this simulation are already available. In the
following section we would like to be a little bit more
specific on how such a simulation could proceed.

A. Lattice formulation

The Hamiltonian of QED in ð2þ 1Þ d on a lattice can be
derived in a similar way as the one in ð1þ 1Þ d in Sec. II,
but taking into account that this time one has two spatial
dimensions instead of one. We give here a lattice
Hamiltonian that has the correct continuum limit [42].
On a 2d spatial square lattice, the Hamiltonian is given by

H ¼ −
i
2a

X
hn;mi

ðϕ†
neiθn;mϕm − H:c:Þ þm

X
i

ð−1ÞsðnÞϕ†
nϕn

þ ag2

2

X
hn;mi

L2
n;m −

1

ag2
X
p

cos ðθ1 þ θ2 − θ3 − θ4Þ:

ð50Þ

In the equation above, a is again the lattice spacing, m the
mass of the fermionic field, and g the coupling between
fermionic matter and the gauge boson. Fermionic fields are
again staggered, but this time on a 2d square lattice, i.e.,
along both spatial directions, see Fig. 11. The gauge boson
variables θn;m live on the link between sites n and m, and
the sum hn;mi runs over nearest neighbors. The factor sðnÞ
decides theþ1 or −1 prefactor for the mass term depending
on the staggered pattern of the fermionic field: þ1 for
positrons, and −1 for electrons. Finally, the term with the
cosinus is the curl of the gauge variable around a plaquette,
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see Fig. 11, and corresponds therefore to the magnetic
field energy.
In this setting, the Gauss’ law in ð2þ 1Þ d reads

Ln;m − Ln;mþ1 ¼ ϕ†
nϕn −

1

2
ð1 − ð−1ÞsðnÞÞ

Ln;m − Lnþ1;m ¼ ϕ†
mϕm −

1

2
ð1 − ð−1ÞsðmÞÞ; ð51Þ

where the first equation is for horizontal links, and the
second for the vertical. Finally, in order to implement a
simulation, it is advisable to truncate again the local
dimension of the Hilbert space of the gauge boson, as
we did in the ð1þ 1Þ d case.

B. Variational ansatz: A proposal

As a variational TN ansatz to approximate the ground
state of the above Hamiltonian we propose a 2d infinite
PEPS with the structure from Fig. 12. There are two types
of tensors: on the sites, for the staggered fermionic field
(positrons and electrons), and on the links, for the bosonic
gauge field. The physical indices at the sites are fermionic,
as well as the unoriented bond indices. These indices
satisfy the fermionic PEPS rules [4], namely, every time
that two of such lines cross, one needs to include a
fermionic swap gate in the TN diagram. Additionally,
the physical indices at the links are purely bosonic and
correspond to the truncated Hilbert space of the gauge
variable for the corresponding link. Finally, bosonic bond
indices are introduced with an orientation (arrow), which
implements the Uð1Þ gauge symmetry in the tensor
components.
In terms of equations, the nonzero components are the

following for the tensors at the sites:

ðB�Þfðpα;ðq;αqÞÞ;ðpβ ;ðr;βrÞÞ;ðpγ ;ðs;γsÞÞ;ðpδ;ðt;δtÞÞ

¼ bfαq;βr;γs;δtδmodðpαþpβþpγþpδþf;2Þ;0δðqþr�fÞ;ðsþtÞ; ð52Þ

where� refers to a positron or an electron, tensor bfαq;βr;γs;δt
corresponds to the free parameters, the first delta imple-
ments fermionic Z2 parity symmetry, the second delta
implements the gauge Uð1Þ symmetry, and f ¼ 0, 1 is the
fermionic occupation number. Similarly, for the tensors at
the link the nonzero components are given by

Cb
ðpα;ðq;αqÞÞ;ðpγ ;ðs;γsÞÞ ¼ cbαq;γsδmodðpαþpγ ;2Þ;0δq;bδs;b; ð53Þ

where cbαq;γs are the free variational parameters, b is the
bosonic physical index, the first delta implements
the fermionic parity symmetry for the bond indices, and
the last two deltas take into account Uð1Þ gauge symmetry.
As mentioned above, this ansatz can be optimized in the

thermodynamic limit to approximate the ground state of the
Hamiltonian in Eq. (50). Such an optimization could be
done variationally by using techniques recently introduced
[41], but it could also be optimized by imaginary time
evolution with usual iPEPS algorithms [12]. In any case, at
every step in the algorithm one must carefully take into
account (i) gauge invariance, as we did for the ð1þ 1Þ d
case, but now also (ii) fermionic swaps, coming from the
crossings of fermionic wires in the TN diagrams. The
optimization of this ansatz by imaginary-time evolution is
currently a work in progress, and its results will be
presented in a future publication.

C. Discussion

Let is now discuss briefly several aspects of QED in
ð2þ 1Þ d that may be relevant for our simulation. First, it is

FIG. 11. Labeling of the links around a plaquettep, according to
the magnetic term in the Hamiltonian of Eq. (50). The staggered
structure of positrons eþ and electrons e− is also shown.

(a)

(b)

FIG. 12. PEPS variational ansatz for QED in ð2þ 1Þ d. Tensors
for fermionic variables are at the sites, and for bosonic gauge
variables at the links. (a) The upper tensor is for a fermion, in fact
a positron eþ. Its physical index is fermionic and oriented
according to a Uð1Þ-flux. Parity bond indices pα;…; pδ carry
the fermionic parity, and are therefore fermionic and unoriented.
Indices ðq; αÞ;…; ðt; δÞ carry the Uð1Þ charge and are bosonic
and oriented. The lower tensor is for a gauge boson θ. Its physical
index is bosonic and unoriented. Its bond indices pα, pγ carry the
fermionic parity, and are therefore fermionic and unoriented.
Indices ðq; αÞ; ðs; γÞ are bosonic, carry the Uð1Þ charge, and are
oriented. (b) Structure of a plaquette for the 2d infinite PEPS.
Notice the opposite orientation of the (fermionic) physical indices
for positrons eþ and electrons e−, denoting their opposite Uð1Þ
charges.
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possible to consider compact and noncompact formulations
of lattice QED, both with the correct continuum limit [43].
At the level of implementation, the main difference is the
way we write the pure-gauge term, and both formulations
on the lattice have slightly different behaviors for the
scalings of the chiral condensate and the monopole density.
In our case, noncompact QED in ð2þ 1Þ d could also be
simulated with essentially the same scheme that we
presented: in fact, one only would need to change the
specific form of the plaquette gates. It would be interesting,
thus, to benchmark both lattice formulations with our
numerical approach. Second, there is also the controversy
about the dependence of the chiral condensate with the
number of flavors Nf [44]. Several works have argued in
favor of a critical value Nc

f, so that there is no chiral
symmetry for Nf > Nc

f, though with no agreement on the
actual value of Nc

f and the type of phase transition. This is a
problem that, in principle, could be explored also within
our approach by including extra fermionic degrees of
freedom for the flavors. However, this may involve larger
bond dimensions in the ansatz, making the simulations
more costly. Third, the interplay between fermions and
monopoles is well known in compact QED in ð2þ 1Þ d
[45], where people have studied the possible survival of the
monopole plasma in the presence of dynamical fermions,
even in regimes where chiral symmetry is restored. This
interesting question can also be addressed in principle by
our method, studying the monopole density in terms of the
number of flavors and the chiral condensate, up to the
restrictions mentioned above. Fourth, there is also the issue
of the finite-temperature dependence of the chiral con-
densate for QED in ð2þ 1Þ d, with the presence of a
confinement-deconfinement transition conjectured to be of
the Berezinskii-Kosterlitz-Thouless type [46]. Indeed, it
should be possible to address this question with mixed-state
versions of infinite-PEPS algorithms, which already exist in
the literature for finite temperature and even for dissipation
[47]. In principle one could extend our variational ansatz to

a PEPS operator (PEPO) with the correct symmetries, to do
a finite-temperature simulation.

VII. CONCLUSIONS

In this paper we have simulated the Schwinger model in
the thermodynamic limit on a lattice, by using a gauge-
invariant version of the iDMRG algorithm. After discussing
the details of the theory and the particulars of one-site and
two-site iDMRG, we have approximated the ground state
and computed the extrapolation to the continuum of the
subtracted chiral condensate for several values of the
coupling, in good agreement with alternative calculations.
These results allowed us to build intuition on how a TN
simulation of QED in higher dimensional systems should
proceed. In particular, we proposed a gauge-invariant
variational ansatz for the ground state of QED in
ð2þ 1Þ d in terms of an infinite-PEPS with bosonic and
fermionic degrees of freedom, as well as Uð1Þ gauge-
invariant tensors. We discussed also that all the ingredients
for such a simulation are in principle available in TN
methods: 2d fermions, Uð1Þ gauge symmetry, plaquette
interactions, and accurate optimization schemes. This
simulation in ð2þ 1Þ d is currently a work in progress.
We hope that this paper will help to clarify, at least
qualitatively, the “big picture” towards TN simulations
of lattice gauge theories in higher dimensions, with the
target of lattice QCD in ð3þ 1Þ d on the horizon. We also
hope that this paper helps to clarify, especially to the lattice
gauge theory community, how one can handle the different
ingredients of these field theories in the TN language
directly in the thermodynamic limit, in order to simulate
elusive regimes in quantum Monte Carlo.
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